• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "Microbiota"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    The penile microbiota of Black South African men: relationship with human papillomavirus and HIV infection
    (2020-04-06) Onywera, Harris; Williamson, Anna-Lise; Cozzuto, Luca; Bonnin, Sarah; Mbulawa, Zizipho Z A; Coetzee, David; Ponomarenko, Julia; Meiring, Tracy L
    Background To date, the microbiota of the human penis has been studied mostly in connection with circumcision, HIV risk and female partner bacterial vaginosis (BV). These studies have shown that male circumcision reduces penile anaerobic bacteria, that greater abundance of penile anaerobic bacteria is correlated with increased cytokine levels and greater risk of HIV infection, and that the penile microbiota is an important harbour for BV-associated bacteria. While circumcision has been shown to significantly reduce the risk of acquiring human papillomavirus (HPV) infection, the relationship of the penile microbiota with HPV is still unknown. In this study, we examined the penile microbiota of HPV-infected men as well as the impact of HIV status. Results The penile skin microbiota of 238 men from Cape Town (South Africa) were profiled using Illumina sequencing of the V3-V4 hypervariable regions of the 16S rRNA gene. Corynebacterium and Prevotella were found to be the most abundant genera. Six distinct community state types (CSTs) were identified. CST-1, dominated by Corynebacterium, corresponded to less infections with high-risk HPV (HR-HPV) relative to CSTs 2–6. Men in CST-5 had greater relative abundances of Prevotella, Clostridiales, and Porphyromonas and a lower relative abundance of Corynebacterium. Moreover, they were significantly more likely to have HPV or HR-HPV infections than men in CST-1. Using a machine learning approach, we identified greater relative abundances of the anaerobic BV-associated bacteria (Prevotella, Peptinophilus, and Dialister) and lower relative abundance of Corynebacterium in HR-HPV-infected men compared to HR-HPV-uninfected men. No association was observed between HIV and CST, although the penile microbiota of HIV-infected men had greater relative abundances of Staphylococcus compared to HIV-uninfected men. Conclusions We found significant differences in the penile microbiota composition of men with and without HPV and HIV infections. HIV and HR-HPV infections were strongly associated with greater relative abundances of Staphylococcus and BV-associated bacterial taxa (notably Prevotella, Peptinophilus and Dialister), respectively. It is possible that these taxa could increase susceptibility to HIV and HR-HPV acquisition, in addition to creating conditions in which infections persist. Further longitudinal studies are required to establish causal relationships and to determine the extent of the effect.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Respiratory microbes present in the nasopharynx of children hospitalised with suspected pulmonary tuberculosis in Cape Town, South Africa
    (2016) Dube, Felix S; Kaba, Mamadou; Robberts, F J Lourens; Ah Tow, Lemese; Lubbe, Sugnet; Zar, Heather J; Nicol, Mark P
    Abstract Background Lower respiratory tract infection in children is increasingly thought to be polymicrobial in origin. Children with symptoms suggestive of pulmonary tuberculosis (PTB) may have tuberculosis, other respiratory tract infections or co-infection with Mycobacterium tuberculosis and other pathogens. We aimed to identify the presence of potential respiratory pathogens in nasopharyngeal (NP) samples from children with suspected PTB. Method NP samples collected from consecutive children presenting with suspected PTB at Red Cross Children’s Hospital (Cape Town, South Africa) were tested by multiplex real-time RT-PCR. Mycobacterial liquid culture and Xpert MTB/RIF was performed on 2 induced sputa obtained from each participant. Children were categorised as definite-TB (culture or qPCR [Xpert MTB/RIF] confirmed), unlikely-TB (improvement of symptoms without TB treatment on follow-up) and unconfirmed-TB (all other children). Results Amongst 214 children with a median age of 36 months (interquartile range, [IQR] 19–66 months), 34 (16 %) had definite-TB, 86 (40 %) had unconfirmed-TB and 94 (44 %) were classified as unlikely-TB. Moraxella catarrhalis (64 %), Streptococcus pneumoniae (42 %), Haemophilus influenzae spp (29 %) and Staphylococcus aureus (22 %) were the most common bacteria detected in NP samples. Other bacteria detected included Mycoplasma pneumoniae (9 %), Bordetella pertussis (7 %) and Chlamydophila pneumoniae (4 %). The most common viruses detected included metapneumovirus (19 %), rhinovirus (15 %), influenza virus C (9 %), adenovirus (7 %), cytomegalovirus (7 %) and coronavirus O43 (5.6 %). Both bacteria and viruses were detected in 73, 55 and 56 % of the definite, unconfirmed and unlikely-TB groups, respectively. There were no significant differences in the distribution of respiratory microbes between children with and without TB. Using quadratic discriminant analysis, human metapneumovirus, C. pneumoniae, coronavirus 043, influenza virus C virus, rhinovirus and cytomegalovirus best discriminated children with definite-TB from the other groups of children. Conclusions A broad range of potential respiratory pathogens was detected in children with suspected TB. There was no clear association between TB categorisation and detection of a specific pathogen. Further work is needed to explore potential pathogen interactions and their role in the pathogenesis of PTB.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Respiratory microbes present in the nasopharynx of children hospitalised with suspected pulmonary tuberculosis in Cape Town, South Africa
