Browsing by Subject "Meteorology"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemOpen AccessAssessing the representation of teleconnective drivers of rainfall over Eastern Africa in global and regional climate models and projected future changes(2017) Endris, Hussen Seid; Hewitson, Bruce; Lennard, ChrisClimate variability is an important characteristic of regional climate, and a subject to significant control from teleconnections. An extended diagnosis of the capacity of climate models to represent remote controls of regional climate (teleconnections) is vital for assessing model-based predictions of climate variability, understanding uncertainty in climate projections and model development. An important driver of climate variability for Africa is the sea surface temperature (SST) - rainfall teleconnection, such as the El Ni˜no/Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). In this study, an assessment of the teleconnection between tropical SSTs and Eastern African rainfall in global and regional climate models is presented, with particular attention paid to the propagation of large-scale teleconnection signals (as represented by model reanalyses and Coupled Global Climate models (CGCMs)) into the domain of the Regional Climate Models (RCMs). The teleconnection-rainfall relationship with the Eastern Africa region is assessed in two rainfall seasons (June-July-August-September and October-November- December) under present and future periods. Evaluation runs (RCMs driven by reanalysis datasets) and historical simulations (RCMs driven by CGCMs) are assessed to quantify the ability of the models to capture the teleconnection relationship. The future analysis is performed for two Representative Concentration Pathway scenarios (RCP4.5 and RCP8.5) to assess future change in this relationship as a result of global warming. Using ERA-interim reanalysis as perfect boundary conditions, the RCMs adequately simulate the spatial and temporal distribution of rainfall in comparison with observations, although the model performance varies locally and seasonally within the region. Furthermore, the RCMs correctly capture the magnitude and spatial extent regional-scale seasonal rainfall anomalies associated with large-scale oceanic modes (ENSO and IOD). When the lateral boundary conditions are provided by CGCMs, RCMs barely capture the regional teleconnection patterns associated with large-scale modes, and mostly depend on the selection of the driving CGCM. Comparison of the CGCM-driven RCM simulations with the reanalysis-driven RCM simulations revealed that most of the errors in teleconnection found in the RCM simulations are inherited from the host CGCMs. The ERA-Interim driven downscaled results show better agreement with observed spatial teleconnection patterns than the CGCM driven downscaled results. Analysis of the CGCMs and corresponding downscaled results showed that in most cases both the CGCM and the corresponding downscaled simulations had similar teleconnection patterns, but in some cases the RCM results diverge to those of the driving CGCM results. It has been demonstrated that similarities in SST-rainfall teleconnection patterns between the RCM simulations and respective driving CGCM simulations are noted over the equatorial and southern part of the region during OND season, where the rainfall is primarily controlled by large-scale (synoptic-scale) features, with the RCMs maintaining the overall regional patterns from the forcing models. Di↵erences in RCM simulations from corresponding driving simulations are noted mainly over northern part of the domain during JJAS, which is most likely related to mesoscale processes that are not resolved by CGCMs. Looking at the model projections of the future, although the spatial pattern of teleconnections between ENSO/IOD and rainfall still persist, important changes in the strength of the teleconnection have been found. During JJAS, ENSO is an important driver of rainfall variability in the northern parts of the region where dry anomalies are associated with El Ni˜no and wetter anomalies with La Ni˜na. Both regional and global ensemble projections show higher rainfall during La Ni˜na and lower rainfall during El Ni˜no over the northern part of the region compared to the present period. During OND, the teleconnection between ENSO/IOD and rainfall is projected to strengthen (weaken) over Eastern horn of Africa (southern parts of the region) compared to the present period. This implies heavy seasonal rains associated with positive phases of ENSO and IOD will increase in future across the Eastern horn of Africa. The change OND rainfall teleconnections are stronger and also more consistent between the models and scenarios as compared to the change in JJAS teleconnections. These findings have an important implication for the water and agricultural managers and policies in the region to tackle the anticipated droughts and floods associated anthropogenic climate change. Finally, the analysis demonstrated that the largest source of uncertainty in the regional climate model simulations in the context of teleconnective forcing of rainfall over Eastern Africa is the choice of CGCM used to force the RCMs, reinforcing the understanding that the use of a single GCM to downscale climate predictions/projections and using the downscaled product for assessment of climate change projections is insufficient. Simulations from multiple RCMs nested in more than one GCM, as is undertaken in the Coordinated Regional Downscaling Experiment (CORDEX), are needed to characterize the uncertainty and provide estimates of likely ranges of future regional climate changes.
