Browsing by Subject "Arginine"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessFunctional microdomains in G-protein-coupled receptors: the conserved arginine-cage motif in the gonadotropin-releasing hormone receptor(1998) Ballesteros, Juan; Kitanovic, Smiljka; Guarnieri, Frank; Davies, Peter; Fromme, Bernard J; Konvicka, Karel; Chi, Ling; Millar, Robert P; Davidson, James S; Weinstein, Harel; Sealfon, Stuart CAn Arg present in the third transmembrane domain of all rhodopsin-like G-protein-coupled receptors is required for efficient signal transduction. Mutation of this Arg in the gonadotropin-releasing hormone receptor to Gln, His, or Lys abolished or severely impaired agonist-stimulated inositol phosphate generation, consistent with Arg having a role in receptor activation. To investigate the contribution of the surrounding structural domain in the actions of the conserved Arg, an integrated microdomain modeling and mutagenesis approach has been utilized. Two conserved residues that constrain the Arg side chain to a limited number of conformations have been identified. In the inactive wild-type receptor, the Arg side chain is proposed to form an ionic interaction with Asp3.49(138). Experimental results for the Asp3. 49(138) --> Asn mutant receptor show a modestly enhanced receptor efficiency, consistent with the hypothesis that weakening the Asp3. 49(138)-Arg3.50(139) interaction by protonation of the Asp or by the mutation to Asn favors activation. With activation, the Asp3. 49(138)-Arg3.50(139) ionic bond would break, and the unrestrained Arg would be prevented from orienting itself toward the water phase by a steric clash with Ile3.54(143). The mutation Ile3.54(143) --> Ala, which eliminates this clash in simulations, causes a marked reduction in measured receptor signaling efficiency, implying that solvation of Arg3.50(139) prevents it from functioning in the activation of the receptor. These data are consistent with residues Asp3.49(138) and Ile3.54(143) forming a structural motif, which helps position Arg in its appropriate inactive and active receptor conformations.
- ItemOpen AccessGlutamate 301 of the mouse gonadotropin-releasing hormone receptor confers specificity for arginine 8 of mammalian gonadotropin-releasing hormone(1994) Flanagan, C A; Becker, I I; Davidson, J S; Wakefield, I K; Zhou, W; Sealfon, S C; Millar, R PThe Arg residue at position 8 of mammalian GnRH is necessary for high affinity binding to mammalian GnRH receptors. This requirement has been postulated to derive from an electrostatic interaction of Arg8 with a negatively charged receptor residue. In order to identify such a residue, 8 conserved acidic residues of the mouse GnRH receptor were mutated to isosteric Asn or Gln. Mutant receptors were tested for decreased preference for Arg8-containing ligands by ligand binding and inositol phosphate production. One of the mutants, in which the Glu301 residue was mutated to Gln, exhibited a 56-fold decrease in apparent affinity for mammalian GnRH. The mutant receptor also exhibited decreased affinity for [Lys8]GnRH, but its affinity for [Gln8]GnRH was unchanged compared with the wild type receptor. The apparent affinity of the mutant receptor for the acidic analogue, [Glu8]GnRH, was increased more than 10-fold. The mutant receptor did not, therefore, distinguish mammalian GnRH from analogues with amino acid substitutions at position 8 as effectively as the wild type receptor. This loss of discrimination was specific for the residue at position 8, because the mutant receptor did distinguish mammalian GnRH from analogues with favorable substitutions at positions 5, 6, and 7. These findings show that Glu301 of the GnRH receptor plays a role in receptor recognition of Arg8 in the ligand and are consistent with an electrostatic interaction between these 2 residues.
- ItemOpen AccessThe use of cultured cells with defects of citrulline metabolism in diagnosis and in the study of intercellular communication(1985) Davidson, James Schonland; Harley, Eric HCitrullinemia and argininosuccinic aciduria are two disorders resulting from defects in two consecutive enzymes of the urea cycle, argininosuccinate synthetase and argininosuccinate lyase. Fibroblast cell lines were derived from patients with these disorders and the diagnoses, which had been made on the basis of amino acid levels in plasma and urine, were confirmed by demonstrating that the cell lines were unable to incorporate 14 c-citrulline into protein. DNA from the argininosuccinate synthetase-deficient (ASS⁻) cells was analysed by restriction enzyme digestion and hybridisation to a cDNA probe which had been cloned from human argininosuccinate synthetase mRNA. No defect in the patient's DNA could be demonstrated, indicating that no major deletions in the argininosuccinate synthetase genes were present in this patient. Co-cultures of the ASS⁻ and argininosuccinate lyase-deficient (ASL⁻) fibroblasts were able to incorporate 14 citrulline into protein at rates comparable to normal fibroblasts. This complementation did not require cell fusion, was dependent on cell contact, and was not the result of exchange of metabolites or enzymes via the culture medium. These results indicated that complementation occurred by the exchange of metabolites via intercellular junctions between the two cell types. Co-cultures of ASS⁻ and ASL⁻ cells were used as an assay system for measuring intercellular junctional communication. This allowed quantitation of the effects of pH and extracellular divalent cations on junctional communication. Tumor promoters such as phorbol esters and organochlorine pesticides have been reported to inhibit intercellular junctional communication in other systems, and this inhibitory activity may be related to the mechanism of tumor promotion. The organochlorine pesticide 1,1,1-trichloro- 2,2-bis(p-chlorophenyl)ethane (DDT) was shown to be an inhibitor of junctional communication in ASS⁻/ASL⁻ cocultures. This inhibition was reversible, of rapid onset, and independent of extracellular calcium. The tumor-promoting phorbol ester 12-0-tetradecanoyl-phorbol-13- acetate (TPA) also rapidly induced inhibition of junctional communication. However, co-cultures between Chinese hamster V79 cells, which are deficient in ASS⁻, and ASL⁻ human fibroblasts were more sensitive to inhibition by TPA than the original ASS⁻/ASL⁻ co-cultures. Refractoriness to TPA occurred following prolonged treatment with high concentrations of TPA. Retinoic acid and other retinoids also inhibited junctional communication, and the inhibitory effects of retinoic acid and TPA were additive. The significance of these results in relation to the anti-tumor-promoting activity of retinoic acid is discussed. It is concluded that co-cultures of ASS⁻ and ASL⁻ cells constitute a useful system for providing quantitative measurements of intercellular junctional communication under a wide range of experimental conditions.