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INTRODUCTION 

It is generally accepted today that QCO is the most likely candidate to 
describe the strong interactions between hadrons. Although it is pos­
sible to investigate the theory in the short distance region using 
conventional perturbation theory, non-perturbative methods are needed to 
describe the theory in the physically interesting long distance 
{confinement) region. A prerequisite of any such method is that, start­
ing from basic principles, it should provide a manner of obtaining 
quantitative physically meaningful results. 

It was with this in mind that Wilson [1] introduced the concept of a 
lattice structure in an attempt to extract information from QCO {e.g. 
mass spectra and confinement). In this regularized theory, Quantum Field 
Theory is defined as the limit of a theory with a short distance {ultra 
violet) cut off a and a volume {infrared) cut off L . 

It was one of the first achievements of the newly established theory to 
show the existence of confinement on the lattice in the strong coupling 
limit {see Chapter 6). The analogy that exists between the strong cou­
pling expansion of the lattice theory {i.e. a perturbative expansion in 
terms of the inverse coupling constant), and the relativistic string 
model, made it possible to relate the (colour) force between a quark­
antiquark pair to the string tension between them. A linearly rising 
potential as a function of the interquark distance R would signal 
confinement. 

It was also apparent from the outset that a strong similarity existed 
between the strong coupling {SC) regime of the theory and the high 
temperarture phase in Statistical mechanics. This made it posssible to 
implement several well-known methods to Lattice Gauge .Theories (LGT) 
that had long been applied to statistical systems, e.g. mean field {MF) 
methods and Monte Carlo (MC) simulations. 

Mean field theory has turned out to be a very useful analytical method 
to investigate LGT. Applied naively, this implies replacing all the 
links in the partition function except one by their average {mean field) 
value M, which is taken to be proportional to the unit matrix (see 
Chapter 7). It turned out, howevever, that this could not be reconciled 
with Elitzur's theorem, which states that the {vacuum) expectation value 
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of a non-gauge invariant quantity (here the link ux,~) should vanish 
identically. Although this resulted in the MF approximation being 
suspect for some time, a solution to the problem was provided by the 
saddle point approximation, where higher order corrections to the lowest 
order MF result were included. By summing over all the degenerate saddle 
point solutions, a vanishing mean field value is obtained in agreement 
with Elitzur's theorem (see Chapter 7). 

The drawback to both mean field and strong coupling methods is that 
their use as qualitative methods to investigate the theory is limited. 
For SC methods in QCD this inplies that only the SC phase can be inves­
tigated, while little or nothing can be said about the physically 
interesting weak coupling phase (corresponding to the continuum limit). 
Near the expected transition points of the various gauge theories all 
results become suspect due to the singular nature of the phase 
transition. Mean field methods on the other hand essentially coincide 
with the SC expansion in the SC region, while in the weak coupling 
regime it is a rearranged weak coupling expansion. 

In the investigation of finite temperature systems MC techniques have 
been widely applied (see Part II). A thorough understanding of QCD at 
finite temperature (and density) is vital for many physical applications 
that have become particularly relevant during the last few years with 
the construction of accelerators large enough to investigate the pos­
sible formation of a quark-gluon plasma. To study the phase transition 
between the confined hadronic phase and the deconfined (asymptotically 
free) quark-gluon phase it is important to investigate physical observ­
ables such as the energy density over the entire possible temperature 
range. In this particular case a phase transition will exhibit itself in 
the form of a sudden change in the behaviour of the physical observable. 
For the pure gauge theory one investigates the phase structure using as 
order parameter the Polyakov (thermal Wilson) loop L(x). This is based 
on the observation that the pure (SU(N)) Gauge theory is invariant under 
a global Z(N) transformation, while L(x) is not. The Polyakov loop can 
therefore serve as order parameter for confinement by virtue of its 

-BF 
identification with the free energy of a quark source: <L> = e q , B = 
T- 1. If <L> = 0, the theory is in a confining phase (corresponding to Fq 
= oo) whereas • if <L> # 0 it is in a non-confining phase. For the full 
theory (i.e. where the effects of quarks are also included) this iden­
tification is not possible as the fermion action explicitly breaks the 
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global Z{N} symmetry, which results in <L> being non-zero for both 
phases. 

Concerning the calculations itself, it has been established with 
reasonable certainty that the deconfinement transition in the pure gauge 
theory with SU(2} and SU(3} as gauge groups is second and first order 
respectively. Incorporating dynamical fermions into the theory has 
turned out to be more . difficult, and as yet still remains an open 
problem. The difficulty arises as the Grassmann variables (necessary to 
describe the anti-commutation properties of the fermion fields} cannot 
be simulated on a computer and therefore have to be integrated out 
first, giving an effective fermion determinant. The resulting deter­
minant is highly non-local, so that some kind of approximation is 
unavoidable. Several approximation schemes have been proposed to deal 
with this problem, e.g. the hopping parameter expansion (i.e. an expan­
sion in the inverse mass) and the pseudofermion approximation. With all 
this is mind it is clear that the critical parameters of the phase 
transition for full QCD are not yet completely resolved. This also 
applies to. the chiral symmetry restoring phase transition, which for 
quarks in the fundamental represenation occurs virtually simultaneously 
with the deconfinement transition. 

Finally, the results from lattice calculations can only be physically 
meaningful once the appropriate continuum limit value has been obtained. 
Alternatively, lattice results (e.g. the deconfinement temperature Tc 
and string tension} can only be taken seriously if they are near the 
continuum limit. To ensure that this is indeed the case, use is made of 
the renormalization group equation for LGT, which provides a prescrip­
tion of how the coupling constant must change if the lattice spacing is 
taken to zero. 
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The thesis is organized as follows. 

Part I is a general introduction to LGT. The theory is discussed from 
first principles, so that for the interested reader no previous 
knowledge is required, although it is assumed that he/she will be 
familiar with the rudiments of relativistic quantum mechanics. 

Part II is a review of QCD on the lattice at finite tempe.rature and 
density. Monte Carlo results and analytical methods are discussed. An 
attempt has been made to include most relevant data up to the end of 
1987, and to update some earlier reviews existing on the subject. 

To facilitate an understanding of the techniques used in LGT, provision 
has been made in the form of a separate Chapter on Group Theory and 
Integration, as well as four Appendices, one of which deals with 
Grassmann variables and integration. 



5 

CHAPTER 1: LATTICE GAUGE THEORY BASICS 

1. Lattice Formalisms 

To obtain a suitable regularized theory, two different (but equivalent) 
approaches have been proposed in the literature, namely the Lagrangian 
and the Hamiltonian formalisms. 

The Lagrangian formalism was originally put forward by Wilson [1]. In 
this formulation, gauge invariance is an exact local symmetry (see 
Chapter 2) of the action. The first step after the discretization of 
continuum space-time is to perform a Wick rotation from Minkowski to 
Euclidian space. All calculations are done using the Euclidian metric. 

An advantage of this formalism is the possibility of making an anology 
between the field theory defined on the lattice and Statistical 
mechanics, for which several well known calculational methods exist (see 
Chapters 6 and 7). The field action can be identified with the energy of 
a configuration, while the vacuum functional · integral 
partition function. It should, however, be kept in mind that 
mechanics is defined on (say) d-dimensional space, while the 
ing QFT problem is defined in d-dimensional space-time. 

becomes the 
Statistical 
correspond-

An alternative approach is the Hamiltonian formalism proposed by Kogut 
and Susskind [4]. In this formalism, time is treated as a continuous 
variable, i.e. only space is discretized. A Hamiltonian is defined which 
describes the quark and gauge degrees of freedom on the spatial lattice. 
Creutz [5] has shown that the Kogut-Susskind Hamiltonian for LGT can be 
derived from Wilson's Lagrangian formulation using the transfer matrix 
formalism [10] in a special gauge (i.e. A0 = 0). 

One of the advantages that the Lagrangian formalism has over the 
Hamiltonian one is that because of the gauge invariant nature of the 
former, gauge fixing need not be applied. Gauge invariance, however, 
allows gauge fiiing to be implemented without changing the "physics" of 
the gauge invariant quantities. 

It must also be kept in mind that the introduction of a lattice struc­
ture destroys the Lorentz (i.e. Euclidian) and rotational invariance of 
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the original continuum theory. It is expected that these will be re­
stored in the continuum limit (a~ 0). 

Quantization of the theory is carried out using the (Feynman)path in­
tegral formalism (see section 4). We will only consider the Lagrangian 
formalism which has received widest attention in the literature. 

2. Lattice Phenomenology 

The lattice A is introduced [1;3a;10;11] by defining a set of points 
xJ.I. E: A , xJ.I. = (x

0 
, xi , ... , xd_ 1 ) where X; = an; and n; = 0, ± 1, 

± 2 ... to form the vertices of a hypercubical lattice with spacing a. 
Although we will only consider lattices with a cubical structure, many 
alternatives have been discussed in the literature, e.g. the random 
lattice [6]. 

The matter fields (e.g. scalar and fermion) are defined on the lattice 
points, while the gauge fields are defined on the nearest neighbour 
(n.n.) links and play a crucial role in the context of local gauge 
invariance (see Chapter 2). 

The links UX,J.I. take their values in the Gauge group: 

( 1) 

(la) 

The Gauge groups that will be considered will always be compact Lie 
groups, which offer advantages for integration over the group space (see 
Chapter 5). 

The link variables have a definite direction determined by J1. = 0,1,2, 
... ,d-1 however, reversing the direction of the link between two 
nearest neighbour sites will not produce a new degree of freedom but 
rather requires that U becomes its inverse in the group, i.e. if 

X X+J.L 

then 
X X+J.L X+J.L X 
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For ad dimensional cubic lattice with linear (finite) dimension L (i.e. 
L =~xi)' the number of lattice sites is equal to 

1 

d 
N = L • (3) 

The corresponding number of links is Nd. Also, in general most lattices 
have periodic boundary conditions, i.e. with x.+L = x .. To get a feeling 

1 1 . 

for the way that physical quantities are defined on the lattice, we 
consider any function f(x) defined at the lattice points. 

To go to momentum space we introduce the Fourier transform 

g(k) a4 i ei(k.x)a f(x) (4) 
X=-co 

To get the inverse relation we use 

n/a J eik.(x-y)a dk = (27r) 4 6x,y a (5) 

-n/a 

where the boundaries of the integral are fixed by the fact that g(k) is 
periodic over the interval 

(6) 

i.e. the momentum values are constrained within the fi~st Brillouin 
zone. The inverse transform therefore reads 

n/a 
f(x) = ____ 1 __ 4 J d4k g(k) e-i(k.x)a 

(21r) -n/a 
(7) 

It follows that the lattice regularization has introduced a natural cut­
off in momentum space, with cut-off value k~ = ± i , or 

1 A --cut-off a 

(hence in the continuum limit (a~ 0), A~ co, i.e. A is an ultra-violet 
cut-off). 
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Given a continuum (Eucl1dian) Lagrangian we can define the corresponding 
lattice theory as follows: 
- scalar fields (spin 0) are defined on the lattice points 
- vector fields (spin 1) are defined on the links 
- spinor fields are also defined on the lattice parts, however these are 

plagued by a degeneracy problem which has to be removed or suitably 
side-stepped (see Chapter 4). 

Just as hypercubical lattices are not the only possibility that can be 
considered, the internal structure of the lattice may also be altered. 
If the lattice spacing in the different directions (usually space and 
time) are not the same, we have an asymmetric lattice which is charac­
terized by the asymmetry parameter 

where aa is the lattice spacing in the spatial directions 
a

1 
is the lattice spacing in the time direction. 

(8) 

It follows that a symmetric lattice would correspond to the choice 

e = 1 (9) 

Unless stated otherwise, we will consider lattices with a symmetric 
structure in the following. Asymmetric lattices are of interest for the 
theory at finite temperature (see Part II). 

' 

3. Free Scalar (spin 0) Field on a Lattice 

To ·show how the discretization of continuum space-time is implemented, 
4 

we consider as an example the complex scalar field [2;8] with a ~ 
interaction term. 

In order to go to a discrete space-time formalism, the following sub­
stitutions are made: 

(a) the derivative of the scalar field is replaced by a difference 
between fields on neighbouring lattice sites. The simplest choice is to 
use the nearest neighbour (n.n.) difference 
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(10) 

A A A 
with (i) ¢(x+~) = ¢(x+a~) where~ is the unit vector in the direction 

~· 

( i i ) 
-+ 

and x denotes the four vector x = (x
0

,x). 

Note that if we choose a next-to-nearest neighbour difference, we can 
write the derivatve in a more symmetric form: 

( 11) 

(b) The integral of the continuum theory is approximated by the sum 

J 4 4 
dx-+a };, 

X 
(12) 

In the Euclidian continuum formalism the action for a scalar field is 
given by [11] (d=4) 

I 
4 2 

S = d X [%18~¢1 + V(¢)] (13) 

with 
2 2 A 4 4 

V(¢) = %m ¢ + 4 ¢ for the specific ¢ interaction. (13a) 

The corresponding lattice expression for the free theory is obtained by 
using eqs.(11) and (12) (setting A= 0) 

(14) 

To find the spectrum of the free field theory we go to momentum space 
using the Fourier transform given in eq.(7) 

For the first term in the action (11) this gives 
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4 4 1\ .1\ 

=~I d k: ~ ~(k) ~*(k') ei(k-k').x (I + eik.~a e-ik' .~a 
X (27r) (27r) 

Using the relation 

~ ei(k'-k).x = ( 21r)4 6(4) (k-k') 
X 

we have 

4 1\ 1\ 

I =I~ ~(k) ~*(k) (ei,k.~a - I) (e-ik.~a_ I) 
(27r) 

= 4 J d4k4 ~(k)~*(k) sin2(kia) . 
(27r) 

The action for the free field is therefore given by 

. (IS) 

(I6) 

(17) 

(IS) 

In momentum space each mode now contributes to the action a quantity 
2 2 2 

S(k) = m + (4/a) ~sin (%ak~). In the limit a~ 0, the standard con-
2 2 ~ 

tinuum form m + k is recovered. In the limit where m goes to zero, but 
finite a, S(k) is zero if all k~ are zero or a multiple of 2:. These 
latter values are, however, outside the region of integration and there­
fore S(k) has only one pole and only one particle is described. This 
situation does not exist for spin % particles, leading to additional 
complications when fermions are involved in the theory (see Chapter 4). · 



11 

4. Quantization of lattice Gauge Theories [11] 

As remarked earlier, quantization of the theory is carried out using the 
path integral formalism. Using this formalism we can define the 
Euclidian Green's function for the scalar field by 

G(~x' ... , ~x) = <OI~x ~x ... ~x IO> 
1 n 1 2 n 

where (i) S(~) is given by eq.(14), and 

(ii) . Z = J (IT d~ ) e-S(~) 
X X 

-00 

= J [d~] e-S(~) 

... , (19) 

(20) 

is the path integral of the scalar theory which corresponds to the 
partition function of a d-dimensional Statistical system. 

The expectation value of any physical quantity 0(~) can also be defined 
by 

<0> = z- 1 J [d~] o e-S(~). (20) 

with Z given by eq.(20). 
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CHAPTER 2: GAUGE INVARIANCE IN LATTICE GAUGE THEORIES 

1. Review of Gauge Invariance in the Continuum Theory 

Consider a matter field multiplet -i(x) . belonging to an irreducible 
representation i of the gauge group G. In this representation we will 
denote the generators ~Y Ta and the gauge potentials by A:(x) with, for 
G = SU(N), a= 1, ... , N -1 (see Chapter 5). 

Consider the SU(N) local gauge transformation 

where 

-.(x) ~ v .. (x)-.(x) 
1 1 J J 

* * t -· (x) ~ - .(x)V .. (x) 1 J Jl 

(i) V(x) = V(g(x)) 
(ii) V is unitary . 

g(x) £ SU(N) 

(1) 

Under the transformation above the field -(x) and its covariant deriva­
tive 

[0 -(x)]. = [a 6 .. + ig(Ta) .. Aa(x)]-.(x) 
~ 1 ~ 1J 1J ~ J 

(2) 

transforms identically, 

while the gauge potentials A~(x) that build up the adjoint multiplet 
transform inhomogeneously: 

The second term in eq.(2) ensures that the action is gauge invariant 
under (1). 

2. Implication .of Local Gauge Invariance for LGT 

If the procedure for constructing a gauge invariant action described 
above is naively applied to lattice theories- i.e. by associating 
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vector gauge potentials with the links and replacing the derivatives by 
finite differences - the resulting discretized covariant derivative will 
only have the correct transformation properties if the lattice spacing a 
becomes very small: 

DJ.L¢(x) = [aJ.L + igAJ.L(x).]¢(x) 

~ a- 1[¢(x+p.) - ¢(x)] + igAJ.L(x)¢(x) 

a- 1[1 - igaAJ.L(x)]¢(x) 

~ a-1[¢(x+p.) - e-iagAJ.L(x)¢(x)] 

= a-d/2[~ _ ut ~ ] 
"'x+p. x,p."'x 

where we defined 

(small a) 

and introduced the dimensionless variables ¢x with 

(4) 

(4a) 

(5) 

In the action, the lattice cnvariant derivative appears in the form 

t 2 2 2 
Using _IUx,p.l = 1, .and }: l¢x+p.l = }: l¢xl (if the sum goes over 

X,J.L X,J.L 
all lattice points) we can rewrite eq.(6) as 

(7) 

Equation (7) now provides another possibility for constructing a gauge 
invariant theory if we note that the factor u!,J.L {which is associated 
with the link (x+p., x) (see later)} appears in the combination 

* t 
¢ X+J.L UX,J.L¢X 
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3. Application to the Spin 0 Field 

As an example, we consider in detail the implication of gauge invariance 
for the Spin 0 field on the lattice. 

From Chapter 1 we have the following expression for the spin 0 field 

( 
2 " 2 4 2 2 ) 

S(~) = ~ %a ~ [~(x+~) - ~(x)] + %am l~(x)l 
X ~ 

( 
2 " 2 2 " t 

= ~ %a ~ [l~(x+~)l + l~(x)l - ~(x+~)~ (x) 
X ~ 

- ~ (x+~)~(x) +%am l~(x)l . t " 4 2 2 ) . (8) 

The mass term, as well as the first two quadratic terms are clearly 
invariant under the transformation (1). 

To make the mixed terms gauge invariant we implement our earlier 
suggestion and insert a factor ux,~ , such that 

(9) 

where ux,~ is 
interpreted as 

an element of the gauge group [with definition (4a)] and 
" the link (x ~ x+~ ) connecting the matter fields at the 

" " sites x and x+~ with ~ the unit vector giving the specific direction. 

Under a local gauge transformation (1), Ux,~ transforms as 

ux,~ ~ V(x)Ux,~vt(x+~), 

which ensures gauge invariance of expressions like eq.(9), as 

~t(x)Ux,~~(x+~) ~ ~t(x)Vt(x)V(x)Ux,~vt(x+~)V(x+~)~(x+~) 

= ~t(x)Ux,~~(x+~). 

(10) 

( 11) 

Hence, in order to obtain a gauge invariant Spin 0 theory, the group 
elements ux,~ had to be introduced (instead of the gauge potentials 
A~(x) needed in the case of the continuum theory). This result also 
applies to other (matter) fields defined on the lattice,,e.g. the Spin~ 
fields (see Chapter 4). 
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CHAPTER 3: PURE GAUGE SECTOR (SPIN 1 FIELDS) ON THE LATTICE 

1. Basic Construction 

In constructing an Euclidian action for the pure gauge sector the fol­
lowing requirements should be kept in mind: 

(a) the action should be defined at each space-time point of the lat-
. tice, 
(b) it should, as far as the lattice structure allows, keep the original 
global symmetries of the continuum Yang-Mills action (such as parity 
and charge conservation), 
(c) it should have a local gauge invariance, 
(d) it should give the correct form of the Yang-Mills action in the 
continuum limit(a ~ 0). 

Consider the closed loop made up of four nearest neighbours (n.n.) links 
. with origin at the point x: 

This is called an elementary plaquette UP [1] (elementary because we 
. only consider n.n. links) where 

Up = U~(x)Uv(x+~)Ut(x+v)Ut(x) 

U~(x)Uv(x+~)U~ 1 (x+v)U~ 1 (x) 

(1) 

(1a) 

Note that the the hermitian conjugate of the above (i.e. U~), gives the 
link variables in the reverse order. 

We will now show that the trace of this elementary plaquette forms the 
simplest gauge invariant candidate for the gauge sector action. 
Consider the local gauge transformation (see Chapter 2) 

(2) 
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Under this transformation the elementary plaquette transforms as 

Up = U~(x)Uv(x+~)U~(x+v)Ut(x) 

~ V(x)U~(x)Vt(x+~)V(x+~)Uv(x+~)Vt(x+~+v)V(x+~+v)U~(x+v)Vt(x+v) x 

V(x+v)Ut(x)Vt(x) 

= V(x)U~(x)Uv(x+~)U~(x+v)Ut(x)Vt(x). 

If we now take the trace and use its cyclic property we get 

tr Up = tr U~(x)Uv(x+~)U~(x+v)Ut(x) 

~ tr[V(x)U~(x)Uv(x+~)U~(x+v)Ut(x)Vt(x)] 

= tr U~(x)Uv(x+~)U~(x~v)Ut(x). 

The action for the pure gauge sector can therefore be written as 

S(U) = c ~ (tr Up + tr U~) 
p 

= c ~ Re tr UP, 
p 

where (i) the sum runs over all possible elementary plaquettes; 

(3) 

(4) 

(5) 

(ii) the constant c must be chosen in order to give the correct 
continuum Yang-Mills action in the classical continuum limit. 

Determining the constant factor in eg.(5) 

Writing out the explicit form of the the link variables that form a 
plaquette, we have 

= exp[iagA~(x)].exp[iagAv(x+~)].exp[-iagA~(x+v)].exp[-iagAv(x)]. 

From a~Av(x) = l[Av(x+~) - Av(x)] 
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it follows that 

(6) 

Therefore 

exp[-iagAx,v]. (7a) 

Using the Baker-Hausdorff formula 

eX ey =eX+ Y + %[X,Y] + ... , (7b) 

we have 

... 

