Browsing by Subject "Predation"
Now showing 1 - 17 of 17
Results Per Page
Sort Options
- ItemOpen AccessBird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey(Public Library of Science, 2014) Tremblay, Yann; Thiebault, Andréa; Mullers, Ralf; Pistorius, PierreThe study of ecological and behavioral processes has been revolutionized in the last two decades with the rapid development of biologging-science. Recently, using image-capturing devices, some pilot studies demonstrated the potential of understanding marine vertebrate movement patterns in relation to their proximate, as opposed to remote sensed environmental contexts. Here, using miniaturized video cameras and GPS tracking recorders simultaneously, we show for the first time that information on the immediate visual surroundings of a foraging seabird, the Cape gannet, is fundamental in understanding the origins of its movement patterns. We found that movement patterns were related to specific stimuli which were mostly other predators such as gannets, dolphins or fishing boats. Contrary to a widely accepted idea, our data suggest that foraging seabirds are not directly looking for prey. Instead, they search for indicators of the presence of prey, the latter being targeted at the very last moment and at a very small scale. We demonstrate that movement patterns of foraging seabirds can be heavily driven by processes unobservable with conventional methodology. Except perhaps for large scale processes, local-enhancement seems to be the only ruling mechanism; this has profounds implications for ecosystem-based management of marine areas.
- ItemOpen AccessCalling by concluding sentinels: coordinating cooperation or revealing risk?(Public Library of Science, 2011) Hollén, Linda I; Bell, Matthew B V; Russell, Alexis; Niven, Fraser; Ridley, Amanda R; Radford, Andrew NEfficient cooperation requires effective coordination of individual contributions to the cooperative behaviour. Most social birds and mammals involved in cooperation produce a range of vocalisations, which may be important in regulating both individual contributions and the combined group effort. Here we investigate the role of a specific call in regulating cooperative sentinel behaviour in pied babblers ( Turdoides bicolor ). ‘Fast-rate chuck’ calls are often given by sentinels as they finish guard bouts and may potentially coordinate the rotation of individuals as sentinels, minimising time without a sentinel, or may signal the presence or absence of predators, regulating the onset of the subsequent sentinel bout. We ask (i) when fast-rate chuck calls are given and (ii) what effect they have on the interval between sentinel bouts. Contrary to expectation, we find little evidence that these calls are involved in regulating the pied babbler sentinel system: observations revealed that their utterance is influenced only marginally by wind conditions and not at all by habitat, while observations and experimental playback showed that the giving of these calls has no effect on inter-bout interval. We conclude that pied babblers do not seem to call at the end of a sentinel bout to maximise the efficiency of this cooperative act, but may use vocalisations at this stage to influence more individually driven behaviours.
- ItemOpen AccessCan foraging ecology drive the evolution of body size in a diving endotherm?(Public Library of Science, 2013) Cook, Timothée R; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-AndréWithin a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.
- ItemOpen AccessCombined fishing and climate forcing in the southern Benguela upwelling ecosystem: an end-to-end modelling approach reveals dampened effects(Public Library of Science, 2014) Travers-Trolet, Morgane; Shin, Yunne-Jai; Shannon, Lynne J; Moloney, Coleen L; Field, John GThe effects of climate and fishing on marine ecosystems have usually been studied separately, but their interactions make ecosystem dynamics difficult to understand and predict. Of particular interest to management, the potential synergism or antagonism between fishing pressure and climate forcing is analysed in this paper, using an end-to-end ecosystem model of the southern Benguela ecosystem, built from coupling hydrodynamic, biogeochemical and multispecies fish models (ROMS-N 2 P 2 Z 2 D 2 -OSMOSE). Scenarios of different intensities of upwelling-favourable wind stress combined with scenarios of fishing top-predator fish were tested. Analyses of isolated drivers show that the bottom-up effect of the climate forcing propagates up the food chain whereas the top-down effect of fishing cascades down to zooplankton in unfavourable environmental conditions but dampens before it reaches phytoplankton. When considering both climate and fishing drivers together, it appears that top-down control dominates the link between top-predator fish and forage fish, whereas interactions between the lower trophic levels are dominated by bottom-up control. The forage fish functional group appears to be a central component of this ecosystem, being the meeting point of two opposite trophic controls. The set of combined scenarios shows that fishing pressure and upwelling-favourable wind stress have mostly dampened effects on fish populations, compared to predictions from the separate effects of the stressors. Dampened effects result in biomass accumulation at the top predator fish level but a depletion of biomass at the forage fish level. This should draw our attention to the evolution of this functional group, which appears as both structurally important in the trophic functioning of the ecosystem, and very sensitive to climate and fishing pressures. In particular, diagnoses considering fishing pressure only might be more optimistic than those that consider combined effects of fishing and environmental variability.
