Medical application of the Internet of Things (IoT): prototyping a telemonitoring system

Master Thesis

2018

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
The Internet of Things (IoT) is a technological paradigm that can be perceived as an evolution of the internet. It is a shift from the traditional way of connecting devices to the internet, both in number and diversity of connected devices. This significant and marked growth in the number and diversity of devices connected to the internet has prompted a rethink of approaches to interconnect devices. The growth in the number of connected devices is driven by emerging applications and business models and supported by falling device costs while the growth in the diversity is driven by the reduction in the cost of manufacturing these devices. This has led to an increase in the number of users (not limited to people) of the internet. According to statistics by the ITU, by the end of 2015, about 3.2 billion people were using the Internet. Significantly, 34% of households in developing countries had Internet access, with more than 80% of households in developed countries. This indicates that it is realistic to leverage the IoT in living spaces. Appreciating this potential, many sectors of society are already positioning themselves to reap the benefits of this great promise. Hence the health sector would do well to adopt this technological paradigm to enhance service delivery. One specific area where the health sector can benefit from the adoption of the IoT is in telemonitoring and the associated early response to medical emergencies. Statistics and research show that there are areas in the medical field, that still need improvement to enhance service delivery. The Nursing Times has summed up these areas into four categories. The first one is a need to have a regular observation of patients and their vital signs. Here, health service providers (SPs) need to adopt creative and non-obtrusive methods that will encourage patients' participation in the monitoring of these vital signs. As much as possible, vital signs readings should be taken at convenient locations and times. Therefore, devices that have consistent internet access and are usually a part of daily life for most patients, such as the mobile phones would prove to be a key enabler of regular observation of vital signs. Furthermore, miniaturization of the vital signs monitoring or sensing devices would be a key step towards realizing this scenario. A lot of work is already being done to miniaturize these devices and make them as much a part of daily life as possible, as evidenced by advancements in the field of fitness and wearables. To map this use to the medical field, a system needs to be created that would allow for the aggregation of these disparate measuring and monitoring devices with medical information management systems. The second potential area of improvement is in the early recognition of deterioration of the patients. With regular observation of patients, it is possible to recognize deterioration at its early stage. Taking cognizance of the different needs of the various stakeholders is important to achieve the intended results. The third potential area of improvement is in the communication among stakeholders. This has to do with identifying the relevant data that must be delivered to the stakeholders during the monitoring and management process. Lastly, effective response to medical concerns is the other potential area of improvement. It is noted that patients do not generally get the right response at the right time because the information does not reach the rightly qualified personnel in good time. The regular and real-time capture of vital signs data coupled with added analytics can enable IoT SPs to design solutions that automate the management and transmission of medical data in a timely manner. This work addresses how the medical sector can adopt IoT-based solutions to improve service delivery, while utilizing existing resources such as smartphones, for the transmission and management of vital signs data, availing it to stakeholders and improve communication among them. It develops a telemonitoring system based on IoT design approaches. The developed system captures readings of vital signs from monitoring devices, processes and manages this data to serve the needs of the various stakeholders. Additionally, intelligence was added to enable the system to interpret the data and make decisions that will help medical practitioners and other stakeholders (patients, caregivers, etc.) to more timely, consistently and reliably provide and receive medical services/assistance. Two end user applications were developed. A cloud-based web application developed using PHP, HTML, and JavaScript and an Android mobile application developed using Java programming language in Android studio. An ETSI standards-compliant M2M middleware is used to aggregate the system using M2M applications developed in Python. This is to leverage the benefits of the standards-compliant middleware while offering flexibility in the design of applications. The developed system was evaluated to assess whether it meets the requirements and expectations of the various stakeholders. Finally, the performance of the proposed telemonitoring system was studied by analyzing the delay on the delivery of messages (local notifications, SMS, and email) to various stakeholders to assess the contribution towards reducing the overall time of the cardiac arrest chain of survival. The results obtained showed a marked improvement (over 28 seconds) on previous work. In addition to improved performance in monitoring and management of vital signs, telemonitoring systems have a potential of decongesting health institutions and saving time for all the stakeholders while bridging most of the gaps discussed above. The captured data can also provide the health researchers and physicians with most of the prerequisite data to effectively execute predictive health thereby improving service delivery in the health sector.
Description

Reference:

Collections