Browsing by Subject "Foraging"
Now showing 1 - 20 of 22
Results Per Page
Sort Options
- ItemOpen AccessAccuracy of ARGOS locations of pinnipeds at-sea estimated using Fastloc GPS(Public Library of Science, 2010) Costa, Daniel P; Robinson, Patrick W; Arnould, John P Y; Harrison, Autumn-Lynn; Simmons, Samantha E; Hassrick, Jason L; Hoskins, Andrew J; Kirkman, Stephen P; Oosthuizen, Herman; Villegas-Amtmann, StellaBACKGROUND: ARGOS satellite telemetry is one of the most widely used methods to track the movements of free-ranging marine and terrestrial animals and is fundamental to studies of foraging ecology, migratory behavior and habitat-use. ARGOS location estimates do not include complete error estimations, and for many marine organisms, the most commonly acquired locations (Location Class 0, A, B, or Z) are provided with no declared error estimate. METHODOLOGY/PRINCIPAL FINDINGS: We compared the accuracy of ARGOS locations to those obtained using Fastloc GPS from the same electronic tags on five species of pinnipeds: 9 California sea lions ( Zalophus californianus ), 4 Galapagos sea lions ( Zalophus wollebaeki ), 6 Cape fur seals ( Arctocephalus pusillus pusillus ), 3 Australian fur seals ( A. p. doriferus ) and 5 northern elephant seals ( Mirounga angustirostris ). These species encompass a range of marine habitats (highly pelagic vs coastal), diving behaviors (mean dive durations 2-21 min) and range of latitudes (equator to temperate). A total of 7,318 ARGOS positions and 27,046 GPS positions were collected. Of these, 1,105 ARGOS positions were obtained within five minutes of a GPS position and were used for comparison. The 68 th percentile ARGOS location errors as measured in this study were LC-3 0.49 km, LC-2 1.01 km, LC-1 1.20 km, LC-0 4.18 km, LC-A 6.19 km, LC-B 10.28 km. Conclusions/Significance The ARGOS errors measured here are greater than those provided by ARGOS, but within the range of other studies. The error was non-normally distributed with each LC highly right-skewed. Locations of species that make short duration dives and spend extended periods on the surface (sea lions and fur seals) had less error than species like elephant seals that spend more time underwater and have shorter surface intervals. Supplemental data ( S1 ) are provided allowing the creation of density distributions that can be used in a variety of filtering algorithms to improve the quality of ARGOS tracking data.
- ItemOpen AccessThe anatomy of the bill tip of kiwi and associated somatosensory regions of the brain: comparisons with shorebirds(Public Library of Science, 2013) Cunningham, Susan J; Corfield, Jeremy R; Iwaniuk, Andrew N; Castro, Isabel; Alley, Maurice R; Birkhead, Tim R; Parsons, StuartThree families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.
- ItemOpen AccessAntarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins(Public Library of Science, 2014) Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David GIn the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins ( Pygoscelis adeliae ) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.
- ItemOpen AccessBird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey(Public Library of Science, 2014) Tremblay, Yann; Thiebault, Andréa; Mullers, Ralf; Pistorius, PierreThe study of ecological and behavioral processes has been revolutionized in the last two decades with the rapid development of biologging-science. Recently, using image-capturing devices, some pilot studies demonstrated the potential of understanding marine vertebrate movement patterns in relation to their proximate, as opposed to remote sensed environmental contexts. Here, using miniaturized video cameras and GPS tracking recorders simultaneously, we show for the first time that information on the immediate visual surroundings of a foraging seabird, the Cape gannet, is fundamental in understanding the origins of its movement patterns. We found that movement patterns were related to specific stimuli which were mostly other predators such as gannets, dolphins or fishing boats. Contrary to a widely accepted idea, our data suggest that foraging seabirds are not directly looking for prey. Instead, they search for indicators of the presence of prey, the latter being targeted at the very last moment and at a very small scale. We demonstrate that movement patterns of foraging seabirds can be heavily driven by processes unobservable with conventional methodology. Except perhaps for large scale processes, local-enhancement seems to be the only ruling mechanism; this has profounds implications for ecosystem-based management of marine areas.