Up = exp( ia
2
g{ 811Ax,v - 8vAx,u - g[A ,A ]} 

t" t" x,p, x,v 

1 . 2 2 
+ 2 (1a gFP,V) + ... , 

2 1 4 2 2 6 
= 1 + ia gFp,v- 2 a g FP,V + O(a) + ... , (8) 

where FP,V = ap,Av - aVAP, - g[AP,,AV] 

= ap,Av - avAp, - igfabcA~A~Tc (9) 

and (Ta are the SU(N) generators) 

2 1 4 2 2 
Therefore tr Up= tr(1 + ia gFp,v- 2 a g Fp,v + ... ) 

• 2 1 4 2 2 
= tr 1 + 1a g tr(Fp,v) - 2 a g tr(Fp,v) + ~·· 

1 4 2 a a = tr 1- 4 a g Fp,vFp,v + .... (10) 
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For the opposite directed plaquette U~ we get the identical result, 
hence 

t 1 4 2 a a 
~ (trUP + trU ) = ~ 2(tr 1 - 4 a g F~vF~v) 
p p p 

2 4 1 a a 
= 2~ tr 1 + 2g ~(- a 4 F~vF~v>· 

p p 

To go to the continuum limit (a~ 0) we make the substitution 

4 I 4 a ~ ~ d x, 
X 

so that I 4 4 -1 
~ d x (2a ) ~ , 

~v 

( 11) 

where the factor twas obtained from the symmetry under ~,v exchange. 

Therefore 

~·tr(U + ut) 
p p p 

2 I 4 4 -1 1 4 a a 
~ 2g d x (2a) [- 4 a F~vF~vl + 2~ tr 1 

p 

2 I 4 1 a a = -g d x 4 F~vF~v +constant , (12) 

where summation over the indices ~,v is implied. 

The pure gauge action therefore gives the correct form of the Euclidian 
continuum Yang-Mills action provided the constant factor is chosen to 
be -g-~ i.e. 

s = -g- 2 ~ tr(U + ut) 
p p p 

(13} 

= -2g- 2 ~ Re trUP 
p 

( 13a} 

Remarks 

(i} The action above is called the Wilson action. It is not unique · 
the requirements listed at the beginning only ensure that the correct 
continuum limit action is obtained. 
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(ii) By summing over all possible orientated plaquettes we obtain an 
action which is real (eq. (13a)), with the sum now running over all 
unorientated plaquettes. 

(iii) For colour SU(N) the trace in eq. (13a) only runs over the colour 
indices. 

2. Alternative form of the Wilson Action 

By incorporating the constant factor 2~ tr 1 (which was dropped in 
p 

eq. (13a)) we obtain the following form of the Wilson action: 

1 4 2 
=> ~ Re tr(Up) = ~ [tr 1 - 4 a g F~vF~v ] 

p . p 

;~ 1 2 I 4 1 a a b ~ tr 1 - 2 g d X ~F~VF~V . 

Therefore 

I 4 1 a a 2 
S = d X 4 F~vF~v = {2/g )~ [tr 1 - Re tr Up] 

p 

= (2N/g 2 )~ [1 - ~ Re tr Up]' 
p 

=> S = B ~ ~ {1 - P~v), 
x ~v 

where (i) B = 2N/g2 for SU(N) 

(ii) P~V = h Re tr Up 

1 ~ v ~t vt 
= N Re tr UxUx+~Ux+vux 

(iii) ~ = ~ ~ (= ~ ~ ) 
p x ~v x ~tv 

{ 14) -

For an asymmetric lattice (€ = aaja
1 

+ 1), eq.(14) reads (see e.g.[22]) 
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S = (2N/g:)(a
1
/aa) ~ ~ P~v + (2N/g;)(aa/a

1
) ~ ~ P~4 , (15) 

X ~<V<4 X X ~<4 

where the sum in the first term runs over all plaquettes, containing 
four space-like links while the sum in the second term runs over pla­
quettes with two time-like and two space-like links. 

3. Generalization of the Gauge Theory Action - other candidates 

As we have noted previously, the Wilson action is not unique. It is 
therefore possible to generalize the action to improve some specific 
features of the model as long as the correct continuum limit remains 
unaltered. 

We first rewrite the Wilson action (13) in the form 

2 
. S = - (2/g )~ Re tr(Up) 

p 

= - (B/N)~ S , 
p p 

(16a) 

where B is given by eq.(14a) and SP is a function of UP only, with 

(16b) 

The most frequently used generalization is to replace the trace opera­
tion in eq.(16) by another real function, namely the character. 

Using the results from Group theory (see Chapter 5), we can rewrite the 
gauge invariant action in terms of a character expansion of all the 
irreducible representations of the group [12;15]; 

(17) 

with (18) 

and dr the dimension of the representation r. The sum~ runs over all 
p 

unorientated plaquettes; if we summed over orientated plaquettes the 
substitution 
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Re Xr(Up} ~ Xr(Up} + Xr(U~} 

(19} 

must be made (with r denoting the conjugate representation of r}. Note 
2 

that unless stated otherwise, B will always stand for 2N/g . 

Examples 

(1} The "fundamental-adjoint" mixed action 

This action is defined by (see [15] and reference therein} 

S = -(B/N}~ [(af/df} Rexf(UP} + (aa/da} Rexa(UP}] 
p 

-1 = -N ~ [(Bf/df} Rexf(UP} + (Ba/da} Rexa(UP}], (20} 
p 

where (i} Baf = Bf 
Baa = Ba (20a} 

(ii} for SU(N} df = Xf(l} = N 
2 

da = Xa(l} = N -1. (20b} 

Specifically, for SU(2} we have 

(21} 

Note that if we use the alternative normalization of eq.(14}, the mixed 
SU(2} action has the form 

(21a) 

where the trace without a subscript is taken in the two dimensional 
fundamental representation and tra is taken in the three dimensional 
adjoint representation. 

The following remarks are in order. 
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(i) If Ba = 0, the model reduces to the usual Wilson formulation. 

(ii) If B (= Bf) = 0, the action will only depend on th~ adjoint repre­
sentation, which gives the form of the Wilson action for the· orthogonal 
groups G/Z [e.g. SU(2)/Z(2) z S0(3)]. 
More explicitly, the Wilson action for the gauge group SU(N)/Z{N) is 
given by 

2 
~ X {Ba/da) [Xf(Up) - 1] 

p ' 

X (Ba/da) [1 - tr(Up)tr{U~)], 
p 

(22) 

where we used the following identity for the character of the adjoint 
representation of SU(N) (which is also a faithful representation of 
SU(N)/Z(N)), 

{22a) 

(2) Another form of the gauge field action was proposed by Manton 
[13,14] which uses the shortest geodesic distance d(UP,I) from UP to the 
unit element I with respect to the invariant metric on the group 
manifold: 

2 s - (1/gm) X [d{Up,I)] 
M p 

. 2 2 
= (1/gm) X tr(Xp), 

p 

where xp is related to the element UP of the 

E.g., for SU(2) we have (see ChapterS) 

up= exp[iO T•n ], 
. p 

which gives 

(23) 

Lie group by 

(23a) 

{24) 



2 
= 1<B }: 0 

z m P p 
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(24a) 

(3) One of the shortcomings of Manton's action is that the periodicity 
in. the angle variables for compact groups makes the action multivalued 

' 
and singular for "conjugate" points 6n the group manifold. 
The action proposed by Villain gives the action in terms of the "heat 
kernel" over the gauge group, i.e. in terms of the matrix elements of 

2 
exp[{1/2)g ~], where ~ satisfies the diffusion equation on the Lie 
group (or generally the group manifold): 

~(g,t) 
af(g,t) 
at 

where g £ G, t = N/B ; f = exp[-Sv]. {25a) 

The solution of this equation gives the heat kernel action [14;15;16], 

exp[-Sy] =-IT}: drXr{UP) exp[-c~2 );NB], 
P r 

(26) 

where c~2 ) is the quadratic Casimir invariant for the representation r. 

For SU(N) the heat kernel action is given by 

( 
~ sin(~+1)0p 2 ) 

exp[-Sv] = rr rr [(~+1) sin{O ) exp[-~(~+2)(gv/8)] , 
p -~=0 p 

(27a) 

or in terms of indices running over half-integer values, 

( 
~ sin{~+1)0 2 J 

exp[-Sv] = rr rr [{2~+1) sin(O ) P exp[-~{~+1)(gv/4)] .. 
p ~=~ p 

(27b) 

4. Gauge Field Partition Function 

The gauge field theory with action d~fined in section 1 can be quantized 
by integrating exp[-S{U)] over all possible values of U~ on the lattice, 
i.e. 
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Z{g
2

) =I TI {dUx,~) exp[-S{U)] 
. X,~ 

=I [dU] exp[-S{U)] 

where [dU] = TI {dUx ,) 
X,~ '~ 

TI ~ product over all links of the lattice. 
X,~ 

2 
Z{g ) is called the partition function of the gauge field sector. 

Remarks 

{28) 

{28a) 

(1) For an integration measure we use the normalized Haar measure 
which has the advantage that the specific form of the measure need not 
be known, while the integrals over the group elements can be calculated 
using the properties of the Haar measure (see Chapter 5). 

(2) The partition function is well defined; the integrals over the group 
elements U~ are finite because only compact Lie groups are considered. 

This is in sharp contrast to the situation in continuum field theory 
where the functional integrals are plagued by divergences because of 
overcounting of pos~ible paths due to the gauge invariant nature of the 
measure. As the measure is not compact, this leads to infinite volume 
factors that have to be factored out, usually by restricting the measure 
using the Fadeev-Popov Ansatz. 

(3) The local gauge invariance of the action, together with the in­
variance properties of the normalized Haar measure, ensure that the 
(vacuum) expectation value of a physical quantity O{U) will also have a 
local gauge invariance under the transformation in eq.(2)~ where 

<O(U)> =.z- 1 I [dU] O(U) exp[-S(U)]. (29) 

(4) A four dimensional hypercubic lattice with linear dimension L has 
4 

4L links. The corresponding partition function over the links is 
4 

therefore defined by 4L integrals over the group space. 
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5. Universality 

As we have noted previously, there is considerable freedom in the choice 
of lattice action for the pure gauge theory. The requirement that all 
actions lead to the same continuum result, however, necessitates the 
introduction of a universality principle, namely that all physical 
quantities calculated on the lattice must be independent of the specific 
choice of action used . 

To compare the three most often used gauge theory actions, we first 
rewrite the Wilson action in (16a) in the form [SU(2)] 

s -(B/N) ~ Re tr Up 
p 

= ~(B/N) ~ cosOP 
p 

2 
[B = 2N/gwl (30) 

where we used the following form for the SU(2) parametrization (see 
Chapter 5) 

(30a) 
f 

For the Manton and Villain actions we use the expressions in (24a) and 
(27a) respectively. 

Although the three actions are required to have the same physical con­
tent in the (relevent) continuum limit, it is obvious that each will 
have its own scale parameter. This in turn will influence the values of 
quantities like the string tension and critical coupling that are 
usually expressed in terms of the lattice (or continuum) scale parameter 
(see Part II). 

The following ratios for SU(2) have been calculated using the relation 
between the different lattice and continuum scale parameters [14a;b]: 

AtM) 3,07 AtW) 

AtM) 2;45 AtV). (31) 

Using Monte Carlo calculations, the · following non-perturbative 
results for the string tension have been obtained [14b] 

i 
. I 



a = 83 ± 14 A(W)* 
L 

16,2 ± 0,5 AtM) 

48,5 ± 2,6 AtV) 
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(* from [lOa;b]II - see Part II). 

(32) 

If universality is indeed valid, then the string tension should be 
action independent. These predictions, along with theoretical ones 

2 
(obtained in the Weak Coupling limit g ~ 0 [14a;b] and including higher 
order corrections [14c]) are given in table 3.1 . 

Table 3.1 

Ref. [14a;b] [14c] from a 

A (M)A (W) . 
L L 3,07 3,33 5,14(87) 

A(M)A(V) 
L L 2,45 2,92 2,99(19) 

A(V)A(W)* 
L L 1,25 1,14 1,71(18) 

* obtained from the previous two ratios . 

Although there seems to be a relative (order of magnitude) agreement in 
the values obtained above, a more conclusive argument would be if signs 
of universality is found in the ratio of a with another physical quan­
tity (calculated for the different actions) . 

Such a quantity is the critical temperature, which has been calculated 
for the pure gauge sector using the different actions. The Monte Carlo 
results for Tc are [14d] 

Tc = 42,8 AtW) 

= 10,5 AtM) 
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(33) 

Combining the results in (32) and (33), the ratio ju/Tc should be the 
same for all three actions. Numerically this gives 

jufTc = 1,94 ± 0,33 [Wilson]) 

= 1,54 ± 0,05 [Manton] 

= 1,78 ± 0,10 [Villain] (34) 

which is consistent with universality within two standard deviations. 

,·: 
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CHAPTER 4: FERMIONS ON THE LATTICE 

1. Continuum Euclidian Action 

The Dirac Lagrangian in continuum Minkowski space is given by [17] 

f = ~(i1~a~ - m)~ 
-+ 

[~ = ~(x) = ~(t,x)] 

= ~i1o8° ~ + ~ir·a~ - m~~ 0 (1) 

Performing a Wick rotation (t = -ir) we can go to Euclidian space (see 
Appendices A and B), which gives 

(2) 

Using the hermitian choice for the Euclidian 1 matrices {1~, 1v} = 26~v 
(see App. B) implies 

(3) 

The corresponding Euclidian action is given by 

(4) 

4 3 3 
where d x = dr d x = dx 4 d x. (4a) 

2. Defining Fermions Naively on an Infinite Lattice 

Using the Euclidian continuum action of a free Dirac particle (3), we 
can introduce the lattice regularization "naively" by replacing the 
derivatives by finite differences and the integral by a summation over 
all lattice points. We here essentially repeat the procedure that was 
used for the scalar field (Chapter 1): 

(5) 
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1 

{ii) 81'1/J(x) ... a [l/J{X+I') - l/J{x)] 

1 
-+ za [l/J{X+I') - l/J{X-1')] 

A A 
where I' {= I') = ae 

I' 

{n.n.) 

{6a) 

{6b) 

Using the replacements above in eq.{3), we obtain the following expres­
sion for the naive fermion lattice action {SN) in 4 dimensional 
Euclidian space: 

4 ( 4 1 ) SN = ~ a ~ [~{X)1,l/J{X+I') - ~{X)1ul/J{X-1')]{2a)- + m~{x)l/J{x) , {7) 
X J.L= 1 ,. ,. 

where the quark fields are denoted by l/J{x) = 1/J!j, and i = 1, ... ,N ; 
j = 1, ... ,4 ; a= u,d,s ... are the colour, Dirac and flavour indices 
respectively. 

The following remarks are in order. 

{a) As we sum over all lattice points we can make the replacement 

~ ~{X)1J.Ll/J{X-I') -+ ~ ~(X+I-')11-'l/J(X). 
X X 

(Sa) 

(b) The lattice Dirac fields can be rescaled {following Wilson [1]) 

_I 

l/J = m ~ l/J{x). 
X 

{Sb) 

(c) The action in eq.(7) can be extended to any {finite) dimension d. 

(d) For m = 0 the action contains a (hidden) global U{Nf) ® U(Nf) 
symmetry, where Nf is the number of independent continuum flavours. This 
continuous symmetry will be made explicit in sec. 7 by "spin­
diagonalization". 

Using (Sa) we can rewrite eq.(7) as 

which, after rescaling the fields (using (Sb)), gives· 
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(10) 

This action is not unique by the same reasoning that applied to the spin 
1 case. 

We must also keep in mind that the action in eq.(10) applies to the 
free theory and is therefore is not gauge invariant. To obtain an 
invariant action we have to insert the (colour) gauge fields ux,~ (see 
Chapter 2). 
This leads to the following gauge invariant form of the naive quark -
gauge field interaction: 

3. Naive Fermions on a Finite Lattice 

The concept of a finite lattice (at least in one direction) will play an 
important role in the finite temperature formalism that will be dis­
cussed in Part II. 

In a finite temperature theory the lattice will always be finite in the 
time direction, which in this case is identified with the temperature of 
the system, 

-1 B = T = N a , 
I 1 1 

where N
1 

is the number of lattice points in the time/temperature 
direction. However, as B is also used in the literature to denote the 
gauge coupling, care must be taken not tot confuse these two 
definitions. Hence in Part II, the use of B will be resticted to denote 

2 
the coupling, i.e. B = 2N/g (see Chapter 3). 

As we are working with fermions , the quark fields are represented by 
Grassmann variables (see Appendix C) which satisfy the anti-periodic 
boundary conditions 

-+ -+ 
~(X,T) = -~(X,T+B) 

--+ --+ 
~(x,r) = -~(x,r+B) (12) 
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· The continuum Dirac equation for a free particle at finite temperature 
is given by [23;24] 

(13) 

where B = T- 1 'and. "/J = "/J(x, r). (13a) 

On a finite asymmetric lattice this becomes 

which is equivalent to the naive action on an infinite asymmetric 
lattice. 

In terms of the rescaled fields (8(b)), eq.(14) now reads 

-

4. Propagator for Naive Lattice Fermions 

4.1 Infinite Lattice 

To investigate the lattice fermion propagator we first go to momentum 
space by intoducing a Fourier transform of the function f(x) defined on 
the lattice points. For a four dimensional infinite lattice the Fourier 
transform of f(x) is given by 

g(p) 
4 

= }; a 
X=-co 

exp[-i(p.x)a] f(x). 

Using the relation 

J
~/a 4 4 

d p exp[ip.(m-n)a] = 6m,n(2~/a) , 
-~/a 

we obtain the inverse function 

(16a) 

(16b) 



32 

J

'lf/a 4 

f(x) = ~ exp[i(p.x)a] g(p). 
-'If/a (21f) 

(16c) 

Making a Fourier transform of the Dirac fields ~x hence gives 

J
'lf/ak . 

~x = 4 exp[1(p.x)a] ~P , 
-1f/a(21f) 

(17) 

where the boundaries on the integral are given by the endpoints of the 
first Brillouin zone on the lattice. 

-
The action (10) can now be rewritten (using (17)) as 

'4 J'lf/a k J'lf/a li_ · 
S = ~ a 4 4 x 

x -'If/a (21f) · -'If/a (21f) 

(<2ma)- 1 ~ {~p'exp[-ip' .xa]1~ exp[ip.(x+~)a]~P 
~ 

- ~p'exp[ -ip'. (x+~)ah~exp[i (p.x)a] ~P + exp[i (p-p') .xa] ~p'~p ) (18) 

where we introduced the notation (p.~) = p~a . (18a) 

Using the relation 

4 
~ exp[ix.(p-p')a] (21f/a) o(p-p') (18b) 
X 

in eq.(18) gives 

_ J'lf/a k _ ( 1 ip~a -ip a ) 
S - 4 ~p 2ma ~ (e - e ~ )1~ + 1 ~p . 

-'If/a (21f) ~ 
(19) 

The naive fermion propagator is therefore given by 
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( 
I ipJ.&a -ip a ) I 

G(p) = 2ma ~ ( e - e J.& )1J.& + I - . 
J.& 

(20) 

It is interesting to note that in the limit a~ 0 the naive lattice 
prapagator reduces to the correct continuum expression: 

(2I) 

(a small) (2Ia) 

Determining the poles of the propagator [2;20] 

To determine the poles we first rewrite the propagator in the form 

G(p) 

2 
= sin (pJ.&a), (22a) 

where we used the relation {1J.&'1v} = 26J.&V . (see App. B) 

Hence 

sinp/la + ~ ( sinp/la ) 2 
G(p) = [I - ~ 1J.& rna ] I [I rna ] 

J.& J.& 

The propagator will therefore have poles for 

( 
sinp/la ) 2 

[I + ~ rna ] = 0 . 
J.& 

In order to go back to Minkowski space we make the transformation 
P4 ~ ip 0 (= iE), which gives 

(23) 

(24) 
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(24a) 

Eq.(24) now reads 

3 
2 2 -2 2 (rna)- sinh (p 0a) - (rna) ~sinh (p 0a) - 1 = 0 

i=l 

2 
=> sinh (p 0a) = 

3 
2 2 

~ sinh (p 0a) + (rna) . (25) 
i=l 

Keeping in mind that -~/a ~ p ~ ~/a , the propagator therefore has 16 
poles at the points p = (0,0,0,0), (~/a,O,O,O), .... , 
(~/a,~/a,~/a,~/a) instead of the expected single pole at the origin. To 
illustrate the fermion species doubling more explicitly, we consider the 
one dimensional case with pi = ~/a. Equation (25) now reads 

2 2 
sinh (p 0a) = (rna) 

=> E =Po = ± arc sinh(ma), (26) 

where the E > 0 and E < 0 solutions correspond to the particle and 
anti-particle ones respectively. 

However, taking for pi the values ± ~/a would give the same result. A 
fermion with momentum ±~/a (i.e. of the order of the cut-off) there­
fore has the same energy as a fermion at rest (p = 0). 

The state with momentum p = ± ~/a is however a distinct one from the 
p = 0 case. This follows from the Pauli principle which states that the 
fermion wave function must have alternate signs at alternate lattice 
sites. In one dimension we therefore have a doubling of fermion species, 

4 
which in the four dimensional case will lead to a 16 (= 2 ) degenaracy. 

This unexpected property of the lattice fermion action is a general one 
and not a consequence of the specific form of the action that was used. 

Species doubling is closely related to chiral symmetry: it turns out 
that in order to have the correct fermion action in the Weak Coupling 
phase (which corresponds to the continuum limit), any lattice fermion 
formulation must either have a multiplicity of states or no explicit 
continuous chiral invariance [20]. 
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The axial anomaly that occurs in continuum field theory should also not 
be present in a regularized theory - the extra fermions are needed to 
cancel this anomaly. It is interesting to note that if an axial charge 
is attributed to each of the fermions it turns out that the number of 
charges necessary to cancel the anomaly is sixteen, eight with charge 1 
and eight with charge -1 [20]. 
Also, the so-called No-Go theorems [18] state that no entirely satisfac­
tory choice for a fermion action is possible on the lattice. 

The only way to avoid species doubling completely is to use a non-local 
lattice derivative, e.g. the so-called SLAC fermions [19]. These 
theories unfortunately encounter severe problems in the continuum limit 
and as a result have not been used very often in the literature. 

In order to overcome the species doubling problem {and still use a local 
action) two methods have· been introduced in the the literature. 

The one method put forward by Wilson results in a lifting of the 
degenaracy by adding an irrelevant {in the continuum limit) factor to 
the naive action, while the second method {proposed by Kogut et al.) 
thins out the degenaracy by so-called spin-diagonalization. These two 
methods will be discussed in greater detail in sections 5 and 7. 

4.2 Naive propagator on a finite symmetric lattice 

The problems of species doubling is also apparent for the the finite 
lattice as the size of the lattice never.played a role in the analysis 
of the propagator in section 4.1. 
What will be different however are the momentum space quantities, as we 
need to introduce a new set of Fourier transforms. 

