Browsing by Subject "Quinine"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemRestrictedThe crystal structure of halofantrine–ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials.(Elsevier, 2008) de Villiers, Katherine A; Marques, Helder; Egan, Timothy JThe crystal structure of the complex formed between the antimalarial drug halofantrine and ferriprotoporphyrin IX (Fe(III)PPIX) has been determined by single crystal X-ray diffraction. The structure shows that halofantrine coordinates to the Fe(III) center through its alcohol functionality in addition to p-stacking of the phenanthrene ring over the porphyrin. The length of the Fe(III)–O bond is consistent with an alkoxide and not an alcohol coordinating group. The iron porphyrin is five coordinate and monomeric. Changes in the electronic spectrum of Fe(III)PPIX upon addition of halofantrine base in acetonitrile solution are almost identical to those observed upon addition of quinidine free base in the same solvent. This suggests homologous binding. Molecular mechanics modeling of Fe(III)PPIX complexes of quinidine, quinine, 9-epiquinine and 9-epiquinidine based on this homology suggests that the antimalarially active quinidine and quinine can readily adopt conformations that permit formation of an intramolecular salt bridge between the protonated quinuclidine tertiary amino group and unprotonated heme propionate group, while the inactive epimers 9-epiquinidine and 9-epiquinine have to adopt high energy conformations in order to accommodate such salt bridge formation. We propose that salt bridge formation may interrupt formation of the hemozoin precursor dimer formed during the heme detoxification pathway and so account for the strong activity of the two active isomers.
- ItemOpen AccessInterference with Hemozoin Formation Represents an Important Mechanism of Schistosomicidal Action of Antimalarial Quinoline Methanols(2009) Corrêa Soares, Juliana B R; Menezes, Diego; Vannier-Santos, Marcos A; Ferreira-Pereira, Antonio; Almeida, Giulliana T; Venancio, Thiago M; Verjovski-Almeida, Sergio; Zishiri, Vincent K; Kuter, David; Hunter, Roger; Egan, Timothy J; Oliveira, Marcus FBackgroundThe parasitic trematode Schistosoma mansoni is one of the major causative agents of human schistosomiasis, which afflicts 200 million people worldwide. Praziquantel remains the main drug used for schistosomiasis treatment, and reliance on the single therapy has been prompting the search for new therapeutic compounds against this disease. Our group has demonstrated that heme crystallization into hemozoin (Hz) within the S. mansoni gut is a major heme detoxification route with lipid droplets involved in this process and acting as a potential chemotherapeutical target. In the present work, we investigated the effects of three antimalarial compounds, quinine (QN), quinidine (QND) and quinacrine (QCR) in a murine schistosomiasis model by using a combination of biochemical, cell biology and molecular biology approaches.Methodology/Principal FindingsTreatment of S. mansoni-infected female Swiss mice with daily intraperitoneal injections of QN, and QND (75 mg/kg/day) from the 11th to 17th day after infection caused significant decreases in worm burden (39%–61%) and egg production (42%–98%). Hz formation was significantly inhibited (40%–65%) in female worms recovered from QN- and QND-treated mice and correlated with reduction in the female worm burden. We also observed that QN treatment promoted remarkable ultrastructural changes in male and female worms, particularly in the gut epithelium and reduced the granulomatous reaction to parasite eggs trapped in the liver. Microarray gene expression analysis indicated that QN treatment increased the expression of transcripts related to musculature, protein synthesis and repair mechanisms.ConclusionsThe overall significant reduction in several disease burden parameters by the antimalarial quinoline methanols indicates that interference with Hz formation in S. mansoni represents an important mechanism of schistosomicidal action of these compounds and points out the heme crystallization process as a valid chemotherapeutic target to treat schistosomiasis.Author SummaryHeme is an essential molecule to most living organisms, but once in a free state it exerts toxic effects. Blood-feeding organisms evolved efficient ways to detoxify free heme derived from hemoglobin digestion. A key mechanism present in some hematophagous organisms consists of the crystallization of heme into a pigment named hemozoin. Schistosoma mansoni is one of the etiologic agents of human schistosomiasis, a parasitic disease that affects over 200 million people in tropical and subtropical areas. Hemozoin formation represents the main heme detoxification pathway in S. mansoni. Here, we report that the antimalarial quinoline methanols quinine and quinidine exert schistosomicidal effects notably due to their capacity to interfere with hemozoin formation. When quinine or quinidine were administered intraperitoneally during seven days to S. mansoni-infected mice (75 mg/kg/day), both worm and eggs burden were significantly reduced. Interestingly, hemozoin content in female worms was drastically affected after treatment with either compound. We also found that quinine caused important changes in the cellular organization of worm gastrodermis and increased expression of genes related to musculature, protein synthesis and repair mechanisms. Together, our results indicate that interference with hemozoin formation is a valid chemotherapeutic target for development of new schistosomicidal agents.