- ItemOpen AccessEnvironmental influences on the abundance and sexual composition of white sharks Carcharodon carcharias in Gansbaai, South Africa(Public Library of Science, 2013) Towner, Alison V; Underhill, Les G; Jewell, Oliver J D; Smale, Malcolm JThe seasonal occurrence of white sharks visiting Gansbaai, South Africa was investigated from 2007 to 2011 using sightings from white shark cage diving boats. Generalized linear models were used to investigate the number of great white sharks sighted per trip in relation to sex, month, sea surface temperature and Multivariate El Niño/Southern Oscillation (ENSO) Indices (MEI). Water conditions are more variable in summer than winter due to wind-driven cold water upwelling and thermocline displacement, culminating in colder water temperatures, and shark sightings of both sexes were higher during the autumn and winter months (March-August). MEI, an index to quantify the strength of Southern Oscillation, differed in its effect on the recorded numbers of male and female white sharks, with highly significant interannual trends. This data suggests that water temperature and climatic phenomena influence the abundance of white sharks at this coastal site. In this study, more females were seen in Gansbaai overall in warmer water/positive MEI years. Conversely, the opposite trend was observed for males. In cool water years (2010 to 2011) sightings of male sharks were significantly higher than in previous years. The influence of environmental factors on the physiology of sharks in terms of their size and sex is discussed. The findings of this study could contribute to bather safety programmes because the incorporation of environmental parameters into predictive models may help identify times and localities of higher risk to bathers and help mitigate human-white shark interactions.
- ItemOpen AccessFrog eat frog: exploring variables influencing anurophagy(2015) Measey, G John; Vimercati, Giovanni; de Villiers, F André; Mokhatla, Mohlamatsane M; Davies, Sarah J; Edwards, Shelley; Altwegg, ResBackground. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested.
- ItemOpen AccessIdentifying the "demon whale-biter": Patterns of scarring on large whales attributed to a cookie-cutter shark Isistius sp(Public Library of Science, 2016) Best, Peter B; Photopoulou, TheoniThe presence of crater-like wounds on cetaceans and other large marine vertebrates and invertebrates has been attributed to various organisms. We review the evidence for the identity of the biting agent responsible for crater wounds on large whales, using data collected from sei ( Balaenoptera borealis ), fin ( B . physalus ), inshore and offshore Bryde's ( B . brydeii sp) and sperm whales ( Physeter macrocephalus ) examined at the Donkergat whaling station, Saldanha Bay, South Africa between March and October 1963. We then analyse the intensity and trends in its predation on large whales. Despite the scarcity of local records, we conclude that a cookie-cutter shark Isistius sp is the most likely candidate. We make inferences about the trends in (1) total counts of unhealed bitemarks, and (2) the proportion of unhealed bitemarks that were recent. We use day of the year; reproductive class, social grouping or sex; depth interval and body length as candidate covariates. The models with highest support for total counts of unhealed bitemarks involve the day of the year in all species. Depth was an important predictor in all species except offshore Bryde's whales. Models for the proportion of recent bites were only informative for sei and fin whales. We conclude that temporal scarring patterns support what is currently hypothesized about the distribution and movements of these whale species, given that Isistius does not occur in the Antarctic and has an oceanic habitat. The incidence of fresh bites confirms the presence of Isistius in the region. The lower numbers of unhealed bites on medium-sized sperm whales suggests that this group spends more time outside the area in which bites are incurred, providing a clue to one of the biggest gaps in our understanding of the movements of mature and maturing sperm males.
