Browsing by Subject "Biodiversity"
Now showing 1 - 20 of 22
Results Per Page
Sort Options
- ItemOpen AccessA fine-scale assessment of the ecosystem service-disservice dichotomy in the context of urban ecosystems affected by alien plant invasions(2019-10-28) Potgieter, Luke J; Gaertner, Mirijam; O’Farrell, Patrick J; Richardson, David MAbstract Background Natural resources within and around urban landscapes are under increasing pressure from ongoing urbanisation, and management efforts aimed at ensuring the sustainable provision of ecosystem services (ES) are an important response. Given the limited resources available for assessing urban ES in many cities, practical approaches for integrating ES in decision-making process are needed. Methods We apply remote sensing techniques (integrating LiDAR data with high-resolution multispectral imagery) and combined these with supplementary spatial data to develop a replicable approach for assessing the role of urban vegetation (including invasive alien plants) in providing ES and ecosystem disservices (EDS). We identify areas denoting potential management trade-offs based on the spatial distribution of ES and EDS using a local-scale case study in the city of Cape Town, South Africa. Situated within a global biodiversity hotspot, Cape Town must contend with widespread invasions of alien plants (especially trees and shrubs) along with complex socio-political challenges. This represents a useful system to examine the challenges in managing ES and EDS in the context of urban plant invasions. Results Areas of high ES provision (for example carbon sequestration, shade and visual amenity) are characterized by the presence of large trees. However, many of these areas also result in numerous EDS due to invasions of alien trees and shrubs – particularly along rivers, in wetlands and along the urban edge where tall alien trees have established and spread into the natural vegetation (for example increased water consumption, increased fire risk and reduced soil quality). This suggests significant trade-offs regarding the management of species and the ES and EDS they provide. Conclusions The approach applied here can be used to provide recommendations and to guide city planners and managers to fine-tune management interventions at local scales to maximise the provision of ES.
- ItemOpen AccessAccommodating dynamic oceanographic processes and pelagic biodiversity in marine conservation planning(Public Library of Science, 2011) Grantham, Hedley S; Game, Edward T; Lombard, Amanda T; Hobday, Alistair J; Richardson, Anthony J; Beckley, Lynnath E; Pressey, Robert L; Huggett, Jenny A; Coetzee, Janet C; Van der Lingen, Carl DPelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity.
- ItemOpen AccessAspects of benthic decapod diversity and distribution from rocky nearshore habitat at geographically widely dispersed sites(Public Library of Science, 2011) Pohle, Gerhard; Iken, Katrin; Clarke, K Robert; Trott, Thomas; Konar, Brenda; Cruz-Motta, Juan José; Wong, Melisa; Benedetti-Cecchi, Lisandro; Mead, Angela; Miloslavich, PatriciaRelationships of diversity, distribution and abundance of benthic decapods in intertidal and shallow subtidal waters to 10 m depth are explored based on data obtained using a standardized protocol of globally-distributed samples. Results indicate that decapod species richness overall is low within the nearshore, typically ranging from one to six taxa per site (mean = 4.5). Regionally the Gulf of Alaska decapod crustacean community structure was distinguishable by depth, multivariate analysis indicating increasing change with depth, where assemblages of the high and mid tide, low tide and 1 m, and 5 and 10 m strata formed three distinct groups. Univariate analysis showed species richness increasing from the high intertidal zone to 1 m subtidally, with distinct depth preferences among the 23 species. A similar depth trend but with peak richness at 5 m was observed when all global data were combined. Analysis of latitudinal trends, confined by data limitations, was equivocal on a global scale. While significant latitudinal differences existed in community structure among ecoregions, a semi-linear trend in changing community structure from the Arctic to lower latitudes did not hold when including tropical results. Among boreal regions the Canadian Atlantic was relatively species poor compared to the Gulf of Alaska, whereas the Caribbean and Sea of Japan appeared to be species hot spots. While species poor, samples from the Canadian Atlantic were the most diverse at the higher infraordinal level. Linking 11 environmental variables available for all sites to the best fit family-based biotic pattern showed a significant relationship, with the single best explanatory variable being the level of organic pollution and the best combination overall being organic pollution and primary productivity. While data limitations restrict conclusions in a global context, results are seen as a first-cut contribution useful in generating discussion and more in-depth work in the still poorly understood field of biodiversity distribution.