- ItemOpen AccessThe atmospheric boundary layer above the Agulhas current(1996) Lee-Thorp, Andrew Michael; Lutjeharms, Johann R E; Rouault, MathieuThis thesis describes the atmospheric boundary layer above the Agulhas Current using shipboard meteorological measurements and rawinsonde ascents. The juxtaposition of the warm Agulhas Current and cool shelf waters is shown to have far-reaching effects on the overlying atmosphere. Air-sea fluxes of momentum, sensible and latent heat and resultant boundary layer characteristics demonstrate high horizontal inhomogeneity. The results suggest that this inhomogeneity is permanent. The spatial heat flux gradient is reflected in the overlying atmosphere by a transition in stability of the boundary layer and potential cumulus formation from the cool shelf to the warm current. For airflow perpendicular to the Agulhas Current an internal boundary layer was observed to develop at the inshore sea surface temperature front. Onshore-moving air accumulated a significant quantity of moisture during its trajectory over the current. When airflow is parallel to the current an atmospheric moisture front exists along the axis of the inshore sea surface temperature front. The mean thermodynamic structure of the atmosphere was investigated. An inversion capped the boundary layer whilst a second, higher-level subsidence inversion was found which acts to limit the vertical development of cumulus clouds and therefore the redistribution of heat and moisture above the boundary layer. The results presented in this thesis are useful in two ways. The Agulhas Current has frequently been linked to South African climate. This is the first dedicated study which quantifies and characterizes the atmospheric boundary layer in this region. Secondly, maritime airmasses are dramatically modified above the Agulhas Current. The resultant large horizontal inhomogeneity, its vertical extent and permanence suggest that its inclusion is vital to any successful climate model. Atmospheric general circulation models have been criticized for not taking into account regions of strong horizontal inhomogeneity. The results of this thesis support this argument and highlight the need for similar studies. Bibliography: pages 116-123.
- ItemOpen AccessThe estimation of precipitable water vapour from GPS measurements in South Africa(2005) Wonnacott, R T; Merry, CharlesThe propagation of the Global Positioning System (GPS) signal from the satellite to the receiver is affected by, among other factors, the atmosphere through which it passes and, whereas the affects of the ionosphere can be eliminated by the differencing of two transmitted frequencies, the affects of the troposphere remain one of the major sources of noise in traditional geodetic and positioning applications of GPS. This noise can, however, be turned into a signal for the meteorologist and, by applying suitable constraints and processing strategies, it is possible to estimate the amount of precipitable water vapour (PWV) in the atmosphere. The application of the GPS data for the estimation of PWV in the atmosphere is not a new concept and has been described in numerous publications and reports since the early 1990's (Bevis et al., 1992, Rocken et al., 1993). This project is, however, an attempt to test the technique using the South African network of permanent GPS base stations. This thesis sets out to answer four fundamental questions: i. In theory, can GPS observations be used to estimate the amount of precipitable water vapour (PWV) in the atmosphere? ii. What permanent GPS networks are being used in other countries around the world for similar applications and how successful are these applications? iii. Can data derived from the South African network of permanent GPS base stations, TrigNet, be used to estimate PWV with sufficient accuracy to be able to supplement the radiosonde upper air measurements of the South African Weather Service (SAWS)? iv. Is the estimation of PWV as derived from the GPS observations a true reflection of reality using the radiosonde ascent measurements and numerical weather model (NWM) data as a method of independent verification? The primary data sets used to estimate atmospheric PWV at hourly intervals for March 2004 were; i. GPS data derived from the South African network of permanent GPS base stations provided by the Chief Directorate of Surveys and Mapping (CDSM); and ii. Surface meteorological measurements supplied by the South African Weather Service (SAWS). The two independent data sets used to verify and test the technique were; i. Upper air measurements derived from radiosonde ascents provided by the SAWS. These measurements were used to compute Integrated Water Vapour (IWV) and then converted to PWV; and ii. PWV estimates derived from a Numerical Weather Model provided by the Department of Environmental and Geographical Sciences of UCT. By the comparing the estimates of PWV from the three techniques, viz. GPS, radiosonde and NWM, it was found that GPS will meet the accuracy requirements of the meteorologist and could be used to supplement radiosonde measurements for use in numerical weather models.