- ItemOpen AccessThe influence of environmental variables on the presence of white sharks, Carcharodon carcharias at two popular Cape Town bathing beaches: A generalized additive mixed model(Public Library of Science, 2013) Weltz, Kay; Kock, Alison A; Winker, Henning; Attwood, Colin; Sikweyiya, MonwabisiShark attacks on humans are high profile events which can significantly influence policies related to the coastal zone. A shark warning system in South Africa, Shark Spotters , recorded 378 white shark ( Carcharodon carcharias ) sightings at two popular beaches, Fish Hoek and Muizenberg, during 3690 six-hour long spotting shifts, during the months September to May 2006 to 2011. The probabilities of shark sightings were related to environmental variables using Binomial Generalized Additive Mixed Models (GAMMs). Sea surface temperature was significant, with the probability of shark sightings increasing rapidly as SST exceeded 14°C and approached a maximum at 18°C, whereafter it remains high. An 8 times (Muizenberg) and 5 times (Fish Hoek) greater likelihood of sighting a shark was predicted at 18°C than at 14°C. Lunar phase was also significant with a prediction of 1.5 times (Muizenberg) and 4 times (Fish Hoek) greater likelihood of a shark sighting at new moon than at full moon. At Fish Hoek, the probability of sighting a shark was 1.6 times higher during the afternoon shift compared to the morning shift, but no diel effect was found at Muizenberg. A significant increase in the number of shark sightings was identified over the last three years, highlighting the need for ongoing research into shark attack mitigation. These patterns will be incorporated into shark awareness and bather safety campaigns in Cape Town.
- ItemOpen AccessMaternal effects in relation to helper presence in the cooperatively breeding sociable weaver(Public Library of Science, 2013) Paquet, Matthieu; Covas, Rita; Chastel, Olivier; Parenteau, Charline; Doutrelant, ClaireIn egg laying species, breeding females may adjust the allocation of nutrients or other substances into eggs in order to maximise offspring or maternal fitness. Cooperatively breeding species offer a particularly interesting context in which to study maternal allocation because helpers create predictably improved conditions during offspring development. Some recent studies on cooperative species showed that females assisted by helpers produced smaller eggs, as the additional food brought by the helpers appeared to compensate for this reduction in egg size. However, it remains unclear how common this effect might be. Also currently unknown is whether females change egg composition when assisted by helpers. This effect is predicted by current maternal allocation theory, but has not been previously investigated. We studied egg mass and contents in sociable weavers ( Philetairus socius ). We found that egg mass decreased with group size, while fledgling mass did not vary, suggesting that helpers may compensate for the reduced investment in eggs. We found no differences in eggs’ carotenoid contents, but females assisted by helpers produced eggs with lower hormonal content, specifically testosterone, androstenedione (A4) and corticosterone levels. Taken together, these results suggest that the environment created by helpers can influence maternal allocation and potentially offspring phenotypes.
