Browsing by Subject "THERMAL-STABILITY"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessOn the growth kinetics of Ni(Pt) silicide thin films(2013) Demeulemeester, J; Smeets, D; Comrie, C M; Barradas, N P; Vieira, A; Van Bockstael, C; Detavernier, C; Temst, K; Vantomme, AWe report on the effect of Pt on the growth kinetics of δ-Ni2Si and Ni 1−xPtxSi thin films formed by solid phase reaction of a Ni(Pt) alloyed thin film on Si(100). The study was performed by real-time Rutherford backscattering spectrometry examining the silicide growth rates for initial Pt concentrations of 0, 1, 3, 7, and 10 at. % relative to the Ni content. Pt was found to exert a drastic effect on the growth kinetics of both phases. δ-Ni2Si growth is slowed down tremendously, which results in the simultaneous growth of this phase with Ni 1−xPtxSi. Activation energies extracted for the Ni 1−xPtxSi growth process exhibit an increase from Ea = 1.35 ± 0.06 eV for binary NiSi to Ea = 2.7 ± 0.2 eV for Ni 1−xPtxSi with an initial Pt concentration of 3 at. %. Further increasing the Pt content to 10 at. % merely increases the activation energy for Ni 1−xPtxSi growth to Ea = 3.1 ± 0.5 eV.
- ItemOpen AccessOn the nucleation of PdSi and NiSi 2 during the ternary Ni(Pd)/Si(100) reaction(2013) Schrauwen, A; Demeulemeester, J; Kumar, A; Vandervorst, W; Comrie, C M; Detavernier, C; Temst, K; Vantomme, ADuring the solid phase reaction of a Ni(Pd) alloy with Si(100), phase separation of binary Ni- and Pd-silicides occurs. The PdSi monosilicide nucleates at temperatures significantly below the widely accepted nucleation temperature of the binary system. The decrease in nucleation temperature originates from the presence of the isomorphous NiSi, lowering the interface energy for PdSi nucleation. Despite the mutual solubility of NiSi and PdSi, the two binaries coexist in a temperature window of 100 °C. Only above 700 °C a Ni 1– x Pd x Si solid solution is formed, which in turn postpones the NiSi2 formation to a higher temperature due to entropy of mixing. Our findings highlight the overall importance of the interface energy for nucleation in ternary systems.