Browsing by Subject "Carnivora"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessHypercarnivory, durophagy or generalised carnivory in the Mio-Pliocene hyaenids of South Africa?(2013) Hartstone-Rose, Adam; Stynder, Deano DCarnivorans, the members of the order Carnivora, exhibit wide dietary diversity – from overwhelmingly herbivorous species (like the giant and red pandas) to species that specialise in the consumption of flesh (like the hypercarnivorous felids). Throughout the evolution of this order, many craniodental forms have emerged and gone extinct – notably the sabretooth felids that existed until the late Pleistocene. However, one carnivoran lineage, remarkable for its extreme masticatory adaptations, persists – the bone-cracking hyaenids. Three of the four extant members of this family (Crocuta crocuta, Hyaena hyaena and Parahyaena brunnea) are among the most durophagous mammals to have ever lived. The fourth extant hyaenid – the aardwolf (Proteles cristatus) – also exhibits impressive, although wholly different, masticatory adaptations as one of the most derived mammalian insectivores. How and when did the level of durophagy evident in extant bone-cracking hyenas evolve, and how do Mio-Pliocene hyenas compare to the extant members of the order in terms of their own dietary specialisations? An examination of the premolars of the Mio-Pliocene hyaenids from Langebaanweg, South Africa suggests that modern levels of durophagy appeared relatively recently. Results from an analysis of dental radii-of-curvature and premolar intercuspid notches suggest that these hyenas were neither bone crackers nor flesh specialists, but were dietary generalists.
- ItemOpen AccessScent lure effect on camera-trap based leopard density estimates(Public Library of Science, 2016) Braczkowski, Alexander Richard; Balme, Guy Andrew; Dickman, Amy; Fattebert, Julien; Johnson, Paul; Dickerson, Tristan; Macdonald, David Whyte; Hunter, LukeDensity estimates for large carnivores derived from camera surveys often have wide confidence intervals due to low detection rates. Such estimates are of limited value to authorities, which require precise population estimates to inform conservation strategies. Using lures can potentially increase detection, improving the precision of estimates. However, by altering the spatio-temporal patterning of individuals across the camera array, lures may violate closure, a fundamental assumption of capture-recapture. Here, we test the effect of scent lures on the precision and veracity of density estimates derived from camera-trap surveys of a protected African leopard population. We undertook two surveys (a 'control' and 'treatment' survey) on Phinda Game Reserve, South Africa. Survey design remained consistent except a scent lure was applied at camera-trap stations during the treatment survey. Lures did not affect the maximum movement distances (p = 0.96) or temporal activity of female (p = 0.12) or male leopards (p = 0.79), and the assumption of geographic closure was met for both surveys (p >0.05). The numbers of photographic captures were also similar for control and treatment surveys (p = 0.90). Accordingly, density estimates were comparable between surveys (although estimates derived using non-spatial methods (7.28-9.28 leopards/100km 2 ) were considerably higher than estimates from spatially-explicit methods (3.40-3.65 leopards/100km 2 ). The precision of estimates from the control and treatment surveys, were also comparable and this applied to both non-spatial and spatial methods of estimation. Our findings suggest that at least in the context of leopard research in productive habitats, the use of lures is not warranted.