- ItemOpen AccessModelling the effects of prey size and distribution on prey capture rates of two sympatric marine predators(Public Library of Science, 2013) Thaxter, Chris B; Daunt, Francis; Grémillet, David; Harris, Mike P; Benvenuti, Silvano; Watanuki, Yutaka; Hamer, Keith C; Wanless, SarahUnderstanding how prey capture rates are influenced by feeding ecology and environmental conditions is fundamental to assessing anthropogenic impacts on marine higher predators. We compared how prey capture rates varied in relation to prey size, prey patch distribution and prey density for two species of alcid, common guillemot ( Uria aalge ) and razorbill ( Alca torda ) during the chick-rearing period. We developed a Monte Carlo approach parameterised with foraging behaviour from bird-borne data loggers, observations of prey fed to chicks, and adult diet from water-offloading, to construct a bio-energetics model. Our primary goal was to estimate prey capture rates, and a secondary aim was to test responses to a set of biologically plausible environmental scenarios. Estimated prey capture rates were 1.5±0.8 items per dive (0.8±0.4 and 1.1±0.6 items per minute foraging and underwater, respectively) for guillemots and 3.7±2.4 items per dive (4.9±3.1 and 7.3±4.0 items per minute foraging and underwater, respectively) for razorbills. Based on species' ecology, diet and flight costs, we predicted that razorbills would be more sensitive to decreases in 0-group sandeel (Ammodytes marinus) length (prediction 1), but guillemots would be more sensitive to prey patches that were more widely spaced (prediction 2), and lower in prey density (prediction 3). Estimated prey capture rates increased non-linearly as 0-group sandeel length declined, with the slope being steeper in razorbills, supporting prediction 1. When prey patches were more dispersed, estimated daily energy expenditure increased by a factor of 3.0 for guillemots and 2.3 for razorbills, suggesting guillemots were more sensitive to patchier prey, supporting prediction 2. However, both species responded similarly to reduced prey density (guillemot expenditure increased by 1.7; razorbill by 1.6), thus not supporting prediction 3. This bio-energetics approach complements other foraging models in predicting likely impacts of environmental change on marine higher predators dependent on species-specific foraging ecologies.
- ItemOpen AccessPatterns of distribution and spatial indicators of ecosystem change based on key species in the Southern Benguela(Public Library of Science, 2016) Watermeyer, Katherine E; Hutchings, Laurence; Jarre, Astrid; Shannon, Lynne JSeveral commercially and ecologically important species in the southern Benguela have undergone southward and eastward shifts in their distributions over previous decades, most notably the small pelagic fish sardine Sardinops sagax and anchovy Engraulis encrasicolus . Understanding these changes and their implications is essential in implementing an ecosystem approach to fisheries in the southern Benguela and attempting to appreciate the potential impacts of future environmental change. To investigate possible impacts of these shifts at an ecosystem level, distribution maps for before (1985-1991), during (1997-2000) and after (2003-2008) the shift in small pelagic fish were constructed for 14 key species from catch and survey data, and used to calculate spatial indicators including proportion east and west of Cape Agulhas, relative overlap in biomass and area, index of diversity, connectivity. Potential interactions on the south and west coasts were also compared. For several species (redeye; chub mackerel; kingklip; chokka squid; yellowtail), previously unidentified increases in the proportion of biomass east of Cape Agulhas were shown to have occurred over the same period as that of small pelagic fish, although none to the same degree. On average, overlap with small pelagic fish increased over time and overall system connectivity was lowest in the intermediate period, possibly indicating a system under transition. Connectivity declined over time on the west coast while increasing on the east coast. Distributions of other species have changed over time, with the region east of Cape Agulhas becoming increasingly important in terms of potential trophic interaction. Variations in distribution of biomass and structural complexity affect the trophic structure and hence functioning of the system, and implications should be considered when attempting to identify the possible ecosystem impacts of current and future system-level change.
