Browsing by Subject "Microarrays"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis(Public Library of Science, 2012) Moffat, Caroline S; Ingle, Robert A; Wathugala, Deepthi L; Saunders, Nigel J; Knight, Heather; Knight, Marc RThe ethylene response factor (ERF) family in Arabidopsis thaliana comprises 122 members in 12 groups, yet the biological functions of the majority remain unknown. Of the group IX ERFs, the IXc subgroup has been studied the most, and includes ERF1, ERF14 and ORA59, which play roles in plant innate immunity. Here we investigate the biological functions of two members of the less studied IXb subgroup: ERF5 and ERF6. In order to identify potential targets of these transcription factors, microarray analyses were performed on plants constitutively expressing either ERF5 or ERF6 . Expression of defense genes, JA/Et-responsive genes and genes containing the GCC box promoter motif were significantly upregulated in both ERF5 and ERF6 transgenic plants, suggesting that ERF5 and ERF6 may act as positive regulators of JA-mediated defense and potentially overlap in their function. Since defense against necrotrophic pathogens is generally mediated through JA/Et-signalling, resistance against the fungal necrotroph Botrytis cinerea was examined. Constitutive expression of ERF5 or ERF6 resulted in significantly increased resistance. Although no significant difference in susceptibility to B. cinerea was observed in either erf5 or erf6 mutants, the erf5 erf6 double mutant showed a significant increase in susceptibility, which was likely due to compromised JA-mediated gene expression, since JA-induced gene expression was reduced in the double mutant. Taken together these data suggest that ERF5 and ERF6 play positive but redundant roles in defense against B. cinerea . Since mutual antagonism between JA/Et and salicylic acid (SA) signalling is well known, the UV-C inducibility of an SA-inducible gene, PR-1 , was examined. Reduced inducibilty in both ERF5 and ERF6 constitutive overexepressors was consistent with suppression of SA-mediated signalling, as was an increased susceptibility to avirulent Pseudomonas syringae . These data suggest that ERF5 and ERF6 may also play a role in the antagonistic crosstalk between the JA/Et and SA signalling pathways.
- ItemOpen AccessHeritability in the efficiency of nonsense-mediated mRNA decay in humans(Public Library of Science, 2010) Seoighe, Cathal; Gehring, ChrisBACKGROUND: In eukaryotes mRNA transcripts of protein-coding genes in which an intron has been retained in the coding region normally result in premature stop codons and are therefore degraded through the nonsense-mediated mRNA decay (NMD) pathway. There is evidence in the form of selective pressure for in-frame stop codons in introns and a depletion of length three introns that this is an important and conserved quality-control mechanism. Yet recent reports have revealed that the efficiency of NMD varies across tissues and between individuals, with important clinical consequences. Principal FINDINGS: Using previously published Affymetrix exon microarray data from cell lines genotyped as part of the International HapMap project, we investigated whether there are heritable, inter-individual differences in the abundance of intron-containing transcripts, potentially reflecting differences in the efficiency of NMD. We identified intronic probesets using EST data and report evidence of heritability in the extent of intron expression in 56 HapMap trios. We also used a genome-wide association approach to identify genetic markers associated with intron expression. Among the top candidates was a SNP in the DCP1A gene, which forms part of the decapping complex, involved in NMD. CONCLUSIONS: While we caution that some of the apparent inter-individual difference in intron expression may be attributable to different handling or treatments of cell lines, we hypothesize that there is significant polymorphism in the process of NMD, resulting in heritable differences in the abundance of intronic mRNA. Part of this phenotype is likely to be due to a polymorphism in a decapping enzyme on human chromosome 3.
- ItemOpen AccessInformation content-based gene ontology functional similarity measures: which one to use for a given biological data type?(Public Library of Science, 2014) Mazandu, Gaston K; Mulder, Nicola JThe current increase in Gene Ontology (GO) annotations of proteins in the existing genome databases and their use in different analyses have fostered the improvement of several biomedical and biological applications. To integrate this functional data into different analyses, several protein functional similarity measures based on GO term information content (IC) have been proposed and evaluated, especially in the context of annotation-based measures. In the case of topology-based measures, each approach was set with a specific functional similarity measure depending on its conception and applications for which it was designed. However, it is not clear whether a specific functional similarity measure associated with a given approach is the most appropriate, given a biological data set or an application, i.e., achieving the best performance compared to other functional similarity measures for the biological application under consideration. We show that, in general, a specific functional similarity measure often used with a given term IC or term semantic similarity approach is not always the best for different biological data and applications. We have conducted a performance evaluation of a number of different functional similarity measures using different types of biological data in order to infer the best functional similarity measure for each different term IC and semantic similarity approach. The comparisons of different protein functional similarity measures should help researchers choose the most appropriate measure for the biological application under consideration.