A hydrodynamic study of nickel suspension in stirred tanks

 

Show simple item record

dc.contributor.advisor Lewis, Alison Emslie en_ZA
dc.contributor.author Aoyi, Ochieng en_ZA
dc.date.accessioned 2014-08-28T09:15:53Z
dc.date.available 2014-08-28T09:15:53Z
dc.date.issued 2005 en_ZA
dc.identifier.citation Aoyi, O. 2005. A hydrodynamic study of nickel suspension in stirred tanks. University of Cape Town. en_ZA
dc.identifier.uri http://hdl.handle.net/11427/6693
dc.description.abstract Many studies on solid-liquid mixing have been dedicated to low density particles at low solids concentrations. In the present work, computational fluid dynamics (CFD) simulation and experimental methods were employed to study suspension of high density particles (nickel) at high solids concentration in water. The work first focused on establishing the velocity field in a liquid-only system and then progressed to a solid-liquid system. In the liquid-only system, the influence of tank geometry and simulation strategies, including turbulence models, on fluid flow pattern and mixing was investigated in a tank stirred by a Rushton turbine. The standard k-f. model gave better overall predictions of mean velocity fields than the k-ro and RNG k-f. models. The CFD simulation and experimental results obtained with the laser Doppler velocimetry (LDV) method showed that mixing time and homogenization energy decreased with a decrease in the impeller bottom clearance. It was further shown that there is a bottom clearance range in which a draft tube can aid mixing in a tank stirred by the Rushton turbine. In the solid-liquid system, a hydrofoil impeller was used to investigate the influence of simulation strategies, particle properties and hydrodynamic operating conditions on mixing features such as the off-bottom solids suspension, cloud height, solids concentration distribution and local particle size distribution. The simulation results were compared with experimental ones, in which the off-bottom solids suspension was determined visually and an optical attenuation technique was employed to determine the cloud height and solids concentration distribution. The local particle size distribution (PSD) in the tank was measured by a laser diffraction method. A better agreement between the simulation and experimental results was obtained with drag models that account for the solids loading or free stream turbulence than those that do not. It was shown that the Stokes law applies up to a diameter of 150 ~m for the nickel particles. A CFD simulation strategy for studying mixing of high density solids is proposed and it is shown that a CFD simulation method can be used to develop empirical models that predict mixing features. A CFD simulation approach that takes particle size into account gives predictions that are more representative of practical applications than the mono-size particle simulation approach. Reactor configurations and hydrodynamic parameters that improve mixing were identified. These can also aid optimal design of mixing systems. en_ZA
dc.language.iso eng
dc.subject.other Chemical Engineering en_ZA
dc.title A hydrodynamic study of nickel suspension in stirred tanks en_ZA
dc.type Doctoral Thesis
uct.type.publication Research en_ZA
uct.type.resource Thesis en_ZA
dc.publisher.institution University of Cape Town
dc.publisher.faculty Faculty of Engineering and the Built Environment
dc.publisher.department Department of Chemical Engineering en_ZA
dc.type.qualificationlevel Doctoral
uct.type.filetype Text
uct.type.filetype Image
dc.identifier.apacitation Aoyi, O. (2005). <i>A hydrodynamic study of nickel suspension in stirred tanks</i>. (Thesis). University of Cape Town ,Faculty of Engineering & the Built Environment ,Department of Chemical Engineering. Retrieved from http://hdl.handle.net/11427/6693 en_ZA
dc.identifier.chicagocitation Aoyi, Ochieng. <i>"A hydrodynamic study of nickel suspension in stirred tanks."</i> Thesis., University of Cape Town ,Faculty of Engineering & the Built Environment ,Department of Chemical Engineering, 2005. http://hdl.handle.net/11427/6693 en_ZA
dc.identifier.vancouvercitation Aoyi O. A hydrodynamic study of nickel suspension in stirred tanks. [Thesis]. University of Cape Town ,Faculty of Engineering & the Built Environment ,Department of Chemical Engineering, 2005 [cited yyyy month dd]. Available from: http://hdl.handle.net/11427/6693 en_ZA
dc.identifier.ris TY - Thesis / Dissertation AU - Aoyi, Ochieng AB - Many studies on solid-liquid mixing have been dedicated to low density particles at low solids concentrations. In the present work, computational fluid dynamics (CFD) simulation and experimental methods were employed to study suspension of high density particles (nickel) at high solids concentration in water. The work first focused on establishing the velocity field in a liquid-only system and then progressed to a solid-liquid system. In the liquid-only system, the influence of tank geometry and simulation strategies, including turbulence models, on fluid flow pattern and mixing was investigated in a tank stirred by a Rushton turbine. The standard k-f. model gave better overall predictions of mean velocity fields than the k-ro and RNG k-f. models. The CFD simulation and experimental results obtained with the laser Doppler velocimetry (LDV) method showed that mixing time and homogenization energy decreased with a decrease in the impeller bottom clearance. It was further shown that there is a bottom clearance range in which a draft tube can aid mixing in a tank stirred by the Rushton turbine. In the solid-liquid system, a hydrofoil impeller was used to investigate the influence of simulation strategies, particle properties and hydrodynamic operating conditions on mixing features such as the off-bottom solids suspension, cloud height, solids concentration distribution and local particle size distribution. The simulation results were compared with experimental ones, in which the off-bottom solids suspension was determined visually and an optical attenuation technique was employed to determine the cloud height and solids concentration distribution. The local particle size distribution (PSD) in the tank was measured by a laser diffraction method. A better agreement between the simulation and experimental results was obtained with drag models that account for the solids loading or free stream turbulence than those that do not. It was shown that the Stokes law applies up to a diameter of 150 ~m for the nickel particles. A CFD simulation strategy for studying mixing of high density solids is proposed and it is shown that a CFD simulation method can be used to develop empirical models that predict mixing features. A CFD simulation approach that takes particle size into account gives predictions that are more representative of practical applications than the mono-size particle simulation approach. Reactor configurations and hydrodynamic parameters that improve mixing were identified. These can also aid optimal design of mixing systems. DA - 2005 DB - OpenUCT DP - University of Cape Town LK - https://open.uct.ac.za PB - University of Cape Town PY - 2005 T1 - A hydrodynamic study of nickel suspension in stirred tanks TI - A hydrodynamic study of nickel suspension in stirred tanks UR - http://hdl.handle.net/11427/6693 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record