- ItemOpen AccessInterference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols(Public Library of Science, 2009) Soares, Juliana B R Corrêa; Menezes, Diego; Vannier-Santos, Marcos A; Ferreira-Pereira, Antonio; Almeida, Giulliana T; Venancio, Thiago M; Verjovski-Almeida, Sergio; Zishiri, Vincent K; Kuter, David; Hunter, RogerAuthor Summary Heme is an essential molecule to most living organisms, but once in a free state it exerts toxic effects. Blood-feeding organisms evolved efficient ways to detoxify free heme derived from hemoglobin digestion. A key mechanism present in some hematophagous organisms consists of the crystallization of heme into a pigment named hemozoin. Schistosoma mansoni is one of the etiologic agents of human schistosomiasis, a parasitic disease that affects over 200 million people in tropical and subtropical areas. Hemozoin formation represents the main heme detoxification pathway in S. mansoni . Here, we report that the antimalarial quinoline methanols quinine and quinidine exert schistosomicidal effects notably due to their capacity to interfere with hemozoin formation. When quinine or quinidine were administered intraperitoneally during seven days to S. mansoni -infected mice (75 mg/kg/day), both worm and eggs burden were significantly reduced. Interestingly, hemozoin content in female worms was drastically affected after treatment with either compound. We also found that quinine caused important changes in the cellular organization of worm gastrodermis and increased expression of genes related to musculature, protein synthesis and repair mechanisms. Together, our results indicate that interference with hemozoin formation is a valid chemotherapeutic target for development of new schistosomicidal agents.
- ItemRestrictedQuinoline antimalarials decrease the rate of beta-hematin formation(Elsevier, 2005) Egan, Timothy J; Ncokazi, Kanyile KThe strength of inhibition of b-hematin (synthetic hemozoin or malaria pigment) formation by the quinoline antimalarial drugs chloroquine, amodiaquine, quinidine and quinine has been investigated as a function of incubation time. In the assay used, b-hematin formation was brought about using 4.5 M acetate, pH 4.5 at 60 C. Unreacted hematin was detected by formation of a spectroscopically distinct low spin pyridine complex. Although, these drugs inhibit b-hematin formation when relatively short incubation times are used, it was found that b-hematin eventually forms with longer incubation periods (8 h for quinine). This conclusion was supported by both infrared and X-ray powder diffraction observations. It was further found that the IC50 for inhibition of b-hematin formation increases markedly with increasing incubation times in the case of the 4-aminoquinolines chloroquine and amodiaquine. By contrast, in the presence of the quinoline methanols quinine and quinidine the IC50 values increase much more slowly. This results in a partial reversal of the order of inhibition strengths at longer incubation times. Scanning electron microscopy indicates that b-hematin crystals formed in the presence of chloroquine are more uniform in both size and shape than those formed in the absence of the drug, with the external morphology of these crystallites being markedly altered. The findings suggest that these drugs act by decreasing the rate of hemozoin formation, rather than irreversibly blocking its formation. This model can also explain the observation of a sigmoidal dependence of b-hematin inhibition on drug concentration.