Browsing by Subject "Q"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemOpen AccessDrivers and uncertainties of future global marine primary production in marine ecosystem models(2015) Laufkötter, C; Vogt, M; Gruber, N; Aita-Noguchi, M; Aumont, O; Bopp, L; Buitenhuis, E; Doney, S C; Dunne, J; Hashioka, T; Hauck, J; Hirata, T; John, J; Le Quéré, C; Lima, D I; Nakano, H; Seferian, R; Totterdell, I; Vichi, M; Völker, CPast model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean and mostly ignored the large inter-model differences. Here, we analyze model simulated changes of NPP for the 21st century under IPCC's high emission scenario RCP8.5 using a suite of nine coupled carbon–climate Earth System Models with embedded marine ecosystem models with a focus on the spread between the different models and the underlying reasons. Globally, five out of the nine models show a decrease in NPP over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40%. In this region, the inter-quartile range of the differences between the 2012–2031 average and the 2081–2100 average is up to 3 mol C m-2 yr-1. These large differences in future change mirror large differences in present day NPP. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification and reduced upwelling. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduces NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while the remaining model simulates changes of less than 0.5%. While there is more consistency in the modeled increase in NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.
- ItemOpen AccessInclusion of the insecticide fenitrothion in dimethylated-β-cyclodextrin: unusual guest disorder in the solid state and efficient retardation of the hydrolysis rate of the complexed guest in alkaline solution(2013) Cruickshank, Dyanne L; Rougier, Natalia M; Vico, Raquel V; Bourne, Susan A; Buján, Elba I; Caira, Mino R; de Rossi, Rita HAn anhydrous 1:1 crystalline inclusion complex between the organophosphorus insecticide fenitrothion [O,O-dimethyl O-(3-methyl-4-nitrophenyl)phosphorothioate] and the host compound heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) was prepared and its structure elucidated by single-crystal X-ray diffraction. This revealed two independent host molecules in the asymmetric unit. In one of these, the cavity is occupied by two disordered guest components (distinguishable as rotamers with respect to the P–OAr bond) while in the other, three distinct guest components with site-occupancies 0.44, 0.29 and 0.27 appear, the last having a reversed orientation relative to all the other components. Kinetic studies of the alkaline hydrolysis of fenitrothion in the presence of DIMEB showed a remarkable reduction of 84% in the rate of this reaction relative to that for the free substrate, a value exceeding those previously attained with the native hosts, β- and γ-cyclodextrin, and fully methylated β-cyclodextrin.
- ItemOpen AccessPotentiometric and Blood Plasma Simulation Studies of Nickel(II) Complexes of Poly(amino)amido Pentadentate Ligands: Computer Aided Metal-Based Drug Design(2014) Odisitse, Sebusi; Jackson, Graham EThe thermodynamic equilibria of nickel(II) with N,N′-di(aminoethylene)-2,6-pyridinedicarbonylamine (L1), Bis-(N,N-dimethylethyl)-2,6-pyridinedicarboxamide (L2), and N,N′-bis[2(2-pyridyl)-methyl]pyridine-2,6-dicarboxamide (L3) have been studied at 25°C and an ionic strength of 0.15 mol dm−3 by glass electrode potentiometry. The protonation and formation constants added to blood plasma model predict that Cu(II) competes effectively against Ni(II), Zn(II), and Ca(II) for these ligands in vivo.
- ItemOpen AccessSEAmester – South Africa’s first class afloat(2016) Dorrington, Rosemary A; Fawcett, Sarah; Gammon, David W; Henry, Tahlia; Hermes, Juliet; Hölscher, Beate; d’Hotman, Jethan; Meiklejohn, Ian; Morris, Tammy; Pinto, Izidine; du Plessis, Marcel; Roman, Raymond; Saunders, Clinton; Shabangu, Fannie W; de Vos, Marc; Walker, David R; Louw, GavinThe International Society for Burns Injuries (ISBI) has published guidelines for the management of multiple or mass burns casualties, and recommends that 'each country has or should have a disaster planning system that addresses its own particular needs.' The need for a national burns disaster plan integrated with national and provincial disaster planning was discussed at the South African Burns Society Congress in 2009, but there was no real involvement in the disaster planning prior to the 2010 World Cup; the country would have been poorly prepared had there been a burns disaster during the event. This article identifies some of the lessons learnt and strategies derived from major burns disasters and burns disaster planning from other regions. Members of the South African Burns Society are undertaking an audit of burns care in South Africa to investigate the feasibility of a national burns disaster plan. This audit (which is still under way) also aims to identify weaknesses of burns care in South Africa and implement improvements where necessary.