- ItemOpen AccessBuoyancy under control: underwater locomotor performance in a deep diving seabird suggests respiratory strategies for reducing foraging effort(Public Library of Science, 2010) Cook, Timothée R; Kato, Akiko; Tanaka, Hideji; Ropert-Coudert, Yan; Bost, Charles-AndréBACKGROUND: Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth. METHODOLOGY/PRINCIPAL FINDINGS: Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. Conclusions/Significance Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants - as in other families of diving seabirds - of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control.
- ItemOpen AccessCalling by concluding sentinels: coordinating cooperation or revealing risk?(Public Library of Science, 2011) Hollén, Linda I; Bell, Matthew B V; Russell, Alexis; Niven, Fraser; Ridley, Amanda R; Radford, Andrew NEfficient cooperation requires effective coordination of individual contributions to the cooperative behaviour. Most social birds and mammals involved in cooperation produce a range of vocalisations, which may be important in regulating both individual contributions and the combined group effort. Here we investigate the role of a specific call in regulating cooperative sentinel behaviour in pied babblers ( Turdoides bicolor ). ‘Fast-rate chuck’ calls are often given by sentinels as they finish guard bouts and may potentially coordinate the rotation of individuals as sentinels, minimising time without a sentinel, or may signal the presence or absence of predators, regulating the onset of the subsequent sentinel bout. We ask (i) when fast-rate chuck calls are given and (ii) what effect they have on the interval between sentinel bouts. Contrary to expectation, we find little evidence that these calls are involved in regulating the pied babbler sentinel system: observations revealed that their utterance is influenced only marginally by wind conditions and not at all by habitat, while observations and experimental playback showed that the giving of these calls has no effect on inter-bout interval. We conclude that pied babblers do not seem to call at the end of a sentinel bout to maximise the efficiency of this cooperative act, but may use vocalisations at this stage to influence more individually driven behaviours.
- ItemOpen AccessCan foraging ecology drive the evolution of body size in a diving endotherm?(Public Library of Science, 2013) Cook, Timothée R; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-AndréWithin a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.
- ItemOpen AccessDifferential range use between age classes of southern African Bearded Vultures Gypaetus barbatus(Public Library of Science, 2014) Krüger, Sonja; Reid, Timothy; Amar, ArjunBearded Vulture Gypaetus barbatus movements were investigated in southern Africa to determine whether an individual's age, sex or breeding status influenced its ranging behaviour and to provide the information required to guide conservation activities. Data from satellite transmitters fitted to 18 individuals of four age classes were used to determine range size and use. Because of the nature of the movements of marked individuals, these data could be used to determine the overall foraging range of the entire population, which was estimated to be 51 767 km 2 . Although juvenile, immature and sub-adult birds used different parts of the overall range, their combined foraging range was 65% (33 636 km 2 ) of the overall range. Average adult home ranges (286 km 2 ) were only around 1% the size of the average foraging ranges of non-adults (10 540 -25 985 km 2 ), with those of breeding adults being even smaller (95 km 2 ). Home ranges of breeding adults did not vary in size between seasons but adults utilized their home range more intensively whilst breeding, moving greater distances during the incubation and chick hatching period. Range size and use increased as non-adults aged. Immatures and sub-adults had larger range sizes during winter, but range use of non-adults did not vary seasonally. Range size and use did not differ between the sexes in any of the age classes. Information on home range size and use enables specific areas within the species' range to be targeted for management planning, education and conservation action.
- ItemOpen AccessDiving of great shearwaters (Puffinus gravis) in cold and warm water regions of the South Atlantic Ocean(Public Library of Science, 2010) Ronconi, Robert A; Ryan, Peter G; Ropert-Coudert, YanBACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters ( P. gravis ), the largest member of this genus. This study reports the first high sampling rate (2 s) of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs) were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50%) dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C) water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C) water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. Conclusions/Significance General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving.
- ItemOpen AccessEvaluating the impact of handling and logger attachment on foraging parameters and physiology in southern rockhopper penguins(Public Library of Science, 2012) Ludynia, Katrin; Dehnhard, Nina; Poisbleau, Maud; Demongin, Laurent; Masello, Juan F; Quillfeldt, PetraLogger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin ( Eudyptes chrysocome ) females during the guard stage in three consecutive breeding seasons (2008/09−2010/11) to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs) were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs), but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts). Overall, handling and short-term logger attachments (1-3 days) showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their normal dive behaviour.
- ItemOpen AccessFeathered Detectives: real-time GPS tracking of scavenging gulls pinpoints illegal waste dumping(Public Library of Science, 2016) Navarro, Joan; Grémillet, David; Afán, Isabel; Ramírez, Francisco; Bouten, Willem; Forero, Manuela GUrban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls ( Larus michahellis ). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps.
- ItemOpen AccessGood days, bad days: wind as a driver of foraging success in a flightless seabird, the southern Rockhopper Penguin(Public Library of Science, 2013) Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, PetraDue to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins ( Eudyptes chrysocome ) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability.
- ItemOpen AccessInvestigating avian influenza infection hotspots in old-world shorebirds(Public Library of Science, 2012) Gaidet, Nicolas; Mamy, Ahmed B Ould El; Cappelle, Julien; Caron, Alexandre; Cumming, Graeme S; Grosbois, Vladimir; Gil, Patricia; Hammoumi, Saliha; de Almeida, Renata Servan; Fereidouni, Sasan RHeterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May). This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered.
- ItemOpen AccessModelling the effects of prey size and distribution on prey capture rates of two sympatric marine predators(Public Library of Science, 2013) Thaxter, Chris B; Daunt, Francis; Grémillet, David; Harris, Mike P; Benvenuti, Silvano; Watanuki, Yutaka; Hamer, Keith C; Wanless, SarahUnderstanding how prey capture rates are influenced by feeding ecology and environmental conditions is fundamental to assessing anthropogenic impacts on marine higher predators. We compared how prey capture rates varied in relation to prey size, prey patch distribution and prey density for two species of alcid, common guillemot ( Uria aalge ) and razorbill ( Alca torda ) during the chick-rearing period. We developed a Monte Carlo approach parameterised with foraging behaviour from bird-borne data loggers, observations of prey fed to chicks, and adult diet from water-offloading, to construct a bio-energetics model. Our primary goal was to estimate prey capture rates, and a secondary aim was to test responses to a set of biologically plausible environmental scenarios. Estimated prey capture rates were 1.5±0.8 items per dive (0.8±0.4 and 1.1±0.6 items per minute foraging and underwater, respectively) for guillemots and 3.7±2.4 items per dive (4.9±3.1 and 7.3±4.0 items per minute foraging and underwater, respectively) for razorbills. Based on species' ecology, diet and flight costs, we predicted that razorbills would be more sensitive to decreases in 0-group sandeel (Ammodytes marinus) length (prediction 1), but guillemots would be more sensitive to prey patches that were more widely spaced (prediction 2), and lower in prey density (prediction 3). Estimated prey capture rates increased non-linearly as 0-group sandeel length declined, with the slope being steeper in razorbills, supporting prediction 1. When prey patches were more dispersed, estimated daily energy expenditure increased by a factor of 3.0 for guillemots and 2.3 for razorbills, suggesting guillemots were more sensitive to patchier prey, supporting prediction 2. However, both species responded similarly to reduced prey density (guillemot expenditure increased by 1.7; razorbill by 1.6), thus not supporting prediction 3. This bio-energetics approach complements other foraging models in predicting likely impacts of environmental change on marine higher predators dependent on species-specific foraging ecologies.