- ItemOpen AccessThe burning questions about Hluhluwe : causes and consequences of a severe wildfire(2009) Browne, Catherine; Bond, William J; Midgley, Jeremy JThe biophysical drivers of fire; ignition, fire weather conditions, fuel biomass, and flammability, differ in varying ecosystems. The rates of occurrence of these factors influence fire regimes. This study investigated the causes and consequences of a severe wildfire that swept through the Hluhluwe Game Reserve, KwaZulu-Natal South Africa in September 2008. This fire was an extreme event that seems only to have been possible due to the combination of circumstances that occurred in the days prior to and during the 14th/15th September 2008. The event was considered extreme because it burnt from savanna into thicket and forest patches, which is atypical of fires. The fire caused large structural change in tree demography, however, not much change in densities. The results of this study indicate that coupled weather conditions conducive to fire; namely low relative humidity, high temperatures and high wind speeds, occurred at the time of the fire. The synergistic influences of fire weather conditions and the state of available fuel caused this severe fire. The fire continued to bum for 48 hours before weather conditions relaxed and became less dangerous. These data suggest extreme fires such as the September 2008 event may be exploited by managers to reclaim former grasslands and savannas that have suffered the effects of bush encroachment and/or create open areas allowing grasslands to develop. However, severe fires run the risk of leading to the loss of forests and the biodiversity that they support. This study has identified the conditions likely to promote such severe fires.
- ItemOpen AccessCongruence and diversity of butterfly-host plant associations at higher taxonomic levels(Public Library of Science, 2013) Ferrer-Paris, José R; Sánchez-Mercado, Ada; Viloria, Ángel L; Donaldson, JohnWe aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.
- ItemOpen AccessCOVID-19 lockdown and natural resources: a global assessment on the challenges, opportunities, and the way forward(2022-01-29) Muche, Meseret; Yemata, Getahun; Molla, Eyayu; Muasya, A M; Tsegay, Berhanu ABackground: The Coronavirus (COVID-19) is a global pandemic caused by SARS-CoV-2, which has an enormous effect on human lives and the global environment. This review aimed to assess the global scientific evidence on the impact of COVID-19 lockdown on natural resources using international databases and search engines. Thus, the unprecedented anthropause due to COVID-19 has positive and negative effects on natural resources. Main body This review showed that the unprecedented pandemic lockdown events brought a negative impact on the physical environment, including pollution associated with a drastic increase in person protective equipment, deforestation, illegal poaching and logging, overfishing, disruption of the conservation program and projects. It is noted that the spread of pandemic diseases could be aggravated by environmental pollution and a rapid increase in the global population. Despite these negative impacts of COVID-19, the anthropause appear to have also several positive effects on natural resources such as short term reduction of indoor and outdoor environmental pollutants (PM2.5, PM10, NO2, SO2, CO, and CO2), reduction in noise pollutions from ships, boats, vehicles, and planes which have positive effects on aquatic ecosystems, water quality, birds behaviour, wildlife biodiversity, and ecosystem restoration. Conclusion Therefore, governments and scientific communities across the globe have called for a green recovery to COVID-19 and implement multi-actor interventions and environmentally friendly technologies to improve and safeguard sustainable environmental and biodiversity management and halt the next pandemic.
