Browsing by Subject "Methanol"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessC.A.R.S. temperature measurements and chemical kinetic modelling of autoignition in a methanol-fuelled internal combustion engine(1993) Lockett, R D; Robertson, G NThe temperature inside the cylinder of a methanol-fuelled single-cylinder Ricardo E6 research engine running under knocking conditions, is measured by means of Coherent Anti-Stokes Raman Spectroscopy (CARS), and the pressure is measured with a pressure transducer. In order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch spectra at high pressure, a purely experimental technique is employed to derive temperatures from CARS spectra by cross-correlation with a reference library of spectra recorded in an accurately calibrated high-pressure high-temperature optical cell. The temperature and pressure profiles obtained from the engine running under knocking conditions, are then used as input data for chemical kinetic modelling of end-gas autoignition. Five published mechanisms (Grotheer et al 1992, Grotheer and Kelm 1989, Norton and Dryer 1989, Dove and Warnatz 1983, .and Esser and Warnatz 1987) are used in the autoignition study, and the results for the different mechanisms are compared. A good qualitative understanding of the mechanism underlying end-gas autoignition in the engine is obtained, although the calculated autoignition points occur slightly earlier than the observed point. A sensitivity analysis of the methanol autoignition system is undertaken, and the importance of the decomposition of hydrogen peroxide and the hydroperoxyl chemistry is demonstrated. The discrepancies between the predicted results of the different mechanisms is shown to be caused by a small number of sensitive reactions for which there are conflicting data. Finally, a linear mode analysis from the geometric qualitative theory of differential equations is performed on the non-linear chemical rate equations. The equilibrium points in the generalised phase space of the non-linear chemical system are shown to be defined in terms of three regions. The equilibrium points are unstable improper nodes in the first region (T < ll00K), unstable focii in the second region ( 1100K 1170K).
- ItemRestrictedEffect of catalyst modification on the conversion of methanol to light olefins over SAPO-34.(Elsevier, 1996) van Niekerk, M; Fletcher, J; O'Connor, CThe catalytic activity and selectivity of as-prepared and modified samples of SAPO-34 and Me-APSO-34 (Me = Co, Ni) for the conversion of methanol to olefins has been investigated. The catalytic performance for the conversion of methanol to light olefins of all the catalyst samples prepared was found to be closely related to the number of strong acid sites present. Mild steaming, encountered during deep-bed calcination, increased the lifetime of SAPO-34 due to the formation of stronger acid sites probably on the external surface of the crystallites. Selectivities to light olefins were typical of those previously reported and was essentially constant for all the catalysts investigated. The absence of C5+ olefins is ascribed to the ‘cage effect’. Dilution of the methanol with water as opposed to nitrogen increased the catalyst utilization value threefold and reduced the rate of coke formation during reaction. Treatments such as steaming, silanization and poisoning of strong sites by ammonia all reduced the number of strong acid sites and, thus, reduced catalytic performance.
- ItemOpen AccessInterference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols(Public Library of Science, 2009) Soares, Juliana B R Corrêa; Menezes, Diego; Vannier-Santos, Marcos A; Ferreira-Pereira, Antonio; Almeida, Giulliana T; Venancio, Thiago M; Verjovski-Almeida, Sergio; Zishiri, Vincent K; Kuter, David; Hunter, RogerAuthor Summary Heme is an essential molecule to most living organisms, but once in a free state it exerts toxic effects. Blood-feeding organisms evolved efficient ways to detoxify free heme derived from hemoglobin digestion. A key mechanism present in some hematophagous organisms consists of the crystallization of heme into a pigment named hemozoin. Schistosoma mansoni is one of the etiologic agents of human schistosomiasis, a parasitic disease that affects over 200 million people in tropical and subtropical areas. Hemozoin formation represents the main heme detoxification pathway in S. mansoni . Here, we report that the antimalarial quinoline methanols quinine and quinidine exert schistosomicidal effects notably due to their capacity to interfere with hemozoin formation. When quinine or quinidine were administered intraperitoneally during seven days to S. mansoni -infected mice (75 mg/kg/day), both worm and eggs burden were significantly reduced. Interestingly, hemozoin content in female worms was drastically affected after treatment with either compound. We also found that quinine caused important changes in the cellular organization of worm gastrodermis and increased expression of genes related to musculature, protein synthesis and repair mechanisms. Together, our results indicate that interference with hemozoin formation is a valid chemotherapeutic target for development of new schistosomicidal agents.