Browsing by Subject "Sediment"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessDensity of key-species determines efficiency of macroalgae detritus uptake by intertidal benthic communities(Public Library of Science, 2016) Karlson, Agnes M L; Niemand, Clarisse; Savage, Candida; Pilditch, Conrad AAccumulating evidence shows that increased biodiversity has a positive effect on ecosystem functioning, but the mechanisms that underpin this positive relationship are contentious. Complete extinctions of regional species pools are comparatively rare whereas compositional changes and reductions in abundance and biomass are common, although seldom the focus of biodiversity-ecosystem functioning studies. We use natural, small-scale patchiness in the density of two species of large bivalves with contrasting feeding modes (the suspension-feeding Austrovenus stutchburyi and deposit-feeding Macomona liliana ) to examine their influence on the uptake of nitrogen from macroalgae detritus (i.e. measure of ecosystem function and food web efficiency) by other infauna in a 10-d laboratory isotope-tracer experiment. We predicted that densities of these key bivalve species and functional group diversity (calculated as Shannons H, a density-independent measure of community composition) of the intact infaunal community will be critical factors explaining variance in macroalgal per capita uptake rates by the community members and hence determine total uptake by the community. Results show that only two species, M . liliana and a large orbiniid polychaete ( Scoloplos cylindrifer ) dominated macroalgal nitrogen taken up by the whole community due to their large biomass. However, their densities were mostly not important or negatively influenced per capita uptake by other species. Instead, the density of a head-down deposit-feeder (the capitellid Heteromastus filiformis ), scavengers (mainly nemertines and nereids) and species and functional group diversity, best explained per capita uptake rates in community members. Our results demonstrate the importance of species identity, density and large body size for ecosystem functioning and highlight the complex interactions underlying loss of ecological functions with declining biodiversity and compositional changes.
- ItemOpen AccessgbpA as a Novel qPCR Target for the Species-Specific Detection of Vibrio cholerae O1, O139, Non-O1/Non-O139 in Environmental, Stool, and Historical Continuous Plankton Recorder Samples(Public Library of Science, 2015) Vezzulli, Luigi; Stauder, Monica; Grande, Chiara; Pezzati, Elisabetta; Verheye, Hans M.; Owens, Nicholas J. P.; Pruzzo, CarlaThe Vibrio cholerae N-acetyl glucosamine-binding protein A (GbpA) is a chitin-binding protein involved in V . cholerae attachment to environmental chitin surfaces and human intestinal cells. We previously investigated the distribution and genetic variations of gbpA in a large collection of V . cholerae strains and found that the gene is consistently present and highly conserved in this species. Primers and probe were designed from the gbpA sequence of V . cholerae and a new Taq-based qPCR protocol was developed for diagnostic detection and quantification of the bacterium in environmental and stool samples. In addition, the positions of primers targeting the gbpA gene region were selected to obtain a short amplified fragment of 206 bp and the protocol was optimized for the analysis of formalin-fixed samples, such as historical Continuous Plankton Recorder (CPR) samples. Overall, the method is sensitive (50 gene copies), highly specific for V . cholerae and failed to amplify strains of the closely-related species Vibrio mimicus . The sensitivity of the assay applied to environmental and stool samples spiked with V . cholerae ATCC 39315 was comparable to that of pure cultures and was of 10 2 genomic units/l for drinking and seawater samples, 10 1 genomic units/g for sediment and 10 2 genomic units/g for bivalve and stool samples. The method also performs well when tested on artificially formalin-fixed and degraded genomic samples and was able to amplify V . cholerae DNA in historical CPR samples, the earliest of which date back to August 1966. The detection of V . cholerae in CPR samples collected in cholera endemic areas such as the Benguela Current Large Marine Ecosystem (BCLME) is of particular significance and represents a proof of concept for the possible use of the CPR technology and the developed qPCR assay in cholera studies.