Browsing by Subject "IoT"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemOpen AccessA study into scalable transport networks for IoT deployment(2021) Sizamo, Yandisa; Ramotsoela, DanielThe growth of the internet towards the Internet of Things (IoT) has impacted the way we live. Intelligent (smart) devices which can act autonomously has resulted in new applications for example industrial automation, smart healthcare systems, autonomous transportation to name just a few. These applications have dramatically improved the way we live as citizens. While the internet is continuing to grow at an unprecedented rate, this has also been coupled with the growing demands for new services e.g. machine-to machine (M2M) communications, smart metering etc. Transmission Control Protocol/Internet Protocol (TCP/IP) architecture was developed decades ago and was not prepared nor designed to meet these exponential demands. This has led to the complexity of the internet coupled with its inflexible and a rigid state. The challenges of reliability, scalability, interoperability, inflexibility and vendor lock-in amongst the many challenges still remain a concern over the existing (traditional) networks. In this study, an evolutionary approach into implementing a "Scalable IoT Data Transmission Network" (S-IoT-N) is proposed while leveraging on existing transport networks. Most Importantly, the proposed evolutionary approach attempts to address the above challenges by using open (existing) standards and by leveraging on the (traditional/existing) transport networks. The Proof-of-Concept (PoC) of the proposed S-IoT-N is attempted on a physical network testbed and is demonstrated along with basic network connectivity services over it. Finally, the results are validated by an experimental performance evaluation of the PoC physical network testbed along with the recommendations for improvement and future work.
- ItemOpen AccessModular human-operated radar framework(2024) Carstens, Wilhelm L; Winberg, SimonThis study investigates the development of operator-facing radar systems with contemporary internet technologies, such as the Internet of Things (IoT) and cloud services. The viability of modular designs allowing a high degree of adaptability is emphasised, given the inherent capabilities of IoT application-level protocols. The use of other internet technologies and services focus on the increased functionality, commonality, and flexibility they provide to modern integrated radar systems. The investigation starts with an overview of operator-facing radar systems, detailing their current and near-future application, broad design considerations, common architectures and web resources available for their development. In evaluating various IoT protocols from literature, the MQTT protocol is selected and then experimentally analysed against pure transport protocols on consumer hardware, characterising their usage. Then, using these technologies, a common framework is designed and developed, alongside a browser-based Human-Machine Interface (HMI) that allows for general usability and performance testing. These tests reveal the implementation to be adequate for many high-level uses, but at some expense to overall data latency and load, necessitating specific consideration where used. Furthermore, IoT protocols allow for distributed radar systems and highly adaptive single-flow signal chains without employing conventional server infrastructure. Although the conceptual framework is not well suited for all radar uses, it does offer a versatile solution for various high-level applications, with future developments in IoT protocols showing particular promise.
- ItemOpen AccessA Novel Epidemic Model for the Interference Spread in the Internet of Things(2022-04-02) Tuyishimire, Emmanuel; Niyigena, Jean de Dieu; Tubanambazi, Fidèle Mweruli; Rutikanga, Justin Ushize; Gatabazi, Paul; Bagula, Antoine; Niyigaba, EmmanuelDue to the multi-technology advancements, internet of things (IoT) applications are in high demand to create smarter environments. Smart objects communicate by exchanging many messages, and this creates interference on receivers. Collection tree algorithms are applied to only reduce the nodes/paths’ interference but cannot fully handle the interference across the underlying IoT. This paper models and analyzes the interference spread in the IoT setting, where the collection tree routing algorithm is adopted. Node interference is treated as a real-life contamination of a disease, where individuals can migrate across compartments such as susceptible, attacked and replaced. The assumed typical collection tree routing model is the least interference beaconing algorithm (LIBA), and the dynamics of the interference spread is studied. The underlying network’s nodes are partitioned into groups of nodes which can affect each other and based on the partition property, the susceptible–attacked–replaced (SAR) model is proposed. To analyze the model, the system stability is studied, and the compartmental based trends are experimented in static, stochastic and predictive systems. The results shows that the dynamics of the system are dependent groups and all have points of convergence for static, stochastic and predictive systems.
- ItemOpen AccessSHARC Buoy: Robust firmware design for a novel, low-cost autonomous platform for the Antarctic Marginal Ice Zone in the Southern Ocean(2021) Jacobson, Jamie Nicholas; Verrinder, Robyn; Mishra, Amit; Vichi, MarcelloSea ice in the Antarctic Marginal Ice Zone (MIZ) plays a pivotal role in regulating heat and energy exchange between oceanic and atmospheric systems, which drive global climate. Current understanding of Southern Ocean sea ice dynamics is poor with temporal and spatial gaps in critical seasonal data-sets. The lack of in situ environmental and wave data from the MIZ in the Antarctic region drove the development of UCT's first generation of in situ ice-tethered measurement platform as part of a larger UCT and NRF SANAP project on realistic modelling of the Marginal Ice Zone in the changing Southern Ocean (MISO). This thesis focuses on the firmware development for the device and the design process taken to obtain key measurements for understanding sea ice dynamics and increasing sensing capabilities in the Southern Ocean. The buoy was required to survive the Antarctic climate and contained a global positioning system, temperature sensor, digital barometer and inertial measurement unit to measure waves-in-ice. Power was supplied to the device by a power supply unit consisting of commercial-grade batteries in series with a temperature-resistant low dropout regulator, and a power sensor to monitor the module. A satellite modem transmitted data through the Iridium satellite network. Finally, Flash chips provided permanent data storage. Firmware and peripheral driver files were written in C for an STMicroelectronics STM32L4 Arm-based microcontroller. To optimise the firmware for low power consumption, inactive sensors were placed in power-saving mode and the processor was put to sleep during periods of no sampling activity. The first device deployment took place during the SCALE winter expedition in July 2019. Two devices were deployed on ice floes to test their performance in remote conditions. However, due to mechanical and power errors, the devices failed shortly after deployment. A third device was placed on the deck of SA Aghulas II during the expedition and successfully survived for one week while continuously transmitting GPS coordinates and ambient temperature. The second generation featured subsequent improvements to the mechanical robustness and sensing capabilities of the device. However, due to the 2020 COVID-19 pandemic, subsequent Antarctic expeditions were cancelled resulting in the final platform evaluation taking place on land. The device demonstrates a proof of concept for a low-cost, ice-tethered autonomous sensing device. However, additional improvements are required to overcome severe bandwidth and power constraints.