- ItemOpen AccessRanging Behaviour of Verreaux's Eagles during the Pre-Breeding Period Determined through the Use of High Temporal Resolution Tracking(Public Library of Science, 2016) Murgatroyd, Megan; Underhill, Les G; Bouten, Willem; Amar, ArjunInformation on movement ecology is key in understanding the drivers and limitations of life history traits and has a potential role in indicating environmental change. Currently we have a limited understanding of the parameters of movement of territory-bound raptors, which are sensitive to environmental change. In this study we used GPS tracking technology to obtain spatially (within 3 m) and temporally ( c . 3 mins) high-resolution movement data on a small sample of Verreaux's eagle Aquila verreauxii during the pre-laying period ( n = 4) with one additional example during the chick rearing period. We present GPS-derived home range estimates for this species and we examine temporal (timing, duration, frequency and speed) and spatial (total path length and maximum distance from nest) patterns of trips away from the nest. For eagles tagged in the agriculturally developed Sandveld region ( n = 3), which is made up of a mosaic of land use types, we also undertook a habitat selection analysis. Home ranges were small and largely mutually exclusive. Trip activity was centred around midday, which is likely to be related to lift availability. Our habitat selection analysis found that eagles selected for near-natural and degraded habitat over natural or completely modified areas, suggesting that these eagles may have benefitted from some of the agricultural development in this region. Although our sample sizes are small, the resolution of our tracking data was essential in deriving this data over a relatively short time period and paves the way for future research.
- ItemOpen AccessThe relative influence of competition and prey defenses on the phenotypic structure of insectivorous bat ensembles in southern Africa(Public Library of Science, 2008) Schoeman, M Corrie; Jacobs, David SDeterministic filters such as competition and prey defences should have a strong influence on the community structure of animals such as insectivorous bats that have life histories characterized by low fecundity, low predation risk, long life expectancy, and stable populations. We investigated the relative influence of these two deterministic filters on the phenotypic structure of insectivorous bat ensembles in southern Africa. We used null models to simulate the random phenotypic patterns expected in the absence of competition or prey defences and analysed the deviations of the observed phenotypic pattern from these expected random patterns. The phenotypic structure at local scales exhibited non-random patterns consistent with both competition and prey defense hypotheses. There was evidence that competition influenced body size distribution across ensembles. Competition also influenced wing and echolocation patterns in ensembles and in functional foraging groups with high species richness or abundance. At the same time, prey defense filters influenced echolocation patterns in two species-poor ensembles. Non-random patterns remained evident even after we removed the influence of body size from wing morphology and echolocation parameters taking phylogeny into account. However, abiotic filters such as geographic distribution ranges of small and large-bodied species, extinction risk, and the physics of flight and sound probably also interacted with biotic filters at local and/or regional scales to influence the community structure of sympatric bats in southern Africa. Future studies should investigate alternative parameters that define bat community structure such as diet and abundance to better determine the influence of competition and prey defences on the structure of insectivorous bat ensembles in southern Africa.
- ItemOpen AccessSex-based differences in Adélie Penguin (Pygoscelis adeliae) chick growth rates and diet(Public Library of Science, 2016) Jennings, Scott; Varsani, Arvind; Dugger, Katie M; Ballard, Grant; Ainley, David GSexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin ( Pygoscelis adeliae ) chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11%) as well as bill (~8%) and flipper length (~3%). We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d -1 faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species--one krill ( Euphausia crystallorophias ) and one fish ( Pleuragramma antarctica ), with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors may impact the two sexes differently.
- ItemOpen AccessTemperatures in Excess of Critical Thresholds Threaten Nestling Growth and Survival in A Rapidly-Warming Arid Savanna: A Study of Common Fiscals(Public Library of Science, 2013) Cunningham, Susan J; Martin, Rowan O; Hojem, Carryn L; Hockey, Philip A RFrequency, duration, and intensity of hot-weather events are all predicted to increase with climate warming. Despite this, mechanisms by which temperature increases affect individual fitness and drive population-level changes are poorly understood. We investigated the link between daily maximum air temperature (t max ) and breeding success of Kalahari common fiscals ( Lanius collaris ) in terms of the daily effect on nestling body-mass gain, and the cumulative effect on size and age of fledglings. High t max reduced mass gain of younger, but not older nestlings and average nestling-period t max did not affect fledgling size. Instead, the frequency with which t max exceeded critical thresholds (t crit s) significantly reduced fledging body mass (t crit = 33°C) and tarsus length (t crit = 37°C), as well as delaying fledging (t crit = 35°C). Nest failure risk was 4.2% per day therefore delays reduced fledging probability. Smaller size at fledging often correlates with reduced lifetime fitness and might also underlie documented adult body-size reductions in desert birds in relation to climate warming. Temperature thresholds above which organisms incur fitness costs are probably common, as physiological responses to temperature are non-linear. Understanding the shape of the relationship between temperature and fitness has implications for our ability to predict species’ responses to climate change.