On a finite lattice the Fourier transform of a quantity f{x) defined on 
the lattice points is given by [32] 

N 
g{p) = B- 1 ~ a exp[-in{ 2~+ 1 )ar] 

j=1 

where 

00 

~ exp[-i{p·x)a] f{x,r), 
~ 

n=-oo 

(28) 
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(i), the first exponential ~actor ensures the anti-periodicity of the 
theory in the time/temperature direction, 

(ii) we used a version of the identity 

N 
N- 1 ~ exp[2~ik(m-n/N)] = 6m n 

k=1 ' 

which follows trivially from the geometrical representation of complex 
numbers. 

By inverting eq.(28) we obtain the following expression for f(x) 

-1 N J~/a d
3 

2' 1 ~ ~ 
f(x) = B .~ _Q_Q3 exp[i~(~)a1] exp[i(p•x)a] f(p). 

-J-1 -~/a (2~) 

Applying the expression above to the quark fields gives 

-1 N J~/a ~ 2'+1 ~(x) = B ~ 3 exp[i~(~)1] exp[i(p·x)a] ~P 
j=1 -~/a (2~) 

with 

-1 N J~/a 3 
= B .~ _Q_Q 3 exp[i(p.~)a] ~p' 

J-1 -~/a (2~) 

(i) B = a N = aN 
1 1 

(ii) p = ( p ,(2~~1)~) . 

Using the above, we can rewrite the action (14) (with au = a
1

) as 

4 J~/a 3 J~/a 3 , 
S =~a ~ ~' ~ ~ exp[i(p-p').xa] x 

x J J -~/a < 2~) -~/a < 2~) 

N J~/ a 3 
( 1 i p a - i p a ) =B.~ ~ ~p (2ma)- ~ (e ~ - e ~ )1 + 1 ~p, 

J=1 -~/a (2~) ~ ~ 

where we also used 

(29) 

(30) 

(30a) 

(31) 
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N 

(i) ~ exp[ik ~ (p 0 - p~)] = NoP p~ 
(31a) 

k=1 0, 

CX) 
3 3 

(ii) ~ exp[i(p-p')·xa] = (211") 6 (a(p-p')) 
-+ X=-CX) 

3 
= (27r/a) 

3 
0 (p-p') (31b) 

Equation (31) now clearly shows that the propagator for the finite 
lattice is equivalent to the one deduced earlier for the infinite lat­
tice (19) (up to a redefinition of the momentum tensor). 

5. Wilson's Fermions 

The Wilson action is formed by adding terms that leave the continuum 
limit unaltered while at the same time removing the degenaracy in the 
fermion species [2;20;21]. 

The general expression for Wilson's action for free fermions (Nf = 1) on 
a four dimensional symmetrical infinite lattice is given by 

which corresponds to adding a term 

4 
ra ~ ~ (1/2a)[~(x+~) - ~(x)][~(x+~) - ~(x)] 

X ~ 

4 
= ra ~ ~ (1/2a)[-~(x+~)~(x) - ~(x)~(x+~) + 2~(x)~(x}] (32a) 

X ~ 

where 0 ~ r ~ 1. The choice r = 1 corresponds to Wilson fermions. It 
is easy to show that this term goes to zero in the formal classical 
continuum limit. 

The naive massless action has a classical symmetry 

{33) 
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where Nf stands for the number of (continuum) flavours. 

The extra term (32a) in the Wilson action explicitly ~reakes the con­
tinuous and discrete 75 invariance, and hence SUA(Nf) i UA(1). The 
Wilson action therefore has a residual SUv(Nf) ® Uv(1) symmetry. 
However, since the symmetry breaking terms are proportional to the' 
lattice spacing a, chiral symmetry should be recovered in the continuum 
1 imit (where the chiral SU(,Nf) symmetry should be broken spontaneously 
in order to produce the needed Goldstone Bosons). 

Introducing a new set of rescalled fields 

l/J(x) -+ 1/Jx 
-.!< = [2(mia + 4)] 2 l/J(x}, (34a) 

we can rewrite the Wilson action (32) in the form (showing the flavour 
indices explicitly) 

N 
f 3 ( 4 . . . . ") 

= ~ .~ a -~ Ki[~x(1-1,)l/J~+" + ~~+,(1+7,)1/J~] + ~~1/J~ 
X 1=1 p.=1 ~ ~ ~ . ~ 

(34b) 

with Ki = (8 + 2m~a)- 1 . (34c) 

Ki is called the hopping parameter for the different quark flavours and 
is proportional to the amplitude of moving a quark by one lattice 
spacing. 

For the free theory discussed .above (Ux,p. = 1) and a symmetric 
lattice, the relationship between K1 and the quark masses mi is given 
by 

with Kc = 1/8 . 

To obtain the expression for the gauge invariant interacting theory we 
again insert the gauge fields, which gives 
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6. Propagator for the Wilson Action 

Repeating the procedure in section 4 to find the naive action 
propagator, we obtain the following expression for the Wilson action 
propagator [2] 

(1 - Ki}; 
ip a -ipl'a )_ 1 

Gw(P) [(1 - -yl')e I' + (1 + "(") e ] 

" 
= ( 1 - 2Ki}; [cos(pl'a) . . ( ))-1 (36) ~ l"fi'Sln pl'a . 

" 
The propagator in eq.(36) has only one pole at p = (0,0,0,0); the 
flavour degenaracy has therefore been lifted. 

What has effectively taken place is that the added terms have given 
large masses [of the order of the cut-off (z a- 1)] to the fifteen un­
wanted fermions (which are still present), so that they will disappear 
from the theory as the limit a~ 0 is taken, leaving only the desired 
zero momentum solution. In this limit, the Wilson propagator reduces to 

G(p) ~ [1 - 2Ki(4 - i}; -yl'pl'a)]-1 

" 
[2Kia( 1-8~i + . )]-1 

1 l"fuPu ' 2K a ,.. ,.. 
(37) 

which is equivalent to the Dirac continuum propagator (Euclidian space) 
if the identification 

(37a) 

is made [2]. To find the physical energy spectrum we go back'to 
Minkowski space,which gives 

i 1 ~ ~ -1 
= -(2K a)- [-y 0E - "f•P - m] , (38) 

which, if we again make the identification (37a), is the usual continuum 
Dirac propagator in Minkowski space (up to a normalization factor). 
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7. Staggered Fermions 

The idea originally put forward by Kogut and Susskind [29] (using the 
Hamiltonian formalism) was to reduce the fermion degenaracy by using a 
suitable transformation to diagonalize the spin matrices and to rein­
terprete the result as differrent flavours. 

The same idea can be applied to the Lagrangian formalism, using the 
construction put forward by Kawamoto and Smit [30]. 

Consider the following transformation of the quark fields (satisfying 
the naive lattice action) 

(39) 

where T is a unitary operator defined by 

xi x2 x3 x4 
T(x) = ('Yd ('Y2) ( 'Y 3) ('Y4) (40a) 

and Tt has the form (because the 'Y matrices are Euclidian) , 

Tt(x) 
x4 x3 x2 xi 

= ('Y4) ('Y3) ('Yz) ('Yl) (40b) 

In (39) both ~ and x are four component fields, with x for example of 
the form 

X = (40c) 

We can now consider the effects of the transformations (39) on the terms 
in the naive action: 

(i) the mass term is invariant under (39), 

(ii) the kinetic term transforms as 
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~(x)rp~(X+~) ~ X(X)Tt(x)rpT(x+~)X(X+~) (41) 

To see how the factor Tt(x)r T(x+~) looks like we tak~ as example the 
A A p 

case if p = ae 2 = 2 

xl t xl 
= (-1) T (x)T(x) = (-1) , (42) 

where we used the anti-commutation relations of the hermitian r matrices 
2 

and the fact that (r2) = 1 (see App. B). 

Hence, in general 

Tt (x)r 1 T(x+a~ 1 ) = 1 - 'h (x) 

Tt(x)r 2 T(x+a~ 2 ) 
xl 

= (-1) - 112(x) 

Tt (x)r3 T(x+a~ 3 ) 
xl+x2 

= (-1) - 7J3(x) etc., 

which can be extended to a d-dimensional lattice by defining 

xl + x2 + 
71 (x) = (-1) p 

We also note that 

71p(x) = Tt(x)rpT(x+~) 

= 11! (x) = Tt(x+~)rpT(x). 

p = 1' ... ,d . 

(43) 

(43a) 

( 43b) 

Using eq.(39), we can rewrite the naive action (d=4 symmetric lattice) 

4 
Ss = ~ a

4 
( P:

1 
7Jp(x)[XxXx+p- Xx+pXx](2a)-

1 
+ m ixxx) 

4 
= ~ ( a3p:1 ~ 7JP(x)[XxXx+p- Xx+pXx] + a4m ixxx) . (44) 
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This action is called the "Staggered" or "Kogyt-Susskind" action. 

The fdllowing remarks are in order. 

(i) The action is diagonal in the spin index, i.e. x as defined in 
(40c) describes four single component complex fields. The method 
used is therefore called spin-diagonalization. 

(ii) Ford = 4 the action (44) is a sum of four identical actions, one 
for each value of the Dirac index. Using the fact that the naive 
action has a degenaracy of 16f · (f = number of single fermion or 
naive flavours), each of the four actions above will describe 4f 
Dirac particles. 

(iii) Usually only one component of x is kept (which reduces the number 
of flavours by a quarter), and the remaining 4f flavours are then 
interpreted as physical flavour degrees of freedom. 

(iv) If we take n to denote the number of non-colour indices of the 
theory (i.e. the number of Dirac-flavour degrees of freedom), 
then n = 4Nf , where Nf is the number of continuum flavours. 

The naive action describes 16f particles in the continuum limit, hence 

n = 4Nf ~ 16f {45) 

For a d-dimensional space the number of Dirac components of a spinor is 
2[d/21, which implies 

{45a) 

The choice off= 1 {i.e. Nf = 1) is usually associated with Euclidian 
Staggered fermions. Showing the number of flavours explicitly, the 
action for free Staggered fermions on a d-dimensional lattice reads 

s = ~ ~ ( ad- 1 ~ ~ nll(x)[Xa{X)Xa(x+p) - Xa(X+P)Xa(x)] 
x a=1 J-'=1 ~ 

+ admxa(x)xa<x>) . (46) 
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For the interacting theory the action reads 

(47) 

· (v) For the Staggered fermion action only a global Uy(f) ® UA(f) 
(chiral) symmetry survives (where the naive action had a 
Uy(4f) ® UA(4f) symmetry) [30]. 

This symmetry has its origin in the fact that x's at odd (even) sites 
are only coupled to x's at even (odd) sites. [By odd (even) it is meant 

d 
·that I xu is an odd (even) integer]. 

Jl.= 1 ,.. 

The transformations of this global symmetry are given by 

xJl. even: 

Xx -+ eia X 
X 

- - i/3 -
Xx -+ e Xx 

xJl. odd: 

Xx -+ ei/3 X 
X 

- -ia -
Xx -+ e Xx (48) 

where a ~~d {3 are two independent phases such that V 5 ei/3 and W 5 eia 
are independent unitary matrices acting on the space of non-colour· 
indices. 
This symmetry is only present for the massless theory; the mass term 
(which couples two fermions at the same site) explicitly breakes the 
U(f) ® U(f) symmetry down to its diagonal U(f) subgroup (i.e. for which 
V = W). 
A consequence of this symmetry is that mass counte,rterms do not occur in 
renormalization (therefore m(bare) = 0 -+ m(renormalized) = 0 ). 
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(vi) If the Clifford algebra is generated by the d r-matrices 
satisfying 

(see App. B) 

i.e. the r matrices are chosen to be anti-hermitian, then the relation 
(43b) is no longer satisfied, 

nt(x) = Tt(x+~)rt T(x) 
J1. J1. 

= -Tt(x+~)rJl.T(x). (49) 

The Staggered action now reads [26;31] 

(50) 

To conclude this section we briefly discuss the construction of {four 
component) quark fields out of the one component X fields (for 
simplicity we restrict ourselves to the free theory - the interacting 
theory follows analogously). · 

Using the fact that the Lagrangian is periodic under a double lattice 
shift, we can define a four dimensional hypercube H(y) [31] with origin 
at the site 2y and corners 

r = 2y + n n = 0 or 1 . (51) 

As n is varied at fixed y, r spans the corners of a four dimensional 
hypercube. Hence, the set of all hypercubes forms a lattice with spacing 
2a. We can now define four flavoured quarks at the level of each hyper­
cube by 

l }: rJJ.cr X (y) 
8 n n n 

~(y) = l }: x (y)rJJ.crt 
t" 8 n n n {52) 
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where n = (n1,n2,n3,n4) = (O,O,O,O), ... , (1,1,1,1) runs over the sixteen 
corners of the hypercube. The indices ~ and a denote .the Dirac and 
flavour indices respectively, and the sixteen matrices 

n1 n2 n3 n4 
rn = 'h 12 13 14 (53) 

form a basis for the four dimensional Clifford algebra. If the 
(Euclidian) 1 matrices are chosen to be hermitian, then all the rn will 
be unitary. 

In terms of the qq fields the action (44) becomes [31] 

s5 = (2a
4
) ~ ( ~ [q(y)(1~®l)A~q(y) + aq(y)(1 5®"f:1:)6~q(y)] 

h ~ 

+ mq(y)(l®l)q(y)) , 

where ~ denotes the sum over all hypercubes. 
h 

(54) 

In each tensor product in (54), the first (second) matrix acts in Dirac 
(flavour) space. For any function f(y) 

a 
A~f(y) = !a [f(x+~) - f(x-~)] ~ a~f(y) 

1 = -2 
4a 

a 2 
[f(y+~) - f(y-~) -2f(y)] ~ a~f(y). 

0 

(55) 

The first term in eq.(54) corresponds to the naive action for 4 (= 2d/2) 
free (massless) Dirac fermions on a lattice with spacing 2a, while the 
second term (involving second order lattice derivatives) is responsible 
for lifting the·fermion degeneracy. 

8. Partition Function for Euclidian Lattice Fermions 

The partition function for Euclidian lattice fermions is given by 

ZF = I ( TI dU~x) (TId~· d~x) exp[-SF(U;~,~)] 
X,~ X X 

- I [dU][d~d~] exp(-SF), (56) 
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where SF is the fermion lattice action and the quark fields ~xand ~x are 
regarded as independent Grassmann variables (see App. C). 

In order to fascilitate integration over the Grassmann ~ariables we 
first rewrite the Wilson action on a 4 dimensional symmetric lattice in 
the form 

sw 
Nf . 

i - }; }; ~1 Qx,y ~Y F X . 1 X 1= 

Nf . 
Ki 

4 i }; -1 }; (57) = .}; ~x[ 6x y - (MJ')X,yl~y' 
X 1=1 ' J£=1 

(57 a) 

(In the matrix M the colour and spin indices have been surpressed to 
simplify the notation) 

For Staggered fermions the partition function reads 

( II dU~) (II dxxdXx) exp[ -S~(U;x,x)] . 
X,J' . X 

[dU][dXdX] exp(-S~) , (58) 

where S~ is given by (47), and x and x are independent one component 
Grassmann variables. 

For integration purposes the action can again be rewritten in the form 
(d=4) 

(59) 

with (59a) 

r 
' 
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CHAPTER 5: GROUP THEORY AND INTEGRATION 

1. Basic Definitions of Group Theory [36-41] 

For completeness, we give a few basic definitions of Group Theory that 
will be used in the sections that follow. 

{a) Conjugate elements and classes 

An element g(i) of the group G is said to be conjugate to an element 
g(j) of the same group if there exists an element g(n) £ G such that 

g(i) = g(n)g(j)g- 1{n). (1) 

If g(k) and g(j) are both conjugate to g(i), then it follows trivially 
that g(k) and g(j) are also conjugate to each other. All elements of a 
group that are conjugate belong to the same class. Furthermore, no 
element of the group may belong to more than one class. 

(b) The Group Rearrangement Theorem (discrete groups) 

If g(i) is any element of the group G, and g(j) is allowed to run over 
all elements of G, then the product element g(k) = g(j)g(i) also runs 
over all elements of G, each element appearing only once. 

This value of g(k) is unique: assume that g(k) can be written as a 
product of two different group elements g(j) and gj(j), i.e. g(k) = 
g(j)g(i) = g'(j)g(i). Multiplying through with g- 1(i) this implies that 
g(j) = g'(j). 

{c) Continuous Groups and lie Groups 

A group G is defined to be a r-parameter continuous group if all its 
elements can be labelled by r real continuously varying parameters. 

let the group elements be denoted by·g(a 1 , ••• ,ar) ~ g(a). Since a group 
must posses an identity element, there must exist some set of parameters 

0 0 0 • 0 
a = (a 1 , ••• ,ar) such that g(a) behaves like the identity, 

0 0 
g(a )g(a) = g(a)g(a) = g(a). (2) 
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The identity parameter (a ) is usually taken to be 0, so that the 
identity element corresponds to 

g(O, ... ,O) = g(O) =e. (3) 

The existence of an inverse requires that for any parameter a there 
exists an a' such that 

g(a)g(a') = g(a')g{a) = e 

or g{a') = [g{a)]- 1. (4) 

Also, the closure property requires that if g{a) and g{b) £ G, then 
g{a)g{b) = g{c) must also be an element of G. (5) 
In order for this to be satisfied the parameter c must be a real 
function of the real parameters a and b; 

= ¢.(a;b) 
1 

i = 1,2, ... ,r 

or just c = ¢{a;b) for short. 

{6) 

If we require additionally that the parameters of a product be analytic 
functions of the parameters of the factors (i.e. the function in eq. 
(6) will have derivatives of all orders with respect to both arguments) 
and that the a' in {4) be analytic functions of the parameter a, then G 

is called a r parameter Lie group. 

An r parameter Lie group of transformations can similarly be defined 
by 

1, ... , n 

or just x' = f{x,a). {7) 



49 

(d) Group representations 

If there exists a set of linear transformations T in the _vector space 
S which is homomorphic to the group G [i.e. in the sense that 
T(g)T(g') = T(gg') ; T(e) = 1], this is called a representation of 
the group G. 
If. the dimension of the vector space S is n, then the representation is 
said to be n~dimensional. Sis called the representation space ofT. 
Also, the representation T(g) is said to be faithfull if there exists 
an isomorphism (1-1 relationship) between the operations T(g) and the 
group elements g. 

(e) Matrix representation 

If all elements of a group G are mapped onto n x n matrices such that 
the group ,multiplication law (which is replaced by matrix 
multiplicatiqn) is satisfied, then this set of matrices form a n­
dimensional representation of the group. Hence, let there be a 
homomorphism of·G onto 0, with 

g(O) ~ 0(9), g(a) ~ D(a), 

such that 

if g(a)g(b) = g(c), then D(a)O(b) = D{c). {8) 

{f) Two representations M(a) and D{a) are equivalent if there exists a 
similarity transformation such that 

M(a) = AD(a)A, {9) 

where A is any fixed matrix for all group elements. 

{ ) n n m m b · g Let D = { •.• ,0 {a), ... ) and 0 = { .•• ,0 {a), ... } e two lr-
reducible representations of the group G = { .•. ,ga, ... ) and let N be the 
order of the group and dm be the dimensionality of the representation om 

Then 

{10) 
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For unitary representations we have the equivalent result 

( 11) 

. (h) Representations of compact Lie groups 

A Lie group is said to be compact if every infinite sequence of its 
elements has a limit in the group {i.e. every infinite sequence con­
verges to a value that is also an element of the group). 

The importance of compact groups lie in the following theorems: 

{a) All representations of a compact group are unitary {up to 
equivalence). 
(b) All representations of a compact group are discrete. 
(c) All irreducible representations of a compact group are finite 
dimensional. 

The theorems above imply that all representations of a compact group are 
either finite dimensional irreducible, or if not, direct sums of finite 
dimensional representations. 
Also, by implication the compact groups have a finite volume. 

2. The Special Unitary Groups 

2.1 .s!illU 

A representation isomorphic to the abstract group SU(N) is given by the 
set of N x N special unitary matrices U {special in the sense that 
the detU = 1). 

2 
The matrices of the representations of SU(N) have N -1 independent 
parameters. This follows from the fact that a general N x N complex 
matrix has 2N

2 
arbitrary real parameters, while the requirments uut= 1 

2 
and det U = 1 imposes N and 1 restriction respectively. 

2 
Correspondingly, SU(N) has N -1 generators Ta which satisfy the closed 
algebra 

{12) 
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Tr Ta = 0, ( 13) 

where: ( i} a,b,c = 1, ... , 
2 

N -1 = order of the group 
(ii) fabc are the real, totally anti-symmetric' structure 

constants of the group normalized such that 

(14) 

2 
These N -1 linear independent matrices therefore form a basis which is 
chosen to satisfy the normalization 

(15} 

2 
The N· -1 generators of the infinitesimally small transformations are 
related to the group elements U by 

U = exp[i~ aaTa]' 
a 

2 
a= l, ... ,N -1 

where aa are arbitrary real parameters. 

(16) 

Furthermore, unitarity implies that the generators must be hermitian 
matrices, of which N-1 = r can be chosen to be diagonal with r the rank 
of the group. 
These r generators, or linear combinations there of, can be chosen so 
that they commute with each other - they are then called charge 
operators and denoted by Hi. These operators have the additional 
property of satisfying the Cartan subalgebra of the group { [Hi,Hj] = 0 
i,j = l, ... ,r ). The Abelian subgroup generated by the charge operators 
is called the Cartan subgroup. 

The smallest non-trivial irreducible representation is called the fun-
1 

damental representation (Ta = 2 Aa) and is by definition of dimension N. 

The adjoint representation is generated by the structure constants of 
the group {(Ta)bc = -ifabc}. The dimensionality of this representation 
. f 2 1s there ore equal to the number of generators (= N -1). 
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2.2 ~ 

For SU(2) we have a =),2,3 (17) 

where aa are the Pauli spin matrices: 

( 
0 -i ) 

a2 = i 0 (18) 

2.3 .s!!ill 

For SU(3) the group parameters are_given by T = %A a a a= 1, ... ,8 
where Aa are the Gell-Man matrices: 

[ 0 1 

~ l [ 
0 - i n [ 1 0 

~ l A1 = 1 0 A2 = i 0 A3 = 0 -1 
0 0 0 0 0 0 

[ 0 0 

~ J [ 
0 ~ -~ l [ 0 0 n A4 = 0 0 As = 0 A6 = 0 0 

1 0 0 0 0 1 

[ ~ Lq _I [ 1 
0 0 l A7 = As = [3] '2 0 1 0 (19) 

i 0 0 0 -2 

which satisfies eqs. (13) and (15). 
The rank of SU(3) is two; the usual choice of the Cartan subalgebra is 

H1 = T3 and H2 = 18. 

3. Invariant Group Integration for lie Groups 

3.1 Preliminaries [36;40] 

For the case of finite dicrete groups we had the result (section I) that 
any function f(g) defined on the group manifold satisfies the relation 

(20) 
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Also -1 
~ f(g.) = ~ f(g. g.), 
j J j 1 J 

(21) 

which implies that the weight attached to an arbitrary grou~ element gj 
is the same as the one attached to the element gi 1gj, which is obtained 
by left translation with the element gi 1. 

For a continuous group G with real parameters a1 ,a 2 , ••• ,ar £ M we define 
the integral over the parameter space M as 

(22) 

(22a) 

For Lie groups we now need a similar property in order to construct a 
left invariant measure, i.e. a measure such that if f(g) is any function 
defined on the group, then 

I dp(g) f(g) =I dp(g) f(g'g) =I dp(g'g) f(g'g). (23) 
M M M . 

This is again a reasonable requirement because if the integral over g 
involves each g exactly once, then the integral over g'g involves each 
group operation also exactly once, but now in a different order. 

Since f is an arbitrary function, the measure in (23) must satisfy 

for all g' £ G (24) 

i.e. it should be left invariant. 

Measures satisfying the condition 

(i.e. right invariance) (25) 

car also be defined in a similar way. 
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3.2 Construction of a left invariant measure 

If G is any Lie group, then the measure defined over its parameter space 
(eq.(22)) factors into [36;37;40] 

dp(a) = p(a)d(a), 

where (i) p(a) is the density (weight) function of the group~; 
(ii) d(a) is the Euclidian volume element . 

Note that from now on a will always denote the set (a 1 , ••• ,ar)' 
b = (b1 , ••• ,br) etc .. 

From Section 1 we have 

(27) 

with ci = ¢i(a;b). The measure can therefore be written in the form 

dp(g(a)g(b)) = dp(g(c)) = dp(c) 

= p(c)dc 

= p(¢(a;b)) J(a;b)da, (27) 

with ¢(a;b) = {¢ 1 (a;b), ... ,¢r(a;b)}, and J(a;b) the Jacobian, 

8¢1 (a;b) 8¢ 2 (a;b) a¢r(a;b) 
J(a;b) = aal aal . . . . aal 

(28) 
a¢ 1 (a;b) 8¢2 (a;b) a¢r(a;b) 

aar aar 
. . . . 

aar 

From eq.(24) it follows that left invariance of the measure implies that 
the following condition must hold 

dp(a) = p(a)da = p[¢(a;b)]J(a;b)da. (29) 
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Therefore p(a) = p[¢(a;b)]J(a;b) (30) 

or p[(¢(a;b)] = p(a)/J(a;b). (30a) 

The density function p(¢(a,b)) can now be calculated by choosing any 
convenient value for a. 
Choosing a = 0 means that g(a) = e (i.e. the identity element of t~e 
group), which implies that 

¢
1
.(0;b) =b. =c., 

1 1 
(from (6)) (31) 

so that 

p[¢(0;b)] = p(b) = p(O)/J(a;b)la=o· (32) 

In the neighbourhood of the identity (which we are considering) the 
value of p(O) can be arbitrarily fixed (usually equal to one). 

Substituting the above, the measure (29) becomes 

d~(a) = [p(O)/J(a;b)la=o] da {33) 

-1 I = J {a;b) a=o da. {33a) 

The invariant measure defined above is called the Haar measure of the 
group, with the property 

N I d~{a) = V, {34) 

where V is the group volume. It is usually normalized to unity 

I [d~(a)] = 1 (34a) 

where, in future, [ ] will always denote the normalized measure. 

For unitary groups we introduce the notation [dU] for the normalized 
Haar measure, with U = g £ SU{N) [or U{N)]. 
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Examples 

{i) As an elementary example we calculate the density function p{c) 
for the continuous two parameter non-abelian group of tran~formations 
in R1 [37] 

Operations of this group are defined on the coordinate x(m), where m is 
some fixed point. The group operation (a1 ,a2 ) is defined by 

From the group multiplication law we therefore have the result 

Now, 

and p(c) = p(O)/ (B 1 ) 
2 

[p(O) = 1] 

The measure is therefore given by 

(35) 

(ii) A unitary representation of the group SU(2) in terms of the Euler 
angles a,B and 1 is given by [40] 



U(a,B,-y) = 
[ 

ei~-y+a)/ 2 cos(B/2) 

-e- 1 (-y-a)/2 sin(B/2) 

where 0 ~ a,B,-y ~ 2n 

which is of the form 

[ ': z2 l * -z2 zl 

* * with zlzl + z2z2 = 1 . 

i81 
Writing z1 = x1+ iy 1 r 1e 

i82 
z2 = x2+ iy2 = r 2e , 
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ei(-y-a)/2 sin(B/2) l 
e-i(-y+a)/2 c~s(B/2) 

we have that the product of two group elements gives 

[ x; + iyi x' + iy~ l [ x, + iyl x2 + iy2 l 2 

-x' + iy~ x' iy~ -x2 + iy2 xl - iyl 2 1 

[ x, + iY 1 X2 + iY 2 l z 

-X2 + iY2 X1 - iY 1 

(36) 

(36a) 

(37) 

(38) 

where, in general x. 
1 

X('',' ) = i xl,x2,yl,y2,xl,x2,yl,y2 ' and similarly for 

Y i, with i = 1,2. 

Calculating the Jacobian near the identity we have 

2 2 2 
d~(xlx2;yl,y2) = c[(xl + Y1) + (x2 + Y2) + 2(xly2 - X2Y1) 

Using (37) this gives 

(40) 
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2 2 

which, after making the transformation (with r 1 + r 2 = 1) 

(41) 

implies 

Restricting the integration to the hypersurface ~ = 1 we have 

(43) 

This hypersurface can now be parametrized in terms of the Euler angles 

r 1 = cos(B/2) 

r 2 = sin(B/2) 

which, together with (41), results in 

(44) 

From (37) we have the identificatiqn 

01 (a + 'Y)/2 

02 = (a - 'Y)/2 

which, substituted into (44), finally gives 

d~(a,B,1) = (c/16)sinB dadBd1 . (45) 

Using the conventional normalization in (34a), the constant c is given 
by 

c = 2/1£ , 

so that [d~(a,B,'Y)] (l/87r)sinB dadBd1 , (46) 
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with a,B and 1 as in (36a). 

It can be shown that if the group in question is compact, the density 
functions pl(a) and pR(a) which gives the left and right measures, are 
equal [37]. 
Thus, for compact groups the left and right invariant measures will also 
be equal and the group integrals will converge. 
When the group is noncompact the measures may be unequal, but the in­
tegrals will diverge. 

In addition to the property of invariance, the group integrals must 
satisfy the usual properties of ordinary c-number integrals, namely 

linearity:- I dg[af(g) + bh(g)] = a I dg f(g) + b I dg h(g) (47) 

positivity: I dg f(g) > 0 . (48) 

3.3 Calculation of the Haar Measures for the Special Unitary Groups 

Althotigh the invariant measure for SU(2) has already been derived in the 
p~evious section, we will now calculate the Haar measures in a different 
manner which is easier (especially for the higher order groups) and 
explicitly uses the properties of the unitary groups . 

{a) ~ 

Any group element of the matrix representation of SU(2) can be written 
as 

~ A 
U = exp[iO T•n], (49) 

h (1") ~ ~ ~ h ( were r =%a, with ate Pauli matrices defined in 18); 

A 
(i.i) n is a unit three dimensional vector; 

{iii) 0 58 5 4n . 
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The representation (49) can be written in the linear form 

-+ A 
U = exp[i8 T•n] 

-+ A -+ A 2 -+ A 3 
1 + i8 T•n - (l/2!)[r·n] - (i/3!)[r•n] + 

2 4 
= 1 - (1/2)(8/2) + (1/4! )(8/2). + ... 

-+ A 3 
+ iu·n [(8/2) - (1/3!)(8/2) + ... ] 

= cos(0/2) + iu·~ sin(0/2) 

=cos(~) + iu·~ sin(~), (50) 

with ~ = 8/2 , 0 ~ ~ ~ 2n . 

Hence equation (50) is of the form 

,-+ -+ 
U = a0 + la•u , (51) 

where a0 = cos(~) ~ cos(0/2) 

-+ A 
a = n sin(~) 

with the condition a~+ lal 2 
= 1. (5la) 

From the above, and the choice of normalization of the invariant measure 
(34a) it follows that 

I 4 . 2 I d a 6(a -1) ~ dU . (5lb) 

Calculating the normalization factor we have 
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J
1f 2 2 

= 2nN sin 0 dO = 1f N. 
0 

If eq. {51 b) is 
hence 

2 -2 
normalized to unity the above implies that N = 1f , 

2 3 2 
[dU] = 1f- da 0 d a 6{a -1) 

-2 4 2 . 
= 1f d a 6{a -1). (52) 

Alternatively, if the parametrization of eq.(50) is chosen the normal­
ized Haar measure reads 

2 2 2 
[dU] {1/21f) sin ¢J d¢J d n (0 :o;; q, :o;; 21f) (53) 

J 
2 J 2 J21f as [dU] = (1/2n ) d n [~ difJ (1 - cos2¢J)] 

0 

= n(1/2n ) d n = 1. 2 J 2 (53 a) 

(b) .s!LW. 

The SU{3) group manifold can be parametrized in terms of two normalized 
-+ -+ complex three dimensional vectors u and v. 

Each element U of SU(3) can therefore be written in matrix form 

(54) 

with -+ -+ -+ 
W = U X V 

(55a) 

and the constraints {so that utu = 1): 

2 2 2 
lu1l + lu2l + lu31 = 1 
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* * * 
~ w.w. = ~ £, 'k£. 1 u.vkul v 
i 1 1 i 1J 1 m J m 

2 2 ~ ~* ~ ~ 
= ~ lu·l lv·l - (U•V ){V•U) = 1 

i . 1 1 

~ w.v. = 0 = ~ w.u.. (55b) . 
. 1 1 . 1 1 1 . 1 

Note also that the SU(3) constraint (det U = 1) is also satisfied, 

* * det U = £, 'k u. v. wk 1J 1 J 

* * = £ijk £klm ui vj ulvm (substituting wk) 

(55c) 

The total number of independent variables is eight. This follows be­
cause u. and v. are complex (thus contributing twelve variables), 

1 1 
while there are four constraints in order to ensure that detU = 1 and 
uut = 1. 

The group integral over the Haar measure can therfore be written as 

co co 

I [dU] = N' I d6
u I d6

v o(lul
2
-1) o(lvl

2
-1)6(u*.v) (56). 

-co -co 

where N' is chosen in order for the measure to satisfy the normalization 
* (34a) and by o(u.v ) it is understood that the real and imaginary parts 

are seperately equal to zero, i.e. 

(56a) 

(c)~ 

For SU(N) we can generalize our previous results for SU(3) by writing 
any group element in the form of an N x N matrix 
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* * * ui u2 UN 
* * 

. . . . 
* VI v2 VN 

. 
* * * ti t2 tN . . . . (57) 

WI w2 WN 

with wi = (-I)N-I £. ' • • u. . .. u. 
111 ... 1N-I 11 1N-I 

(57 a) 

(where the (-I)N-I factor is needed to ensure that detU = I [note that 
for N = 3 the result above reduces to the one in (55a)]) 

and the constraints 

N 2 

}; luil = I 
i=I 

N 2 
}; lvil = I etc. 

i=I 

N * }; u.v. = 0 etc. 
i =I 1 1 

(57b) 

(which ensures that uut =I). 

The normalized Haar measure is therefore given by 

ao ao 

I [dU] = N' I d2Nu ... I d2N t 6(lul
2 
-I) ... 6(1ti

2
-I) x 

-ao -ao 

* * 6(u .v) 6(u .t) , (58) 

* where 6(u .v) again implies that the real and imaginary parts are 
seperately equal to zero, i.e. 

6 ( u *. v) = 6 ( ~ Re ( u ~ v . ) ) 6 ( . ~ I m ( u *1. v 1. ) ) . 
i=I 1 1 1=I 

(58a) 
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3.4 General Results of SUCN) Group Integrals 

In many cases the explicit form of the Haar measure ne~d not be known, 
and instead the specific properties of the Haar measure can be used. 

For the SU(N) invariant Haar measure we have the following results: 

J [dU] = 1 (59) 

J [dU] t 1 (60) uijukl = 'N °il 0jk 

J [dU] u = J [dU] uf = 0 (61) 

J [dU] u. . ... u. . 1 
£. . £. . (62) = N! 11 J 1 1 NJN 11··· 1N Jr··JN 

= 
2 -1 

(N -1) [cS. 1 cS. 1 cS. k cS. k + cS. 1 cS. 1 cS. k cS. k 1 
11 1 12 2 J1 1 J2 2 11 2 12 1 J1 2 J2 1 

2 -1 
- {N(N -1)} [cS. 1 cS. 1 cS. k cS. k + cS. l cS. l cS. k cS. k] (63) 11 1 12 2 J1 2 J2 1 11 2 12 1 J1 1 J2 2 

J [dU] Uijukl = J [dU] ufjut1 = o except for SU(2) in which case 

{64) 

[dU] tr(AUt) tr(UB) = N- 1tr(AB) (65) 

The proofs of these results rely on the invariance properties of the 
measure. For illustration we will now give a few below [with [dU] always 
defined by (58)]. 

(i) Consider the integral J [dU] U . The invariance of the measure 
implies that I [dU] U = I [dU] W1UWl . This however can only be 
true if I [dU] U = 0. 

We note that the Haar measure (58) is invariant under the substitution 

U -+ -U , 
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i.e u. -+ -u. 
1 1 

v. -+ -v. 
1 1 

t. -+ -t. 
1 1 

(66) 

for any i and 1 ~ i ~ N. 

(ii) Consider I [dU] uijutl' This integral vanishes identically if uij 
and u!1 are unrelated because of the invariance of the measure under the 
transformation U-+ -U. However, if j = k and i = l, then 

u . . u tkl = u . . u t . 
1J 1J J1 

where summation over the indices i and j was assumed. 

Using the fact that 

2 
+ I UN I = 1 

2 2 
lv 1 1 + ... + lvNI = 1 etc. , we thus have 

(iii) The proof of (65) follows trivially if the traces are written 
out: 

I =I. [dU] tr(AUt) tr(UB) 

= ~ I [dU] A .. ut. uk1s1k 
ijkl 1J J 1 

-1 
= N ~ A .. 8lk 6 ·1 6'k 

ijkl 1J J 1 
(using (60) ) 

= N- 1 tr(AB). 
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4. Group Characters 

4.1 General Definitions 

Using a similarity transformation (i.e. change of basis} an infinite 
number of equivalent (matrix) representations can be constructed from 
any given representation. The trace of any representation however is 
always independent of a similarity transformation. 

We now use this property and define the character of the group element 
g(a} in the representation o<r) by 

X (a) = tr D(r}(a} 
r 

= 2: D~~}(a}. 
• 11 
1 

(67} 

To show that the character function is invariant under a similarity 
transformation (i.e. that equivalent representations have the same set 
of characters) we proceed as follows. 

Under a similarity transformation the representation o<r>(a} transforms 
as 

Applying the trace defined in (67) gives 

X(r'} = 2: D~~'}(a} 
. 11 
1 

= 2: o(r)(a)(A-IA) . 
jk Jk kJ 

= }; o(~>(a} - x<r>(a}. 
j JJ 

(68) 

(69} 

Also, all elements of a group G that are in the same class will have the 
same character. For example, let g(m} and g(j} be two group elements 
which are in the same class. Then for any representation 0, 
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(70) 

Note also that if o<r) is self conjugate, then all the characters in 
o<r) are real. Also, in any representation of any group (discrete or 
continuous) the character of the unit element g(e) is dr, where dr is 
the dimension of the representation o<~> i.e. 

dim(D(r)) = tr(l) 

(71) 

From the definition it follows that characters satisfy similar or­
thogonality relations 'to the representations in (11) and (12). 

Setting i = k and j = l in (11) we have 

which, after performing the summation over all i and j, gives 

For unitary representations this gives 

(73) 

4.2. Characters of the Irreducible Representations of the Unitary 
Groups 

For SU(N) we define the group character using the "charge operators" Hj 
of the group (section II) with j = 1, ... r where r is the rank of the 
group. The character for a group element of SU(N) corresponding to the 
r'th irreducible representation is defined by 
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{74) 

where a1, .. ,aN_ 1 are simple numbers that ~reused to ·parametrize the 
group elements for a specific {irreducible) representation r. It is 
important to note that the characters are defined only on the N-1 
diagonal operators. 

In anology to the case of discrete groups, representations of continuous 
groups also satisfy orthogonality relations, namely 

{75) 

and for unitary representations {e.g. Lie groups like U{N) and SU{N)) 

The corresponding relations for the characters therefore read 

= V6 mn· 

(76) 

{77) 

For Lie groups the group volume is finite, so that the normalized Haar 
measure can thus be used, which gives 

{78) 

Also, in general if 

(79) 

E.g. the SU{3) decomposition 3 ® 3 = 6 + 3 will corresponds to 

(79a) 
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By definition it also follows that (compare eq.(71)) 

(80) 

which for SU(N) implies 

(81) 

(where f denotes the fundamental reperentation, o the trivial one and a 
the adjoint representation) 

4.3 Properties of Unitary Group Characters 

Using (in most cases) only the orthogonality property {78), it is easy 
to show that the character functions satisfy the following relations: 

(82) 

If T = I, the above implies 

which is just the relation {78). 

{83) 

Also 

I [d * - -1 t U] Xr{UW)Xs{TU) - dr 6rsXr{WT ) {83a) 

{iii) I [dU] Xr{U) = 6ro {84) 

. As dU = dUT for any T £ G, this implies 

(84a) 
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(iv) F~r SU(2~, Xr(Ut) = x;(U) = Xr(U) 

(v) J [dU] Xr(U)xs(U) = ns, 

where ns is the number of singlets in r ® s .[D(r) ® o<s>]. 

(85) 

(86) 

(vi) Any class function defined on the group elements can be expanded 
' 

as a linear combination of characters 

~ 

f(U) = f(VUV- 1) = ~ crxr(U}. 
r=1 

To determine cr we use (78), which gives the result 

cr = J [dU] x;(U)f(U) 

(87) 

(88) 

In the expresssions above T and W may also stand for any combination of 
group elements (links), e.g. 

T = IT Un, 
~I ~ 

(~ t ~') . 

As an example we calculate the characters for SU(2) which has only one 
charge operator H1 = J3 (so called because of the identification of 
SU(2) with isospin and/or angular momentum). 

J 3 can take on 2J + 1 possible values 

IJ31 ~ J or J3 = -J, -J + 1, ... ,J (89) 

The character of SU(2) (corresponding to the spin representation) is 
therefore given by 

J iaJ3 
= ~ e 

J3=-J 

= sina(J+~)/sin(a/2), (90) 

where J = 0, ~' 1, ... and a is a single continuous variable with 
0 ~ a ~ 2x . 
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5. Calculation of One-link Integrals 

In Lattice Gauge theories one-link integrals occur in wide variety of 
forms. We will consider a few of these. 

(a) The generating functional form for the integral in LGT is 

W[J,K] ='J [dU] exp[tr(JU + utK)] (91) 

where K and J are arbirary N x N matrices that act as sources and [dU] 
is the SU(N) Haar measure. 

In [35c] equation (1) was evaluated with K = 0, i.e. 

W(J) = W[J,K=O] 

= J [dU] exp[trJU]. (92) 

Using the invariance property of the Haar measure, W(J) can be written 
in terms of a power series 

CIO • 

W(J) = .I ai(detJ) 1
, 

1=0 
(92a) 

with (92b) 

Using a recursion relation the coefficients ai (i ; 0) can be calculated · 
(from the normalization of the measure it follows that a

0 
= 1), 

which results in {92a) reading (SU(N)): 

CIO 

W(J) = I ~~ 
i=o 1

• 

(N-1)! i 
(i+N-1)! (detJ) . (92c) 

(b) In the absence of (external) sources the single link integral has 
the general form 

where 2 -1 
B = (g N) 

(93) 

(93a) 
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and A = ~ U. is the sum of unitary matrices that complete the neigh­
. 1 
1 

bouring plaquettes that couple to the link U. 

This integral has been calculated in [35d] by approximate means using 
the N ~ ~ limit and assuming that it is allowable to exchange this 
limit with the SOE of the exponent in the integrand. [Note that in the 
calculations the value of B (which is small) is kept fixed as N ~ ~ ]. 

This approximation gives (U(N)) 

ZN(A) z exp[B
2
N tr(AAt)] 

= exp[(Ng
4
)-l tr(AAt)]. (94) 

Using the · Weyl parametrization of the U(N) measure (see Chapter 7) the 
integral in (93) can be evaluated exactly if A is proportional to the 
unit matrix (~.e. A= al): 

ZN(aBN) = det Ii-j(2aBN), (95) 

where In is the modified Bessel function (see App. D). 

To obtain the corresponding equation for SU(N) the restrictions 
N . 
~ ~i = O(mod2~) must be added to the original parametrization of the 

i=l 
U(N) measure, which leads to 

~ det Im+j-i(2aBN). 
m=-~ 

(96) 

[A similar expression was derived in Chapter 7, sec~ 58 ] 

(c) Another method of evaluating the single [U(N)] link integral with 
external sources (as defined in (91) ) is to make use of a character 
expansion [35e]. 

Consider the generating functional 

(97) 

where J and Jt are arbirtrary sources and B is again given by (93a). 
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Using the expansion 

exp[BN tr(JU)] = ~ cr(BN) Xr(JU) 
r 

we obtain 

Using the orthogonality of the characters (section IV) gives 

where dr is tha dimension of the representation r. 

The coefficients cr are given by the inverse relation 

= I 

(98) 

(99) 

(100) 

(101) 

Again using the Weyl parametrization of the Haar measure, and noting 
that any representation of U (N) can be 1 abe 11 ed by N i nteg.ers 
r = (n 1 , ••• ,nN) with n1 ~ n2 ~ ••• ~ nN ~ 0, where ni corresponds to the 
number of boxes in the Young tableau, we have the result [35e] 

X 

X 

= detlln+j-ii(BN) .. (102) 



74 

Using the series expansion of the Bessel function In(x), this gives 

(103) 

Substituting the above into eq.(100) gives 

(104) 

Equation (104) can now be evaluated for the different characters cor­
responding to the representation r. 

