Browsing by Subject "resolution"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessA high-dispersion molecular gas component in nearby galaxies(2013) Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Sandstrom, Karin; de Blok, W J G; Ianjamasimanana, R; Mogotsi, K MWe present a comprehensive study of the velocity dispersion of the atomic (H I) and molecular (H2) gas components in the disks (R R 25) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high-resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kiloparsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galactocentric distance, star formation rate surface density, H I surface density, H2 surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for H I of 11.9 ± 3.1 km s–1 and for CO of 12.0 ± 3.9 km s–1. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of H I, with an average ratio of σH I /σCO= 1.0 ± 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor of ~2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the H I disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points toward the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies.
- ItemOpen AccessEvidence for a clumpy, rotating gas disk in a submillimeter galaxy at z = 4(2012) Hodge, J A; Carilli, C L; Walter, F; de Blok, W J G; Riechers, D; Daddi, E; Lentati, LWe present Karl G. Jansky Very Large Array observations of the CO(2-1) emission in the z = 4.05 submillimeter galaxy (SMG) GN20. These high-resolution data allow us to image the molecular gas at 1.3 kpc resolution just 1.6 Gyr after the big bang. The data reveal a clumpy, extended gas reservoir, 14 {+-} 4 kpc in diameter, in unprecedented detail. A dynamical analysis shows that the data are consistent with a rotating disk of total dynamical mass 5.4 {+-} 2.4 Multiplication-Sign 10{sup 11} M {sub Sun }. We use this dynamical mass estimate to constrain the CO-to-H{sub 2} mass conversion factor ({alpha}{sub CO}), finding {alpha}{sub CO} = 1.1 {+-} 0.6 M {sub Sun }(K km s{sup -1} pc{sup 2}){sup -1}. We identify five distinct molecular gas clumps in the disk of GN20 with masses a few percent of the total gas mass, brightness temperatures of 16-31K, and surface densities of >3200-4500 Multiplication-Sign ({alpha}{sub CO}/0.8) M {sub Sun} pc{sup -2}. Virial mass estimates indicate they could be self-gravitating, and we constrain their CO-to-H{sub 2} mass conversion factor to be <0.2-0.7 M {sub Sun }(K km s{sup -1} pc{sup 2}){sup -1}. A multiwavelength comparison demonstrates that the molecular gas is concentrated in a region of the galaxy that is heavily obscured in the rest-frame UV/optical. We investigate the spatially resolved gas excitation and find that the CO(6-5)/CO(2-1) ratio is constant with radius, consistent with star formation occurring over a large portion of the disk. We discuss the implications of our results in the context of different fueling scenarios for SMGs.
- ItemOpen AccessFirst measurement of jet mass in Pb–Pb and p–Pb collisions at the LHC(2018) Acharya, S; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, N; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altsybeev, I; Alves Garcia Prado, C; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, PThis letter presents the first measurement of jet mass in Pb–Pb and p–Pb collisions at √sNN = 2.76 TeV and √sNN = 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-kT jet algorithm and resolution parameter R = 0.4. The jets are measured in the pseudorapidity range |ηjet| < 0.5 and in three intervals of transverse momentum between 60 GeV/c and 120 GeV/c. The measurement of the jet mass in central Pb–Pb collisions is compared to the jet mass as measured in p–Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb–Pb collisions is consistent within uncertainties with p–Pb reference measurements. Furthermore, the measured jet mass in Pb–Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties