An Enhanced Heterogeneous Gateway-Based Energy-Aware Multi-Hop Routing Protocol for Wireless Sensor Networks

Wireless Sensor Networks (WSNs) continue to provide essential services for various applications such as surveillance, data gathering, and data transmission from hazardous environments to safer destinations. This has been enhanced by the energy-efficient routing protocols that are mostly designed for such purposes. Gateway-based Energy-Aware Multi-hop Routing protocol (MGEAR) is one of the homogenous routing schemes that was recently designed to more efficiently reduce the energy consumption of distant nodes. However, it has been found that the protocol has a high energy consumption rate, lower stability period, and poorer data transmission to the Base station (BS) when it was deployed for a longer period of time. In this paper, an enhanced Heterogeneous Gateway-based Energy-Aware multi-hop routing protocol (HMGEAR) is proposed. The proposed routing scheme is based on the introduction of heterogeneous nodes in the existing scheme, selection of the head based on the residual energy, introduction of multi-hop communication strategy in all the regions of the network, and implementation of energy hole elimination technique. All these strategies are aiming at reducing energy consumption and extend the life of the network. Results show that the proposed routing scheme outperforms two existing ones in terms of stability period, throughputs, residual energy, and the lifetime of the network.