Examples of the U(N) characters are 

X = tr(JJt) · (1,o, ... ,o) [with d( 1,o, ... ,o) = N] 

d = %N(N+1) . (2,o, ... ,o) {105) 
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(d) The one-link integral with sources Jt and J has been calculated for 
U(N) and SU(N) with N = 2 and 3 in [35a]. 
We will now consider the. case of N = 2 in more detail. 

Using the parametrization 

[ u; * l Uz 
u = wl Wz 

( 106) ' 

and noting that wl = -£12U2 -Uz 

we obtain the same prametrization as in (51),i.e 

J [dU] = ~- 2 ~d4 u 6(lul
2
-1). (107) 

-co 

Using the following integral representation of the Dirac delta function 

6(lulz-1) = ~2~)-1 ~ds eis(lulz-1) ' (108) 
-co 

we therefore have 

(109) 

Consider the integral in (97) with 

A = BNJ = 2BJ 

Hence, 

ZN=2(A,B) = J [dU] exp[tr(UA + ufB)] (110) 

with integrand 
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tr(UA + ufs) 
,. 

tr[ [ u: * l * 

] 8 l u2 [ u, -u2 
= A + -u2 ul u2 ul 

[ [ u: * ] [ ] u2 all al2. 
= tr -u2 ul a21 a22 

* ] l [ u, , -u2 
] [ bll 

bl2 
+ u2 ul b21 b22 

* * * * = ul all + U2a21 - u2al2 + ula22+ ulbll - u2b21 + U2b12 + u1b22 

Defining 

ul = vl + iv2 

u2 = v3 + iv 4 , 

we can rewrite eq. (111) 

tr(UA + ufs) 

= vdall + a22 

4 
- }; v.A .. 

. 1 1 1 1= 

Therefore 

+ bll 

as 

+ b22) + iv2(-a 11 + a22 + bu - b22) 

Z2(A,B) = I [dU] exp[tr(UA + ufs)] 

(27r
3

f
1 fds e-is fd\ eisv 

2 4 
exp[.}; viAi] 

1=1 
-10 -10 

(2/f
1 fds 

. 4 
( fdvi 

2 e-1s 11 exp[isvi] exp[v.A.] 
i=1 1 1 

-10 -10 

) . 

( 111) 

(112) 

(113) 

(114) 
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Completing the square in the integrand gives· 

~dvi exp[isv~] exp[viAi] 
-CIO 

= ~dviexp(is[v~ + 2vi(Ai/2is} - (A~/4s 2 }] + is(A~/4s 2 }) 
-CIO 

2 
= J(~/-is} exp[i(Ai/4s}]. (ll5} 

so that eq.(ll4} now reads 

z2(A,B} = (2~ 3 }-l ~ds e-is (-~ 2/s 2 } exp[(i/4s} ~A~]. (116} 
. 1 

-CIO 

Using the series expansion of the exponential function we can write 

Z2(A,B} = -(2~}-l i i~ rods s-(m+2) (! ~ A~)m. (117) 
m=o m. J 4 i=l 1 

-CIO 

The integral can now be evaluated by partial integration, which gives 

= 
110 _ 1 (I 4 2)m }; [ m ! ( m+ 1 ) ! ] · 4 . }; A i . 

m=o 1=l 
(ll8) 

Noting that 

and 
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we have that 

1 4 2 
A }; A. 
't • 1 1 1= 

= detA + detB + trAB. (119) 

Hence 

J [dU] exp[tr(UA + utB)] = m~0 [m!(m+1)!]- 1 (detA + detB + trAB)m. (121) 

Comparing the result above with the series expansion of the modified 
Bessel functions 

IX) 2 k 
11 (z) = %z }; (z /4) /[k!(k+1)!] 

k=o 

we obtain the following expression 

J [dU] exp[tr(UA + utB)] 

= 21 dz)/z , 

2 • 
where z /4 = detA + detB + trAB. 

(121) 

(122) 

(122a) 
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CHAPTER 6: STRONG COUPLING METHODS 

1. Preliminaries 

One of the reasons for introducing a lattice structure to describe QCD 
is that it provides a way of solving the theory exactly when the cou­
pling constant g becomes very large. 

In this limit the theory exhibits confinement {as will be shown below). 
This so-called Strong Coupling Expansion {SCE) is similar to the high 
temperature limit in Statistical Physics [1,3c,7,11,15] {this analogy is 
only possible because we are working in an Euclidian framework). 

This method is well-defined because it has been rigorously proven [7] 
that high temperature {Strong Coupling) expansions have a finite radius 
of convergence {see also [15]). This implies that confinement holds for 
all powers of Bas long as B remains sufficiently small. 

2. The Wilson Loop as Order Parameter 

We want to show that the Wilson loop expectation value describes the 
creation, propagation and annihilation of a static quark-antiquark 
source, and that its behaviour determines the confinement property of 
QCD. 

Consider now a qq pair with infinite mass (i.e. all kinetic degrees of 
freedom are "frozen" and no virtual qq production takes place). These qq 
pairs now serve as the static sources of colour charges which are 
characteristic for an SU(3)c triplet~ 

First of all the qq pair must be separated to a relative distance R from 
each other. This configuration is then held for a "time" T >> R. 
Finally, the qq pair is allowed to annihilate {R ~ 0). 

Diagramatically 

~ 
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The propagation of the qq pair is given by the matrix element 

(1) 

where (i) li> and If> are the initial and final states respectively 
(ii) e-HT is the (time) evolution operator. 

This matrix can be written in terms of path integrals, 

<fle-HTii> = t J [d~][dA] exp[- J d4
x f + ig J d4

x A#J#] 

= t J [d~][dA] exp[-S(~) + s1] 

with Z = J [d~] e-S(~) 

and s1 = ig J d4
x A#J# , 

(2) 

(2a) 

(2b) 

which arises from the interaction of the quark charges with the fluc­
tuating background gluon fields. 

If we consider a closed contour C (i.e. li> = If>), the interaction term 
s1 reduces to 

(3) 

(3a) 

This follows because the system now has a singlet character, i.e. the 
source J#(x) can be chosen such that 

(3b) 

For a closed contour the LHS of (2) gives 

= e-V(R)T (4) 

(because the sources are static, the energy is purely potential). 
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Therefore 

1 J -S + ig Jcd
4
x A,{x) 

= z [dcP] e ,. 

ig J·rlx Au{x) 
= <tr e c ,. > 

= <A{C) = W{C). {5) 

A{C) is called the Wilson loop. We note that because of the trace {which 
is needed to sum over all possible colour combinations), the Wilson loop 
has a local gauge invariance under the transformations defined in 
Chapter 2. · 

This is in agreement with Elitzur's theorem [44], which requires that 
the average value of any non-gauge invariant quantity vanishes identi­
cally, irrespective of the coupling~ 

The Wilson loop is a non-local order parameter which distinguishes {for 
pure gauge theories) between the different phases of the theory, and 
will next be linked to the question of confinement. 

3. The Wilson Loop and Confinement 

Consider the same model as in section 2, with a quark at y = {t,O) and 
an anti-quark at x = (t,R) (the quark sources must again be heavy in 
order to prevent virtual qq pairs from forming. 

The qq state at a time t can be represented in terms of a gauge 
invariant operator M(x,y) [56], which creates a widely separated qq 
pair: 

lq(t,O) q (t,R)> =I f(C) M[(t,R),(t,O);CJIO> 
c 

(6) 

where M(x,y;C) = q(x)U(P,x,y)q(y) can be interpreted as a meson 
creation operator, IO> is the vacuum state and f(C) is the amplitude of 
the state with path C. 
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Also U(P,x,y) = P exp[ig JxA~ dx~] . 
y 

(where P denotes that the path is directed). 

(6b) 

Fort = 0 we choose the path to be a straight line with x0 =Yo = 0. The 
qq pair can ~e destroyed with Mt. 

The system is now allowed to evolve for a time t = T, after which the 
overlap between the qq states at t = 0 and t = T is measured. 

O(T,R) = <OIMt[(T,O),(T,x)] M[(O,O),(O,x)]IO>. (7) 

Inserting a complete set of energy eigenstates, we obtain for the 
Euclidian formalism 

-E t 
O(T,R) = ~ l<niM[(O,O);(O,x)]IO>I

2 
e n . 

n 
(8) 

The asymptotic behaviour for large T is dominated by the least energetic 
state which couples to M. This smallest energy eigenvalue corresponds to 
the potential energy of the static qq system separated by a distance R. 

Hence 

lim O(T,R) - e-E(R)T (9) 
T~oo 

From (7) we have 

O(T,R) = <OIMt[(T,O),(T,x)] M[(O,O),(O,x)]IO> 

= <Oiq(T,x)U[(T,x),(T,O);C]q(T,O)q(O,O)U[(O,O),(O,x);C]q(O,x)IO> 

If the quarks act as external sources, the propagator can be written in 
the form 

<Oiq(T,O)q(O,O)IO> 



~ U[(T,O),(O,O);C] -mT e . 

Similarly 

~ ~ -~ 
~ U[(O,x),(T,x);C] e , 

hence 

O(T,R) ~ e-2mT W(C) , 

with W(C) = <OitrU[x,x;C]IO>. 
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Comparison of eqs.(9) and (10) gives 

lim W(C) ~ e-T[E(R)-2m] . 
T~oo 

(10) 

(lOa) 

(lla) 

In a confining theory we expect V(R) [= E(R)] to increase without bound 
as R increases, i.e. 

V(R) ~ oo as R ~ oo • 

If one considers the model where a colour electric flux tube (i.e. a 
string with finite width) is formed between the sources, then one 
expects 

V(R) B aR + correction 
00 

(12) 

where a is the so-called string tension of the flux tube (the specific 
form of the correction to the linear term is given in Part II, sec.3). 

We note that eq.(l2) is dimensionless -to restore the right physical 
dimensions the lattice spacing a has to be used. 
For eq.(l2) this implies that i V(R) is the physical potential energy at 
a distance r = Ra, so that 

a -r Ra, (12a) 
a 
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2 

where a/a is the physical string tension and Ra is the physical 
string distance. 

For a non-confining theory (like QED) we expect 

R 
V(R) ~ constant = 2m. (12b) 

For large loops we should therefore have a different behaviour for· 
confining and non-confining theories 

W(C) = <OIA(C)IO>IEucl. ~ e-aRT = e-a.(Area of loop):confinement 

<OIA(C)IO>IEucl. e-2mT _ e-m.(Perimeter of loop) 
~ - : no confinement 

(13) 

4. The Wilson loop in lattice Gauge Theories 

In the lattice formalism, a Wilson loop is given by a product of links 
that form a closed loop (C) [11], i.e. 

1 A(C) = N tr(ll U~) 
. ~£C 

1 - N tr(ll U), 
. c 

(14) 

where the h factor is added to ensure that A(C) is normalized to one if 
all the links in the loop are set to unity. 

For the expectation value of the Wilson loop we thus have 

W(C) = <A(C)> = i I [dU] h tr(g U) e-S (15) 

where 
(i) [dU] is the normalized SU(N) Haar measure 
(ii) z =I [dU] e-s (15a) 
(iii) S is the Wilson action defined in Chapter 3. 
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The Wilson loop (eq.(14)), because of its gauge invariant nature, can 
now be used as order parameter to investigate confinement on the 
lattice. 

We note that W(C) is a function of the bare coupling g and the order of 
the gauge group, i.e. 

2 
W(C) = Wc(g ,N) 

5. Calculation· of the Leading Order Contribution to <A(C)> 

In analogy to the high temperature expansions for thermodynamical sys­
tems, Strong Coupling expansions are performed by expanding the 
"Boltzmann factor" in powers of 4 (= B/2N) [11], i.e. . 

-S g 
e-S(U) = n e P 

p 

B t = n exp[2N (tr up + tr UP)] 
p 

= n [1 + ~N (tr up+ tr U~) + ~~ (~N)
2 

(tr up +.tr U~)
2

+ ... ]. 
p 

(16) 

Hence, to leading order (O(B)) 

<A(C)> = i I [dU] h tr (~~c U~) np [1 + ~N (tr up+ tr U~) + ... ]. 
(17) 

Again choosing the Wilson loop to be a n x n rectangular one, we can 
write 

so that 

1 I 1 <A(C)> = z [dU] N }; (U~ ) ..... (U~ ) . . X 

J. J. 1 J1J2 n JnJ1 
1. • • n 

n [1 + ~N (tr up+ tr U~) + ... ] . 
p 

(18) 

(19) 
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Using the following group integration results for SU(N) (see Chapter 5), 

I [dU] = 1 

I (20) 

the first non-vanishing contribution to eq.(19) will be the term in the 
expansion giving the correct number of U .and ut's, i.e. all links must 
occur at least quadratically in the form tr uut. 

This corresponds to "tiling" the surface of the rectangular Wilson loop 
with elementary plaquettes, 

The lowest order contribution will therefore correspond to 

N N N 
W(C) - ~ (~N) p (ft) L (N) s, (21) 

with: 

NP = Number of plaquettes needed to tile the surface 

NL =Number of link pairs tl 

N5 = Number of lattice sites on the loop 

1 where each pair of links contributed a factor N , while a factor N was 
obtained from each site on the surface (N = tr 1). 

As an example we consider a ~Wilson loop: 



87 

with Np = 4; NL = 12; N5 = 9. 

Eq.(21) therefore reads 

6 1 B 4 1 12 g 
W(C) 0 N (2N) (N) (N) 

{22} 

Remarks 

{i} The result obtained above can be extended to larger loops in an 
obvious way as long as the loops are planar. In general the result 
(to lowest order) will be given by 

N 
W{C) . 6 {~) p 

O 2N 

N 
= <+> p 

g N 
{23) 

where NP is the minimum number of plaquettes needed to tile the 
area included by the loop. 

{ii) Eq.{23) is only valid for N ~ 3. For N = 2 the direction of the 
plaquette does not matter since 

{24) 

Both possible orientations of the plaquette variable {Up and U~) now 
contribute (which is not the case for N ~ 3 as the integral (eq.(24)) 
vanishes). 

The contributions ·from U and ut are the same; we have a factor~= -4
8 

p P N 
N 

for each plaquette and therefore an effective factor 2 P in W(C), 

N 
W(C) g (~) p (SU(2)) (25) 
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6. Correspondence between SCE and Confinement 

2 
Since all the elementary plaquettes have the sam~ area (- a ), there 
exists a one-to-one correspondence between the number of plaquettes (NP) 

and the minimum area (A) enclosed by a (planar) loop; for a rectangular 
loop with spatial and temporal dimensions R and T respectively this 
would imply 

2 
a N = A = TR p • 

The previous results can now be rewritten as (N ~ 3) 

B 2 

W(C) ~ (~)A/a [1 + ... ] 
o 2N 

-uA 
- e ' 

where u =- ~ ln (~) + ... 
a 2N 

is the string tension, while for N = 2 

with 

B 2 

W(C) ~ (B2)A/a [1 + ... ] 
o N 

(26) 

(27) 

(27a) 

(28a) 

The dots ( ... ) emphasize the fact that we are only considering lowest 
order results. The following remarks are in order: 

(i) Eqs.(27) and (28) correspond to an area law behaviour, which is 
valid for arbitrary shaped loops. If the loop C lies in a plane 
the leading contribution if B ~ 0 will always follow the tiling of 
the minimal · surface bounded by the loop. The gauge invariant 
Wilson loop expectation value can thus be used as order parameter 
for confinement. 

(ii) Analogously to the continuum theory [eq.(13)] we have the follow­
ing results for a confining and non-confining theory: 
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<W(C)> = <W(R T)> ~ exp[-(Area of loop)]~ confinement 
' exp[-(perimeter of loop)] ~ non-confinement 

(29) 

(iii) The area law is lost in the following cases: 

(a} When quarks are introduced as dynamical variables (and thus 
no longer act as mere static colour sources). This situation 
leads to a favourable environment for the (widely separated) 
static sources to create virtual qq pairs. 

(b) When the centre of the gauge group is not non-trivial, i.e.­
singlets appear in the direct product of the fundamental 
representation with any number a adjoint representations. 
In physical terms this implies that if a finite number of 
gluons (gauge fields) can neutralize a static source in the 
adjoint representation by screening it, then a gauge in­
variant object is formed when the gauge fields surround the 
edge of the (large) Wilson loop to give it a perimeter law 
behaviour . 

7. Higher Order Corrections to W(C) 

To extrapolate the Strong Coupling Expansions to larger B values re­
quires that the expansions be carried out to higher orders. These terms 
are also needed to obtain accurate estimates for quantities like the 
string tension etc .. For higher order terms in B, the surface of the 
Wilson loop is no longer minimally covered, and W(C) is of the form 

W(C) = ~ [1 + O(B) + 0(6
2

} + ... ]. 
2N 

(N ~ 3) (30) 

E.g., the O(B) correction is obtained by tiling any plaquettes of the 
surface twice with the same orientation: 

)( )( )( )( )( )( )( 

X X X 

DOD 
X 

DxfDfD X X 

X X X X X 

DOD 
X X X 
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This gives the result for N=3 [11] 

<A( C)> = 

with 

z 

-

2 
a a 

N 1 B <~a> P [1 + 2T Np(G) + • • • ] 

2 2 

<~a>A/a eHB/6)A/a 

' -a A 
e ' 

= - ln(~a>- ~2 

(31a) 

(31b) 

(31c) 

where the factor N was obtained because any plaquette may be tiled 
twice, while the fact~r ~ came from the action. 

Although it is possible in principle to calculate higher order correc­
tions to W(C) using the SCE defined in eq.(17), it becomes difficult due 
to the fact that any given plaquette may be tiled many times, which 
makes integration over the link variables cumbersome . 

In order to simplify matters it is convenient to replace the SCE by a 
character expansion. 

8. Character Expansion Techniques [9;15;11] 

The Boltzman weight can be expanded (see Chapter 5, Section V) 

-s -s 
e = II e P 

p, 

-s 
with e P = exp[~ Re tr UP] = exp[~ x (UP)] 

(32) 

and (32a) 

As an example we calculate the expansion coefficients cr for SU(2). 

The group characters for any irreducible representation r is given by 
(see Chapter 5) 
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X (U) _ sin(r+%)8 
r - sin(0/2) (33) 

Choosing the character associated with the spin % representation (r=%), 
we have 

X%(U) = 2 cos(0/2) . 

The LHS of (32) is now given by 

-S 8/2 XI (Up) 
e P e i 

ecos(0/2), 

so that 

cr = I [dU] x;(u) eB cos(0/2) 

4 2A _In I . 2 ( 8/ 2) dOd n sin(r+%)8 eB cos(0/2) 
-

0 
Sln 2n 4n sin(0/2) 

= 1 I2
nd(!)sin(8/2) sin(r+%)8 e8 cos(0/2) 

n 
0 

2 

= 2! I2
n d~ [cos(2r~) - cos[2(r+l)~] e Bcos~ 

0 

= 12r(B) - 12(r+l)(B) 

= 2(2~+1) I2rtl(B) . 

Eq.(32) is therefore given by 

(see App. D) 

(33a) 

(34) 

(35) 

r = 0, %, .... (36) 

Defining 

d = 2r + I; r [SU(2)] 
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(37} 

we can write 

c:o 

e~B cos(0/2,) = ~ d B (B) X (U) 
L. r r r · r=o 

(37a) 

Factorizing out the term corresponding to the trivial representation 
(r=O) we have 

e~B cos(0/2) 

where (i) z = r 

= 

2IdB) 
B 

(38) 

(ii) X0 (U) =I. (38a) 

The SU(2) result in eq.(37a) can be generalized to any gauge group G 

The trivial coefficient c0 is given by 

co = B0 =I [dU] x:(U) exp[~ x(U)] 

=I [dU] exp[~ X(U)] ·, 

so that eB/N X(U ) = B0 [1 + }; b X (U )] 
rt=O r r p 

(39) 

(40a) 

(40b) 

(40c) 
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Character Expansion for SU(3) 

For SU(3) the Boltzmann factor is given by 

where (41a) 

From eq.(40a) we have 

I 
-S (U ) 

c0 = [dU] e P P 

2 2 

= I [dU] [1 + ~ (X3(Up) + X3(Up)) + ~2 (X3 + X3) + ... ] 

2 
B 

= 1 + 2(72) + 

2 
B 

= 1 + 6 + ... 

where we used 

(i) I [dU] = 1 

(42) 

(3 ® 3 = 8 + 1) 

(3 ® 3 = 6 + 3). 

(42a) 

The expansion coefficients for SU(3) are given by 
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= I [dU] Xr{Up} exp[! (X3{Up} + X3{Up}}]. {43} 

Therefore 

Therefore, using the results in {42a} we obtain 

2 
b3 = b3 = B/6 + O{B }. (44a} 

Similarly, for the higher representations we find [11] 

2 3 
bs = bs = (B /72) + O{B ) 

2 3 
= _(b 3/2) + O(B ) (45a} 

and 
2 

B 3 
ba = 36 + O(B ) 

= 
2 3 

b3 + O(B ) (45b) 

9. Character Expansions applied to the Wilson Loop 

As before, the lowest order contribution is obtained by tiling the 
minimum area with plaquettes. 

For simplicity we consider a 2 x 2 Wilson loop as example. The results 
can then be generalized to larger loops. 
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let the 2 x 2 loop by indiced by [8] 

1 5 2 
, I 

A ' 8 
' 

I i' 

' 

8 
9 ~ 

' / ' / , ' , 6 

'V 

c I\ D ' 

4 / 
7 

~ 3 , 

The expectation value of the Wilson loop is now given by 

(46) 

-s (B/3)x(u ) 
with e P = e P 

(46a) 

Consider the integral 

I 
-s 

I = [dU] Xs ( IT Ue) IT e p 
et:c p 

(47) 
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where [dU] = [dU'] [dUintl 

Now 

and n => pl(A).pl(B).pl{C).pl{D) 
p 

12 = I [dUintl ~ [; cr Xr{UP)] 

= ~ ~ ~ ~ I du59 du69 du79 du89 cr cr cr cr x 
rArBrCrD A B C D 

Consider the intergrations over the links separately . 

I dUsg Xr {UisusgUgaUai) Xr {U52u26u69u95) 
A B 

= I dUsg Xr (UsgUgaUaiul5) Xr (U~9u52u26u69) 
A B 

-1 
= dr 0r Xr (UgaU81Ul5U52U26U69) 

A A A 

ft: I dUag Xr (U74u48u89u97) Xr (UgaUaiUI5u52u26u69) 
D A 

,C.: 

{47a) 



97 

Combining A, B, C, D gives 

Using the above we finally obtain 

(49) 

with 

b 4 

W(C) = (d s) 
s 

(50) 

(where the factor B0 cancelled out in the denominator). 

For SU(3) we chooses to represent the fundamental representation (i.e. 
s = f = 3), hence 

(51) 

(where we used df = X3 (1) = 3). (51 a) 

This result is conistent with the one obtained in (22) if we use 
eq.(44a). 

Introducing the variable (52) 
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we can rewrite the string tension (27a) for SU(3) in the form 

2 
a a = -lnt . (53) 

4 
First order correction (O(t ) [11] 

4 
The O(t ) correction is due to a cubical "bump" on the tiled surface 
(as shown below) 

This contribution adds four new plaquettes to the surface, corresponding 
to the four possible orientations of the bump [the surface can fluctuate 
either above or below the plane, or in the two transverse directions 
corresponding to the two remaining dimensions of 4-dimensional space­
time]. 

* Also the bump can occur on any plaquette of the surface 

2 

<A(C)> = W(C) = (t)Area/a [1 +*4(Area/a
2
)t

4 
+ O(t

5
)] (54) 

so that 
2 4 5 

a a = ln t - 4t + O(t) . (55) 

5 
To order t there is an additional contribution from a bump with a 
"floor", which arises from having a non-trivial (i.e. with repre­
sentation 3) base for the cube. 

//~77 

After performing all the internal link integrals (which open up all the 
plaquettes except the floor one), we are left with the following con­
tribution to a: 
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(a
2
a} 5 - 4t

4 
{3t} J dU 1 dU 2 dU 3 dU 4 X3 (UP) X3(UP) X3(UP) 

O(t ) 

5 5 
= -12t ns = -12t 

where ns = # singlets in 3 ® 3 ® 3 (= 1) . 

5 4 
The only difference between the O(t ) contribution above and the O(t ) 
one (i.e. bump without a floor), is therefore a factor b3 = 3t; 

2 4 5 6 
a a= -lnt -4t - 12t + O(t ). (56) 

The results above (with d=4) can be written in the general form [15] 

2 
a a = (57) 

where the values of the coefficients K (to order n = 14) are given in 
n 

table 6.1 for the different gauge groups (see [15] and references 

therein). 

Table 6 . 1 ( from [ 15] ) 
Coefficients K" for the strong coupling expansion of the string tension in four dimensions. K =-Int-I K"t" 

n 

4 5 6 7 8 9 10 11 . 12 13 14 

4 0 4 0 56 0 144 0 
3616 0 4276 

3 

U(1) 4 0 2 0 170 
0 

2125 
0 

862619 0 5754751 
3 24 720 2160 

SU(2) 4 0 0 0 176 0 10936 
0 

1532044 
0 

3596102 
3 405 i2i5 5103 

SU(3) 4 12 -10 -36 391 1131 2550837 -5218287 285551579 
2 10 5120 2048 61440 

SU(oo) 4 0 8 0 56 0 344 0 
4588 0 11688 

3 
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10. String Tension from SCE 

101 .------.-------

su Ill 

0 

FlGUHE 6.1 • SUI3) stdng tension as a function of the coupling 8. The 
points 11-D denote the ?.er.ol:h, l.ll:h, 12th nnd lOI:h or.der. 
lllno indicated is the rouqhening coupling o11 . 

2 
We will now calculate the ratio a/Al , where Al is the dimensionless 
(Euclidian) scale parameter [see Part II], from Strong Coupling results. 

This calculation is based on the observation that Strong Coupling 
results will have the correct slope predicted by asymptotic.freedom 
provided they lie in a narrow range of possible B values [15] 

(58) 

and Kn given in table 6.1 . 

Dividing the equation above by the Renormalization Group Equation (RGE) 
[see Part II] 

= (6nB/11) 1211102 exp[-6n
2
B/11] {59) 

we obtain 

(60) 
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It must however be emphasized that eq.(60) only provides an estimate 
2 

for u/AL (this will become clear later). We will now discuss the case 
of SU(3) in greater detail (along with the Monte Carlo d~ta [Part II]). 

In fig. 6.1 the results for the SU(3) string tension using a SCE for u 
8 10 12 

to order t, t and t are given. The expansion seems to converge well 
up to B z 5. For B z 6 higher order terms start to play a more important 
role. For each order the narrow range in B can be seen for. which the 
slope of the curve agrees with the one predicted by the RGE. 

In order to obtain a rough estimate for the (continuum} value of u, a 
straight line is fitted to the slope tangent to the curve of the SCE to 
a given order, and in so doing the value of Aljja is extracted. 

For the highest order results for the SCE this gives [15] 

(61} 

r 
The results obtained above unfortunately do not agree well with MC 
results computed on large lattices, which give the value 

(62} ' 

which is more than twice as large [see Part II]. 

11. Roughening 

One of the questions that may be asked is whether Strong Coupling cal­
culations can be systematically improved by going to higher orders. 
Unfortunately 'it appears that calculations incorporating higher order 
terms are plagued by a variety of problems. 

One serious limitation becomes evident when non-planar (off-axis} Wilson 
loops are considered. This is because the minimal area bounded by the 
loop must be composed of elementary plaquettes, which implies that the 
potential energy of the quark sources at (0,0} and (x,y} is 
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V(x,y) = o(lxl + IYI) 

and not 
-2---2 

V(x,y) = o(jx +y ). 

As a result rotational invariance (which should be restored as g ~ 0) is 
badly broken by the leading order SCE . 

Moreover, the minimal surface contributing to an off-axis loop is highly 
degenerate dui to the transverse quantum fluctuations of the surface 
whith amplitudes comparable to the radius of the loop. 
It is important to note that the restoration of rotational (Lorentz) 

* invariance implies that the surface bounded by an on-axis Wilson loop 
must fluctuate wildly. This in turn means that higher order terms in the 
SCE of <A(C)> become important [* for the calculation of a, the Wilson 
loops are usually chosen to be on the coordinate axis]. 

Another problem is roughening, which concerns the long-wavelength vibra­
tions of strings and which results in the inroduction of non-analycities 
in the way of Strong Coupling Expansions, especially for quantities like 
the string tension. This phenomenon makes it difficult to extract the 
continuum limit (with g ~ 0) of such quantities via analytic means, as 
the unbounded transverse fluctuations of the string surface may generate 
a singularity in o(B) at some critical value of B [B = BR]. This is 
called the roughening transition [42a-c]. 

Drouffe and Zuber [15] have conjectured that the singularity might be an 
essential one, i.e. of "infinite order", which blocks the continuati6n 
of the Strong Coupling series to the Weak Coupling region. 

However, it has been shown [42d] that for any non-zero temperature (and 
finite coupling) the roughening transition is washed out by the 
(thermal) transverse fluctuations of the electric flux tube connecting 
the qq pairs. This is due to the fact that for any non-zero temperature 
the string wave function diverges like j[ , where L is the length of the 
string. This implies that the string will be rough for any T > 0. 
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Another method of evading the roughening singularity is to derive the 
SCE using off-axis quarks, i.e. with non-planar Wilson loops. The sur­
face will again be rough to lowest order which prevents a phase 
transition from occuring [42e]. 

It is also interesting to note that the large transverse vibrations 
(massless modes) generate a universal (and u independent) correction t~ 
the static potential [42b], with 

AV(r) 

so that 

= - 1Q:ll!_ 
r 24 ' 

V(r) = ur - (d;Z> ~4 +constant + O(r-
2

) 

We will refer to this point again in Part II. 

(64) 

(65) 
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CHAPTER 7: MEAN FIELD TECHNIQUES 

1. Introduction 

Mean Field (MF) theory, like the Strong Coupling methods discussed in 
Chapter 6, provides us with a way of solving Lattice Gauge theories 
analytically. This is particularly important to verify computer calcula­
tions, which are often plaqued by purely computational restrictions 
(e.g. lattice size) which in turn heavily influences the results thus 
obtained. 

MF theory is a well established method in Statistical physics to obtain 
the critical points for phase transitions. Unfortunately, the direct 
application of MF techniques to LGT violate Elitzur's theorem [44] to 
lowest order (see also Chapter 6). It can, however, be shown that the 
inclusion of higher order terms in the approximation corrects this 
violation (see Sec.4). 

2. MF applied to the Ising (Spin) Model: "Intuitive Method" [II] 

Consider an Ising model with si belonging to the discrete Abelian group 
Z2 = {I,-I}. If we place a spin si from the set Z2 on each site of a d­
dimensional hypercubic lattice, we have as partition function 

Z = ~ exp(B ~ s.s.). 
{s} {ij} 1 J 

(I) 

A given spin 

~ sJ., with 
j(i) 

si will now interact with 2d nearest neighbours, denoted by 
the average 2Id ~ sJ. behaving like some mean field when d 

j(i) 
goes to infinity. 

For the Ising model the mean field corresponds to the magnetization M, 
defined as the expectation value for any given spin 

M = <s.>. 
1 

{2) 

Consider now a particular site i, and replace the spins on all the 
neighbouring sites with their average value M. 
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The Boltzmann probability for the spin on site 
therefore given by 

B }; s.s. 
. . l J 

e lJ 
p ( s ,. ) = --=----==-----=---=--B }; s. -B }; s .. 

j(i) J j(i) J 
e + e 

Making the replacements: s. -+ M = <s.> 
J J 

}; -+ 2d 
j(i) 

we have 

2dBMs. 
e , 

P(si) = 2 cosh {2dBM) · 

to have the value s. is 
1 

(3) 

(4) 

Requiring that the average value of s. also be M , we obtain the self­, 
consistency relation: 

M = }; s.P(s.) 
{s} 1 1 

1.e2dBM _1.e2dBM 
= 2 cosh(2dBM) + 2 cosh(2dBM) 

= tanh(2dBM). (5) 

For small B (i.e. large T, B ~ T- 1), eq.(5) has the unique solution 
M = 0. The MF approximation therefore correctly predicts that the mag­
netization vanishes at high temperatures. Graphically we have the 
following solution for eq.(5) 

,.,. 

From the asymptotic behaviour we see that BMF = ~d while for B ~ BMF = 
1 
2d , eq.(5) also has a favoured non-trivial solution with M > 0 (as well 
as a symmetric one at M < 0). 



106 

This non-trivial solution co~r~~~dhds to tH~ stiohtaneous breaking of the 
discrete Z2 symmetry of the original system. MF theory therefore 
predicts a phase transition at BMF' 

3. Variational MF Approximation [11;15;3a;43] 

3.1 Basics 

One possible way of deriving a MF approximation is to formulate the 
technique in variational form. 

In this approximation non-coupled independent fields are considered in 
an external (mean) field h , where h in general represents the global 
effect of other fields interacting with a given variable U~. 

This method is based on the convexity property of the exponential 
function: 

given any function f over some set X = {x} for which there exists a 
normalized measure p(x), then, because the exponential function is 
convex, 

(6) 

where <f>P = Jx f(x) p(x) dx. (6a) 

3.2 Formalism 

Consider the form of the partition function: 

(7) 

An appropriate measure will give for any function g the expectation 
value: 

(8) 
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so that 

(9) 

Using the convexity property, (eq.(6)), we have 

{10) 

which implies 

(lOa) 

where F = lnZ; {lOb) 

The variational estimate of F is obtained by minimizing the RHS with 
respect to the parameter h, which optimizes the bound and gives the 
consistencty condition 

( 11) 
a where Max[ ] denotes ah[ ] = 0. 

h 

3.3 Application to the d-dimensional Ising Model [11;15] 

First add and subtract a "source term" in the partition function: 

Z = I exp[B .~ si sj + h ~ si - h ~ si]' 
{s} 1J 1 1 

(12) 

where h will later become the variational parameter. 

A suitable (discrete) measure will give the following expectation value 
for a function f 
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<f> = ~[exp(h ~ s.) f(s)]/~ exp(h ~ s.). 
s i 1 s i 1 

(13) 

Using eq.(13) we can rewrite Z in the form 

Z = <exp[B ~ s. s.- h ~ s.]> ~ exp(h ~ s.). 
. . 1 J • 1 . 1 
1,J 1 s 1 

(14) 

Applying the convexity property (eq.(6)) we obtain the inequality 

Z/~ exp(~ si) = <exp[B ~ s.s.- h ~ s.]> 
s 1 i,j 1 

J i 1 

> exp (<B ~ s . s . - h ~ s . >) . 
- . . 1 J . 1 

1 , J 1 

(15) 

We will now discuss eq.(15) in more detail. Consider the right hand side 
first 

(a) the second term gives (using eq.(13)): 

<-h ~ s.> = -~ ((h ~ s.) exp(h ~ s.))! ~ exp(h ~ s
1
.). (16) 

. 1 . 1 • 1 s . 
1 s 1 1 1 

Now: ~ exp(h ~ s.) 
• 1 s 1 

h s 1 
= ( ~ e )( ~ 

S1 =±1 S2=±1 

h s 2 
e )( ... ) = [2cosh h]A, (17) 

where A = number of lattice sites on a d-dimensional hypercubical lat­
tice with A = Ld (L = # lattice sites in one linear direction. (18) 

~ (h ~ si)exp(h ~ s.) = h ddh[2cosh(h)]A 
s 1 1 

1 

= hA [2cosh(h)]A- 1 2sinh(h). (19) 

Using eq.(19) and eq.(17) in eq.(16) give: 

<-h ~ s.> = _ hA[2cosh(h)JA- 1 2sinh(h) 
i 1 [2cosh(h)]A 
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= - Ah tanh(h). (20) 

(b) The first term in the RHS of eq.(l5) can be written (using 
eq. (13)) 

<B .~.sisj> = ( ~(B .~.sisj)exp(h ~ s1))/exp(h ~ si). (21) 
1,J s 1,J 1 1 

The numerator now gives 

~ [ ~ B s.sJ. exp(h ~ s.)] 
s i,j 1 i 1 

= ~ [B s1s2 exp(hs 1+hs 2 )][exp(hs 3+ hs 4+ ... ] + ~( ... ) 
s s 

= 4AdB sinh 2 (h)[2cosh(h)]A-~ 

so that 

<B.~.sisj> = 4AdB sinh
2
(h)[2cosh(h)]A- 2/[2cosh(h)]A 

1 , J 

2 
= ABd tanh (h). 

Hence eq.{15) finally reads 

Z/~ exp(~ si) = <exp[ B ~ s.s.- h ~ s.]> 
S 1 1·J·1J 1' 1 , 

2 
~ exp[-Ah tanh(h) + ABd tanh (h)], 

so that 

{22) 

{23) 

(24) 

Z ~ exp(-Ah tan~(h) + ABd tanh
2
(h) + log[2cosh(h)]A). (24a) 

Using as definition for the (Helmholtz) free energy F 

we obtain the following bound for the free energy per site 

-1 BF = -A lnZ ~ BFMF 
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2 

=-dB tanh {h)+ h tanh{h) - log[2cosh{h)]. {25) 

Minimizing the RHS of eq.{25) with respect to the parameter h gives a 
lower bound on the free energy: 

~h {BFMF) = 0 = ~h(-dB tanh
2
{h) + h tanh{h) - log[2cosh{h)]) 

2 
= sech {h)[h- 2dB tanh(h)]. {26) 

Remark: Eq.{26) is equivalent to the earlier result for the Ising model 
[eq.(4)] if we make the identification h = 2dBM, because then 

2 
M = tanh(2d~M) sech (2dBM) 

sech (2dBM) 

= tanh(2dBM) = eq.(4) 

3.4 Variational MF Approximation applied to Pure SU(N) LGT [11;43] 

Consider the pure SU(N) LGT partition function (see Chapter 3), 

Z =I [dU] e-S(U) 

= J [dU] exp(~ ~ Re tr up) 
p 

{27) 

(i.e. where S{U) is the Wilson action) and int~oduce a one-parameter 
constant external field h which is linearly coupled to the gauge fields: 

h 
Sh(U~) = N ~ Re tr {U~) 

~ 
(28) 

and zh = I [dU] exp[Sh(Ue)]. (29) 

We can now define the expectation value 

(30) 

so that 
' 
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(31) 

Using eq.(7) gives 

(32) 

or equivalently 

(32a) 

As we are using an independent link formulation, eq.(29) can be written 
in the form 

zh = J (IT dUe> exp[ ~ 2 Re tr Uel e e 

= ~ U dUe exp[~ 1 Re tr Uel) 

where Ad= Ldd = # of links. 

Define 

W(h) = ln zh 

= ln ( ~ z(h>e) 

It follows that 

2 ln z(h)e 
e 

d d dh W(h) = dh [ln Zh] =Ad w'(he), 

where w'(he) = ~h w(he) = z(~e> ~h z(he) = <Ue>h. 

(33) 

(33a) 

(34) 

{35) 

(35a) 
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The expectation values in eq.(32a) can therefore be written as 

= h W' (h) = Adh w' (h); 

<Sw(U)>h = i J [dU] (~ ~ Re tr UP) exp[~ ~ Re tr U~] 
h p ~ 

= B ~IT (z(~ ) J dU~ h Re tr Up exp[~ Re tr U~]J 
p ~ ~ 

4 = %d(d-I)AB [w'(h)] , 

where we used 

~ => %d(d-I)A (=#of plaquettes). 
p 

Substituting eqs.(36) and (37) into eq.(32a) gives: 

4 
ln Z ~ ln Zh + %d(d-I) AB[w'(h)] - Adhw'(h) 

= Ad(w(h) + %d(d-I)B[w'(h)]
4 

- hw'(h)). 

Defining [IS] 

I F = N ln Z we have 

ln Z F/d = Nd 

* 

F 
~ ~F = max{w(h) 

h 

. * I 4 
hw'(h) + B 4 w'(h) }, 

(36) 

(37) 

(37a) 

(38) 

(39) 

where B = 2B(d-I) and F/d is the free energy per link. (39a) 

The following remarks are in order. 

S (U ) 
(i) All calculations were done using e h ~ as weight, i.e. using 

an independent-link approximation. 

(ii) From eq.(35a) it is apparent that Elitzur's theorem [44] is 
violated in this approximation. 
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(iii) The following consistency equation is obtained by maximizing FMF 
with respect to h: 

3 
h = 2(d-1)B [w'{h)] . 

If h = 0, the function w'(h) vanishes. This value is therefore always a 
local minimum. For high temperatures this is the only solution, while 
for low temperatures (large B) there also exists non-zero solu.tions. 

The result above is true for all gauge groups. MF theory therefore 
predicts a fi~st order phase transition seperating the Strong Coupling 
region {where the h = 0 solution dominates) and the Weak Coupling region 
{with solutions h t 0). 

(iv) Calculations can also be performed using the temporal axial 
gauge, i.e. setting all the temporal links equal to one so that 
they no longer act as dynamical variables. 

Only spatial links are now present in the one-parameter action, and as a 
result the quantity 

* 3 z = B [w' (h)] · 

3 
= 2(d-1)B[w'(h)] 

in equation (39) must be replaced by [45] 

3 
z = 2(d-2) B[w'(h)] + 2Bw'(h) 

* ' * = B (d-2) 3 B 
(d-1) [w'(h)] + (d-1) w'(h). 

The free energy per link is now given by 

* F 
(d-1) Max(w(h)- hw'(h) + B (d- 2) [w'{h)]

4 

h 4{d-1} 

* B 1 , 2
) + (d-1} 4 [w (h)] · 

(40) 

(41} 

For large d eq.(41} is equivalent to eq.(39}. Although the problem of 
the violation of Elitzur's theorem is avoided by fixing the gauge, the 
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MF Ansatz will now violate the 90° rotation symmetry of the original 
lattice theory in the low~st order approximation. For a detailed dis­
cussion see [15]. 

(v) There are certain disadvantages in using the variational 
approximation: 

(a) the one parameter independent link action (eq.(28)). cannot be 
used to calculate corrections and also does not comply with 
the requirement of gauge invariance. 

(b) it is only accurate if the fluctuations around the self­
consistently determined MF are small and can be neglected. 
This is the case if d is large (i.e. a given field (link) 
interacts with a large number of nearest neighbours) or in 
the Weak Coupling (large B) regime when almost all the de­
grees of freedom are "frozen" in an ordered state . 

. 4. Saddle Point Approximation 

In order to calculate corrections the lowest order MF result, the saddle 
point approximation [43;46;15;48] is used. 

This method is based upon the fact that any interacting system 
(consisting of spins or links) of a gauge theory problem is equivalent 
to a problem of independent degrees of freedom in a random external 
field. In this approximation the lowest order MF equations are obtained 
as the stationary conditions describing a saddle point. 

Consider the partition function 

Z[J] = J [dU] e-S(U) + J.U 

where [dU] = IT dUx , 
X 

and we introduced a source term 

(42) 

(42a) 
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Using the Fourier representat1on of the Dirac 6 function 

6(x) = ~~ ~ eiq.x dq 
-co 

I
ico 

= 2!i eq.x dq, (43) 
- ico 

we can write 

6 ( U-V) = f co d (2~ i) e ( u- v) • h (43a) 
- ico 

or 

(43b) 

where we used d (2~;) ~ ~ ~:~) • (43c) 

The integrand in (42) can now be written as 

e-S(U) + J.U = I [dV] 6{U-V) e-S(V) + J.U (44) 

which gives for the partition function 

Z[J] =II [dU][dV] 6(U-V) e-S(V~ + J.U 

= III [dU][dV] d(2~i) exp[-S(V) + J.U + (U-V).h] 

= III II (duxdVx ~:~) exp(-2:[(Jx+ hx)Ux- Vxhx] - S(V)). (45) 
X X 

Introducing w(J) = ln I [dU] eJ.U 

we can write 

J u 
= l n ( II I dUx e x x), 

X 

Z[J] =I [dV] d(2~;} exp[w(J +h) - V.h - S(V)] 

(46) 
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=I [dV] d(2~i) exp[~ w(Jx+ hx) - ~ Vxhx- S(V)] .. (47) 

The MF result is now given by the saddle-point approximation of the 
integral above in both variables h and V. 

Determining the' saddle-points 

We first rewrite the integral in the form 

Z[J] =I [dV] d(2~i) exp[-A(V,h)], 

where A(V,h) =·- w(J +h) + V.h + S(V). 

The saddle point is now given by the stationary equations 

(i) 

(ii) 

-+ 

-+ 

aA(V,hl as 
avx = 0 = avx + hx 

run 
avx 

aA(V2h} 
ahx 

* = -hx; * V=V 

= 0 = -
aw(Jx+hx) 

ahx 

* * = v . 
h=h X 

* * 

+ vx 

(hence (Vx,hx)· is· the saddle-point solution). 