- ItemRestrictedCurrent patterns of habitat transformation and future threats to biodiversity in terrestrial ecosystems of the Cape Floristic Region, South Africa(2003) Rouget, Mathieu; Richardson, David M; Cowling, Richard M; Lloyd, J Wendy; Lombard, Amanda TThe formulation of an effective strategic plan for biodiversity conservation in the Cape Floristic Region (CFR) requires an assessment of the current situation with regard to habitat transformation, and an explicit framework for predicting the likelihood of remaining habitat (i.e. that potentially available for conservation) being transformed. This paper presents the results of a detailed assessment of the current and future extent of three important factors that threaten biodiversity in the CFR: cultivation for intensive agriculture (including commercial forestry plantations), urbanisation, and stands of invasive (self-sown) alien trees and shrubs. The extent of habitat transformation was mapped at the scale of 1:250,000, using primarily satellite imagery. We compared models derived from a rule-based approach relying on expert knowledge and a regression-tree technique to identify other areas likely to be affected by these factors in future. Cultivation for agriculture has transformed 25.9% of the CFR and dense stands of woody alien plants and urban areas each cover 1.6%. Both models predict that at least 30% of the currently remaining natural vegetation could be transformed within 20 years. There was an overall accuracy of 73% between both models although significant differences were found for some habitat types. Spatial predictions of future agriculture threats derived from the rule-based approach were overestimated relative to the statistical approach, whereas future alien spread was underestimated. Threat assessment was used to derive conservation targets for subsequent stages of conservation planning for the CFR. The importance of integrating vulnerability knowledge into conservation planning is discussed. The choice of vulnerability analysis (future habitat degradation and/or impact on biological entities) and methods will depend on the complexity of the threatening processes and the availability of spatial data.
- ItemOpen AccessDensity of key-species determines efficiency of macroalgae detritus uptake by intertidal benthic communities(Public Library of Science, 2016) Karlson, Agnes M L; Niemand, Clarisse; Savage, Candida; Pilditch, Conrad AAccumulating evidence shows that increased biodiversity has a positive effect on ecosystem functioning, but the mechanisms that underpin this positive relationship are contentious. Complete extinctions of regional species pools are comparatively rare whereas compositional changes and reductions in abundance and biomass are common, although seldom the focus of biodiversity-ecosystem functioning studies. We use natural, small-scale patchiness in the density of two species of large bivalves with contrasting feeding modes (the suspension-feeding Austrovenus stutchburyi and deposit-feeding Macomona liliana ) to examine their influence on the uptake of nitrogen from macroalgae detritus (i.e. measure of ecosystem function and food web efficiency) by other infauna in a 10-d laboratory isotope-tracer experiment. We predicted that densities of these key bivalve species and functional group diversity (calculated as Shannons H, a density-independent measure of community composition) of the intact infaunal community will be critical factors explaining variance in macroalgal per capita uptake rates by the community members and hence determine total uptake by the community. Results show that only two species, M . liliana and a large orbiniid polychaete ( Scoloplos cylindrifer ) dominated macroalgal nitrogen taken up by the whole community due to their large biomass. However, their densities were mostly not important or negatively influenced per capita uptake by other species. Instead, the density of a head-down deposit-feeder (the capitellid Heteromastus filiformis ), scavengers (mainly nemertines and nereids) and species and functional group diversity, best explained per capita uptake rates in community members. Our results demonstrate the importance of species identity, density and large body size for ecosystem functioning and highlight the complex interactions underlying loss of ecological functions with declining biodiversity and compositional changes.
- ItemOpen AccessDepartures from the energy-biodiversity relationship in south african passerines: are the legacies of past climates mediated by behavioral constraints on dispersal?(Public Library of Science, 2015) Péron, Guillaume; Altwegg, ResLegacies of paleoclimates in contemporary biodiversity patterns have mostly been investigated with global datasets, or with weakly dispersive organisms, and as a consequence been interpreted in terms of geographical or physical constraints. If paleoclimatic legacies also occurred at the regional scale in the distributions of vagile organisms within biomes, they would rather suggest behavioral constraints on dispersal, i.e., philopatric syndromes. We examined 1) the residuals of the regression between contemporary energy and passerine species richness in South African biomes and 2) phylogenetic dispersion of passerine assemblages, using occupancy models and quarter-degree resolution citizen science data. We found a northeast to southwest gradient within mesic biomes congruent with the location of Quaternary mesic refugia, overall suggesting that as distance from refugia increased, more clades were lacking from local assemblages. A similar but weaker pattern was detected in the arid Karoo Biomes. In mobile organisms such as birds, behavioral constraints on dispersal appear strong enough to influence species distributions thousands of years after historical range contractions.