- ItemOpen AccessThe formulation of a classification procedure for specific use on cumulus cloud weather modification experiments(1980) Erasmus, David Andre; Keen, CecilThe central theme of this study concerns the use of classification schemes on weather modification experiments designed to investigate the possibility of increasing rainfall from individual cumuli or cumulus cloud systems. The principal objectives of these experiments are the evaluation of treatment effects and the identification of situations where seeding with artificial ice-nuclei is likely to have positive results. The classification of experimental units into categories that are associated with significantly different physical processes aids the evaluation process and the formulation of seeding strategies in the desired manner. As part of this study a classification scheme, which stratifies convective events on the basis of the synoptic situations which give rise to and maintain the convection, is formulated. In chapter seven and eight this scheme and another scheme presently being employed on a cumulus cloud weather modification experiment are examined statistically. Investigations show that the formulated scheme attains the objectives of classification to a greater degree. Certain attributes of the second scheme, permit the development of a classification procedure whereby the most effective stratification of experimental units can be accomplished.
- ItemOpen AccessInfluences on the hydrology of the Cape Columbine/St. Helena region(1985) Waldron, Howard Neil; Brundrit, GeoffThe overall objective of the thesis is to investigate and interpret hydrological events occurring at the Cape Columbine upwelling site and the adjacent coastal waters, with special reference to St. Helena Bay. The first step in the study involves monitoring the meteorological occurrences which resulted in the prevailing hydrology and thus give a general background to the observed structure. It became necessary to establish two sub-systems in the area which can be distinguished on the basis of the time scales within which they operate. Generally speaking, outside St. Helena Bay the waters have a 3-5 day synoptic variability governed by meteorological conditions, but within the semi-closed system of the Bay itself a longer time span of around 25 days governs the processes in this separate but inextricably linked water body.
- ItemOpen AccessModulation of South African summer rainfall by global climatic processes(1993) Pathack, Beenay M R; Jury, Mark RGlobal climatic processes which control the interannual variability of summer rainfall over South Africa are studied. Monthly and seasonal rainfall variations are analysed with respect to fluctuations in sea surface temperature (SST), outgoing longwave radiation (OLR) and tropospheric winds. OLR is used as a proxy for convective intensity and for the identification of areas of sympathy and opposition to convection over South Africa. Wind data (and derived parameters) are employed to explore large- scale tropical dynamical structures. Plausible explanations are offered for the observed associations. A change in sign of the correlation structure from the October/November rainfall regime to the December through March regime is indicative of a shift from downstream advective processes (Atlantic side) to a teleconnection-type of behaviour (Indian Ocean side). Rainfall variations during the late summer months show significant (and negative) links with SST fluctuations within the equatorial/tropical Pacific and Indian Ocean areas and are consistent with results obtained in analyses with respect to OLR fluctuations. December OLR in the Western Equatorial Indian Ocean is associated with a large portion of the variance in late summer rainfall, and points to a possible relation with the evolution of the Indian monsoon. The positive association implies that reduced cloudiness off the eastern coast of equatorial Africa in the spring precedes above normal mid- and late- summer rainfall over South Africa. Vertical mass overturnings are investigated through the velocity potential and derived parameters (the Zonal Circulation and Meridional Circulation Indices). The results suggest that the vertical tropospheric cells are among the important associated components which modulate climate across southern Africa, and that broad scale flows have an impact upon regional circulation cells. Evaluation of the vertical circulations with respect to wet and dry composites reveals that the Walker-type cell which connects a branch over the Indian Ocean gradually forms after November and reaches peak development in February. A slight increase of SST in the Central Equatorial Indian Ocean (CEI) modifies the Walker cell anomaly leading to below normal summer rainfall over South Africa. Additional thermodynamic inputs in the CEI region are conducive to deeper convection, hence elevated outflow signatures are observed in the velocity potential and related fields. It is conjectured that the teleconnections between South Africa, the CEI and the remote Pacific Ocean regulate the depth of moisture influx and convergence over South Africa. Based on the results of this study, it is believed that empirical models could be designed for long-range prediction of summer rainfall anomalies over the central interior of South Africa.