- ItemOpen AccessSea–air CO2 fluxes in the Southern Ocean for the period 1990–2009(2013) Laufkötter, C; Hoppema, M; Lovenduski, N S; Matear, R J; McNeil, B I; Metzl, N; Mikaloff Fletcher, S E; Monteiro, P M S; Rödenbeck, C; Sweeney, C; Takahashi, TThe Southern Ocean (44-75° S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea-air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea-air CO2 fluxes between 1990-2009. Using all models and inversions (26), the integrated median annual sea-air CO2 flux of -0.42 ± 0.07 Pg C yr-1 for the 44-75° S region, is consistent with the -0.27 ± 0.13 Pg C yr-1 calculated using surface observations. The circumpolar region south of 58° S has a small net annual flux (model and inversion median: -0.04 ± 0.07 Pg C yr-1 and observations: +0.04 ± 0.02 Pg C yr-1), with most of the net annual flux located in the 44 to 58° S circumpolar band (model and inversion median: -0.36 ± 0.09 Pg C yr-1 and observations: -0.35 ± 0.09 Pg C yr-1). Seasonally, in the 44-58° S region, the median of 5 ocean biogeochemical models captures the observed sea-air CO2 flux seasonal cycle, while the median of 11 atmospheric inversions shows little seasonal change in the net flux. South of 58° S, neither atmospheric inversions nor ocean biogeochemical models reproduce the phase and amplitude of the observed seasonal sea-air CO2 flux, particularly in the Austral Winter. Importantly, no individual atmospheric inversion or ocean biogeochemical model is capable of reproducing both the observed annual mean uptake and the observed seasonal cycle. This raises concerns about projecting future changes in Southern Ocean CO2 fluxes. The median interannual variability from atmospheric inversions and ocean biogeochemical models is substantial in the Southern Ocean; up to 25% of the annual mean flux, with 25% of this interannual variability attributed to the region south of 58° S. Resolving long-term trends is difficult due to the large interannual variability and short time frame (1990-2009) of this study; this is particularly evident from the large spread in trends from inversions and ocean biogeochemical models. Nevertheless, in the period 1990-2009 ocean biogeochemical models do show increasing oceanic uptake consistent with the expected increase of -0.05 Pg C yr-1 decade-1. In contrast, atmospheric inversions suggest little change in the strength of the CO2 sink broadly consistent with the results of Le Quéré et al. (2007).
- ItemOpen AccessSpatial and temporal disaggregation of anthropogenic CO2 emissions from the City of Cape Town(2015) Nickless, Alecia; Scholes, Robert J; Filby, EdAbstract This paper describes the methodology used to spatially and temporally disaggregate carbon dioxide emission estimates for the City of Cape Town, to be used for a city-scale atmospheric inversion estimating carbon dioxide fluxes. Fossil fuel emissions were broken down into emissions from road transport, domestic emissions, industrial emissions, and airport and harbour emissions. Using spatially explicit information on vehicle counts, and an hourly scaling factor, vehicle emissions estimates were obtained for the city. Domestic emissions from fossil fuel burning were estimated from household fuel usage information and spatially disaggregated population data from the 2011 national census. Fuel usage data were used to derive industrial emissions from listed activities, which included emissions from power generation, and these were distributed spatially according to the source point locations. The emissions from the Cape Town harbour and the international airport were determined from vessel and aircraft count data, respectively. For each emission type, error estimates were determined through error propagation techniques. The total fossil fuel emission field for the city was obtained by summing the spatial layers for each emission type, accumulated for the period of interest. These results will be used in a city-scale inversion study, and this method implemented in the future for a national atmospheric inversion study.
- ItemOpen AccessSuccessful Deployment of a Wireless Sensor Network for Precision Agriculture in Malawi(2013) Mafuta, Million; Zennaro, Marco; Gombachika, Harry; Chadza, TimothyThis paper demonstrates how an irrigation management system (IMS) can practically be implemented by deploying a wireless sensor network (WSN). Specifically, the paper describes an IMS which was set up in Manja township, city of Blantyre. Deployment of IMS in rural areas of developing countries like Malawi is a challenge as grid power is scarce. For the system to be self-sustained in terms of power, the study used solar photovoltaic and rechargeable batteries to power all electrical devices. The system incorporated a remote monitoring mechanism through a General Packet Radio Service modem to report soil temperature, soil moisture, WSN link performance, and photovoltaic power levels. Irrigation valves were activated to water the field. Preliminary results in this study have revealed a number of engineering weaknesses of deploying such a system. Nevertheless, the paper has highlighted areas of improvement to develop a robust, fully automated, solar-powered, and low-cost IMS to suit the socioeconomic conditions of small scale farmers in developing countries.
