HIV-1 subtype C mosaic Gag expressed by BCG and MVA elicits persistent effector t cell responses in a prime-boost regimen in mice

Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C) viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG Δ panCD auxotroph and modified vaccinia Ankara (MVA) vaccines expressing HIV-1C mosaic Gag (Gag M ) were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-Gag M vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-Gag M and boosting with MVA-Gag M elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-Gag M only and MVA-Gag M only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4 + and CD8 + T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (10 4 pfu) can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C).