    (BioMed Central, 2016-10-24) Dube, Felix S; Kaba, Mamadou; Robberts, F J Lourens; Tow, Lemese A; Lubbe, Sugnet; Zar, Heather J; Nicol, Mark P
    Background: Lower respiratory tract infection in children is increasingly thought to be polymicrobial in origin. Children with symptoms suggestive of pulmonary tuberculosis (PTB) may have tuberculosis, other respiratory tract infections or co-infection with Mycobacterium tuberculosis and other pathogens. We aimed to identify the presence of potential respiratory pathogens in nasopharyngeal (NP) samples from children with suspected PTB. Method: NP samples collected from consecutive children presenting with suspected PTB at Red Cross Children’s Hospital (Cape Town, South Africa) were tested by multiplex real-time RT-PCR. Mycobacterial liquid culture and Xpert MTB/RIF was performed on 2 induced sputa obtained from each participant. Children were categorised as definite-TB (culture or qPCR [Xpert MTB/RIF] confirmed), unlikely-TB (improvement of symptoms without TB treatment on follow-up) and unconfirmed-TB (all other children). Results: Amongst 214 children with a median age of 36 months (interquartile range, [IQR] 19–66 months), 34 (16 %) had definite-TB, 86 (40 %) had unconfirmed-TB and 94 (44 %) were classified as unlikely-TB. Moraxella catarrhalis (64 %), Streptococcus pneumoniae (42 %), Haemophilus influenzae spp (29 %) and Staphylococcus aureus (22 %) were the most common bacteria detected in NP samples. Other bacteria detected included Mycoplasma pneumoniae (9 %), Bordetella pertussis (7 %) and Chlamydophila pneumoniae (4 %). The most common viruses detected included metapneumovirus (19 %), rhinovirus (15 %), influenza virus C (9 %), adenovirus (7 %), cytomegalovirus (7 %) and coronavirus O43 (5.6 %). Both bacteria and viruses were detected in 73, 55 and 56 % of the definite, unconfirmed and unlikely-TB groups, respectively. There were no significant differences in the distribution of respiratory microbes between children with and without TB. Using quadratic discriminant analysis, human metapneumovirus, C. pneumoniae, coronavirus 043, influenza virus C virus, rhinovirus and cytomegalovirus best discriminated children with definite-TB from the other groups of children. Conclusions: A broad range of potential respiratory pathogens was detected in children with suspected TB. There was no clear association between TB categorisation and detection of a specific pathogen. Further work is needed to explore potential pathogen interactions and their role in the pathogenesis of PTB.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming
    (2017) Prescott, Susan L; Larcombe, Danica-Lea; Logan, Alan C; West, Christina; Burks, Wesley; Caraballo, Luis; Schoeman, Johan; Etten, Eddie Van; Horwitz, Pierre; Kozyrskyj, Anita; Campbell, Dianne E
    Skin barrier structure and function is essential to human health. Hitherto unrecognized functions of epidermal keratinocytes show that the skin plays an important role in adapting whole-body physiology to changing environments, including the capacity to produce a wide variety of hormones, neurotransmitters and cytokine that can potentially influence whole-body states, and quite possibly, even emotions. Skin microbiota play an integral role in the maturation and homeostatic regulation of keratinocytes and host immune networks with systemic implications. As our primary interface with the external environment, the biodiversity of skin habitats is heavily influenced by the biodiversity of the ecosystems in which we reside. Thus, factors which alter the establishment and health of the skin microbiome have the potential to predispose to not only cutaneous disease, but also other inflammatory non-communicable diseases (NCDs). Indeed, disturbances of the stratum corneum have been noted in allergic diseases (eczema and food allergy), psoriasis, rosacea, acne vulgaris and with the skin aging process. The built environment, global biodiversity losses and declining nature relatedness are contributing to erosion of diversity at a micro-ecological level, including our own microbial habitats. This emphasises the importance of ecological perspectives in overcoming the factors that drive dysbiosis and the risk of inflammatory diseases across the life course.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS