• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "dusts"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    A more general model for the intrinsic scatter in type Ia supernova distance moduli
    (2011) Marriner, John; Bernstein, J P; Kessler, Richard; Lampeitl, Hubert; Miquel, Ramon; Mosher, Jennifer; Nichol, Robert C; Sako, Masao; Schneider, Donald P; Smith, Mathew
    We describe a new formalism to fit the parameters {alpha} and {beta} that are used in the SALT2 model to determine the standard magnitudes of Type Ia supernovae (SNe Ia). The new formalism describes the intrinsic scatter in SNe Ia by a covariance matrix in place of the single parameter normally used. We have applied this formalism to the Sloan Digital Sky Survey Supernova Survey (SDSS-II) data and conclude that the data are best described by {alpha} = 0.135{sup +.033} - .017 and {beta} = 3.19{sup +0.14} - 0.24, where the error is dominated by the uncertainty in the form of the intrinsic scatter matrix. Our result depends on the introduction of a more general form for the intrinsic scatter of the distance moduli of SNe Ia than is conventional, resulting in a larger value of {beta} and a larger uncertainty than the conventional approach. Although this analysis results in a larger value of {beta} and a larger error, the SDSS data differ (at a 98% confidence level) from {beta} = 4.1, the value expected for extinction by the type of dust found in the Milky Way. We have modeled the distribution of SNe Ia in terms of their colormore » and conclude that there is strong evidence that variation in color is a significant contributor to the scatter of SNe Ia around their standard candle magnitude.« less
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS