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Chapter 3: Intra- and cross-clade T cell immune responses to Gag

3.2.3.2 Thawing of PBMCs

PBMC vials were removed from liquid nitrogen storage and placed on dry ice while
waiting to be thawed. The vials were thawed rapidly in a water bath at 37°C. The cells
were immediately added to a 50ml falcon tube and 10ml of Roswell Park Memorial
Institute (RPMI) with 10% Fetal Calf Serum (FCS) (R10) media was added drop wise
whilst swirling the cells. R10 was added to the cells up to 25ml and they were
centrifuged at 250 x g (relative centrifugal force-g) for 10 minutes. The supernatant
was discarded and the pellet was resuspended in 500pl of freshly prepared
deoxyribonuclease (DNAse, 0.2mg/ml) solution (prepared as 1 in 10 dilution with R10
media) and left for 2 minutes. R10 was added to the resuspended cells up to 25ml and
cells were again centrifuged for 10 minutes at 250 x g. The supernatant was discarded
and the pellet resuspended in Sml of R20 (RPMI with 20% FCS) media. The cells
were incubated at 37°C, 5% CO, in an incubator (Thermo Electron Corporation, USA)
with the caps slightly loosened.

3.2.3.3 Plate coating

Each well of a 96-well polyvinyledene plates (Microsep Millipore Products, France)
was coated with 50pul of 5mg/ml capturing antibody, mAb 1-D1-K (MabTech,
Sweden). The coated plates were gently tapped to ensure that the entire membrane
surface was completely covered with the coating monoclonal antibody. The plates
were sealed with self adhesive plate seal (Brand products, Denmark) and incubated

overnight at 4°C.

3.2.3.4 Cell stimulation
On the following day, the coated plates were washed three times with 200ul/well of
sterile PBS in a Biosafety class II hood. Each plate was blocked with 100pl/well of

complete R10 media and incubated at room temperature for at least 2 hours.

The PBMC samples were removed from the 5% CO, incubator and washed with 25ml
of R10 and centrifuged at 250 x g for 10 minutes. The cell pellet was resuspended in
5ml of R10 and counted as described in section 3.2.2.1 R10 was added to the cells up
to 25ml and centrifuged as before. The supernatant was discarded and the cells were

resuspended at 2x10° cells/ml.
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Chapter 3: Intra- and cross-clade T cell immune responses to Gag

The blocking R10 media was discarded from the plates without drying the plates
completely. Fifty microlitres of peptide pools described in section 2.3.3.1 were added
into each well at a final concentration of 1.5pug/ml. The peptide pools were added in
duplicate, as well as 24 different matrix pools (Appendix C, Table C2) as shown in the
plate layout in Appendix C, Table C3. Fifty microlitres of 8-11-mer CEF (BD
Biosciences, USA) peptide pool (described in section 3.2.3.7) was added at a final
concentration of 1.5ug/ml, and S0ul of Phytohaemagglutinin (BD Biosciences, USA),
a non-specific stimulator was added last to avoid contamination. The cells were added
last and were stimulated overnight for 18 hours in a humanized 5% CO, incubator at

37°C.

3.2.3.5 Membrane development

The following day, the plates were removed from the incubator and washed six times
with 200ul/well of PBS containing 0.05% Tween 20 (PBS-Tween) (Sigma, USA)
using a plate washer (ELx50 Auto Strip Washer, Bio-Tek Instruments, USA). Excess
fluid was removed by tapping on an absorbent towel. Fifty microlitres per well of
biotinylated anti-human IFN-y monoclonal antibody clone 7-B6-1 (mAb7-B6-1,
MabTech Sweden), diluted to 2pg/ml in PBS-10% FCS was added. The plates were

incubated for 3 hours at room temperature.

Two hundred microlitres per well of PBS 0.05% Tween was used to wash the plates
six times and Streptavidin-Horse-Radish Peroxidase (HRP) (BD Pharmingen, Canada)
at 1:500 with PBS-10% FCS was added. This was incubated at room temperature for
an hour. The plates were washed again six times with 200ul/well of PBS-Tween. The
membranes of the wells were developed with 100ul/well of Nova Red substrate
(Vector Laboratories, CA) for six minutes in the dark. The reaction was stopped by

emptying the wells and rinsing in cold tap water.
The number of cells producing IFN-y was counted for each well using an ELISpot

plate reader (CTL Analyzer, CTL Technologies, Cleveland, OH) and expressed as
spot forming units per million (SFU/10%) PBMC.
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Chapter 3: Intra- and cross-clade T cell immune responses to Gag

Peptides in pools and matrix pools that gave positive responses in the ELISpot
screening assays were tested individually to determine the reactive peptide in IFN-y
ELISpot assay. These peptide confirmation assays were performed on two selected

individuals chosen because of their broad predicted reactivity.

3.2.3.6. Test acceptance criteria

A response was considered positive if the SFU/10° PBMC exceeded 100 after
background subtraction. An assay passed if there were less than 5 spots in each of the
media control wells, not more than 100 spots in each of the media and cells wells and
if not less than 400 spots were present in the PHA positive control wells. Details of the

assay controls and test acceptance criteria are presented in Appendix C.

3.2.3.7 ELISpot controls

As progress is made towards developing a safe and effective HIV-1 vaccine, there
must be an assay that is robust and sensitive and the ELISpot assay is one such assay
(Mashishi and Gray, 2002). However, the reagents that can be used as positive control
must be optimized and standardized. Although mitogens such as PHA provide a
quantitative answer to whether the assay works, they do not test antigen-specific T cell
stimulation. The use of the same antigen-specific stimulation in different assays rather
than mitogen stimulation is also useful for standardizing the IFN-y assay as well as to

monitor inter- and intra- assay variability.

Antigen-specific stimulation in the current study was performed by testing study
individuals for their ability to recognize peptides based on CEF, which are 8-12 amino
acid long peptides arranged into 32 pools with sequences derived from
Cytomegalovirus, Epstein - Barr virus and influenza virus. CEF peptides can be used
for the stimulation of IFN-y release from CD8" T cells in individuals with defined
HLA types that have been exposed to the viruses. It covers 15 different HLA class 1
alleles, in particular HLA A1, A2, A0201, A3, All1, A24, A68, A6081, B7, B8, B18,
B27, B35, B44, B0702 (Currier et al., 2002).

The negative control wells consisted of six unstimulated PBMC and two unstimulated

wells for the QC sample per plate. Each plate also had six wells containing R10
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Chapter 3: Intra- and cross-clade T cell immune responses to Gag

(media only). Positive control wells consisted of two PHA-stimulated PBMC and two
PHA -stimulated wells for the QC sample per plate. The control wells consisted of two
CEF stimulated PBMC and two CEF-stimulated QC sample on each plate.

3.2.4 Analysis of immunodominant peptides

Reactive peptides that had >1000 SFU/ 10° PBMC were classified as immunodominant
peptides. These peptides were analyzed for previously defined epitopes using the
Epitope Location Finder tool at the Los Alamos immunology database

(http://www.hiv.lanl.gov/content/hiv-db/ELF/epitope analyzer.html). The tool looks

for probable epitopes using previously defined epitopes on the database based on the

submitted HLA type.

3.2.5 Calculation of peptide variability

Shannon entropy is a measure of the amino acid variability at a given position that
takes into account both the number of possible amino acids allowed and their
frequency. Entropy in each amino acid position is calculated as -} P,,l0gPa,, where Py,
is the proportion of each amino acid in the respective position. When only a minority
of a peptide sequence had gaps in a position, the position was included and the gaps
were treated as separate symbols. A Shannon entropy score was calculated for each
amino acid position of 5 corresponding peptide sequences for the 32 peptides that
were reactive in two individuals. An average entropy score for all positions in each of
the reactive peptides was determined to provide a single value that characterizes the

overall variation of each peptide.

3.2.6 Statistical Analysis

Statistical analyses were performed using GraphPad Prism version 5.00 for Windows
(GraphPad Prism Software, San Diego, California USA, www.graphpad.com). All
data were analyzed by use of non-parametric statistics. Wilcoxon-signed rank tests of
the difference between medians were used for significant differences between clade-
specific responses. The non-parametric Mann-Whitney (also called the rank sum) test
for un-matched pairs was used for comparison of entropy scores for different peptide
categories. Correlations were determined using the non-parametric Spearman’s

correlations. For cross-clade reactivity ratios correlation analysis, immune responses
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Chapter 3: Intra- and cross-clade T cell immune responses to Gag

were log transformed and the non-parametric Spearman correlation performed. All

tests were two-tailed and were considered significant if the P value was < 0.05.
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Chapter 3: Intra- and cross-clade T cell immune responses to Gag

3.3 RESULTS

Thirty-nine HIV-1-infected individuals were screened for HIV-1-specific T cell responses using
a panel of 540 peptides spanning the complete HIV-1 Gag protein from five different HIV-1
sequences, two of which were from the same subtype. The peptides in the pools and matrices that
gave positive responses in the first screening ELISpot assays were confirmed using a second

confirmatory ELISpot assay.

Table 3.1 Characteristics of study subjects*

Study Age CD4 count Study Age CD4 count
Individual (Years) (Cells/ul) Individual (Years) (Cells/pl)
CCo1 28 360.0 C-K001 31 561.4
CCo4 28 474.0 R-M002 30 909.5
CCo05 32 610.0 S-T003 29 578.0
CCo6 22 956.0 F-M004 34 348.9
CCo7 28 355.0 T-M005 27 637.8
CCo8 33 752.0 N-M006 27 13214
CCo09 27 453.0 N-MO007 35 1010.5
CC10 24 590.0 B-N008 28 1437.5
CC12 47 536.0 M-T009 33 605.9
CC13 38 414.0 T-NO10 34 428.5
CC14 47 510.0 A-M011 46 637.0
CC15 27 452.0 R-L012 19 628.2
CC16 25 590.0 N-M013 28 573.6
cC17 40 884.0 TSM014 26 ) 295.6
CC18 27 350.0 M-M015 23 ’ 502.0
CC19 23 569.0 T-M016 29 702.6
CC20 - 31 388.0 E-R017 35 999.2
CcC21 46 347.0 H-NO18 29 471.5
CC22 31 420.0 N-S019 34 1167.8
cC23 31 465.0 N-M020 19 554.3

* All study subjects were heterosexual Xhosa people. They were all ARV-naive at enrolment. The median age was
28 years (ranging 22-47 years). The median CD4 count was 492 cells/ul (range 295-1437.5 celis/ul).

Study individuals were recruited from two provinces of South Africa, namely the Gauteng and
Western Cape provinces. The majority of the individuals were all Xhosa people. 15/40
individuals had CD4 counts below 500 cells/pl and only 3/40 individuals had CD4 counts above
1000 cells/pl (Table 3.1). However, all the study volunteers were not on antiretroviral (ARV)

treatment and were asymptomatic.
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Chapter 3: [nira- and eross—clade T cell immune responses to Gag

3.3.1 Quality control of the ELISpot ussuy

Thirty nine of the forty individuals were tested for their response to CHI® peptides as a positive
control. One individual was excluded from screening for 1 cell responses duc to a shorlage of
sample available. Lightv-seven percent (34/39) study individuals had positive IFN-y responses 1o
CEF, while the remaining 13% (4/39) (CC 13, 1IN 018, B-N 008, N-M 006 and L-R 017) did
not have any IFN-y responses to these peptides (Figure 3.2). The median CEF-specific T cclt
response was 448 SFUAG" PBMC (range 0-9 917 SFU/O® PRMC). It is possible that the
individuals whao did not have responses to CEF peptides were not exposed to the viruses before

or they did not have the necessary restricting HLA types.

10000
5000 I
- —m. s Il [

Magnitude of IFN-y response
{Nat SFUHD® PBMCs)

Patieat number

Figure 3.1 Study subjeets’ respomses to CEF peptides. PEMCs were plated at 106G 0600
collswell and the number of CFF-specific T cells producing IFN-¢ were normmlized o spot
Formiang units por millon (SFL07 PEMC.

In cach ILISpot assay. a guality control sample (NICD 063) of known reactivity to the CEF
peptide pool was included, as outlingd in section 3.2.3.7. In order to monitor intra- and inter-
assay variahility, the distribution of the quality conteol sample reactivity was detcrmined and
plotied in a Levy-Jennings plot (Figure 3.3). I'he magnitude of ClI-specific IFN-y producing T
cells expressed as SFU/Q" PBMCs fell within the mean + 2 SD. [lowever, assays carried out on
I8 ol Scptember 2006, had magnitude of response below the mean - 2 S1. This may be due to
technical reasons or detection solutions prepared incorreetdy on this day, or cells counted

incorrectly. Generally, there was low inter- and intra-assay variability.
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Figure 3.2 Levy-Jennings plot of quality control sample (NICD 063) T cell responses against CEF peptides. The middle dotted line represents the
mean of the responses and the two lower and upper dotted lines represent the mean + 2 SD. The assays are represented by the initials of the operator, followed by the date
and the plate number for the assays performed that day.
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Chapicr 3: Intea- and cross-clade T cell immune responses to Ciag

Ihirty-nine study individuals were screened [or HIV-speeific T cell responses
against HIV Gag peptides arranged in pools and matrix pools. The total
magnitudes of response were determined for all peptide sets for each study
mdividual for both pool responses and matrix cesponses. The relationship
between pool responses and matrix responses was determined using the non-
parametric Spearman rank correlation analysis. For an EL1Spot pool matrix assay
ko be successful, responses in pools should be accompanied by responses i a
mairix containing at least one of the peptides found in the pools. This enables
reactive peptides to be identified. Pool and matrix responses should theretore
have a positive correlation. As expected. matrix responses corrclated strongly
with pool responses (p< (L0001, r — 0.9779. Spearman cank corrclation) (Figure
3.43, showing that peptides detected in the matrix were present in the pools with

pasilive responscs.
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Figure 3.3 The relationship belween Lotal response in pools and total response in
matnces. The magnitude of 1 cell responses was determined by adding magnitudes for all
pools and matrices which came oul positive after background subtraction for each individyal,
Fach data point represents an individual’s response 1o ull the live HIV-1 peptide sels in pools as
well as in matrices.  The relytionship belween the responses was detenmined using the non-
parametric Spesrman correlation analysis with a 2-miled p-value.
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3.3.2 Representative of an ELISpot assay

Figure 3.5 shows a representalive ELISpot assay plate for study individual CC10,
The individual responded 10 CEF peptides and PHA. with PHA responses
exceeding 400 spats per well. The media only wells (5 and 6 inrow H, 11 and 12
in rows D and L) had less than 5 spats per well and the negative control wells
trows A-C, columns lland 12) had less than 100 spots per well. The study
subject responded to all HIV-]1 subtypes. Remarkably, some of the peptide

responses were even higher than responses 10 PHA in this individual.

i Csn Cen B A D
! 1 ? 8 4 5 6 7 & e $0. 31 4D
Pool 1+ AR
Pool 2.1 §
Pool 3 v
}¢4}'¢*}¢4"’§4P¢
N N SO
i NE RTINS Y ¥ vV v
¢¢¢¢¢¢¢
i s AN, L L
H ' T, g S A Y v vV

CEF PHA QC sample

Figure 3.4 ELISpot screening assay. Peptide pools ware armanzed imio five differem
powls. rows A-E: ¢olumns | and 2 conlain South African Ce ., peptides, columns 3 and 4 contain
Chinese sublype Coy peptides, § and 6 contain subtype B peptides. 7 and 8 contain sublype A
peptides, ¥ and 10 are the sublype D peptides. Rows F and GG constitute the 24 mafrices psed.
Ruws A-C, eolumns | land 12 contain cells and media. Row H columns | and 2 contain CEF
peptides, colwmns 3 and 4 contain PHA, columns 5, 6 and 11 and 12 i rows I and E contain
media alone. Row H, 7-12 contain the quality contral sample with 7 and 8 commining OC and
media, 4 and 10 contining QU+CEF and 11 and 12 contzining QC | PHA as shown in the figure
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3.3.3 Cell-mediated immune responses to clades A, B, Cand D
3.3.3.1 Magnitude and breadth of HI'V-specific T cell responses

Individuals were examined for their T cell responses to five different HIV Gag
peptides sets from four different subtypes, namely two subtype Cs, subtypes B, A
and D using the IFN~-y ELISpot assay. This was performed to investigate whether
individuals can mount robust T cell responses to the Gag protein based on the
different major HIV-1 subtypes. HIV-specific T cells were detectable in 97.4%
(38/39) of the study individuals (Figure 3.6). The remaining individual (study
individual A-M 011) did not have HIV-specific T cells recognizing any one of
the peptide pools tested using the IFN-y ELISpot assay. 100% (38/38) of the
study subjects who had detectable IFN-y producing HIV-specific T cells
recognized HIV-1 Gag peptides based on South African Du422 and Chinese
subtype C peptide reagents (Figure 3.6).

There was a wide range of HIV-specific T cell responses among different
individuals. The magnitude of HIV-specific T cell responses ranged from O-
19843 net SFU/10° PBMC. There were 15 individuals who had cumulative
responses >5 000 SFU/10° PBMC, 11 individuals had 1 000-5 000 SFU/10°
PBMC and 12 had <1 000 SFU/10° PBMC to Csa Gag peptide pools (Figure
3.6). A similar trend was observed for the Ccy peptide pools, with 15 individuals
had cumulative responses > 5 000 SFU/10° PBME, 14 individuals having 1000-5
000 SFU/10° PBMC and nine having <1 000 SFU/10° PBMC to Ccy Gag peptide
pools. For the remaining subtypes tested, there were fewer high magnitudes of
responses. Subtype D peptide pools had the highest number of individuals with
low magnitudes of T cell responses (16 individuals with <1000 SFU/10° PBMC).
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Figurn 3.5 The tota! magnitudc of Gag response to subt}'pes A B. Uy, Cep and D. The responses shown are the total magnitudes of TPN-y producing HTV-
specific | vells as detected by the ELISpui-assay amwng 39 participants. expressed us the number of net SFL - 10° PBMC for the different subtvpe peptide reagents. for each stody

individunl (see colour key)
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Chapter 3: Intra- and cross-clade T cell immune responses to Gag

The general trend of the magnitude T cell responses for the different subtypes was in
the order Csa, Ccn, B, A and D. There were cases when Ccy were higher than
responses to Csa, for example T-M005, T-MO016 and T-NO10 (Figure 3.6). In a
single individual, there was strikingly high total magnitude of responses to non-
subtype C peptide pools when compared to subtype C peptide pools. This individual,
N-MO006, had stronger responses to subtype B-based peptide pools when compared
to other subtypes (Figure 3.6). Individuals R-M002, CC012 and M-MO15 had
slightly higher magnitudes of responses to subtype B peptide pools when compared
to subtype C peptide pools. There were no subtype A and D responses that were
higher in magnitude than subtype C.

There was high degree of recognition of the different subtypes. Thirty (78.9%)
individuals recognized all five different peptide sets used (Figure 3.6). Three (7.9%)
individuals recognized four peptide sets, and same applied to two peptide sets. Only
two (5.3%) individuals recognized three different peptide sets. There were no
individuals who recognized only one peptide set (Figure 3.6).

The total magnitude of all pool responses to all the five peptide sets were compared
for all the individuals using the non-parametric Wilcoxon signed rank test. This was
performed in order to determine whether different peptide sets can elicit equal HIV-
specific T cell responses in HIV-1 subtype C-infected individuals. The median
response to HIV subtype Cs 4 peptide pools for the study subjects was 2 530 (0-19
817) SFU/10° PBMC (Figure 3.7). This was slightly higher than the median
response to the Chinese subtype C peptide pool reagents, at 2 470 (0-19 843)
SFU/10° PBMC. However, HIV-specific T cells recognizing subtypes B, A and D
peptide pool reagents had lower magnitudes of responses, namely 1 175 (0-17872)
net SFU/10° PBMC for subtype B, 868.3 (0-16 723) net SFU/10° PBMC for subtype
A and 560 (0-13 605) net SFU/10° PBMC for subtype D. In most cases, HIV-
specific T cells recognizing peptides based on the Cs s and Ccy gave the highest
magnitude of responses. Thus, HIV-specific T cells recognizing peptides based on
the heterelogous subtype, that is subtypes not responsible for infection, had lower

magnitude of responses when compared to subtype C-based peptide reagents.

75




Chapter 3: Intra- and cross-clade | cell immune responses 1o Gag

There was no statistically significant ditference in the magnitude of HIV-specific T
celis against subtype Us 4 and subtype Cey peptide reagents (p = 0.8363, Figure 3.7).
Subtype Cs 4 and subtype B peptide reagents’ responses differed significantly (p <
0.0001). Stistcally signilicant differences were also obtained between the
magnitude of HIV-specilic T cells recognizing sublype Cs 4 peplide reagents and
subtypes A and D (p < 0.0001). In addition. the magnitude of responscs against
subtype 3 peplide reagents was signiticantly higher than that ol both subtype A (p =
Q.0020) and subtype D (p < 0.0001).

p<00001
, p < 0.0001
ool  p<00001
p = 083263
g_‘ 20000 I :
S ' ,
= .- : §
& 0 15000 - ’
' ]
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P E 10000 = )
z - *" ::i )
g i . MO et :: -:' 1 i.
2 5000 . . -

Peptide set

Figure 3.6 Recognition of the sublypes A. B Cpu. s and D) Gag sequences
in HIV-l subiype C-infected individuals. Each dot represents the total magnitude of Gag-
specific T cell responses W each sublype in cach individual. P values indicate significance of
diffcremces between proups

3.3.3.2 Cross-reactivity of ‘I cell responses to the major HIV-1 subtypes

A quantitative assessment of the ratios of ELISpol responses 10 the Tour HIV-1
subtypes tested in the study is presented in Table 3.2. The subtvpe from South
Aldrica (Cy 4). was used as the denominator of the ratio and each of the other three

subtypes and the other subtvpe C was vsed separatcly in the numerator. The ratios

76




Chapter 3: Intra- and cross-clade T cell immune responses to Gag

obtained are referred to as cross-clade reactivity ratios. Therefore, the ratio of
subtype Cs 4 versus subtype Cs 4 is one, showing equal recognition of Gag peptides

based on these HIV-1 variants by HIV-specific T cells.

The mean ratio of HIV-specific T cell responses for all the 39 study subjects was
1.08 (95% confidence interval [CI], 0.34-2.8) against subtype Csa Gag versus
subtype Ccu Gag, showing that Ccy had a slightly higher total magnitude of
responses than Cs 5. Ratios to other HIV-1 subtypes were lower than ratios within
subtype Cs, showing that subtype C-infected individuals recognize peptides based
on other subtypes with a lower magnitude than they do to clade-matched peptides.
Ratios of 0.71 (95% CI, 0-2.48) were obtained against subtype B Gag, slightly
higher than 0.51 previously described (Coplan et al., 2005). Ratios of 0.41 (95% CI,
0-0.97) against subtype A Gag, is comparable to 0.47 previously described (Coplan
et al., 2005), and 0.38 (95% CI, 0-1.05) against subtype D Gag were obtained. Thus,
as expected, intra-clade reactivity ratios were higher than cross-clade reactivity

ratios.

Table 3.2 The ratios of cellular immune responses against the HIV-1 Gag protein
for heterelogous versus homologous subtypes among 39 HIV-infected individuals

Subtype comparison Immune response ratio
(Mean (95% CI))

Cs.a versus Cey 1.08 (0.34-2.8)

Cs.a versus B 0.71 (0-2.48)

Cs.a versus A 0.41 (0-0.97)

Cs.a versus D 0.38 (0-1.05)

Previously reported for South Africa*

A versus C 0.47 (0.38-0.57)

B versus C 0.51 (0.40-0.66)

*Coplan et al., 2005
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I'he cross-reactivity of IV -specific I cells to the Ciag protein was investigated ina
more graphic way. Figure 3.8 shows Logg-transformed ELISpot HIV-specilic |' cell
responses against the Gag protein, The slope of the line of best fit is approximately
l, mauking an angle thal is approximately 45” 10 the x-axis. Ihis line represents

cross-clade reactivity ratio ol |

Gencrally, there was a strong correlation of Logyg-transtormed LLISpot responses
hetween the subtype (s 4 and the four other 1TIV-1 subtypes used (Figure 3.8). Maost
data points cluster around this line. illustrating this high degree of intra- and cross-
clade recoenition. The highest correlation was oblained lor responses to the same
subtype. belween subtype Cy 4 and subtype Cen (v — 059728 p = 0.0001). where
nisst responses clusicred closely around the 437 line {(Fizure 3.8). Subtvpe Cy 4 and
D had the lowes? cross reactivily correlation (r = (L8595, p < 0.0001). where 1t 18

clearly sccn that data point are more dispersed and further away from the 45" line.
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Figure 3.7 Cross-reactivity of | cell immune responses against HIV-1 Gag. Values
an ihe axes represent the el number of [PN-v-expressing ‘T eslls 107 PRME, Responses with mero
net SFU/1D PBMCs wore assipned a value of |- The r valuc is the pon-paramelric Spearman

—

vorrelation and the pvaluc piven 95%, sipnificance level.
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3.3.3.3 Genetic distance and HIV-speeific T cell responses

The amino acid distance between an individual's infecting viral Gag protein
sequence and the peplide sequence were determined. ‘T his was plotted against the
total magnitude of IFN-y response to the particular peplide varnant set in order to
determine the impact genctic distance has on the recognition of Gag peptides by
HIV-specific T cells, There was no significant comrelation between the magnitude of
response and genctic distance between the infecting viral sequence and the LLISpot

peplide reagent sequence (r= -0,0042, p — 0.9670) (Figure 3.9).

r=-0.0042
20000 p= D870 | r .
3 ‘ :
== 15000 :
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o 5 10 15 20
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Figure 3.8 The relationship between genetic distance and total magnitude of
respeinse. Fach point represent a suhject’s total net response to a particulnr sublyvpe peptide set and
that subgect™s virus aming ueid distance from thar pepride sequence. The Spearman correlution rand p
value are indicaled on (he graph,

3.3.3.4 CD4 connt and magnitude of T cell response to Gag

Ihe relationship between the total magnitude the IFN-y T cell responses 1o Gag
peplide pools based on the South African subtype C prolein sequence and CD4" T
ccll count was determined for all study participants using Spearman correlation

analyses, to determine whether the magnitude of IFN-y responses is a correlare of
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disease progression. There was a ncgative trend obtained, although this was pot

statistically signilicant (r — -0.074. p = 0.714) (Figure 3.10).
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Figure 3.9 The relationship between the Magnitude of response and L L4 count. ine
magnitirde of response was the wtal [FN-y response W the South African subtype € peplide pools
shown on the s-axis. The CO4 count in celis/pl is shown on the y-axis.

3.3.4 Cross clade HIV-specific T cell responses at the peptide level

I'wo of the 39 study subjects wore further investigated for the individual peptides
respansible for their HIV-specific responses. These peplides were predicied by the
pool and matrix screening ULISpot and confirmed in a subsequent assay. The two
individuals CC22 and CCO7 were chosen because of their broad predicted reactivity.
Due to time constraints, only these individuals® single peptide responses were

performed.

3.3.4.1 Evaluation of cross-clade T cell responses to 11IV-1 Gag

The magnilede of responses contributed by each reactive peptide from each of the
five peptide sets for study individual CC22 is shown in Figure 3.11a. When there
were adjacent reactive peptides, the peptide with the highest response was
considered the renctive peptide. In the case of three consecutive peptides being
reactive, two peplides were considered positive. Individual CC22 recognized a total

of 19 peptides. Peptide 99 had the highest magnitude of response, and was
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Chapter 3 Intra- and cross-clade T cell immune responses (o Gag

recognized in two peptide sequence variamts, Cy 5 and Coyy. This peptide is highls
conserved among the sublyvpe C peplide sequence variants tested (Table 3.3). Cey
peplides had the highest percentage recognition (34%) compared to other peptide

variants (Figure 3.1 1h).
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Figure 3.10 Asscssment of HIV-1-specitic | cell responses cross-reactive with the
clades A. B, C (South African C and Chinese ) and D sequences at the single
peptide level.{a) I'he recognition of peptides from subtvpes A, 13, € (South African
C and Chinese C) and D in siudy individual CC22. (b) The percentage of HIV-
specitic T cells recognizing each HIV-1 subtype in individual CC22. The maspitode of
response 15 cxpresscd as the numbers of IFN-p-prodeciog cells 10" PRMO. Peptide numnbers are
asveording o the South Alrican Dud22 (Cy ) peplide reagont numbers. S.A Du422 i the Oy, and
Chinese € s the L.

Peptide sequences were compared to the infecting virus sequence (Table 3.3). The

reactive peptides in individual CC22 could be divided nto dillerent categories,
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There were some reactive peptides which had the same sequence as the infecting
viral sequence, for example peptides 19, 48, 67 and 71. Peptides 3, 7 and 19 show
the position of either HLA anchor residues or T cell receptor contact sites. These
peptides had peptide variants that had single amino acid changes that lead to loss of
recognition by HIV-specific T cells. Another category of peptides was those
peptides which had amino acid sequences different from the infecting viral sequence
but still had positive responses, for example peptides 115 and 118 (Table 3.3). This
category constituted the majority of the peptides. These peptides might have their
amino acid substitutions outside T cell receptor contact sites or HLA anchor

residues, or the changes present may be tolerated by the HLA molecule of TCR.
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Table 3.3 The recognition of the subtypes A, B. C and D peptide sequences in individual CC22

FOpTIUE no Locaton” Liga arl L be L ¥| B LI A oL (¥ SELY IRTEETING S84
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"The underlined sequonces represent the overlapping part for thuse peptides that had an overlapping reaclive peptide, The ketters in red reprasent aming acid differenies when
compitred to the subtype Cs sequence. The blue letters in the infecting viral sequence represent aming acid differences when compareid Lo the peptide sequense that gave the
highest responscs when compuared e ather comesponding peptides in the fve peptide sets, Peptides highlighted in grey are dhose that pame up posftive (reactivi).
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For study subject CCO07, a total of 15 peptides were recognized (Figure 3.12a).
Peptide 72 was the most immunodominant and cross-reactive peptide for individual
CC07, and together with other cross-reactive peptides, 37, 56 and 73, had high
degrees of sequence similarity among their corresponding variants as well as to the
infecting viral sequence (Figure 3.12a and Table 3.4). Subtype C peptides had the
highest percentage recognition compared to heterelogous peptides (Figure 3.12b),

with Ccy again having higher recognition than Csg 4.

Peptide variants with similar sequence to the infecting viral sequence can be identified
from Table 3.4. These are peptides 41, 56, 72, 73, 81 and 96. An interesting
observation was the recognition of a peptide variant with a sequence different from
the infecting viral sequence, while the corresponding peptide sequence with the same
sequence as the infecting viral sequence was not recognized, as is the case for
peptides 11 and 83. The subtype B variant of peptide 11 had positive response but its
sequence differs from the infecting viral sequence while the two subtype C peptides
had the same sequence as the infecting viral sequence, but were not recognized. For
peptide 83, the Cg 4 had the same sequence as the infecting viral sequence but was not
recognized, while the Ccy peptide was reactive, but had a single amino acid change
from the infecting viral sequence. This suggests escape from T cell immune
responses. It is possible that the reactive peptide sequence-is similar to the sequence
which HIV-specific T cells initially encountered, which mutated to the current
4 infecting viral sequence due to immune pressure. No HIV-specific T cells are present
to the current epitope as it may no longer be able to bind the MHC molecule or TCR
contact sites, however, a weak memory T cell responses still exists specific for the

previous epitope sequence.
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Figure 3.11 Assessment of HIV-specific 1 cell responses cross-reactive with the
subtypes A, B, C (South African C and Chinese C) and D sequences at the single peptide
level(a) The recognition of peptides from clades A, B. C (Cy 4 and Ce) and D in study
individual CCO7. (b) The percenmtage of HIV-specific T cells recognizing each 1HV-1
subtype in mdividual CC D7, The magnitnde of respomse is expressed as the numbers of INF«y-

producing cells/ 10° PBMC. Peplide numbcrs are acoording to the O, peptide resgenl numbers, 504
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Tabie 3.4 The recognition of the subtvpes A. B

. C and D peptide sequences in individual CCO7

Peptide no Location' Caa SFU Coy SFU B SFU [ SFU D SFU  Infecting seq
Gl=1" MO0 AR RS /TR 4258 (pIT: SAFALEGULETSES AT NPGL_ETSEG LEHHAHIPGLLETSE 16D THFALYRGLLETSEG SHFALNPGLLETS=0 LEH-A NPGELLETSE
Cr=12/08=12/RAZ A0 tla=|bd (p2d) | SCNYRWHNLOGOMY  JED | soryPresNLoocRe AED SSOVSOMIPVENLD  £an BT AL R OERCMTPITALDS SEYPISTH GsTAy
CI-36/Ci-15/4-16/A- 3705 1BA-17) (pEe'  MVHOASPNTLMAWY. 280  MweSsseHTLNswY 380 | OMUIGMSPETINAW 260  GUMMOALBPRTLIAWY 200  anMSsERELMAWY 380  MVHCPISPRTLNADY
-3 ACE =370 NES DY £4.°00 (prad  ETIMAGWVKEWMCE<Ar 1180 | AMNAMAGCOERAE 1780 CRILNAVAYCEERS RELSAWAMAITTKES 1180 RTINawvEdEE<ar 180  FTLNASAESiskrat
C-a1/12- 4| Beaz A0/0s fB2=181 jp2s;  PEMIPMFIALEEGAT  TOO  PEVPMETALSESAl | TB0  CPEVIPMTTALOCGA PLyARMF ALSLGAT P PMFTALSEGAT FCVIPMITALSCGAT
C1-4BSCE AU AE-AY 0 8/0=1 1580 7T (pRd ) | HEAAMGMIKDEREE 120 | HoAAMSMLSOTINED 120 CHIAMMOUMIKITINE - 500 | RastiadLrnmyes 120  HSHEMEMLETTINET GHEASMTMI KOTINE
156025 A/ FATHOML 2po786 (pP4 ) GEMMEFRGEDIMGTT 160 GOMEERRGEDMGTT 160 | PGOMBERRABOIAGT 140  ComMErHoEDIMGTT 150  GOMREFRGEDIAGTT 160  GOMREPRGSDISGTT
G -B1A00- 41 /B0 423 A 001 PM=FTIIpRA ] CUMWMTENRRIPYGD GOIANMISNERCPYGE 120 Bl WHT INPRIFYG Bl M TENPRIPYCL Bl AT SRy ESLA TSHERIRAGL
G- TE ISR RSP A= D= 1IT-101 (p2e ! HEPFROYVOREEKTL 104800 KEPFRoYWDRFRE-L 10400  IWEFEHOYVOREMT 7180 KCErROYWUAFESTL  10MB0  BEPFHIYWOHEVKIL  TETO  weprsDyvoHRFRTL
Cl-T3AIE-TA/B-TMIA0aT J11-a2e (p2e;  FEIYWERERSTLRAEL 1380 HETRSHESSLREG 1380 TROYWDSTYTLRAC REYVESFRC LR 1380 FOYVORE (TLRAED RON VDR LRACT
B IACZ BB BEAARTDAT A4 1EH (pl4)  ANDPUKTLRSLOPG 180 AHOPCET LRALGRG 180 FAMOPCKTILLALGE ANDPO ILRALGPG BHRPCATILRBLGP LHOPCETILSAL GPE
o LA3A0TB1A B40ANIADE, ASE-1B1 240 LMALLEYWIAILEEMM] IRALGPGAILEERMT 120 LEALGPaaTLESMM LRAL LU [ LEERMT L “ALGPOSTLEEMMT LIALGPGAL LEERMIT
Ci6/CT-3040 §7 Al-azo tf;  HIVEERNOSKESHE, - 140 MMM 140 RERNECES G FINKCFHOGKES 18

*The underlined sequences represent the overlapping pan for thuse peptides thar had an overlapping reactive peptide, The letrers in red represent amine acld differences when
cotnpared 1o the subtype Ce 4 sequence, The bluc letiers in the infecting viral sequence represent aming acid diflercoves when comparcd to the peptide sequence that save the
highest responses when compated o other corresponding peplides in the five peptide sets. Peptides highlighted in grey arc those that came up positive {reactive)
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3.3.4.2 Breadth of HI'V-specific T cell responses

The use of different peptides scts to test for 1 cell immune responses was investigated to
determine whether extra responses could be detccted when additional peptide variant sets
are used in an ELTSpol assay. The use of a2 number of peptide sels increased the number
of responses detected, as shown in Table 3.5 for two individuals. The addition ol'a variant
subtype C peplide sel 1s mainly tesponsible [or this elfect. No additional T cell responses

were detected in these two study individuals by the addition of subtype D Gag peptides.

Table 3.5 Peptide scis and number of responses delected

Study Csa CoatCop UsatCotB Co it Copt A Oy +Cot BHAHD
Endividual
CC22 14 19 14 20 14

12

CCar ¥ 3 13 13

3.3.4.3 Distribution of T cell responses among HIV-1 Gag regions

For each peptide set, a peptide with a different sequence from others in the same set was
considered a different peptide. Afier consideration ol common peplides among the five
peptide vartants, there were 30 reactive peptides recognized in the two individuals. The
distribution ol the responses among the difterent Gag repions is shown in lable 3.6,
Twenty percent (6/30) of the peptides recoonized were from the pt7 recion. The more
conserved reeion of Gag, p24 contributed the majority of the peptides recognized (60%,
18/30 peptides). The last part of Gag protein (pl5). which is the most variable,
contribuied the same number of peptides as pl7 in these two individuals (20%, 6/30
peplides).

Table 3.6 1 cell recognition of different LIV -1 Gag protein regioms

Protcim No ol peptides  Owerall %o recognition

nl7 6 20
p24 18 6i)
pl5 ¢ 20

Some peptides had high magnitude of responses and a peptide which had =1 000 SFUA0°

was cmpirically classitied as an immunodominant peptide. lour immunodominant

87




Chapter 3: Intra- and cross-clade T cell immune responses to Gag

peptides were identified in the two study subjects, and the distribution of these within the
Gag protein is shown in Figure 2.12. Two of the four peptides were from the p24 region.

KEPFRDYVDRFFKTL
A
RDYVDRFFKTLRAEG
A
HIARNCRAPRKKGCW
RTLNAWVKVIEEKAF
I f
pl7 p24 pls
Gag region

Figure 3.12 The distribution of immunodominant epitopes over the HIV-1 Gag

protein. Confirmatory ELISpot analysis was performed on two subjects to determine the reactive
individual peptides. Shown is the distribution of immunodominant peptides found in two individuals
as well as their sequences. Immunodominant peptides were defined as those peptides giving a net
IFN-y ELISpot response of > 1000 SFU/10° PBMC. The heights of the arrows are proportional to the
magnitude of net [FN-y response to the peptide.

The peptides which were classified as the immunodominant peptides in the two
individuals were further analyzed for previously defined epitopes using the Epitope

" Location Finder tool of the Los Alamos Immunology Database (http:/www.hiv.lanl.gov/

content/hiv-db/EL F/epitope_analyzer.html). These peptides had high epitope density and

most of the epitopes were defined in individuals with known HLAs (Table 3.7). Peptides
72 and 73 had the highest number of epitopes previously defined. The epitopic sequences
common to peptides 72 and 73 were listed under peptide 72 and left out under peptide 73.
Most of the epitopes were restricted by HLA-B alleles.
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Table 3.7 CDR' T cell epitopes within immunodominant peptides
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3.3.4.4 Variabitity of cross-reactive ILIV-1 Gag peptides

I'o more closcly characterize the viral regions that were preferentially cross-recognized by
HIV-1-specific 1 eells, we ciassificd all the 32 overlapping peptide sets from the two confirmed
subjects according to recognition of one, two, three. four or five peptide variants.  The median
Shannon entropy scores of the peptides in these twe different groups were determined (Figure
3.14 a). Entropy values ranged from 0-1.514 for all the peptide sets, Peptides recognized in one
sequence variant (8 peptides) were more than those recognized in each of the 2, 3, 4 and 5

sequence varanis (7. 6.4 and 7, respectively).

The median Shannon entropy score of peplides recognized in one and IWo peptide variants was
0.94 (rangc 0.09-1.26) and 0.44 (range 0.08-1.51), respectively. As shown in Figure 3.14a,
these peptidc variants had significantly higher cantropy scorcs when compared to peplide
variants recognized in three, four and five scquence variants, whose median Shannon entropy
scores were 0,19 (range 0-0.45), (.08 (range 0.08-0.11) and 0.06 (range 0.05-0.0%). respectively
(p < 0.05, Mann-Whitney test). There was no significamt difference between the entropy score
of peplides recognized in one sequence variant and those recognized in two sequence variants
(p — 0.3969). The same was true lor peptides recognized in four sequence variants and live

sequence variants (p = 0.6551).

The percentage homology for all the five peptide variants ranged from 58.6% to 100%. The
degree of inter-clade homology. defined as the degree of sequence similarity between the
diflerent clades A, B, Cq 4. Coy and D sequence variants. was highest in the subset of peptides
recognized in all five sequence variants (Figure 3.74 b). Peptides recognized in three. four and
five scquence variants had significantly higher percentage homology when compared o
peptides recognized in one and two sequence variants (p<0.03). There was no significant
difference between percentage homology of peptides recognized in one and 1wo sequence

varianis {p = 0.7263) (Figurc 3.15h).
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Figure 3.13 Characterization of viral peptides with intra- and inter-clade cross recognition by
HIV-specific T cells, (a) Significantly lower entropy of peptides recognized in at lcast three
subtype sequences. (b) Significantly higher inter-clade homology ol peptides recognized in
mare than two clade-specific sequences. Average Shannon entropy scores fur peplides of the five different
HIV peptide sets used in the ELISpot assay are shown, Peprides were cutegorized weoording to the number of HIV-
| subtypes in which each of the peptide was recognized. Different catepories were compared using the nun-
parametric Muann-W hilney fest
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3.4 DISCUSSION

Immunogens designed to elicit T cell responses are the current focus in the development of HIV
vaccines. Because of the significant sequence variation that exists between and within HIV-1
subtypes (7-15% [Korber et al., 2001]), there is no agreement yet as to the importance of HIV

subtypes and their impact on the immune response and subsequent efficacy of vaccines.

The question of whether a vaccine based on one subtype can be effective in a population where
a different subtype is circulating remains unanswered. Ultimately, the best way to have an
answer to this question is carry out vaccine trials, but this is a very long process. Another way
to approach this question is to carry out cross-clade studies in the laboratory. In this study,
cross-clade immune responses were investigated in thirty-nine HIV-1 subtype C-infected
volunteers. An IFN-y ELISpot assay was used using peptides based on vaccine candidates for
subtype C (South African and Chinese), subtype B and subtypes A and D. A pool-matrix
ELISpot approach was used in order to identify the individual reactive peptides. The peptides in
pools and matrices that gave a positive HIV-specific response were tested individually in a

confirmatory ELISpot assay for two highly reactive individuals.

Initially, validation of the assay was performed. There was a significant correlation between the
magnitude of responses obtained in pools and those obtained in matrices. The inclusion of a QC
sample helped in determining which assays passed, as well as in monitoring inter- and intra-

assay variability.

The total magnitude of IFN-y responses were not significantly different between peptides based
on subtype C (South Africa and Chinese) peptides. These intra-clade responses were
significantly higher than responses to other subtypes, namely subtypes B, A and D. These data
suggest that even though subtype C-infected individuals mount robust IFN-y responses against
different HIV subtypes, there is preferential recognition of peptides based on the infecting
subtype. Previous studies have also found the same results (McKinnon et al., 2005; Yu ef al.,
2005). Overall, there were substantial cross- and intra-clade HIV-specific T cell responses
detected in this study. This is further supported by the high cross-clade reactivity ratios as well
as highly significant Spearman correlation coefficients obtained for the Gag responses from the

different subtypes.
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Whether genetic distance between the infecting virus sequence and vaccine immunogen
sequences has an impact on vaccine-induced immune response is important in vaccine design.
In this study no correlation was obtained between the magnitude of HIV-specific IFN-y
responses and overall amino acid distances between the infecting Gag sequence and Gag
peptide reagent sequences. This might be due to the fact that genetic distances encompassed
other regions not important in eliciting immune responses, and that those regions are outside the

epitopic region of the peptides.

An investigation of the distribution of the HIV-specific T cell immune responses across the Gag
showed the p24 region contributes most of the responses. This is likely to be due to the fact that
p24 is generally more conserved when compared to the p17 and p15 regions. This identification
of the most immunogenic region of Gag is important in HIV vaccine immunogen selection
since an ideal candidate vaccine will have to contain those regions of the HIV genome that can
elicit strong T cell responses. However, there were some peptides from the p17 and p15 regions
of Gag which gave rise to cross-clade responses of high magnitudes. These peptides may not be
ignored in vaccine immunogen design since they make an important contribution to the total
Gag-specific T cell response. This identification of Gag p24 as the most immunodominant

region of HIV proteome has also been found by other researchers (Yu et al., 2005).

A detailed evaluation of cross- and intra-clade cellular immune responses to HIV-1 Gag was
performed for two of the volunteers. In these individuals, the five peptide variant sequences
were compared to the infecting virus sequence. Some peptides were not recognized at all. Some
peptide variants were not recognized may be due to variation within the epitopic regions that
resulted in loss of recognition by the restricting HLA or loss of recognition by T cell receptors.
In other cases, an individual recognized some variants of the peptides sets tested and not others.
This might be due to the fact that some mutations can not be tolerated by HLA molecules if
they are non-conservative and involve HLA anchor residues. In addition, the amino acid
changes might be involving HIV-specific TCR contact sites, leading to lack of recognition.
However, there were cases where there was recognition even though corresponding peptides
differed in their amino acid sequences. This suggest that TCR of HIV-specific T cells can
tolerate some degree of amino acid substitution, though analysis of these amino acid

substitution showed that most of them were semi- or conservative substitutions (amino acids
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being replaced by other amino acids of more or less the same charge, hydrophobicity and size).
Another reason could be that the nature of amino acid substitutions could be tolerated by HLA

anchor residues.

There were cases where the peptide sequences less closely related to the infecting sequence
gave rise to a positive response while as the one closest or similar to the infecting sequence was
not recognized. This might suggest escape from the cellular immune response. Possibly the
recognized sequence was present before the day of sequencing which mutated due to immune
pressure, and the peptide sequences were similar to this sequence before mutation hence
recognition by HIV-specific T cells. Therefore, HIV-specific T cells could still recognize this
sequence which they encountered first. Overall, these data suggest that variation outside the
HLA anchor residues and TCR contact sites might have less impact on vaccine induced T cell
reactivity. Furthermore, HLA anchor residues and TCR contact sites can tolerate some degree

of amino acid substitution.

Results of the analysis of the breadth of responses from the individuals showed there was
preferential recognition of peptides based on subtype C, as the individuals were infected with
this subtype. The two individuals had broad HIV-specific T cell responses averaging 17
peptides. Most of these peptides came from Gag p24 region. The recognition of more p24
peptides than pl17 or pl5 might suggest that mutations within this region that result in
abrogation of T cell responses might be those that the virus cannot tolerate due to fitness cost
on replicative capacity. This results in less variation in this region of the virus. This is inline
" with results from a previous study which showed fitness cost in mutation in Gag p24 epitope
TSTLQEQIW (Martinez-Picado et al., 2006), which is found in peptide 58 recognized by
individual CC22 with W replaced by A. The results on the breadth of the responses suggest that
using different peptides sets in testing for HIV-specific T cell responses increases the breadth of
detectable T cell responses as found in a previous study (Currier et al., 2006). However, the

breadth of the responses did not significantly differ among the different subtypes.
The most immunodominant peptide in the two individuals was peptide 72 (sequence

KEPFRDYVDRFFKTL). This peptide has a high epitope density and has been identified

previously as a highly immunodominant peptide to include in vaccines as the epitopes are
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restricted by different HLA molecules, thereby covering people with different HLA
backgrounds (Frahm et al., 2007; Kiepiela et al., 2007; Masemola et al., 2004).

Further characterization of the individual reactive peptides in two individuals allowed the
classification of the T cell responses detected in this study into five categories, namely those
recognizing one, two, three, four, and five peptide sets. The significant difference between
those T cell responses recognizing at least three peptide variants and those recognizing one or
two (the former being higher than the latter) suggest that cross-clade HIV-specific T cell
responses are focused towards peptides with low intra-clade entropy and simultaneously high
inter-clade homology. The data suggest that among the five Gag peptide variants used in the
study, corresponding viral regions share a similar degree of viral diversity. This is probably due

to structural constraints that prevent sequence mutations in specific parts the gag gene.

In summary, cross-reactive HIV-specific T cells preferentially recognize peptides with low
entropy and simultaneously high inter-clade homology. HIV-1 subtype C-infected individuals
can mount substantial cross- and intra-clade immune responses. However, there was no
difference in immune reactivity between South African or Chinese subtype C Gag peptides,
suggesting that vaccines based on these immunogens would work equally well. On the other
hand, the magnitude of responses to other subtypes was lower, suggesting that vaccines based

on these subtypes may be less effective than subtype matched vaccines.
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CHAPTER 4

4.1. DISCUSSION AND CONCLUSION

An effective HIV vaccine will need to protect against multiple HIV subtypes or recombinant
forms. In the present study, full length gag sequences from forty HIV-infected volunteers were
genetically characterized. Cellular immune responses in these individuals were assessed to
determine their ability to recognise peptides from genetically diverse viral isolates representing
multiple subtypes. The peptide reagents used in this study were based on five sequence variants
representing four subtypes including South African subtype C (Cs a, strain Du422), Chinese
subtype C strain (Ccp), subtype B CAM-1 strain, and subtypes A and D. The subtype Cs 4 and
A sequences used in this study are based on immunogens expressed by candidate HIV vaccines
which are in the process of going to clinical trial or have been tested in humans (Burgers et al.,
2006; Hanke et al., 2004).

The individuals in this study were all infected with subtype C viruses. This is in line with
previous studies, that have shown that the major circulating viruses in South Africa are subtype
C viruses (van Harmelen et al., 1999). No recombination breakpoints were detected. This lack
of recombination in these subtype C viruses should improve the prospects of vaccines based on
subtype C gag sequences in that it is unlikely that they will fail due to the emergence of escape
recombinants expressing vaccine targeted epitopes derived from non-subtype C viruses (Bredell
et al., 2007). As shown with previous studies, there is clear evidence of geographical clustering
of subtype C isolates from various parts of the world (Bredell er al., 2007), with Brazilian,
Indian and Chinese sequences forming well-supported monophyletic groups in the gag subtype
C phylogenetic tree. This indicated that these subtype C epidemic in different regions of the
world are genetically distinct. Studies on subtype C sequences from China have shown that

these viruses are BC recombinant viruses; however, their gag gene is derived from subtype C.

Studies have shown that individuals can mount cross-reactive T cell responses (Cao et al.,
2000; Ferrari et al., 1997; Buseyne et al., 1998). However, many of these earlier cross-clade
studies have focused on a limited number of selected epitopes. Moreover, the studies relied on
the use of pools of overlapping peptides or cells infected with vaccinia virus constructs
expressing the entire HIV proteins and therefore could not assess the degree of cross-clade

recognition at the peptide or epitope level (Cao et al., 2000; Ferrari ef al., 1997; Buseyne et al.,
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1998, Currier et al., 2003). More recent studies have looked at cross-clade immune responses at
the peptide level (Yu et al., 2005). However, sequence data was not generated in most of these
recent studies to allow additional characterization of these cross-clade HIV-specific T cell

responses.

We have investigated T cell reactivity of 39 individuals whereby the sequence of the infecting
virus is known. In addition, we have assessed responses against Gag peptides from five
sequence variants, South African C, Chinese C, subtypes B, A and D at the single peptide level.
Although South Africa and China have genetically distinct subtype C epidemics, in this study,
the magnitude of HIV-specific T cell responses to Chinese and South African subtype C peptide
variants did not significantly differ. However, the magnitude of the responses to these two
subtypes C peptide variants was significantly higher than that of Gag peptide reagents based on
subtypes B, A and D sequences. This is further corroboration of results from previous studies
which have shown that HIV-specific T cells are cross-reactive among different HIV subtypes
but with preference to the circulating subtype (McKinnon et al., 2005; Geldmacher et al.,
2007). The magnitude of response to the five peptide variants were in the order Ccy>
Csa>B>A>D. These data suggest that vaccines based on these HIV-1 subtype C sequences
(subtype-matched vaccines) may work equally well in HIV-1 subtype C-infected individuals
from different regions in the world. In addition, although vaccines based on other HIV subtypes
may still induce cross-reactive responses, this reactivity may be less in subtype-mismatched

vaccines.

Further dissection of the CD8" T-cell immune responses to the three individual Gag proteins
showed the major contribution of Gag protein 24 (p24). This is likely to be due to the conserved
nature of this region of the Gag protein. Interestingly, pl7 and pl5 had an important
contribution to the responses and had regions that mounted cross-clade immune responses
despite them being variable. It will be interesting to see whether these cross-clade responses

relate to vaccine induced cross-clade immunity.

The results from this study demonstrate that within a single study individual, some HIV
peptides can be exclusively recognized in the clade C sequence variants (South African C and
Chinese C) while others were uniquely recognized in the clade A, B and D peptide variants.

This likely reflects the overall sequence diversity within subtype C. However, the recognition

97




Chapter 4: Discussion and conclusion

of clade A, B and D peptide variants and not the corresponding clade C peptide variants is of
importance in the study of HIV-1-specific T cell immune responses using the ELISpot assay.
This reflects that the use of different peptide variants increases the number of responses that can

be detected compared to if only one peptide variant had been used.

An important analysis for vaccine design is the relationship between the genetic distance of the
infecting sequence and the peptide reagent sequences that were used in the ELISpot assay and
the magnitude of IFN-y response. Although there was a weak negative association between the
magnitude of response and amino acid distances, there was no significant correlation between
the two. However, HIV-specific T cells recognise epitopes, only very short protein regions.
Amino acid distances used were for the full length Gag peptide sequences and included
sequences outside of the epitopes. Variation in these less important regions might have affected

the results. Therefore it was necessary to analyse individual peptide variants.

Further characterization of peptides used in the study identified viral regions with low intra-
clade diversity and simultaneously high inter-clade homology that were preferentially
recognized by T-cells among all the five peptide variant sequences. This analysis allowed the
classification of all the individual reactive peptides in two individuals into five categories that is
those that were recognized in one, two, three, four and five peptide variants. Indeed, those
peptides that were recognized in three or more peptide variants had significantly lower entropy
scores and simultaneously high percentage homology when cqmpared to peptides recognized in
one or two peptide variants. Overall, these data suggest that within the clade A, B, C and D
sequences, some corresponding viral regions share a similar degree of viral diversity, possibly
due to structural constraints that prevent sequence mutations in specific parts of the viral
genome. Some of these cross-recognized peptides were identical across the five peptide variants
and their cross-recognition was therefore evident. Yet, cross-clade recognition of peptides with
considerable differences in their amino acid composition was also observed, where most of the
amino acid changes were conserved or semi-conserved. In other words, an amino acid was
replaced with one that falls in the same charge or hydrophobic category. This suggests that T
cell receptors of HIV-specific T-cells as well as HLA molecules can tolerate some degree of
amino acid substitution in their epitopes without total loss of epitope recognition or binding as

previously found in other studies (McKinney et al., 2004; Addo et al., 2003).
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The study presented in this thesis was limited in that only two individuals were investigated for
the single reactive peptides responsible for the Gag responses. This was due to time constraints.
Further work on the study will complete the identification of peptides predicted from the
screening ELISpot assay in the remaining 37 study individuals. This will allow for more depth
analysis of breadth of responses to the different subtypes, as well as comparisons with the

infecting viral subtype.

This study only investigated the monofunctional aspect of the cellular immune response,
namely the production of IFN-y. It will be interesting to determine the production of other
cytokines such as TNF-a and functions such as cytotoxicity to see whether they have higher
cross-reactivity than IFN~y production association with better clinical outcome. This is because
the immune correlates of viral control are not yet clear, but recent studies suggest the
importance of polyfunctional CD8" T cells (Betts ef al., 2006) and therefore, will be important
to know whether polyfunctional HIV-specific CD8" T cell are associated with higher cross-

reactivity.

In conclusion, this study showed that subtype C infected individuals recognized peptides based
on Chinese and South African sequences equally suggesting that it will not be necessary to
design vaccines based on regional variation. In addition, while extensive cross-clade
recognition was detected, the total magnitude of cross-reactive T cell responses was lower than
that of intra-clade T cell responses suggesting that there are some advantages of matching a
vaccine to circulating subtypes. However, the inclusion of new generation of vaccines that

include immunogens such as T cell mosaic antigens that reduce the effect of diversity would

potentially be beneficial to enhancing effective vaccine-induced cross-clade responses (Fischer
et al., 2007).
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APPENDICES

Appendix A: Molecular Biology Techniques
Al: RNA Extraction

e Samples were equilibrated at room temperature (15-20°C).

o Buffer AVE was also equilibrated at room temperature for elution in step 10.

o The precipitate in buffer AVL/Carrier RNA by heating, if necessary, and cool to

room temperature before use.

e All centrifugation steps were carried out at room temperature.

1.

wos »nN

9a

10.

560ul of prepared buffer AVL containing Carrier RNA was pipetted into
a 1.5-ml micro centrifuge tube.

140ul of plasma was added, mixed by pulse vortexing for 15 seconds.
The mixture incubated at room temperature (15-25°C) for 10 minutes.
This was brief centrifuged to remove drops from the inside of the lid.
560ul of 96-100 % ethanol was added to the tubes, pulse-vortexed for 15
seconds and brief centrifuged.

630ul of the resulting solution was applied to QlAamp spin column in a
2ml collection tube without wetting the rim and centrifuged at 6000 x g;
8000 rpm for 1 minute. The spin column was placed into a clean 2ml
collection tube and tube containing the filtrate was discarded.

The QIAamp spin column was carefully openea and step 6 repeated.
500ul of buffer AW1 was added and centrifugation performed at 6000 x
g; 8000 rpm for 1 minute. The column was placed into another clean 2ml
collection tube and the filtrate was discarded.

500ul of buffer AW2 was added and centrifuged at full speed 20 000xg;
14 000 rpm for 3 minutes.

Spin column was placed into a clean 2ml collection tube and centrifuged
at full speed for 1 minute.

The QIAamp spin column was placed into a clean 1.5ml micro centrifuge
tube and 60ul of elution buffer AVE was added, incubated for 1 minute

at room temperature and then centrifuged at 6000 x g; 8000 rpm for 1

minute,
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A2: PCR purification of amplicons

A protocol designed to purify single- or double-stranded DNA fragments from PCR and

other enzymatic reactions. Fragments ranging from 100bp-10kb are purified from

primers, nucleotides, polymerases, and salts using QIAquick spin columns in a micro

centrifuge.

Ethanol (96-100%) was added to buffer PE before use.

All centrifuge steps were carried at 13 000 rpm (~17 900 x g) in a conventional
tabletop micro centrifuge.

5 volumes (200ul) of buffer PB was added to 1 volume (40ul) of the PCR
sample mix.

A QIAquick spin column was placed in a provided 2 ml collection tube

The sample was applied to the QIAquick column to bind DNA and spun for 60
seconds.

The flow through was discarded and the QIAquick column placed into the same
tube.