- ItemOpen AccessDiversification across an altitudinal gradient in the Tiny Greenbul (Phyllastrephus debilis) from the Eastern Arc Mountains of Africa(BioMed Central Ltd, 2011) Fuchs, Jérôme; Fjeldså, Jon; Bowie, RauriBACKGROUND:The Eastern Arc Mountains of Africa have become one of the focal systems with which to explore the patterns and mechanisms of diversification among montane species and populations. One unresolved question is the extent to which populations inhabiting montane forest interact with those of adjacent lowland forest abutting the coast of eastern Africa. The Tiny Greenbul (Phyllastephus debilis) represents the only described bird species within the Eastern Arc/coastal forest mosaic, which is polytypic across an altitudinal gradient: the subspecies albigula (green head) is distributed in the montane Usambara and Nguru Mountains whereas the subspecies rabai (grey head) is found in Tanzanian lowland and foothill forest. Using a combination of morphological and genetic data, we aim to establish if the pattern of morphological differentiation in the Tiny Greenbul (Phyllastrephus debilis) is the result of disruptive selection along an altitudinal gradient or a consequence of secondary contact following population expansion of two differentiated lineages. RESULTS: We found significant biometric differences between the lowland (rabai) and montane (albigula) populations in Tanzania. The differences in shape are coupled with discrete differences in the coloration of the underparts. Using multi-locus data gathered from 124 individuals, we show that lowland and montane birds form two distinct genetic lineages. The divergence between the two forms occurred between 2.4 and 3.1 Myrs ago.Our coalescent analyses suggest that limited gene flow, mostly from the subspecies rabai to albigula, is taking place at three mid-altitude localities, where lowland and montane rainforest directly abut. The extent of this introgression appears to be limited and is likely a consequence of the recent expansion of rabai further inland. CONCLUSION: The clear altitudinal segregation in morphology found within the Tiny Greenbul is the result of secondary contact of two highly differentiated lineages rather than disruptive selection in plumage pattern across an altitudinal gradient. Based on our results, we recommend albigula be elevated to species rank.
- ItemOpen AccessEffects of agricultural biodiversity and seasonal rain on dietary adequacy and household food security in rural areas of Kenya(2015-04-25) M’Kaibi, Florence K; Steyn, Nelia P; Ochola, Sophie; Du Plessis, LisanneAbstract Background Kenya has a high prevalence of underweight and stunting in children. It is believed that both agricultural biodiversity and seasonal rainfall influences household food security and dietary intake. In the present study we aimed to study the effects of agricultural biodiversity and seasonal rains on dietary adequacy and household food security of preschool Kenyan children, and to identify significant relationships between these variables. Methods Two cross-sectional studies were undertaken in resource-poor households in rural Kenya approximately 6 months apart. Interviews were done with mothers/caregivers to collect data from randomly selected households (N = 525). A repeated 24-hour recall was used to calculate dietary intake in each phase while household food security was measured using the Household Food Insecurity Access Scale (HFIAS). A nutrient adequacy ratio (NAR) was calculated for each nutrient as the percent of the nutrient meeting the recommended nutrient intake (RNI) for that nutrient. A mean adequacy ratio (MAR) was calculated as the mean of the NARs. Agricultural biodiversity was calculated for each household by counting the number of different crops and animals eaten either from domestic sources or from the wild. Results Dietary intake was low with the majority of households not meeting the RNIs for many nutrients. However intake of energy (p < 0.001), protein (p < 0.01), iron (p < 0.01), zinc (p < 0.05), calcium (p < 0.05), and folate (p < 0.01) improved significantly from the dry to the rainy season. Household food security also increased significantly (p < 0.001) from the dry (13.1 SD 6.91) to the rainy season (10.9 SD 7.42). Agricultural biodiversity was low with a total of 26 items; 23 domesticated and 3 from the natural habitat. Agricultural biodiversity was positively and significantly related to all NARs (Spearman, p < 0.05) and MAR (Spearman, p < 0.001) indicating a significant positive relationship between agricultural biodiversity of the household with dietary adequacy of the child’s diet. Conclusion Important significant relationships were found in this study: between agricultural biodiversity and dietary adequacy; between agricultural biodiversity and household food security and between dietary adequacy and household food security. Furthermore, the effect of seasonality on household food security and nutrient intake was illustrated.
