Browsing by Subject "Nitrilase"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemRestrictedThe cyanide hydratase from Neurospora crassa forms a helix which has a dimeric repeat.(Springer Verlag, 2009) Dent, Kyle C; Weber, Brandon W; Benedik, Michael J; Sewell, Trevor BThe fungal cyanide hydratases form a functionally specialized subset of the nitrilases which catalyze the hydrolysis of cyanide to formamide with high specificity. These hold great promise for the bioremediation of cyanide wastes. The low resolution (3.0 nm) three-dimensional reconstruction of negatively stained recombinant cyanide hydratase fibers from the saprophytic fungus Neurospora crassa by iterative helical real space reconstruction reveals that enzyme fibers display left-handed D1 S5.4 symmetry with a helical rise of 1.36 nm. This arrangement differs from previously characterized microbial nitrilases which demonstrate a structure built along similar principles but with a reduced helical twist. The cyanide hydratase assembly is stabilized by two dyadic interactions between dimers across the one-start helical groove. Docking of a homology-derived atomic model into the experimentally determined negative stain envelope suggests the location of charged residues which may form salt bridges and stabilize the helix
- ItemRestrictedEngineering pH-tolerant mutants of a cyanide dihydratase(Springer Verlag, 2012) Wang, Lan; Watermeyer, Jean M; Mulelu, Andani E; Sewell, Trevor B; Benedik, Michael JCyanide dihydratase is an enzyme in the nitrilase family capable of transforming cyanide to formate and ammonia. This reaction has been exploited for the bioremediation of cyanide in wastewater streams, but extending the pH operating range of the enzyme would improve its utility. In this work, we describe mutants of Bacillus pumilus C1 cyanide dihydratase (CynDpum) with improved activity at higher pH. Error-prone PCR was used to construct a library of CynDpum mutants, and a high-throughput screening system was developed to screen the library for improved activity at pH 10. Two mutant alleles were identified that allowed cells to degrade cyanide in solutions at pH 10, whereas the wild-type was inactive above pH 9. The mutant alleles each encoded three different amino acid substitutions, but for one of those, a single change, E327G, accounted for the phenotype. The purified proteins containing multiple mutations were five times more active than the wild-type enzyme at pH 9, but all purified enzymes lost activity at pH 10. The mutation Q86R resulted in the formation of significantly longer fibers at low pH, and both E327G and Q86R contributed to the persistence of active oligomeric assemblies at pH 9. In addition, the mutant enzymes proved to be more thermostable than the wild type, suggesting improved physical stability rather than any change in chemistry accounts for their increased pH tolerance.
- ItemRestrictedHelical structure of unidirectionally shadowed metal replicas of cyanide hydratase from Gloeocercospora sorghi(Elsevier, 2008) Woodward, J D; Weber, B W; Scheffer, M P; Benedik, M J; Hoenger, A; Sewell, B TThe helical filaments of the cyanide hydratase from Gloeocercospora sorghi have been reconstructed in three dimensions from freeze dried, unidirectionally shadowed specimens using iterative real-space helical reconstruction. The average power spectrum of all selected images has three clear reflections on different layer lines. The reconstruction is complicated by the fact that three possible indexing schemes are possible and reconstructions using the starting symmetries based on each of these indexing schemes converge on three-dimensional volumes which appear plausible. Because only one side is visible in shadowed specimens, it is necessary to examine the phases from a single filament by cryo-electron microscopy in order to make an unequivocal assignment of the symmetry. Because of the novel nature of the reconstruction method used here, conventional cryo-EM methods were also used to determine a second reconstruction, allowing us to make comparisons between the two. The filament is shown to have a left-handed one-start helix with D1 symmetry, 5.46 dimers per turn and a pitch of 7.15 nm. The reconstruction suggests the presence of an interaction across the groove not previously seen in nitrilase helical fibres.