- ItemOpen AccessTracking through life stages: adult, immature and juvenile autumn migration in a long-lived seabird(Public Library of Science, 2013) Péron, Clara; Grémillet, DavidSeasonal long-distance migration is likely to be experienced in a contrasted manner by juvenile, immature and adult birds, leading to variations in migratory routes, timing and behaviour. We provide the first analysis of late summer movements and autumn migration in these three life stages, which were tracked concurrently using satellite tags, geolocators or GPS recorders in a long-ranging migratory seabird, the Scopoli’s shearwater (formerly named Cory’s shearwater, Calonectris diomedea ) breeding on two French Mediterranean islands. During the late breeding season, immatures foraged around their colony like breeding adults, but they were the only group showing potential prospecting movements around non-natal colonies. Global migration routes were broadly comparable between the two populations and the three life stages, with all individuals heading towards the Atlantic Ocean through the strait of Gibraltar and travelling along the West African coast, up to 8000 km from their colony. However, detailed comparison of timing, trajectory and oceanographic conditions experienced by the birds revealed remarkable age-related differences. Compared to adults and immatures, juveniles made a longer stop-over in the Balearic Sea (10 days vs 4 days in average), showed lower synchrony in crossing the Gibraltar strait, had more sinuous pathways and covered longer daily distances (240 km.d -1 vs 170 km.d -1 ). Analysis of oceanographic habitats along migratory routes revealed funnelling selection of habitat towards coastal and more productive waters with increasing age. Younger birds may have reduced navigational ability and learn progressively fine-scale migration routes towards the more profitable travelling and wintering areas. Our study demonstrates the importance of tracking long-lived species through the stages, to better understand migratory behavior and assess differential exposure to at-sea threats. Shared distribution between life stages and populations make Scopoli’s shearwaters particularly vulnerable to extreme mortality events in autumn and winter. Such knowledge is key for the conservation of critical marine habitats.
- ItemOpen AccessVultures of the seas: hyperacidic stomachs in wandering albatrosses as an adaptation to dispersed food resources, including fishery wastes(Public Library of Science, 2012) Grémillet, David; Prudor, Aurélien; le Maho, Yvon; Weimerskirch, HenriAnimals are primarily limited by their capacity to acquire food, yet digestive performance also conditions energy acquisition, and ultimately fitness. Optimal foraging theory predicts that organisms feeding on patchy resources should maximize their food loads within each patch, and should digest these loads quickly to minimize travelling costs between food patches. We tested the prediction of high digestive performance in wandering albatrosses, which can ingest prey of up to 3 kg, and feed on highly dispersed food resources across the southern ocean. GPS-tracking of 40 wandering albatrosses from the Crozet archipelago during the incubation phase confirmed foraging movements of between 475-4705 km, which give birds access to a variety of prey, including fishery wastes. Moreover, using miniaturized, autonomous data recorders placed in the stomach of three birds, we performed the first-ever measurements of gastric pH and temperature in procellariformes. These revealed surprisingly low pH levels (average 1.50±0.13), markedly lower than in other seabirds, and comparable to those of vultures feeding on carrion. Such low stomach pH gives wandering albatrosses a strategic advantage since it allows them a rapid chemical breakdown of ingested food and therefore a rapid digestion. This is useful for feeding on patchy, natural prey, but also on fishery wastes, which might be an important additional food resource for wandering albatrosses.