- ItemOpen AccessHelsinki by nature: The Nature Step to Respiratory Health(2019-10-30) Haahtela, Tari; von Hertzen, Leena; Anto, Josep M; Bai, Chunxue; Baigenzhin, Abay; Bateman, Eric D; Behera, Digambar; Bennoor, Kazi; Camargos, Paulo; Chavannes, Niels; de Sousa, Jaime C; Cruz, Alvaro; Do Céu Teixeira, Maria; Erhola, Marina; Furman, Eeva; Gemicioğlu, Bilun; Gonzalez Diaz, Sandra; Hellings, Peter W; Jousilahti, Pekka; Khaltaev, Nikolai; Kolek, Vitezslav; Kuna, Piotr; La Grutta, Stefania; Lan, Le T T; Maglakelidze, Tamaz; Masjedi, Mohamed R; Mihaltan, Florin; Mohammad, Yousser; Nunes, Elizabete; Nyberg, Arvid; Quel, Jorge; Rosado-Pinto, Jose; Sagara, Hironori; Samolinski, Boleslaw; Schraufnagel, Dean; Sooronbaev, Talant; Tag Eldin, Mohamed; To, Teresa; Valiulis, Arunas; Varghese, Cherian; Vasankari, Tuula; Viegi, Giovanni; Winders, Tonya; Yañez, Anahi; Yorgancioğlu, Arzu; Yusuf, Osman; Bousquet, Jean; Billo, Nils EAbstract Background The Nature Step to Respiratory Health was the overarching theme of the 12th General Meeting of the Global Alliance against Chronic Respiratory Diseases (GARD) in Helsinki, August 2018. New approaches are needed to improve respiratory health and reduce premature mortality of chronic diseases by 30% till 2030 (UN Sustainable Development Goals, SDGs). Planetary health is defined as the health of human civilization and the state of the natural systems on which it depends. Planetary health and human health are interconnected, and both need to be considered by individuals and governments while addressing several SDGs. Results The concept of the Nature Step has evolved from innovative research indicating, how changed lifestyle in urban surroundings reduces contact with biodiverse environments, impoverishes microbiota, affects immune regulation and increases risk of NCDs. The Nature Step calls for strengthening connections to nature. Physical activity in natural environments should be promoted, use of fresh vegetables, fruits and water increased, and consumption of sugary drinks, tobacco and alcohol restricted. Nature relatedness should be part of everyday life and especially emphasized in the care of children and the elderly. Taking “nature” to modern cities in a controlled way is possible but a challenge for urban planning, nature conservation, housing, traffic arrangements, energy production, and importantly for supplying and distributing food. Actions against the well-known respiratory risk factors, air pollution and smoking, should be taken simultaneously. Conclusions In Finland and elsewhere in Europe, successful programmes have been implemented to reduce the burden of respiratory disorders and other NCDs. Unhealthy behaviour can be changed by well-coordinated actions involving all stakeholders. The growing public health concern caused by NCDs in urban surroundings cannot be solved by health care alone; a multidisciplinary approach is mandatory.
