Browsing by Subject "messe"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemOpen AccessH i kinematics, mass distribution and star formation threshold in NGC 6822, using the SKA pathfinder KAT-7(2017) Namumba, B; Carignan, C; Passmoor, S; de Blok, W J GWe present high sensitivity H I observations of NGC 6822, obtained with the Karoo Array Telescope (KAT-7). We study the kinematics, the mass distribution and the star formation thresholds. The KAT-7 short baselines and low system temperature make it sensitive to large-scale, low surface brightness emission. The observations detected ∼ 23 per cent more flux than previous Australian Telescope Compact Array observations. We fit a tilted ring model to the H I velocity field to derive the rotation curve (RC). The KAT-7 observations allow the measurement of the rotation curve of NGC 6822 out to 5.8 kpc, ∼1 kpc further than existing measurements. NGC 6822 is seen to be dark matter dominated at all radii. The observationally motivated pseudo-isothermal dark matter (DM) halo model reproduces well the observed RC while the Navarro Frank-White DM model gives a poor fit to the data. We find the best-fitting mass-to-light ratio (M/L) of 0.12 ± 0.01 which is consistent with the literature. The modified Newtonian dynamics gives a poor fit to our data. We derive the star formation threshold in NGC 6822 using the H I and H α data. The critical gas densities were calculated for gravitational instabilities using the Toomre-Q criterion and the cloud-growth criterion. We found that in regions of star formation, the cloud-growth criterion explains star formation better than the Toomre-Q criterion. This shows that the local shear rate could be a key player in cloud formation for irregular galaxies such as NGC 6822.
- ItemOpen AccessIs GBT 1355+5439 a dark galaxy?(2013) Oosterloo, T A; Heald, G H; de Blok, W J GWe present H i imaging of GBT 1355+5439 performed with the Westerbork Synthesis Radio Telescope. This is a dark H i object recently discovered close to the nearby galaxy M101. We find GBT 1355+5439 to be an H i cloud 5 × 3 arcmin in size. The total H i image and the kinematics show that the cloud consists of condensations that have small (~10 km s-1) motions with respect to each other. The column densities of the H i are low; the observed peak value is 7.1 × 1019 cm-2. The velocity field shows a mild velocity gradient over the body of GBT 1355+5439, possibly due to rotation, but it may also indicate large-scale radial motions. Although our data are limited in sensitivity, at all positions the H i velocity dispersion is higher than 5 km s-1 and no narrow, cold, H i component is seen. Because its distance is not known, we considered various possibilities for the nature of GBT 1355+5439. Both the scenarios that it is a tidal remnant near M101 and that it is a dark dwarf companion of M101 meet difficulties. Neither do the data fit the properties of known compact high-velocity clouds in the Galactic halo exactly, but we cannot entirely exclude this option and deeper observations are required. We also considered the possibility that GBT 1355+5439 is a gas-rich dark minihalo in the outer regions of the Local Group. Interestingly, it would then have similar properties as the clouds of a proposed Local Group population recently found in the ALFALFA survey. In this case, the H i mass of GBT 1355+5439 would be about a few times 105M⊙, its size about 1 kpc, and the dynamical mass Mdyn > 5 × 107M⊙. However, if GBT 1355+5439 is a dark Local Group object, the internal kinematics of the H i appears to be different from that of gas-dominated, almost dark galaxies of similar size.
- ItemOpen AccessThe VLT-FLAMES Tarantula survey: XX. The nature of the X-ray bright emission-line star VFTS 399⋆(2015) Clark, J S; Bartlett, E S; Broos, P S; Townsley, L K; Taylor, W D; Walborn, N R; Bird, A J; Sana, H; de Mink, S E; Dufton, P L; Evans, C J; Langer, N; Maíz Apellániz, J; Schneider, F R N; Soszyński, IContext: The stellar population of the 30 Doradus star-forming region in the Large Magellanic Cloud contains a subset of apparently single, rapidly rotating O-type stars. The physical processes leading to the formation of this cohort are currently uncertain. Aims. One member of this group, the late O-type star VFTS 399, is found to be unexpectedly X-ray bright for its bolometric luminosity − in this study we aim to determine its physical nature and the cause of this behaviour. Methods. To accomplish this we performed a time-resolved analysis of optical, infrared and X-ray observations. Results. We found VFTS 399 to be an aperiodic photometric variable with an apparent near-IR excess. Its optical spectrum demonstrates complex emission profiles in the lower Balmer series and select He i lines − taken together these suggest an OeBe classification. The highly variable X-ray luminosity is too great to be produced by a single star, while the hard, non-thermal nature suggests the presence of an accreting relativistic companion. Finally, the detection of periodic modulation of the X-ray lightcurve is most naturally explained under the assumption that the accretor is a neutron star. Conclusions. VFTS 399 appears to be the first high-mass X-ray binary identified within 30 Dor, sharing many observational characteristics with classical Be X-ray binaries. Comparison of the current properties of VFTS 399 to binary-evolution models suggests a progenitor mass 25 M for the putative neutron star, which may host a magnetic field comparable in strength to those of magnetars. VFTS 399 is now the second member of the cohort of rapidly rotating “single” O-type stars in 30 Dor to show evidence of binary interaction resulting in spin-up, suggesting that this may be a viable evolutionary pathway for the formation of a subset of this stellar population.
- ItemOpen AccessThe void galaxy survey: photometry, structure and identity of void galaxies(2017) Beygu, B; Peletier, R F; Hulst, J M van der; Jarrett, T H; Kreckel, K; Weygaert, R van de; van Gorkom, J H; Aragon-Calvo, M AWe analyse photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6 μm and 4.5 μm Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the Sloan Digital Sky Survey Data Release 7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from MB = -15.5 to -20, while at the 3.6 μm band their magnitudes range from M3.6 = -18 to -24. Their B-[3.6] colour and structural parameters indicate these are star-forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than 3 × 1010 M⊙. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their Sérsic indices are nearly all smaller than n = 2 in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.