- ItemOpen AccessRanging Behaviour of Verreaux's Eagles during the Pre-Breeding Period Determined through the Use of High Temporal Resolution Tracking(Public Library of Science, 2016) Murgatroyd, Megan; Underhill, Les G; Bouten, Willem; Amar, ArjunInformation on movement ecology is key in understanding the drivers and limitations of life history traits and has a potential role in indicating environmental change. Currently we have a limited understanding of the parameters of movement of territory-bound raptors, which are sensitive to environmental change. In this study we used GPS tracking technology to obtain spatially (within 3 m) and temporally ( c . 3 mins) high-resolution movement data on a small sample of Verreaux's eagle Aquila verreauxii during the pre-laying period ( n = 4) with one additional example during the chick rearing period. We present GPS-derived home range estimates for this species and we examine temporal (timing, duration, frequency and speed) and spatial (total path length and maximum distance from nest) patterns of trips away from the nest. For eagles tagged in the agriculturally developed Sandveld region ( n = 3), which is made up of a mosaic of land use types, we also undertook a habitat selection analysis. Home ranges were small and largely mutually exclusive. Trip activity was centred around midday, which is likely to be related to lift availability. Our habitat selection analysis found that eagles selected for near-natural and degraded habitat over natural or completely modified areas, suggesting that these eagles may have benefitted from some of the agricultural development in this region. Although our sample sizes are small, the resolution of our tracking data was essential in deriving this data over a relatively short time period and paves the way for future research.
- ItemOpen AccessRecreational fish-finders - an inexpensive alternative to scientific echo-sounders for unravelling the links between marine top predators and their prey(Public Library of Science, 2015) McInnes, Alistair M; Khoosal, Arjun; Murrell, Ben; Merkle, Dagmar; Lacerda, Miguel; Nyengera, Reason; Coetzee, Janet C; Edwards, Loyd C; Ryan, Peter G; Rademan, JohanStudies investigating how mobile marine predators respond to their prey are limited due to the challenging nature of the environment. While marine top predators are increasingly easy to study thanks to developments in bio-logging technology, typically there is scant information on the distribution and abundance of their prey, largely due to the specialised nature of acquiring this information. We explore the potential of using single-beam recreational fish-finders (RFF) to quantify relative forage fish abundance and draw inferences of the prey distribution at a fine spatial scale. We compared fish school characteristics as inferred from the RFF with that of a calibrated scientific split-beam echo-sounder (SES) by simultaneously operating both systems from the same vessel in Algoa Bay, South Africa. Customized open-source software was developed to extract fish school information from the echo returns of the RFF. For schools insonified by both systems, there was close correspondence between estimates of mean school depth (R 2 = 0.98) and school area (R 2 = 0.70). Estimates of relative school density (mean volume backscattering strength; S v ) measured by the RFF were negatively biased through saturation of this system given its smaller dynamic range. A correction factor applied to the RFF-derived density estimates improved the comparability between the two systems. Relative abundance estimates using all schools from both systems were congruent at scales from 0.5 km to 18 km with a strong positive linear trend in model fit estimates with increasing scale. Although absolute estimates of fish abundance cannot be derived from these systems, they are effective at describing prey school characteristics and have good potential for mapping forage fish distribution and relative abundance. Using such relatively inexpensive systems could greatly enhance our understanding of predator-prey interactions.
- ItemOpen AccessThe relative influence of competition and prey defenses on the phenotypic structure of insectivorous bat ensembles in southern Africa(Public Library of Science, 2008) Schoeman, M Corrie; Jacobs, David SDeterministic filters such as competition and prey defences should have a strong influence on the community structure of animals such as insectivorous bats that have life histories characterized by low fecundity, low predation risk, long life expectancy, and stable populations. We investigated the relative influence of these two deterministic filters on the phenotypic structure of insectivorous bat ensembles in southern Africa. We used null models to simulate the random phenotypic patterns expected in the absence of competition or prey defences and analysed the deviations of the observed phenotypic pattern from these expected random patterns. The phenotypic structure at local scales exhibited non-random patterns consistent with both competition and prey defense hypotheses. There was evidence that competition influenced body size distribution across ensembles. Competition also influenced wing and echolocation patterns in ensembles and in functional foraging groups with high species richness or abundance. At the same time, prey defense filters influenced echolocation patterns in two species-poor ensembles. Non-random patterns remained evident even after we removed the influence of body size from wing morphology and echolocation parameters taking phylogeny into account. However, abiotic filters such as geographic distribution ranges of small and large-bodied species, extinction risk, and the physics of flight and sound probably also interacted with biotic filters at local and/or regional scales to influence the community structure of sympatric bats in southern Africa. Future studies should investigate alternative parameters that define bat community structure such as diet and abundance to better determine the influence of competition and prey defences on the structure of insectivorous bat ensembles in southern Africa.