- ItemOpen AccessLarge-scale spatial distribution patterns of echinoderms in nearshore rocky habitats(Public Library of Science, 2010) Iken, Katrin; Konar, Brenda; Benedetti-Cecchi, Lisandro; Cruz-Motta, Juan José; Knowlton, Ann; Pohle, Gerhard; Mead, Angela; Miloslavich, Patricia; Wong, Melisa; Trott, ThomasThis study examined echinoderm assemblages from nearshore rocky habitats for large-scale distribution patterns with specific emphasis on identifying latitudinal trends and large regional hotspots. Echinoderms were sampled from 76 globally-distributed sites within 12 ecoregions, following the standardized sampling protocol of the Census of Marine Life NaGISA project ( www.nagisa.coml.org ). Sample-based species richness was overall low (<1-5 species per site), with a total of 32 asteroid, 18 echinoid, 21 ophiuroid, and 15 holothuroid species. Abundance and species richness in intertidal assemblages sampled with visual methods (organisms >2 cm in 1 m 2 quadrats) was highest in the Caribbean ecoregions and echinoids dominated these assemblages with an average of 5 ind m −2 . In contrast, intertidal echinoderm assemblages collected from clearings of 0.0625 m 2 quadrats had the highest abundance and richness in the Northeast Pacific ecoregions where asteroids and holothurians dominated with an average of 14 ind 0.0625 m −2 . Distinct latitudinal trends existed for abundance and richness in intertidal assemblages with declines from peaks at high northern latitudes. No latitudinal trends were found for subtidal echinoderm assemblages with either sampling technique. Latitudinal gradients appear to be superseded by regional diversity hotspots. In these hotspots echinoderm assemblages may be driven by local and regional processes, such as overall productivity and evolutionary history. We also tested a set of 14 environmental variables (six natural and eight anthropogenic) as potential drivers of echinoderm assemblages by ecoregions. The natural variables of salinity, sea-surface temperature, chlorophyll a , and primary productivity were strongly correlated with echinoderm assemblages; the anthropogenic variables of inorganic pollution and nutrient contamination also contributed to correlations. Our results indicate that nearshore echinoderm assemblages appear to be shaped by a network of environmental and ecological processes, and by the differing responses of various echinoderm taxa, making generalizations about the patterns of nearshore rocky habitat echinoderm assemblages difficult.
- ItemOpen AccessLarge-scale spatial distribution patterns of gastropod assemblages in rocky shores(Public Library of Science, 2013) Miloslavich, Patricia; Cruz-Motta, Juan José; Klein, Eduardo; Iken, Katrin; Weinberger, Vanessa; Konar, Brenda; Trott, Tom; Pohle, Gerhard; Bigatti, Gregorio; Benedetti-Cecchi, LisandroGastropod assemblages from nearshore rocky habitats were studied over large spatial scales to (1) describe broad-scale patterns in assemblage composition, including patterns by feeding modes, (2) identify latitudinal pattern of biodiversity, i.e., richness and abundance of gastropods and/or regional hotspots, and (3) identify potential environmental and anthropogenic drivers of these assemblages. Gastropods were sampled from 45 sites distributed within 12 Large Marine Ecosystem regions (LME) following the NaGISA (Natural Geography in Shore Areas) standard protocol ( www.nagisa.coml.org ). A total of 393 gastropod taxa from 87 families were collected. Eight of these families (9.2%) appeared in four or more different LMEs. Among these, the Littorinidae was the most widely distributed (8 LMEs) followed by the Trochidae and the Columbellidae (6 LMEs). In all regions, assemblages were dominated by few species, the most diverse and abundant of which were herbivores. No latitudinal gradients were evident in relation to species richness or densities among sampling sites. Highest diversity was found in the Mediterranean and in the Gulf of Alaska, while highest densities were found at different latitudes and represented by few species within one genus (e.g. Afrolittorina in the Agulhas Current, Littorina in the Scotian Shelf, and Lacuna in the Gulf of Alaska). No significant correlation was found between species composition and environmental variables (r≤0.355, p>0.05). Contributing variables to this low correlation included invasive species, inorganic pollution, SST anomalies, and chlorophyll-a anomalies. Despite data limitations in this study which restrict conclusions in a global context, this work represents the first effort to sample gastropod biodiversity on rocky shores using a standardized protocol across a wide scale. Our results will generate more work to build global databases allowing for large-scale diversity comparisons of rocky intertidal assemblages.