The lowest order contribution to 

F[J] = log Z[J] 

from a single saddle-point is 

* * * * * F [J] -.S(V) - V .h + w(J + h ). 

(48) 

(48a) 

(49) 

(50) 

(51) 

We note, in passing, that because we introduced a source term we can 
* regard F[J] as a generating functional with F [J] = WMF[J]. 
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In order to calculate corrections to the MF result above we rewrite the 
variables h and V as 

(52) 

so that 

(52a) 

Expanding in fluctuations (AV,Ah) around the MF solution gives: 

Z[J] * * * * = exp[-S(V) - V ·h + w(J+h )] X 

r d[AV] fen d(~~i) exp(-% S"(V*)(AV)
2

- (AV)·(Ah) + 
-en -icn 

% w''(J + h )(Ah) * 2) X 

with * * * * Zsp = exp[-S(V) - V ·h + w(J+h )] (53a) 

and where [n] denotes the nth derivative (with respect to h). 

Using (55a) we thus have for the first correction 

* 2) - i~.n- % w''(J + h )(nx> . (54) 

The integral is of Gaussian form, which can be readily evaluated to give 
[15] 

-1 * * Z[J] = zsp det 2 [1 - S''(V) w''(V + h )] 

* * = Zsp exp[-% tr ln((1 - S''(V) w''(V + h ))]. (55) 
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The one-loop contribution from the Gaussian fluctuations to F =log Z is 
therefore given by 

* * F1 =- %tr ln[I - S''(V) w''(V + h )]. (56) 

The following remarks are in order 

(i) For the saddle-point to be stable, the matrix 
* * I - S''(V ) ~''(V + h ) must be positive definite. 

(ii) If the saddle-point solutions do not share the same symmetries of 
the original theory, then the stationary conditions (49) will be 
degenerate. This is especially true for gauge theories. 

For continuously degenerate saddle-points, gauge fixing in the 
Weak Coupling phase must be introduced from the start to avoid the 
matrix above developing zero modes (corresponding to zero mass 
excitations) [47]. The effect of gauge fixing would then be to 
render the quadratic terms of the Gaussian fluctuations around the 
mean field positive semi-definite. 

For discrete groups gauge fixing is not necessary as no zero modes occur 
which prevent the calculation of higher order corrections in the fluc­
tuation expansion around the saddle-point [47]. The usual choice for 
fixing the gauge is the axial gauge [47,55,15], although the choice of a 
covariant gauge [54] has also been advocated. 

' Brezin and Drouffe [43a] have shown that the problem associated with the 
violation of Elitzur's theorem (sec. 3.4) can be suitably remedied by 
using a more general expression for the MF trial action, namely 

-1 S ( U ~ ; { h} ) = N }; Re t r ( h . . U .. ) , 
<ij> lJ Jl 

(57) 

where, in contrast to eq.(28), a mean field hij is now associated with 
each link (with <ij> denoting the lattice links). Choosing hij= hji' 
they used the following ansatz for the Saddle Point solutions given in 
eq.(49) 

-1 h .. = V. hV. 
lJ 1 J h E: R, Vi E: G (58) 
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which is dependent on the real constant h and a set of local gauge 
. -1 -1 transformations {Vi} [w1th Vi= Vi{x); Vj = Vj {x+p)]. 

Hence, because eq.{58) is degenerate with respect to Vi' if hij is a 
solution, then so is hij· By averaging U over all possible Saddle Point 
configurations, one obtains the result 

I 
-1 -1 <U .. > = dV.dV. w'{h) V.V. = 0 1J 1 J 1 J {59) 

so that Elitzur's theorem is satisfied {compare eq.{35a)). 

5. General APplications of MF Approximations 

5.1 Gauge Models [45;50] 

Using the Wilson action in the fundamental representation the partition 
function for SU{N) reads {see Chapter 3) 

· trU + trut 
Z = I {ll dU~) exp(B ~ P2tr 1 P) 

~ p 

=I rdu] exp(~N ~ tr{Up + U~)). 
p 

{B = 2~) 
g 

{60) 

The MF equations are obtained by replacing all the link variables ux.p = 
U~ by their average values <Ue , except one {UL) {"Weiss MF" method). 

Hence 

where 
{ i) 

3 
z = 2{d - 1)B m 

{d is the number of dimensions and {2d-1) is the 
number of plaquettes). 

{61) 

{61a) 

{ii) m is the solution of the MF self-consistency equation. 
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= ~z lnU dUL exp(z<truL + ut>;2tr 1) 

= dd ln ZMF 3 = Q(z). 
Z Z=2(d-1)Bm 

We will now calculate eq.(62) for a few gauge groups. 

(a) G = U(1) [45] 

The abelian group U(1) can be parameterized by· 

with measure 

Hence, if UL £ U(1), then UL = ei~ and 

z tr(uL + ut) = 2z cos~ 

so that eq.(62) now reads 

J
21f 

d~ cos~ ezcos~ 
0 

m = J21f_d~ ezcos~ 
0 

2tr 1 = 2 

Z=2(d-1)Bm) 

(62) 

{63) 

(64) 

(65) 

{66) 

where In(z) is the modified Bessel function of order n (see Appendix D) 
and z is defined in eq.{61a). 

(b) G = SU(2) [45;47;49;51] 

One possible parameterization for a group element of SU(2) is (see 
Chapter 5) 

. A ~ 

U = 1 cos~ + in·u sin~, (67) 
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A 

where 0 ~ ~ ~ 2n, and n is a unit three dimensional vector. 

The corresponding normalized Haar measure over the group manifold is 
given by (Chapter 5) 

2 2 

[dU] = sin ~ ~~ d n (68) 
2n 

For x we choose the character associated with the spin % representation, 
i.e. 

= 2 cos~. (69) 

= 4 cos~ 

and 2tr 1 = 4, (70) 

which gives 

(71) 

Rewriting 

ez cos~ = I d ez cos~ z d(cos~) (7la) 

we have 

I J2
n . 2 (I d z cos~) 

, ZMF = i 
0 

~ln ~ d~ z d(cos~) e 

=- 1 J2nsin~ d(cos~) (1 d ez cos~). n 
0 

z d(cos~) (7lb) 
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Using partial integration this gives 

= --z (72) 

Similarly it follows that 

1 J2
7£ • 2 ' (1 d z cos¢>) = i s1n ¢> cos¢> z d(cos¢>) e drp 

0 

!_ J27£ z cos¢> _ 21 2(z) 
= Z1£ cos2¢> e drp - z • 

0 

(73) 

From eq.(62) it thus follows that (using eqs.(72) and (73)) 

(74) 

which, using (0.3) gives 

12(z) 13(z) - 11(z) 
m = 11 (z) = % 1 2 (~) Io(z) (74a) 

(c) Fundamental-adjoint mixed action [51,52] 

Using the mixed SU(N) fundamental-adjoint action 

(75) 

two paramters have to be introduced in order to describe the MF, i.e. 

(76) 
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Hence 

(77) 

where the number of plaquettes in d dimensions is again (2d-l), while 
the rest of the notation used is discussed in Chapter 3. 

Since U is unitary it can be diagonalized (see Chapter 5) with eigen­. i-. 
values e J , j = 1, ... N. The SU(N) invariant Haar measure factorizes 
into [see discussion leading up to eq.(IOS)] 

N d-. 2 
dU = .rr ~ lA(_> I 2~ oP(~ -j>' 

J=l J 
(78) 

where A(-) is the Vandermonde determinant and op(~ -j) a periodic 6 
J I 

function inserted to enforce det U = 1. 

The partition function now reads 

Z = J .~ d-J· . rr. sin 2 ~j' ; -j) op(~ -J·}e-S(-~ 
J=l J'<J l- J 

(79} 

Eq.(79) can now be solved numerically [51]. 

Several physical quantities can now be calculated, e.g. the plaquette 
energy 

= d~' ln u (IT dUe) exp(B'Sp + B ~ Sp,)) (80) 
e p'tp B=B' 

In the lowest order MF approximation (i.e. replacing all the links 
except one with their average values}, this gives [45;49] 



4 
= m . (81) 

Using an improved MF approximation, namely to replace U ~Y <U> = m 
everywhere except on all four links of the plaquette p gives 

[J { 3 tr(U + ut)}] 
rr dU~ exp B'Sp + B(2d-3)m ~ 2~r 1 .~ 
~£P ~£P B=B' 

(82) 
where the number of nearest neighbour plaquettes in d dimensions is 
(2d-3). 

Eq.(77) can now be evaluated using character expansion techniques 
[45,49] (see also Chapter 5). 

For SU(2), the character expansion of e-S is given by 

(83) 

where (i) dr = 2r + 1 (83a) 

(ii) and the expansion coefficients are given by 

(83b) 

Using the orthogonality properties of the characters it is straightfor­
ward to show that [49] 

z'=B 
B'=B 

(84) 



where 
3 

z = (2d-3)Bm . 

5.2 Chiral Models [53;52] 
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Consider the SU(N) ® SU(N) chiral partition function 

where i labels the lattice sites and <ij> labels links. 

(84a) 

(85) 

If we now make the Ansatz of replacing all the links except the ith one 
by a fixed matrix K, we have 

(86) 

where z = 2d is the number of nearest neighbour links. 

Writing K = J/z the partition function in eq.(86) reduces to the single 
site prob 1 em 

Zss = exp[-Fss(J,Jt)] 

= J [dU] exp[%B tr(U .. Jt. + J .. ut .)], 
Jl lJ Jl lJ 

(87) 

with the MF self-consistency equation given by 

<U> = K = J/z (88) 

(and the expectation value taken with respect to eq.(85)). 

therefore 

- ---z
1 J [dU] exp[% -2

8 u .. exp[% B tr (UJt +JUt)] 
ss . Jl 

(89) 
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Equation (87) can therefore be written in the form 

Defining the MF free energy 

F ( t) ::: !L ( t t MF J,J - 2z tr J J) + Fss(J,J ) 

we have 

a 
-t FMF = 0 
aJ .. 

lJ 

which can be used to determine the value of the_ mean field J. 

Using a global Ansatz 

J = al , 

equation (87) becomes 

(89a) 

(90) 

(91) 

(92) 

= J [dU] exp[%aB tr(U + ut)]. (93) 

Expanding the integrand in eq.(87) in powers of B and using the 
properties of Haar measure (Chapter 5) we have 

J [dU] exp[%Btr(UJt +JUt)] 

= J [dU] {1 + %B(tr UJt + tr JUt) + ~! (B/2)
2

( 

= J [dU] {~ 1 (B/2)
2 [2tr(UJt) tr(JUt)] 

+ ~!(B/2) 4 (tr UJt)
2
(tr JUt)

2
] 

+ ~!(B/2)N[(tr UJt)N + tr (JUt)N] + ···} 
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+ 2~: 1 (det(J) + det(Jtl) + ... (94) 

For general J we thus find [53] 

B 
4 

t t BN t + ~5~:..,.2- tr(J JJJ ) ~ - [det(J) + det(J ) ] + .... 
2 N(N -1) 2NN! 

(95) 

Using the global Ansatz (eq.(92)), equation (95) reduces to 

2 N 
FMF = ~z tr(JtJ) - ~ tr(JtJ) - -2-- [det J + det Jt ] + 

2 N 2 N! 
(95a) 

(i.e. the two fourth order terms cancel). 

For SU(2), eq.(95a) gives (to lowest order) 

2 2 

FMF = ~z tr(JtJ) - ~ tr(JtJ) - + [det J + det Jt] + ••. 
2 2 2 2! 

2 2 B 2 B 2 B 2 = 2z a trl - - 2- a trl - - 2- [2a det 1] + •.• 
2 .2 2 2! 

(z = 2d = 6) 

1 2 
= %B(3 - B)a + (96) 

The MF approximation therefore predicts a continuous phase transition 
transaction at Be = t . 
For SU(3) the determinantal interaction enters in lowest powers as a 
cubic, which results in the phase transition being first order [53] 

1 2 1 3 3 
FMF = 4 B(1-B)a - 24 B a + (97) 
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In order to determine the phase transition points more accurately, 
eq.(93) can be evaluated exactly using SU(N) integration techniques. 

We shall first solve the U(N) integral and then afterwards add the SU(N) 
constraints. 

As· U is a unitary, it can be diagonalized by a unitary matrix D, 

[ 

if/>1 if/> I 
u = D e · e : ot = DU ot 

• "At. 0 . 1Y'N . e 

(98) 

The integrand of eq.(93) can henc& be written as 

= exp[QB(cos¢>1 + ... + cosfj>N)], (99) 

where we used the cyclic property of the trace 

(99a) 

Using the Weyl parameterization we can write for the Haar measure in 
eq. (93), 

[dU] = dp(¢>) [dO], (100) 

( 
N d¢> ") 2 

where dp(¢>) = .n 2~
1 IA(¢')1 

1=1 
(0 ~ q,i ~ 2~) (IOOa) 

and A(¢') is the Vandermonde determinant 

A(¢>) 
I i¢>1(N-j1) 

=- £. . e /NT J1 ... JN 
( IOOb) 

= det[eifi>(N-j)] . ( lOOc) 

As the integrand [eq.(99)] is independent of D, the integration over 
[dD] can be normalized to unity. With this in mind we can write for 
eq.(93) 

I . 
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Zss =I d~(~) exp[2B(cos~ 1 + ... + cos~N)] 

( 
N d~ ') 2 N · 

= .rr 2n1 IA<~>I exp[aB .rr cos~i] . 
1=1 1=1 

(101) 

Thus 

I ( N d~-) 2 N 
Zss = IT 2nr IA<~>I n exp[aB cos~rl 

r=1 r=1 

1 N {J2n d~i i~r(jr-ir) eaB cos~r} 
=-N, £, • £, . IT -2-e 

• 11 ••• 1 N J 1 ••• J N r= 1 o n 

[U(N)] 

where 1 .. (aB) = I2
n Q! eaB cos~± i(n-m)~ . 

IJ-11 2n 
0 

For SU(N) the restrictions 

N 
I ~· = O(mod2n) 

. 1 1 1= 

(102) 

(102a) 

(103) 

must be added to the U(N) parameterization (eq.(100a)) in order to 
enforce the condition det U = 1. 

To this end we insert a periodic delta function into the measure 
(eq.(100a)), namely [53] 

110 
= I exp[im(I ~r)] 

m=-110 r 
(104) 



so that 

[dU] = dp(~) 2n6P(~ ~r) 
r 

co N 
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= ~ dp(~) exp[im( ~ ~r)], 
m=-co r=1 

(105) 

where we took into account that the integral will again be i.ndependent 
of D. 

The single-site integral now reads 

co 
= ~ detim+j-i{aB). 

m=-co 
(106) 

The exact expression for the free MF energy is therefore 

(107) 

If the Bessel functions are now expanded in powers of aB, the epressions 
obtained earlier in (96) and (97) are recovered for N =2 and 3 
respectively. For futher results, see [53]. 



'131 

PART II 

1. Field Theories at Finite Temperature 

To introduce the concept of temperature in QFT {which is necessary to 
describe a wide variety of physical applications e.g~ heavy-ion colisions) 
we use as Ansatz the Statistical partition function 

Z = tr e-BH 

(1.1) 

where H is the Hamilton operator and 

{l.la) 

Interpreting the partition function as a summation over all possible inde­
pendent eigenstates we can use the Feynman functional formalism [I] which 
gives 

~<~I e-BH I~> = N' I (d~) e-S{~) (1.2) 

where N' is a temperature dependent normalzation factor, and we introduced 
the variable 

1 5 it. 

To find the partition function Z, the integration in (1.2) is restricted to 
those fields satisfying the following periodic boundary conditions 

~ ~ 

~{x,O) = ~{x,B). 

We thus have the result 

Z = N' I {d~) e-S{~) 

= N' I {d~) exp[ IBdr I d3
x f ] 

0 

with f {5 f{~,a~~)) the Euclidian Lagrangian and a~ 5 {i~1 ,V). 

(1.2a) 

(1.3) 
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Eq. (3) is now a "typical" path integral, i.e. it consists of only classi­
cal fields. 

Introducing a suitable normalized measure we finally h~ve 

(I. 4) 

In- applying the formalism above to gauge fields, special care must be taken 
because there are now only two independent degrees of freedom for a massless 
vector field, while the lagrangian of the theory has typicaly four degrees 
of freedom for most renormalizable gauges [2]. 

Choosing a suitable "physical" gauge (in particular the axi~l gauge), 
however, results in each gauge field having only two degrees of freedom. 
This particular choice also has the advantage that Fadeev-Popov ghost fields 
need not be intoduced to get rid of the unwanted degrees of freedom. For 
other gauges the Fadeev-Popov Ansatz has to be included. 

In general the partition function for a gauge theory will have the form 
[1;2;5e] 

where detMf 6[fa(A~)] = detl:;al 6[fa(A~)] is.the Fadeev-Popov Ansatz which 
restricts the functional measure and thus get rid of the unwanted redundancy 
in the quantization procedure. The set of functions 8(x) parametrize the 
(infinitesmal) gauge transformations off, while m is the total number of 
physical polarization states (degrees of freedom). 

Also, the lagrangian of the Yang-Mills theory is given by 

( 1.6) 

where (I. 6a) 

with fabc the SU(N) structure constants (see Chapter 5), and g the coupling 
constant of the theory. 
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Again introducing a normalized measure we have the following form for the 
continuum Yang-Mills partition function 

Z = I [dA] e-S 
p 

(1.7) 

where p denotes the periodicity of the measure [i.e. A(x,O) = A(x,B)]. 

Thermal averages of physical variables are defined by 

where Z is the partition function defined in (1.1). 

In terms of the formalism discussed above, this implies 

<0> = t I [dA] o e-s, 
p 

with Z defined in (1.7). 

(1.8) 

(1.9) 
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2. Lattice Gauge Theories at Finite. Temperature 

2.1 General Formalism 

The motivation behind the introduction of the lattice regularization in zero 
temperature Field Theory (Chapter 1) is also valid for the finite tempera­
ture formalism. 

The only difference as far as the lattice structure self i$ concerned is 
that the lattice must now be finite in at least one direction (the so-called 
time or temporal direction). As the Euclidian framework is used, this choice 
is arbitrary. 

For a lattice finite in all directions the number of sites in the spatial 
and temporal directions will be denoted respectively by Na and NT [3]. In 
general the lattice also need not be symmetric, in which case the lattice 
spacings in the spatial and temporal directions are denoted by aa and aT. 

The asymmetry parameter is defined by 

A symmetric lattice will therefore correspond to the choice € = 1 (but with 
Na +NT for finite temperature systems). 

To ensure the required periodicity of the gauge fields in T, the lattice 
should be periodic in at least the temporal direction, i.e. 

The volume and temperature on the lattice are thus defined by 

3 
V = (Naaa) 

-1 
T = NTaT . 

(2.1) 

(2.3) 

It is important to note that for physical quantities the thermodynamic limit 
corresponds to taking Na ~ ~, whith the lattice spacing aa kept fixed. 
Also, the continuum limit of the theory corresponds to the limits 
Na , NT ~ ~ with aa and aT ~ 0 while V and T- 1 are kept fixed. 
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For lattice finite temperature systems, the gauge field action used most 
often is the Wilson one defined on an asymmetric lattice (see also Chpt.3): 

where P~v = 1 1 Re tr u~uv u~t uvt 
X - N X X+~ X+V X 

= 1 - l Re tr u~V N X ' (2.4a) 

and (i) ~ ~ = ~ implies summation over all space-like plaquettes 
X ~<v<4 {PO"} 

(i.e with all four links space-like) ; 

(ii) ~ ~ - ~ implies summation over all time-like plaquettes 
X ~<4 {P

1
} 

(i.e with two spatial and two time-like links). 

[The notation ux,~ and U~ will both be used to denote a link] 

Defining 

we can rewrite eq.(2.3) iri the form 

S(U) = 2NKO" ·{~ }p~V + 2NK1 ~ P~4 . 
0" {PT} 

The partition function is given by 

ZE(T,V) =I ( n dU) e-S(U) 
x,~ 

=I [dU] e-S(U), 

(2.5) 

(2.6) 

(2. 7) 

while the thermodynamic average is defined (analogously to (1.8)) for any 
operator O(U) by 

<O(U)> = z- 1 I [dU] O(U) e-S(U). (2.8) 

The following remarks are in order. 
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(i) As a consequence of the asymmetry of the lattice there are now two 
coupling constants gu(a,€) and g

1
(a,e). This is to ensure that physical 

quantities in the continuum limit will be regularization scheme independent, 
as an independent variation in au and a

1 
can be compensated by suitably 

adjusting the two couplings. 

For a symmetric lattice {€ = 1) both couplings are equal {Chpt. 3): 

(2.9) 

(ii) In the Weak Coupling limit the couplings gu and g
1 

can be expanded 
in terms of the bare coupling constant to give the following finite lattice 
size corrected values [4] 

g~2 (a,€) = g- 2(a) + cu(€) + O(g2) 

g;2(a,e) = g- 2(a) + c
1

(€) + O(g2) {2.10) 

where the functions cu(€) and c
1

(€) are numerically known for SU(N) [4], 
and eq.(2.9) implies that cu(1) = 0 ~ c

1
(1). 

In later calculations, derivatives with respect to T and V will be replaced 
by derivatives with respect to au and e (section 2.4). 
In anticipation we define 

-2 . 
(a gu (a,€)/ae>e=1 = (acu(€)/ae>e=1 5 c~ 

-2 (a g1 (a,€)/ae)€=1 = (ac1 (€)/8€)e=1 5 c; (2.11) 

(iii) Using (2.3) and (2.5) the lattice couplings can be written as 

(2.12) 
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2.2 Order Parameters and symmetries 

One possibility to distinguish between the phases of ~ gauge theory is to 
use the free energies of static configurations of massive quarks and anti­
quarks as order parameter. This can be done as follows [5]. 

First intoduce the operators ~t(x.,r) and~ (x.,r) which create and an-a 1 a 1 . 
nihilate static quarks with colour a at position (xi,r), along with their 
charge conjugates ~!c and~~ for anti-quarks [5c] at (xi,O). · 
These fields therefore act as creation and annihilation operators, which 
satisfy the equal time anti-commutation relations 

(2 .13) 

and simalarly for ~c. 

The quark fields satisfy the static time-evolution relation 

Integrating this equation gives 

(2.14) 

where T denotes a time ordered exponential. 