- ItemOpen AccessSynoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types(2011) Hirata, T; Hardman-Mountford, N J; Brewin, R J W; Aiken, J; Barlow, R; Suzuki, K; Isada, T; Howell, E; Hashioka, T; Noguchi-Aita, M; Yamanaka, YError-quantified, synoptic-scale relationships between chlorophyll-a (Chl-a) and phytoplankton pigment groups at the sea surface are presented. A total of ten pigment groups were considered to represent three Phytoplankton Size Classes (PSCs, micro-, nano- and picoplankton) and seven Phytoplankton Functional Types (PFTs, i.e. diatoms, dinoflagellates, green algae, prymnesiophytes (haptophytes), pico-eukaryotes, prokaryotes and Prochlorococcus sp.). The observed relationships between Chl-a and PSCs/PFTs were well-defined at the global scale to show that a community shift of phytoplankton at the basin and global scales is reflected by a change in Chl-a of the total community. Thus, Chl-a of the total community can be used as an index of not only phytoplankton biomass but also of their community structure. Within these relationships, we also found non-monotonic variations with Chl-a for certain pico-sized phytoplankton (pico-eukaryotes, Prokaryotes and Prochlorococcus sp.) and nano-sized phytoplankton (Green algae, prymnesiophytes). The relationships were quantified with a least-square fitting approach in order to enable an estimation of the PFTs from Chl-a where PFTs are expressed as a percentage of the total Chl-a. The estimated uncertainty of the relationships depends on both PFT and Chl-a concentration. Maximum uncertainty of 31.8% was found for diatoms at Chl-a = 0.49 mg m 3. However, the mean uncertainty of the relationships over all PFTs was 5.9% over the entire Chl-a range observed in situ (0.02
- ItemOpen AccessTesting the performance of state-of-the-art dust emission schemes using DO4Models field data(2015) Haustein, K; Washington, R; King, J; Wiggs, G; Thomas, D S G; Eckardt, F D; Bryant, R G; Menut, LWithin the framework of the Dust Observations for Models (DO4Models) project, the performance of three commonly used dust emission schemes is investigated in this paper using a box model environment. We constrain the model with field data (surface and dust particle properties as well as meteorological parameters) obtained from a dry lake bed with a crusted surface in Botswana during a 3 month period in 2011. Our box model results suggest that all schemes fail to reproduce the observed horizontal dust flux. They overestimate the magnitude of the flux by several orders of magnitude. The discrepancy is much smaller for the vertical dust emission flux, albeit still overestimated by up to an order of magnitude. The key parameter for this mismatch is the surface crusting which limits the availability of erosive material, even at higher wind speeds. The second-most important parameter is the soil size distribution. Direct dust entrainment was inferred to be important for several dust events, which explains the smaller gap between modelled and measured vertical dust fluxes. We conclude that both features, crusted surfaces and direct entrainment, need to be incorporated into dust emission schemes in order to represent the entire spectra of source processes. We also conclude that soil moisture exerts a key control on the threshold shear velocity and hence the emission threshold of dust in the model. In the field, the state of the crust is the controlling mechanism for dust emission. Although the crust is related to the soil moisture content to some extent, we are not as yet able to deduce a robust correlation between state of crust and soil moisture.
- ItemOpen AccessTowards accounting for dissolved iron speciation in global ocean models(2011) Tagliabue, A; Gruber, NThe trace metal iron (Fe) is now routinely included in state-of-the-art ocean general circulation and biogeochemistry models (OGCBMs) because of its key role as a limiting nutrient in regions of the world ocean important for carbon cycling and air-sea CO2 exchange. However, the complexities of the seawater Fe cycle, which impact its speciation and bioavailability, are highly simplified in such OGCBMs to avoid high computational costs. In a similar fashion to inorganic carbon speciation, we outline a means by which the complex speciation of Fe can be included in global OGCBMs in a reasonably cost-effective manner. We use our Fe speciation to suggest the global distribution of different Fe species is tightly controlled by environmental variability (temperature, light, oxygen and pH) and the assumptions regarding Fe binding ligands. Impacts on bioavailable Fe are highly sensitive to assumptions regarding which Fe species are bioavailable. When forced by representations of future ocean circulation and climate we find large changes to the speciation of Fe governed by pH mediated changes to redox kinetics. We speculate that these changes may exert selective pressure on phytoplankton Fe uptake strategies in the future ocean. We hope our modeling approach can also be used as a ''test bed'' for exploring our understanding of Fe speciation at the global scale.
- ItemOpen AccessWater research paradigm shifts in South Africa(2014) Siebrits, Raymond; Winter, Kevin; Jacobs, IngaWe performed a scientometric analysis of water research publications extracted from four decades of South African related papers to identify paradigms and paradigm shifts within water research in South Africa. Between 1977 and 1991, research publications are dominated by research into technical and engineering solutions, as well as designs and plans to secure water supply. From 1992 to 2001, publications on water pollution, water quality, water resource management and planning are prominent. The second major paradigm is observed from 2001 to 2011 in which the emphasis is on planning, modelling, catchment-scale studies and a multidisciplinary approach to research. Another transition period, towards the end of 2011, is characterised by uncertainty, although it also shows the prominence of key concepts such as participation, governance and politics in water management. The second aim of this study was to identify and prioritise current and future water research questions through the participation of a wide range of researchers from across the country, and to relate these questions to research paradigms, issues and concerns in water in South Africa. Over 1600 questions were collected, reduced in number and then prioritised by specialists in the water sector. The majority (78%) of questions offered by respondents in the South African case study dealt with relatively short- to medium-term research requirements with 47% of questions focused on medium-term issues such as supplying water, service delivery and technical solutions.