Browsing by Subject "Microtechnology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessQuantifying Collision Frequency and Intensity in Rugby Union and Rugby Sevens: A Systematic Review(Springer International Publishing, 2022-01-20) Paul, Lara; Naughton, Mitchell; Jones, Ben; Davidow, Demi; Patel, Amir; Lambert, Mike; Hendricks, ShariefBackground Collisions in rugby union and sevens have a high injury incidence and burden, and are also associated with player and team performance. Understanding the frequency and intensity of these collisions is therefore important for coaches and practitioners to adequately prepare players for competition. The aim of this review is to synthesise the current literature to provide a summary of the collision frequencies and intensities for rugby union and rugby sevens based on video-based analysis and microtechnology. Methods A systematic search using key words was done on four different databases from 1 January 1990 to 1 September 2021 (PubMed, Scopus, SPORTDiscus and Web of Science). Results Seventy-three studies were included in the final review, with fifty-eight studies focusing on rugby union, while fifteen studies explored rugby sevens. Of the included studies, four focused on training—three in rugby union and one in sevens, two focused on both training and match-play in rugby union and one in rugby sevens, while the remaining sixty-six studies explored collisions from match-play. The studies included, provincial, national, international, professional, experienced, novice and collegiate players. Most of the studies used video-based analysis (n = 37) to quantify collisions. In rugby union, on average a total of 22.0 (19.0–25.0) scrums, 116.2 (62.7–169.7) rucks, and 156.1 (121.2–191.0) tackles occur per match. In sevens, on average 1.8 (1.7–2.0) scrums, 4.8 (0–11.8) rucks and 14.1 (0–32.8) tackles occur per match. Conclusions This review showed more studies quantified collisions in matches compared to training. To ensure athletes are adequately prepared for match collision loads, training should be prescribed to meet the match demands. Per minute, rugby sevens players perform more tackles and ball carries into contact than rugby union players and forwards experienced more impacts and tackles than backs. Forwards also perform more very heavy impacts and severe impacts than backs in rugby union. To improve the relationship between matches and training, integrating both video-based analysis and microtechnology is recommended. The frequency and intensity of collisions in training and matches may lead to adaptations for a “collision-fit” player and lend itself to general training principles such as periodisation for optimum collision adaptation. Trial Registration PROSPERO registration number: CRD42020191112.
- ItemOpen AccessQuantifying the Collision Dose in Rugby League: A Systematic Review, Meta-analysis, and Critical Analysis(2020-01-22) Naughton, Mitchell; Jones, Ben; Hendricks, Sharief; King, Doug; Murphy, Aron; Cummins, CloeAbstract Background Collisions (i.e. tackles, ball carries, and collisions) in the rugby league have the potential to increase injury risk, delay recovery, and influence individual and team performance. Understanding the collision demands of the rugby league may enable practitioners to optimise player health, recovery, and performance. Objective The aim of this review was to (1) characterise the dose of collisions experienced within senior male rugby league match-play and training, (2) systematically and critically evaluate the methods used to describe the relative and absolute frequency and intensity of collisions, and (3) provide recommendations on collision monitoring. Methods A systematic search of electronic databases (PubMed, SPORTDiscus, Scopus, and Web of Science) using keywords was undertaken. A meta-analysis provided a pooled mean of collision frequency or intensity metrics on comparable data sets from at least two studies. Results Forty-three articles addressing the absolute (n) or relative collision frequency (n min−1) or intensity of senior male rugby league collisions were included. Meta-analysis of video-based studies identified that forwards completed approximately twice the number of tackles per game than backs (n = 24.6 vs 12.8), whilst ball carry frequency remained similar between backs and forwards (n = 11.4 vs 11.2). Variable findings were observed at the subgroup level with a limited number of studies suggesting wide-running forwards, outside backs, and hit-up forwards complete similar ball carries whilst tackling frequency differed. For microtechnology, at the team level, players complete an average of 32.7 collisions per match. Limited data suggested hit-up and wide-running forwards complete the most collisions per match, when compared to adjustables and outside backs. Relative to playing time, forwards (n min−1 = 0.44) complete a far greater frequency of collision than backs (n min−1 = 0.16), with data suggesting hit-up forwards undertake more than adjustables, and outside backs. Studies investigating g force intensity zones utilised five unique intensity schemes with zones ranging from 2–3 g to 13–16 g. Given the disparity between device setups and zone classification systems between studies, further analyses were inappropriate. It is recommended that practitioners independently validate microtechnology against video to establish criterion validity. Conclusions Video- and microtechnology-based methods have been utilised to quantify collisions in the rugby league with differential collision profiles observed between forward and back positional groups, and their distinct subgroups. The ball carry demands of forwards and backs were similar, whilst tackle demands were greater for forwards than backs. Microtechnology has been used inconsistently to quantify collision frequency and intensity. Despite widespread popularity, a number of the microtechnology devices have yet to be appropriately validated. Limitations exist in using microtechnology to quantify collision intensity, including the lack of consistency and limited validation. Future directions include application of machine learning approaches to differentiate types of collisions in microtechnology datasets.