- ItemRestrictedHelical structure of unidirectionally shadowed metal replicas of cyanide hydratase from Gloeocercospora sorghi.(Elsevier, 2008) Woodward, J D; Weber, B W; Scheffer, M P; Benedik, M J; Hoenger A; Sewell, B TThe helical filaments of the cyanide hydratase from Gloeocercospora sorghi have been reconstructed in three dimensions from freeze dried, unidirectionally shadowed specimens using iterative real-space helical reconstruction. The average power spectrum of all selected images has three clear reflections on different layer lines. The reconstruction is complicated by the fact that three possible indexing schemes are possible and reconstructions using the starting symmetries based on each of these indexing schemes converge on threedimensional volumes which appear plausible. Because only one side is visible in shadowed specimens, it is necessary to examine the phases from a single filament by cryo-electron microscopy in order to make an unequivocal assignment of the symmetry. Because of the novel nature of the reconstruction method used here, conventional cryo-EM methods were also used to determine a second reconstruction, allowing us to make comparisons between the two. The filament is shown to have a left-handed one-start helix with D1 symmetry, 5.46 dimers per turn and a pitch of 7.15 nm. The reconstruction suggests the presence of an interaction across the groove not previously seen in nitrilase helical fibres.
- ItemRestrictedProbing C-terminal interactions of the Pseudomonas stutzeri cyanide-degrading CynD protein(Springer Verlag, 2015) Crum, Mary Abou-Nader; Park, Jason M; Mulelu, Andani E; Sewell, Trevor B; Benedik, Michael JThe cyanide dihydratases from Bacillus pumilus and Pseudomonas stutzeri share high amino acid sequence similarity throughout except for their highly divergent C-termini. However, deletion or exchange of the C-termini had different effects upon each enzyme. Here we extended previous studies and investigated how the C-terminus affects the activity and stability of three nitrilases, the cyanide dihydratases from B. pumilus (CynDpum) and P. stutzeri (CynDstut) and the cyanide hydratase from Neurospora crassa. Enzymes in which the C-terminal residues were deleted decreased in both activity and thermostability with increasing deletion lengths. However, CynDstut was more sensitive to such truncation than the other two enzymes. A domain of the P. stutzeri CynDstut C-terminus not found in the other enzymes, 306GERDST311, was shown to be necessary for functionality and explains the inactivity of the previously described CynDstut-pum hybrid. This suggests that the B. pumilus C-terminus, which lacks this motif, may have specific interactions elsewhere in the protein, preventing it from acting in trans on a heterologous CynD protein. We identify the dimerization interface A-surface region 195–206 (A2) from CynDpum as this interaction site. However, this A2 region did not rescue activity in C-terminally truncated CynDstutΔ302 or enhance the activity of full-length CynDstut and therefore does not act as a general stability motif.
- ItemRestrictedStructural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus RAPc8(Springer Verlag, 2010) Williamson, D S; Dent, K C; Weber, B W; Varsani, A; Frederick, J; Thuku, R; Cameron, R A; van Heerden, J H; Cowan, D A; Sewell, B TGeobacillus pallidus RAPc8 (NRRL: B-59396) is a moderately thermophilic gram-positive bacterium, originally isolated from Australian lake sediment. The G. pallidus RAPc8 gene encoding an inducible nitrilase was located and cloned using degenerate primers coding for wellconserved nitrilase sequences, coupled with inverse PCR. The nitrilase open reading frame was cloned into an expression plasmid and the expressed recombinant enzyme purified and characterized. The protein had a monomer molecular weight of 35,790 Da, and the purified functional enzyme had an apparent molecular weight of ~600 kDa by size exclusion chromatography. Similar to several plant nitrilases and some bacterial nitrilases, the recombinant G. pallidus RAPc8 enzyme produced both acid and amide products from nitrile substrates. The ratios of acid to amide produced from the substrates we tested are significantly different to those reported for other enzymes, and this has implications for our understanding of the mechanism of the nitrilases which may assist with rational design of these enzymes. Electron microscopy and image classification showed complexes having crescent-like, “c-shaped”, circular and “figure-8” shapes. Protein models suggested that the various complexes were composed of 6, 8, 10 and 20 subunits, respectively.