Browsing by Subject "Leaves"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessRapid leaf deployment strategies in a deciduous savanna(Public Library of Science, 2016) February, Edmund Carl; Higgins, Steven IanDeciduous plants avoid the costs of maintaining leaves in the unfavourable season, but carry the costs of constructing new leaves every year. Deciduousness is therefore expected in ecological situations with pronounced seasonality and low costs of leaf construction. In our study system, a seasonally dry tropical savanna, many trees are deciduous, suggesting that leaf construction costs must be low. Previous studies have, however, shown that nitrogen is limiting in this system, suggesting that leaf construction costs are high. Here we examine this conundrum using a time series of soil moisture availability, leaf phenology and nitrogen distribution in the tree canopy to illustrate how trees resorb nitrogen before leaf abscission and use stored reserves of nitrogen and carbon to construct new leaves at the onset of the growing season. Our results show that trees deployed leaves shortly before and in anticipation of the first rains with its associated pulse of nitrogen mineralisation. Our results also show that trees rapidly constructed a full canopy of leaves within two weeks of the first rains. We detected an increase in leaf nitrogen content that corresponded with the first rains and with the movement of nitrogen to more distal branches, suggesting that stored nitrogen reserves are used to construct leaves. Furthermore the stable carbon isotope ratios (δ 13 C) of these leaves suggest the use of stored carbon for leaf construction. Our findings suggest that the early deployment of leaves using stored nitrogen and carbon reserves is a strategy that is integrally linked with the onset of the first rains. This strategy may confer a competitive advantage over species that deploy leaves at or after the onset of the rains.
- ItemOpen AccessThe spread of Tomato yellow leaf curl virus from the Middle East to the world(Public Library of Science, 2010) Lefeuvre, Pierre; Martin, Darren P; Harkins, Gordon; Lemey, Philippe; Gray, Alistair J A; Meredith, Sandra; Lakay, Francisco; Monjane, Adérito; Lett, Jean-Michel; Varsani, ArvindAuthor Summary Tomato yellow leaf curl virus (TYLCV) poses a serious threat to tomato production throughout the temperate regions of the world. Our analysis, using a suite of bioinformatic tools applied to all publically available TYLCV genome sequences, suggests that the virus probably arose somewhere in the Middle East between the 1930s and 1950s and that its global spread only began in the 1980s after the emergence of two strains - TYLCV-Mld and -IL. In agreement with others, we also find that the highly invasive TYLCV-IL strain has jumped at least twice to the Americas - once from the Mediterranean basin in the early 1990s and once from Asia in the early 2000s. Although our results corroborate historical accounts of TYLCV-like symptoms in tomato crops in the Jordan Valley in the late 1920s, they indicate that the region around Iran is both the current center of TYLCV diversity and is the site where the most intensive ongoing TYLCV evolution is taking place. However, our analysis indicates that this region is epidemiologically isolated suggesting that novel TYLCV variants found there are probably not direct global threats. Moreover, we identify the Mediterranean basin as the main launch-pad of global TYLCV movements.
- ItemOpen AccessWithin-host dynamics of the emergence of tomato yellow leaf curl virus recombinants(Public Library of Science, 2013) Urbino, Cica; Gutiérrez, Serafin; Antolik, Anna; Bouazza, Nabila; Doumayrou, Juliette; Granier, Martine; Martin, Darren P; Peterschmitt, MichelTomato yellow leaf curl virus (TYLCV) is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV) has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi), and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci . We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection-a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our results anticipate the outcomes of natural encounters between TYLCV and ToLCKMV.