- ItemOpen AccessResidency, habitat use and sexual segregation of white sharks, Carcharodon carcharias in False Bay, South Africa(Public Library of Science, 2013) Kock, Alison; O'Riain, M Justin; Mauff, Katya; Meÿer, Michael; Kotze, Deon; Griffiths, CharlesWhite sharks ( Carcharodon carcharias ) are threatened apex predators and identification of their critical habitats and how these are used are essential to ensuring improved local and ultimately global white shark protection. In this study we investigated habitat use by white sharks in False Bay, South Africa, using acoustic telemetry. 56 sharks (39 female, 17 male), ranging in size from 1.7-5 m TL, were tagged with acoustic transmitters and monitored on an array of 30 receivers for 975 days. To investigate the effects of season, sex and size on habitat use we used a generalized linear mixed effects model. Tagged sharks were detected in the Bay in all months and across all years, but their use of the Bay varied significantly with the season and the sex of the shark. In autumn and winter males and females aggregated around the Cape fur seal colony at Seal Island, where they fed predominantly on young of the year seals. In spring and summer there was marked sexual segregation, with females frequenting the Inshore areas and males seldom being detected. The shift from the Island in autumn and winter to the Inshore region in spring and summer by females mirrors the seasonal peak in abundance of juvenile seals and of migratory teleost and elasmobranch species respectively. This study provides the first evidence of sexual segregation at a fine spatial scale and demonstrates that sexual segregation in white sharks is not restricted to adults, but is apparent for juveniles and sub-adults too. Overall, the results confirm False Bay as a critical area for white shark conservation as both sexes, across a range of sizes, frequent the Bay on an annual basis. The finding that female sharks aggregate in the Inshore regions when recreational use peaks highlights the need for ongoing shark-human conflict mitigation strategies.
- ItemOpen AccessWhere to forage in the absence of sea ice? Bathymetry as a key factor for an arctic seabird(Public Library of Science, 2016) Amélineau, Françoise; Grémillet, David; Bonnet, Delphine; Le Bot, Tangi; Fort, JérômeThe earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.
- ItemOpen AccessWho bites the bullet first? the susceptibility of Leopards Panthera Pardus to trophy hunting(Public Library of Science, 2015) Braczkowski, Alex Richard; Balme, Guy Andrew; Dickman, Amy; Macdonald, David Whyte; Fattebert, Julien; Dickerson, Tristan; Johnson, Paul; Hunter, LukeReliable data is fundamentally important for managing large carnivore populations, and vital for informing hunting quota levels if those populations are subject to trophy hunting. Camera-trapping and spoor counts can provide reliable population estimates for many carnivores, but governments typically lack the resources to implement such surveys over the spatial scales required to inform robust quota setting. It may therefore be prudent to shift focus away from estimating population size and instead focus on monitoring population trend. In this paper we assess the susceptibility of African leopards Panthera pardus to trophy hunting. This has management ramifications, particularly if the use of harvest composition is to be explored as a metric of population trend. We explore the susceptibility of different leopard age and sex cohorts to trophy hunting; first by examining their intrinsic susceptibility to encountering trophy hunters using camera-traps as surrogates, and second by assessing their extrinsic susceptibility using photographic questionnaire surveys to determine their attractiveness to hunters. We show that adult male and female leopards share similar incident rates to encountering hunters but adult males are the most susceptible to hunting due to hunter preference for large trophies. In contrast, sub-adult leopards rarely encounter hunters and are the least attractive trophies. We suggest that our findings be used as a foundation for the exploration of a harvest composition scheme in the Kwazulu-Natal and Limpopo provinces where post mortem information is collected from hunted leopards and submitted to the local provincial authorities.