0.75 ml of buffer PE was added to the QIAquick column and centrifuged for 60
seconds to wash.

The flow through was discarded and the column placed back into the same tube.
This was centrifuged for an additional 1 minute.

The QIAquick column was placed into a clean 1.5 ml micro centrifuge tube.

50ul of buffer EB (10mM Tris-Cl, pH 8.5) was added to the centre of the
QIAquick membrane and centrifuged for I minute to elute DNA.

The eluted DNA was stored at -20°C.
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A4: Roche Malecular Weight marker VI (Roche, GmbH, Mannheim, Germany)

For example. sample band intensity corresponding to fragment 453 (1lng) in the

Molecular weight marker lanc. Sul of sample was loaded theretore the concentration of

sample would be:
0.75 = 1 lng +~ 5
—1.65ng/ul

e
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Figure Al Melccular weight marker VI (Roche. GmbH: Mannheim, Germany). A known
quantily of the merker is run in paralicl with study sample amplicon e allow for quantification by band

inicnsity comparison,
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Table A1 Amino acid codes

Amino acid | 3-letter code | IUB code | Amino acid | 3-letter code | IUB code
Alanine Ala A Leucine Leu L
Arginine Arg R Lysine Lys K
Asparagine Asn N Methionine | Met M
Aspartic acid | Asp D Phenyalanine | Phe F
Cystine Cys C Proline Pro P
Glutamine Gin Q Serine Ser S
Glutamic acid | Glu E Threonine Thr T
Glycine Gly G Tryptophan | Trp A"
Histidine His H Tyrosine Tyr Y
Isoleucine Ile I Valine Val \%
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Table A2 Codons
3-letter code | Unambiguous codons IUB codons
Ala GCT, GCC, GCA, GCG | GCX
Asp, Asn GAT, GAC, AAT, AAC | RAY
Cys TGT, TGC TGY
Asp GAT, GAC GAY
Glu GAA, GAG GAR
Phe TTT, TTC TTY
Gly GGT, GGC, GGA, GGG | GGX
His CAT, CAC CAY
Ile ATT, ATC, ATA ATH
Lys AAA, AAG AAR
Leu TTG, TTA, TTR
CTT, CTC, CTA, CTG CTX
Met ATG ATG
Asn AAT, AAC AAY
Pro CCT, CCC,CCA,CCG | CCX
Gln CAA, CAG CAR
CGT, CGC, CGA, CGG, | CGX
Arg AGA, AGG AGR
TCT, TCC, TCA, TCG, | TCX
Ser AGT, AGC AGY
Thr ACT, ACC,ACA, ACG | ACX
Val GTT, GTC, GTA, GTG | GTX
Trp TGG TGG
XXX XXX
Tyr TAT, TAC TAY
Glu, GIn GAA, GAG, CAA, CAG | SAR
End TAA, TAG TAR
TGA TRA
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Appendix B: Molecular Biology Reagents and recipes
B1: 10X TBE Buffer

108g Tris-HCI

55¢g Boric acid

20ml 1.5M EDTA

made up to 1 litre with dH,O

B2: 6X Agarose Gel Eletrophoresis Loading Dye
0.25% bromophenol blue

0.25% xylene cyanol FF

30% glycerol

In deionized water

B3: Sequencing buffer
200mM Tris, pH 9.0
SmM MgCl,

B4: Recombination analysis )

Each of the study participants’ full length gag sequence was éhalyzed for recombination
using REGA version 6.4.1, a software program which compares each nucleotide position
to other HIV-1 pure subtype and CRF reference sequences to determine whether there is
sufficient phylogenetic signal to classify the sequence as a pure subtype of CRF,

recombinant viruses or unclassified viral subtypes (de Oliveira et al., 2005).
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Appendix C: Immunology Techniques

Peptide sets

The peptide sets used in the cross-clade study belong to Gag subtype A, Gag subtype D,
Gag subtype B, Gag C Du422 (South African subtype C) and Gag subtype C China. A
pool and matrix approach was used in which five pools were made up for each of the
five peptide variants (Table C1) and twenty-four matrices were designed to include all
the single Gag peptides, which make up the five different peptide variants (Table C2).
The consensus Gag B peptides were available as 1mg lyophilized peptides while as the
other four peptide variants were supplied at S00pug/peptide. Single peptides from the five
clades were reconstituted to 10 ul aliquots of 10mg/ml stocks and then further
reconstituted to 30ug/ml and stored at -80°C. The peptides were used at a final
concentration of 1.5pg/ml in the ELISpot assay.

Peptides were confirmed by the IFN-y ELISpot assay using single peptides to identify

specific epitope stretches.

CEF peptide pool and PHA were used as positive controls on all tested PBMCs. The
CEF peptide pool constituted a panel of 32 8-11-mer CMV, EBV and Flu virus peptide
epitopes recognized by CD8" T cells. The pool was reconstituted at 20ug/ml in 90%
PBS/10% DMSO and stored at -80°C.

Table C1 Gag pools

Pool 1 Pool 2 Pool 3 Pool 4 Pool 5
(Gag C1 Du422 1-24 2548 49-72 73-96 97-120
Gag C2 China 1-24 2548 49-72 73-96 97-119
Gag B 1-24 25-48 49-72 73-96 97-123
|Gag A/D 1-18 19-36 37-54 55-72 73-90
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Table C2 Gag matrices

w1 Mz m M s ~ me WY e ]
Gay C1-1 Gag C1-2 Fag L) _1Gagi14 5ag S1-5 5ag C1-6 Gag C1-7 Gag C1-8 |
Fj_x'._i 2% iag C1-26 Gag C1-27_ ag C1-28 G3ag C1-1 __!Gp&'la];-‘
[Gag C143 Gag C150  |Gag C1-51 Gay C1-62 Gag C1-58 {Gag C1-56
Gag C1-712 IGag S1.74 ang G1-75 |Gag C1-76 C1-78 Gag C1.80
iGag C1.97 3ng C1-06 Zag C1-99 Gap €1 00 IGag (1-11
Gag 2.1 Gag C2-2 __ |Gag G2.3 Gag C2 4 Ci-B
Gag 0227 GagCl2i Gag C2-29
Gay ©2-51 [Bag (:2.52 _ Bag ¢2.53

(g 02-7%

Gag G2-76

Sag A-B5 {{ing A-G0
Gag A-H9 [Lng A- 00
Gag 17 og D18

Gag 041 Gon D42

(Gapg -84

Gag D-53

18 20

Gay -2 lag B-2 . [Gag B4 Gag B 5 GagB6 Gag A7 Gag E- _Gag B-&
Gay B-26 [Gag B-27 (g H-20 |G‘_ag B-2% Gag B3] taag B-3F Gag B-32 Gag B-13
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Specimens

A total of 40 asymptomatic HIV-1 subtype C infected individuals were enrolled in
the study: 20 samples were stored at NICD sample repository and the other 20 at the
IIDMM

Assay protocol

The ELISpot assays were conducted for screening of peptide responses using a panel
of peptide described in C1 and C2. PBMC from NICD blood donor (QC sample-
NICD 063) was used as a positive control sample for each plate. The QC sample had
been tested against PHA and CEF and was a known responder and therefore used as a

positive control.

Participants’ PBMCs were thawed as described in Chapter 3 and tested in duplicate
against each Gag peptide pool, once against each Gag matrix and twice against CEF
and PHA (plate layout in Table C3). Eight negative control wells, four positive

control wells and four peptide control wells were used.

The negative control wells consisted of six unstimulated PBMC and two unstimulated
wells for the QC sample per plate. Each plate also had six wells containing R10

(media only).
Positive control wells consisted of two PHA stimulated PBMC and two PHA
stimulated wells for the QC sample per plate. The control wells consisted of two CEF

stimulated PBMC and two CEF stimulated QC sample on each plate.

Peptide confirmations were performed for those peptides that gave a positive

response after the screening ELISpot assays.
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Table C3 LLISpot worksheet and plate layout
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Test acceptance criteria

A test was regarded as positive when the response was >100 sfu/106 PBMCs and at
least 3 times the mean background response. The positive response in the pool was
supposed to match a response in a matrix pool that shares one of the peptides in the
pool.

Fail criteria for the ELISpot assay included any one or more of the following:

Greater than 100 spots in the negative control wells

Grater than 5 spots per well for the wells containing media only

Less than 400 spots per well for the PHA wells.

Record keeping

An ELISpot worksheet (Table C3) was completed with each assay performed. The
plates were read by the CTL Immunospot Analyzer and data saved on CD plates. All
completed worksheets and ELISpot raw data and calculated data were archived at the
UCT human Immunology Laboratory and copies sent to NICD Immunology
Laboratory.
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Table C3 ELISpot worksheet and plate layout
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