- ItemOpen AccessMarine biodiversity in South Africa: an evaluation of current states of knowledge(Public Library of Science, 2010) Griffiths, Charles L; Robinson, Tamara B; Lange, Louise; Mead, AngelaContinental South Africa has a coastline of some 3,650 km and an Exclusive Economic Zone (EEZ) of just over 1 million km 2 . Waters in the EEZ extend to a depth of 5,700 m, with more than 65% deeper than 2,000 m. Despite its status as a developing nation, South Africa has a relatively strong history of marine taxonomic research and maintains comprehensive and well-curated museum collections totaling over 291,000 records. Over 3 million locality records from more than 23,000 species have been lodged in the regional AfrOBIS (African Ocean Biogeographic Information System) data center (which stores data from a wider African region). A large number of regional guides to the marine fauna and flora are also available and are listed. The currently recorded marine biota of South Africa numbers at least 12,914 species, although many taxa, particularly those of small body size, remain poorly documented. The coastal zone is relatively well sampled with some 2,500 samples of benthic invertebrate communities have been taken by grab, dredge, or trawl. Almost none of these samples, however, were collected after 1980, and over 99% of existing samples are from depths shallower than 1,000 m--indeed 83% are from less than 100 m. The abyssal zone thus remains almost completely unexplored. South Africa has a fairly large industrial fishing industry, of which the largest fisheries are the pelagic (pilchard and anchovy) and demersal (hake) sectors, both focused on the west and south coasts. The east coast has fewer, smaller commercial fisheries, but a high coastal population density, resulting in intense exploitation of inshore resources by recreational and subsistence fishers, and this has resulted in the overexploitation of many coastal fish and invertebrate stocks. South Africa has a small aquaculture industry rearing mussels, oysters, prawns, and abalone--the latter two in land-based facilities. Compared with many other developing countries, South Africa has a well-conserved coastline, 23% of which is under formal protection, however deeper waters are almost entirely excluded from conservation areas. Marine pollution is confined mainly to the densely populated KwaZulu-Natal coast and the urban centers of Cape Town and Port Elizabeth. Over 120 introduced or cryptogenic marine species have been recorded, but most of these are confined to the few harbors and sheltered sites along the coast.
- ItemOpen AccessNorth-South cooperation through BIOTA: An interdisciplinary monitoring programme in arid and semi-arid southern Africa(2006) Krug, C B; Esler, K J; Hoffman, M T; Henschel, J; Schmiedel, U; Jurgens, NConnecting disciplines in a north– South collaboration has many advantages: mutualisms evolve, synergies are created and spin-offs emerge. The BIOTA South (Biodiversity Monitoring Transect Analysis in southern Africa) programme, with its long-term vision to generate knowledge of biodiversity along a north–south transect in southern Africa, is providing opportunities for research, technology transfer and capacity building while focusing on potential solutions for critical challenges that face this environmentally vulnerable part of the subcontinent
- ItemOpen AccessPatterns of spatial variation of assemblages associated with intertidal rocky shores: a global perspective(Public Library of Science, 2010) Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, AlejandraAssemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project ( www.nagisa.coml.org ). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses.
- ItemOpen AccessRoles of spatial scale and rarity on the relationship between butterfly species richness and human density in South Africa(Public Library of Science, 2015) Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F; Beale, Colin MWildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation.
- ItemOpen AccessA socio-ecological approach for identifying and contextualising spatial ecosystem-based adaptation priorities at the sub-national level(Public Library of Science, 2016) Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I; Midgley, GuyClimate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world.
- ItemOpen AccessStochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community(Public Library of Science, 2007) Thuiller, Wilfried; Slingsby, Jasper A.; Privett, Sean D. J.; Cowling, Richard M.Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site) and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a “neutral-like” pattern maintained by niche-differentiation.