Browsing by Subject "Cavitation"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessBoiler feed pump low load – leak off recirculation study(2020) van Tonder, Daniël; Fuls, WimFor power plants that make use of high energy boiler feed pumps, there is a risk that the boiler feed pump may experience cavitation and overheating at low load and start-up conditions. These plants make use of a leak off or recirculation system that diverts some of the flow back to the feed water tank, ensuring that a minimum flow through the pump is maintained at low load and start-up operating conditions. The recirculation valve, also known as a leak off valve, experiences a very high pressure difference and cavitation pitting is common due to the water being close to saturation. There are various ways in which the recirculation flow is controlled in the industry such as open orifice, on/off binary type control valves, automatic recirculation valves (ARC) or modern modulating leak off systems. The valves themselves can also be simple plug type or make use of pressure staging to reduce the risk of cavitation. This project involves modelling the flow system around the boiler feed pump and its control for the various architectures employed in Eskom. This is to assist in understanding the reasons for cavitation damage that is found in some recirculation valves as well as the low load capability of the system. Single stage components with extremely high pressure drops are singled out as components with the highest risk of cavitation in the systems. Although extremely high pressure drops are found across the leak off valves themselves, the majority of the valves are multistage valves which are specifically designed to accommodate cavitation development and are therefore not of major concern. Some of the findings of the study are: The rule of thumb used within Eskom to determine the amount of pressure reducing stages on leak off valves could be more conservative. The specification of new valves and components for the leak off systems requires accurate specification based on detailed process models, such as the ones developed for this study. The full range of all possible operational cases must also be considered during the design.
- ItemOpen AccessCavitation erosion of WC-Co(1987) Hankey, S E; Ball, AnthonyAn investigation involving the vibratory cavitation erosion of WC-Co alloys was undertaken in order to determine the mechanisms of material removal. Nineteen grades of WC-Co alloys were studied. These alloys had been previously characterised according to microstructural and mechanical properties. Further characterisation by way of Young's modulus and density of the materials was undertaken. An investigation of the i nfluence of various parameters on cavitation erosion established a binder content dependence on erosion. For two grain sizes, erosion was found to increase to a maximum at 12 vo1-% binder content (1.8 μm grain size) and 23 vol-% binder (2.8 μm grain size). The main mode of material removal was found to be cobalt removal followed by WC grain pull-out. In high binder content alloys, cobalt removal was predominant with little loss of WC grains. X-ray diffraction showed that the allotropic phase transformation of the binder under cavitational attack was beneficial to the erosion resistance of these alloys. The erosion of low binder content alloys was controlled by the contiguity of the WC skeleton. Maximum erosion occurred at binder contents which corresponded to the combination of a fragile WC skeleton and a small volume of available cobalt for strain induced transformation.
- ItemRestrictedXylem hydraulic characteristics, water relations and wood anatomy of the resurrection plant Myrothamnus flabellifoliusWelw(Oxford University Press, 1998) Sherwin, Heather W; Pammenter, N W; February, E D; Vander Willigen, Clare; Farrant, Jill MMyrothamnus flabellifolius Welw. is a desiccation-tolerant (‘ resurrection’) plant with a woody stem. Xylem vessels are narrow (14 µm mean diameter) and perforation plates are reticulate. This leads to specific and leaf specific hydraulic conductivities that are amongst the lowest recorded for angiosperms (ks 0±87 kg m−" MPa−" s−"; kl 3±28¬10−& kg m−" MPa−" s−", stem diameter 3 mm). Hydraulic conductivities decrease with increasing pressure gradient. Transpiration rates in well watered plants were moderate to low, generating xylem water potentials of ®1 to ®2 MPa. Acoustic emissions indicated extensive cavitation events that were initiated at xylem water potentials of ®2 to ®3 MPa. The desiccation-tolerant nature of the tissue permits this species to survive this interruption of the water supply. On rewatering the roots pressures that were developed were low (2±4 kPa). However capillary forces were demonstrated to be adequate to account for the refilling of xylem vessels and re-establishment of hydraulic continuity even when water was under a tension of ®8 kPa. During dehydration and rehydration cycles stems showed considerable shrinking and swelling. Unusual knob-like structures of unknown chemical composition were observed on the outer surface of xylem vessels. These may be related to the ability of the stem to withstand the mechanical stresses associated with this shrinkage and swelling.