Browsing by Subject "Biofilm"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemRestrictedIn situ investigation and visualisation of microbial attachment and colonisation in a heap bioleach environment: the novel biofilm reactor(Elsevier, 2010) Africa, Cindy-Jade; Harrison, Susan T L; Becker, Megan; van Hille, Robert PIn this paper, the development of a novel means of investigating the attachment and subsequent biofilm formation of mineral bioleaching micro-organisms to mineral surfaces in situ is described. The protocol was developed to investigate the interactions of micro-organisms with sulfide minerals and low-grade chalcopyrite ore under conditions resemblant of a bioheap environment. The method makes use of a biofilm reactor in which thin sections of mineral ore are mounted. The reactor is operated as a continuous flow-through system. Attachment of pure and mixed cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum is assessed. The technique allows for the investigation of microbial ecology with special regard to microbe–mineral attachment, site and mineral specific associations of micro-organisms and spatial organisation of microbial communities present through the use of fluorescent microscopy techniques. Preliminary fluorescent in situ hybridisation (FISH) analysis of the attachment of L. ferriphilum and A. ferrooxidans to massive chalcopyrite sections, as well as to low-grade chalcopyrite containing ore sections is presented. In the case of both low-grade and massive sulfide mineral samples, attachment of mixed micro-colonies was observed in regions where surface defects were prevalent. In low-grade samples, preferential attachment was observed in regions where sulfide minerals were present. The density of the attached micro-colonies increased with an increase in contacting time (from 20, 72 and 96 h) and was indicative of an actively growing mono-layered biofilm.
- ItemRestrictedInvestigation and in situ visualisation of interfacial interactions of thermophilic microorganisms with metal-sulphides in a simulated heap environment(Elsevier, 2013) Africa, Cindy-Jade; van Hille, Robert P; Sand, Wolfgang; Harrison, Susan T LThis study sought to provide a better understanding of the dynamics of microbial-metal sulphide interfacial processes relevant to heap bioleaching. Attachment and subsequent biofilm formation by Metallosphaera hakonensis (M. hakonensis) on the surface of massive chalcopyrite and pyrite samples, as well as a low-grade chalcopyritic whole ore were investigated. The method made use of a biofilm reactor in which thin sections of mineral ore were mounted. Operating conditions in the reactor simulated those of a bioheap in terms of fluid-flow and mineralogy, where the low-grade chalcopyrite ore sections were used. Pure cultures of M. hakonensis were used to inoculate the reactors and the attachment and subsequent biofilm development visualised in situ after 2, 4 and 8 days using a combination of atomic force and epifluorescent microscopy (AFM–EFM) as well as confocal scanning laser microscopy (CSLM). This revealed insights into biofilm structure and architecture. The effect of varying temperature on the extent of attachment and biofilm development was also assessed after 4 days using three temperature regimes: room temperature (20 ± 1 °C), 45 °C and 65 °C. The density of the attached micro–colonies increased with an increase in time, indicative of an actively growing biofilm. The extent of surface coverage and proliferation of the biofilm was dependent on the temperature, with surface coverage being more extensive at 65 °C, near the optimal temperature for growth. Preferential attachment and biofilm formation to sulphide minerals was observed, with increased surface coverage of pyrite mineral surfaces relative to chalcopyrite and low-grade ore. The AFM–EFM technique enhanced the level of detail at which site specific associations of microorganisms with mineral surfaces could be assessed. Spatial orientation and density of attached micro-colonies were noted.