The free energy of a configuration of Nq quarks and Nq anti-quarks relative 
to the vacuum is now defined by 

N +N-
= (N q q )-I ~ <sl e-BH Is>, 

Is> 

where the summation goes over all states Is> with heavy quarks at 

xl''''' XN and anti-quarks at yl''''' YN- • 
q q 

Using the quark operators we thus have 

(2.15) 



where the state Is'> contains no heavy quarks. Using the above, eq.(2.15) 
now reads 

N +N­
exp[-BFN N-] = (N q q )- 1 x 

q q . 

Since e-BH is the generator for Euclidian time translations (e-BH = 
e-rH = eitH), i.e. e8Ho(t)e-BH = O(r+B) for any operator O(r), equation 
(2.17) becomes (inserting factors e-BHeBH) 

N +N­
exp[-BFN N-] = (N q q )- 1 x 

q q 

~ <s'l e-BH ~a(x1,B) ~! (x1,0) 
Is'> 1 1 

Defining the (thermal) Wilson line 

-+ 1 JB -+ L(x) = Ntr Texp [i dr A(x,r)] 
0 

and using eq.(2.14) we can rewrite (2.18) as 

-BH -+ -+ t -+ t -+ exp[-BFN N-] = tr[e L(x1) ... L(xN )L (y1) ... L (yN_)] . 
q q q q 

(2.18) 

(2.19) 

(2.20) 

As we are only considering the pure gluon theory, the thermodynamic average 
(2.8) can be used, which after deviding out the vacuum expression 
(corresponding to the state with no quarks and anti-quarks) gives 

(2.21) 
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where FN N- now stands for the vacuum corrected value. 
q q 

For a single quark we have 

-BF 
e _ q = <L(x)>, (2.22a) 

while the correlation function of two Wilson lines defines the free energy 
of a qq pair 

... 
-BF -{x) 

e qq = <L{O)L{x)> (2.22b) 

Providing the so-called cluster decomposition holds, we have for lxl -+ ~ 

so that F- ... 
qq 

= I<L{O)>I 
2 

(2.23) 

(2.24) 

The value of Fq (i.e. whether it is finite or not) will therefore be a test 
for confinement. On the lattice the corresponding expression for the 
Polyakov loop (thermal Wilson loop) is given by 

NT 
L( ... x) t n u = r {... ) 4 r=l X,T ' 

(2.25) 

which consists of the product of all the links in the temporal direction 
taken at given spatial site x (This follows by virtue of the relation 
between the gauge potential A~(x) and the corresponding element of the gauge 
group U; U = exp[iagA~(x)]). The periodicity in the gauge field! A~(x) and 
the fact that the links form a closed loop ensure that L(x) is gauge 
invariant. 

The Wilson action (2.4) is invariant under the gauge transformations 

(2.26) 
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for arbitrary Vx £ G (Chapter 3). However, if the centre (C) of the Gauge 
group is non-trivial, then the lattice action is also invariant under trans­
formations which rotate (flip) all the time-like links at a fixed time 1 = 
1 0 , i.e. 

(2. 27) 

where z = exp[2r~i/N], 0 ~ r ~ N-1 (SU(N)) (2.27a) 

I -1 and C =(g.£ G g.g.g. =g. for all gJ. £ G }. 
1 1 J 1 J 

(2.27b) 

These transformations form a global symmetry called the centre symmetry 
[5d]. 

To show that the action is indeed invariant under (2.27) we note that in 
(2.4) only the time-like plaquettes contain time-like links. A plaquette 
containing no flipped links is clearly invariant, while a flipped link must 
necessarily appear twice: 

= u"o 
X 

where the last step followed since z commutes with all U £ G. 

(2.28) 

The Polyakov loop (2.25) is clearly not invariant under (2.27) and trans­
forms as 

l(-+x) l(-+) -+ Z X • (2.29) 

The expectation value <l> is consequently an order parameter for·the centre 
symmetry which vanishes if the symmetry is unbroken. This will signal con­
finement as 

<l> = 0 corresponds to F -+ Cl) • 

q 

Explicitly, in the confining (low temperature) phase, the static qq poten­
tial will rise linearly, i.e. 

(2.30) 
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which in turn will result in the correlation function P(x) decaying exponen­
tially, where 

~ t ~ f(x) = <l(O)l (x)> 

~ exp[-ulxiB ]. (2.30a) 

If the global symmetry is spontaneously broken, then <l(x)> will be dif­
ferent from zero, and Fq finite. This can be seen by noting that 
exp[-BFN N-] transforms as 

q q 

exp[-BFN N-] ~ exp[-2~ir(Nq- Nq )/N].exp[-BFN N-] 
q q q q 

which, unless (Nq - Nq ) = pN (p some integer) 

implies that exp[-BFN N-] = 0. 
q q 

(2.31) 

(2.32) 

(2.33) 

Eq. (2.33) corresponds to divergent free energy, while (2.32) describes the 
situation where the symmetry is spontaneously broken, i.e. with an N-ality 
of non-singlet configurations of quarks which may have a finite free energy. 

For SU(N) ·the degeneracy in the possible broken symmetry ground states 
(corresponding to the N possible distinct expectation values of l, 

<l> = e2~ir/N l 0 1 N 1 [ (2 27 )]) 
0 

, r = , , ..• , - see . a . , 

implies that <l> may be interpreted as an order parameter similar to the 
magnetization in a Z(N) spin model. This point will be discussed in more 
detail later. Also, for gauge groups wit~ a dicrete centre symmetry (e.g. 
SU(N)) the correlation function r(x) for the high temperature phase will 
decay exponentially (with additional power law corrections)[Sd] 

with 

r(x>lx~~- I<L>I
2

[1 + o(e-Pixl>l 

F-- o(e-Pixl> qq 

(2.34) 

(2.34a) 

which has the form of the Debye screening (characteristic of an electric 
plasma). 
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For the quenched theory, confinement is the result of the anti-screening 
property of the gluon vacuum polarization which leads to the formation of 
the colour electric string. 
It must, however, be kept in mind that quarks by themselves' cannot produce 
confinement; in fact the quark vacuum polarization screens the colour charge 
which leads to a weakening of the confining force produced by the gluons 
(see e.g. [2]). This feature will be of particular importance in the_full 
theory where the effect of dynamical fermions must also be taken into ac­
count (see section 5). 

For Lattice Gauge theories it has been rigorously shown [6] that systems 
with spatial dimensions d ~ 3 and gauge groups SU(N) [or U(N)] undergo a 
deconfining phase transition at high temperature, i.e. from a confining 
phase (at strong coupling) to a phase with free (infintely heavy) quarks and 
gluons at weak coupling (the case of SU(2) has been explicitly dealt with in 
[6c]). 

Specifically, we have shown that for a pure SU(N) gauge theory the decon­
finement transition can be characterized by the spontaneous breaking of the 
global centre Z(N) symmetry. At this point it is important to note that the 
formalism described above is only valid for a theory with no dynamical 
quarks, because in the presence of dynamical fermions the Z(N) symmetry is 
explicitly broken and hence <L> # 0 for all temperatures. This point will be 
discussed in section 5. 

2.3 Renormalizability and Scaling 

One of the prerequisites of Lattice Gauge theories is that all results 
obtained should be independent of the lattice regularization scheme used, 
i.e. all physical quantities must become independent of the cut-off {a-1), 
if the cut-off becomes large (a 4 0). This requirement of renormalizability 
uniquely fixes the coupling dependence of any function f(a,g) representing a 
physical quantity. 

Cut-off independence implies 

a~a f(a,g)la4 o = 0, 

a a I i.e. (a aa- B(g)a9) f(a,g) a4 o = o (2.35) 

. I 

I 

' 



where ' an B(g} = - a = . aa 
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(2.35a} 

is the so-called Callan-Symanzik equation which relates the lattice spacings 
at different couplings (or vice versa}, with solution 

iliL- Jg a(go} - exp[ - dg'/B(g'}]. 
go 

(2.36) 

The leading order behaviour of B(g) can be determined using perturbation 
theory (i.e. small g) [7], which gives 

B(g) (2.37) 

The first two coefficients are renormalization scheme independent. For the 
pure SU(N) gauge theory the value of the coefficients are given by [7] 

B0 = (4~)- 2 [ ~ 1 N]; 

Bl = (4~f2[ 3~ N2]. 

Defining AL = a- 1exp[ -~ dg'/B(g')] 
go 

and using (2.38}, we have to lowest order the solution 

2 -1 2 2 2 
aAL = exp{-(2B0g ) + (B 1/2B 0 }ln(B0g )}.[1 + O(g ll 

(2.38) 

(2.39) 

(2.40) 

where AL is an (arbitrary) cutoff-independent mass parameter which sets the 
scale for QCD. Equation (2.40) is usually called the Renormalization Group 
Equation (RGE} for Lattice Gauge theories. The following remarks are in 
order. 

(i) The coupling g should be regarded as the bare or unrenormalized cou­
pling constant.· From (2.40) it follows that the continuum limit 
a ~ 0 is formally recovered for g ~ 0 . 
Of importance for numerical calculations is the fact that the temperature 

2 
can be increased by increasing the inverse coupling squared B = 6/g . 
This follows because a variation in the value of the coupling g would imply 
a corresponding variation in the lattice spacing by virtue of the RGE 
(2.40). This in turn provides a way of adjusting the temperature via (2.3). 
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{ii} In LGT, a mass prediction is of the form 

-1 m =a f{g), {2.41) 

where g is the {bare) coupling and the correct dimension is provided by the 
lattice spacing a. In order to obtain a finite quantity when a ~ 0, the 
coupling g should approach some critical value gc , i.e. 

{2. 4.2} 

Scaling 

Physic~l quantities calculated on the lattice e.g. hadron masses (mi) and 
string tension (u), are all dimensionless with their continuum behaviour 
determined by (2.36), e.g. for the string tension we have 

uia = const. exp[ -Jg dg'/B(g')] 
go 

for a universal B(g). 

This imp 1 i es 

u.a;u.a = constant = u.ju. 
1 J 1 J 

(2.43) 

(2.44) 

which is called scaling. It . is important to note that this form of the 
cutoff-independence generally includes higher order contributions to the B 
function. For sufficiently small couplings B(g) should gradually approach 
the 2 loop expression given in (2.37), so that 

( 
2 -1 2 2 ) ua = const. exp -(2B 0g ) + (B 1/2B 0 ) ln(B0g ) . (2.45) 

2 
The approximation where the O(g ) corrections in eq.(2.40) are neglected is 
called asymptotic scaling. 
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2.4 (Euclidian) Thermodynamics of pure Yang-Mills LGT 

Using the relations (2.3), the following expressions for thermodynamic 
quantities can be derived by replacing the usual derivatives (with respect 
to B ( = T,- 1) and V) by derivatives with respect to au and € with Nu and N

1 
fixed [8]. In the following analysis, the lattice action will always be 
given by (2.4). 

The energy density is defined by 

Now a <ae lnZE>a 

= z-1 I [~U] ( ~€ e-SG(U))a 

I 
-S (U) ( ) 

= -z- 1 [dU] e G ~€ SG(U) a 

I 
-S (U)( 

= -z-1 [dU] e G (aKofa€) ~ [1 - N- 1Re truuufuf] 
{Pu} 

+ (aK
1
/ae> ~ [1 - N- 1Re truuufutl) 

{Pr} 

(2.46) 

(2.47) 

is the thermodynamic average (2.8) of the .space-like plaquettes (and 
similarly for Pi>· 

The gluon energy density for SU(N) is therefore given by 
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£~a4 = -€26N[(8Kof8€)a<P0 > + (aK1/8E)a<Pr>j. (2.49) 

The derivatives above can now be evaluated using the W~ak Coupling expres­
sions of the coupling constants (2.10): 

(8Kof8€) = ~e ( g~2<ao;e>e-1 )a 

= -e-2 g~2(ao,€) + e-1c~(€); 

(8K1/8€) = ~€ ( g;2(a0 ,€)€ ) a 

= g~2 (a0 ,€) + ec~(€) • I (2.50) 

Substituting the above into (2.46) we finally have 

(2.51) 

To obtain the expression for the physical gluon energy density, we use the 
fact that for the finite temperature formalism (using an asymmetric lattice) 
the vacuum contribution can be approximated by subtracting from any given 
quantity the corresponding expresssion calculated on a (sufficiently large) 
symmetric lattice (with N

0 
= N

1
) [8]. 

Using this approximation the physical gluon energy density is given by 

with 

.. _ ,.E _ ,.vac 
~G - ~G ~G 

4 -2 - -tGa = 6N[g (P
0 

- P
1

) (2.52) 

where we used the notation <P> = P. For a symmetric lattice P
0 

= P
1 

= P. 
Getting rid of the lattice units the SU(N) physical gluon energy is given by 

. (2. 53) 

To avoid any possible ambiguity, the notation B will in future be used 
2 

explicitly to denote the SU(N) gauge coupling, i.e. B = 2N/g . 
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3. String Tension 

The calculation of the string tension is important because the string ten­
sion between a quark-antiquark pair is directly linked to confinement in the 
flux tube (or string) model (see Chapter 5). 

For confinement there must exist a long range term in the static inter~uark 
potential. In Chapter 5 we have shown that for a confini.ng theory, the 
(planar) Wilson loop expectation values behave like 

W[R,T] = ~onst.exp[-TV(R) - bl + c] (3.1) 

where V(R) = lim VT(R) 
T -+co · 

(3.2) 

is the static qq potential with upper bound 

(W[R, T1 J VT{R) = -ln W[R,T-1] {3.2a) 

and L = 2{R+T) is the perimeter of the loop. This term is due to the self 
energy of the qq pair. 

Several methods exist in the literature to extract the static potential from 
W[R,T]. Essentially they only differ in the way that the self energy con­
tribution is eliminated. The string tension is obtained from the asymptotic 
behaviour of the potential V{R) for large R. For Monte Carlo {MC) calcula­
tions the value of R is limited by the size of the lattices that are used so 
that some extrapolation method must be applied. 

In most calculations using planar Wilson loops the long distance part of the 
potential {i.e. without the self energy term) is fitted with the form 

R 
V{R) -+ uR + a/R (3.4) 

co 

where the Coulomb-like correction is predicted by the flux-tube {string) 
model [12], which ford= 4 gives 

a = -7r/12 • {3.5) 
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The most general form for the Wilson loop {in d dimensions) is given by [36] 

W[R,T] = exp( -aRT- m{R+T) + c 

{d-2){ ~4 ~ + ln{~) + % i ln[l - exp{2n~T/R)l) . {3.6) 
n=l 

The last term is only dependent on the number of transverse dimensions [={d-
2)]. In the earliest calcultation Creutz [lOa;b] proposed the ratio {"Creutz 
ratio") 

X{R T) = -ln( W[R,T]W[R-l,T-1]) 
' - W[R-l,T]W[R,T-1] {3. 7) 

. to eliminate the self energy contribution. The string tension is then given 
by 

a= lim X{R,T). {3.8) 
R,T-+co 

This follows if we only consider the f~rst three terms in {3.6) and set 
c = 0, which gives 

x{R,T) =a. {3.9) 

More recent calculations have incorporated the Coulomb-like correction in 
the static potential. Getting rid of the self energy terms, the static 
potential is fitted to the form of V{R) in {3.4) {see e.g. [lie]). 

Various other fitting procedures have been used to obtain the long range 
potential from W[R,T] {see individual papers in [10], [ll]).A recent 
proposal has been to use the Polyakov loop {thermal Wilson loop) correlation 
function defined by 

f{s) = ~ <P(x,y,z)Pt(x,y,z+s)>. 
xyz 

The potential {3.4) is obtained by fitting (see e.g. [llf]) 

{3 .10) 

' {3.11) 
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where s is assumed to be large and the second term is due to the periodicity. 
in the chosen direction (here z). For large s, V(s) is expected to behave 
1 ike 

V(s) ~ us (3.12) 

with u the required string tension. 

Assuming that the MC data are in the scaling region (which turns out to be a 
yet unresolved problem), the following perturbative estimate for the physi­
cal string tension is obtained (after restoring the physical dimensions) 

21 2 2 2 '2 2 au 2 = u/AL exp[(-48n /liNg ) - (102/12l)ln(l1Ng /48n )] . 
g -+o 

(3.13) 

3.1 SU(2) string tension 

Billoire and Marinari [IOd] and Berg and Billoire [lOe] used the correla­
tions between · Polyakov loops (with p = 0 and with [IOe] using the Polyakov 
loops in the adjoint representation) to obtain estimates for the string 
tension. Their results showed remarkable similarity and, more interesting, 
both estimates were nearly two times smaller than the earlier ones obtained 
by Creutz [IOa;b] and Bhanot and Rebbi [IOc] (see table 3.1). 

Measurements of planar Wilson loops by Gutbrod [lOg] showed deviations from 
2 

asymptotic scaling for all Creutz ratios in the interval (with B = 4/g ) 
2,4 ~ B ~ 2~6 , with the magnitude of the deviations dependent on the 
geometrical size of the ratios (with ratios formed out of large Wilson loops 
showing larger deviations than those formed from smaller ones). Calculating 
Creutz ratios on a large lattice (in order to minimize finite lattice 
effects) he obtained an even smaller estimate for t~e string tension than in 
[IOd] and [IOe], and also about 50% smaller than the value given in [IOf]. 

In [lOh] and [lOi] the analysis was repeated for the interval 
2,5 ~ B. ~ 2,8 where a similar behaviour was found regarding asymptotic 
scaling than for the interval in [lOg]. 

In sharp contrast is the result obtained by Koibuchi [lOj] using a Langevin 
simulation, where the value for the string tension was found to be consis­
tent with the earlier estimates in [IOa-c], namely 
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To obtain the value for AL in table 3.1, the value for the string tension 
obtained from the Regge slope estimate for a' is used, where 

u(O) = (2na')- 1, (3.14) 

with a' = (lGeV)- 2, (3.14a) 

(3.14b) 

Except for the result of [lOj], the value for the string tension is much 
smaller than initially thought. This seems to indicate that either the 
coupling range used is not yet in the scaling regime, and/or the quantities 
used (e.g. Creutz ratios) still show too large deviations from asymptotic 
scaling than expected, even at high B values [lOi]. 

Table 3.1 

Ref. lattice AL//a /a/AL AL (MeV) 

[lOa;b] 10 
4 

0,013(2) 77(10) 5,2(8) 

[lOc] 16 
4 

0,011 (2) 91 (12) 4,4(8) 

* 4 
[lOd] 8 0,020(1) 50(4) 8,0(4) 

* 3 
[lOe] 4 X 32 0,0185 54(5) 7,4(6) 

[I Of] 8 
4 

0,018(1) 56(3) 7,1(4) 

[lOg] 24 
4 

0,027(3) 37(3) 10,8(8) 

[lOh] 24 
4' 

0,0318 31 12,9 

[lOj] 8 
3 

X '16 0,013(1) 77(6) 5,2(4) 

* results obtained from the zero momentum Polyakov correlation function 
[see (3.10)] 
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3.2 SU(3) string tension 

The same problems that plague the SU(2) string tension c~lculations are 
also present for the case of SU(3). In addition, the complexity of the 
SU(3) parametrization means that even larger lattices are needed for the 
calculation of· quantities like the Wilson loops [for SU(2) the Pauli 
matrices provide a relative simple parametrization]. Keeping in mind 
that the largest lattices that have been used up till now are of the 

3 3 . 

order 12 x 16 - 24 x 48, this imposes serious limitations on the sizes 
of the Wilson loops that can be calculated. 

In one of the first calculations, Creutz and Moriarty [lla] obtained a 
value for u consistent with the first estimate given in [lOb], namely 

./a/ AL = 167 (24). (3.15) 

[the .value quoted in [lOb] was /a/AL= 200(46)] 

This is shown in fig. 3~1, together with the estimates from different 
order SC expansions (see Chapter 6). 

1,0 1 1:----""-T-------, 
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0.10 
0 

fl 
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0 

FIGURE l.l • The ntring tension !n( 0 a?) 
as n function of the coup-
11119 ~. Enrller dnta from 
(llnJ '"' well "" from SC 
expilnsiono to diff~rent 
ordern. 

More recent calculations have however given estimates for u which are 
far lower than the values given above, suggesting that the earlier 

.· 
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More recent calculations have however given estimates for a which are 
far lower than the values given above, suggesting that the earlier 
results suffered heavily from finite size effects. All results are shown 
in table 3.2. 

Parisi et al. [llb] used the connected two-part {zero momentum) Polyakov 
loop correlation function (3.10), but with the loops in one of th~ 
spatial directions {which is chosen to be periodic, i.e .. P forms a 
closed loop). 

De Forcrand et al. [llf] used a "source method" to supplement the 
Polyakov loop correlations: by measuring the loop-loop correlations, u 
is determined at a finite physical temperature {the string tension 
should decrease as the temperature of the system is increased). 

Essentially all other methods are based on the calcultions of conven­
tional Wilson loops, with a linear-plus-Coulomb form for V{R)[as in 
{3.4)]. The qq potential is then extracted e.g. by either fitting it 
directly to the form in (3.4) [lie], or by fitting the Creutz ratio to 

X{R,T) = F{/R{R-1)) + b{R)/T{T-1) (3.16) 

where the first term is the potential from which the self energy con­
tribution has ·been eliminated {and interpreted as the static force 
between the qq pair) while the second term represents the Coulomb-like 
behaviour [lid]. The force thus obtained is then fitted to the form of 
the potential in {3.4). 
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Table 3.2 

2 - 2 _3 

./U/AL Ref. B=6/g jaa a a lattice aAL po ) 

[lla] 6 
4 

167(24) 
[lib] 6,0 0,197(10) 0,039(4)t 10 

3 
X 20 2,346 84(4) 

[lie] 5,40 0,755(13) 0,57(2) 
4 

. 164(3) 16 4,600 
5,70 0,469(20) 0,22(4) 3,287 150(15) 

[lid] 5,60 0,530(8) 0,281(9) 
3 

8 X 12 3,679 
5,80 0,332(3) O,li1(3) 2,938 
6,00 0,246(3) 0,061(2) 2,346 
6,20 0,189(2) 0,036(2) 1,872 

* 6,40 0,155 0,024 1,480 104 

** 3 
[lie] 6,00 0,250(8) 12 X 16 2,346 104(2) 

[11 f] 5,50 0,583(13) t 0,340(15) 6 
3 

X 12 4,112 142(3) 
5,70 0,367(7) 0, 135(5) 8 

3 
X 16 3,287 112(2) 

5,90 0,253(9) 0,064(5) 10 
3 

X 20 2,626 96(4) 
6,00 0,205(8) 0,042(3) 12 

3 
87(4) X 24 2,346 

[llg] 6,00 0,22(2) 2,346 94(9) 
6,30 0,15(2) 1,673 90(12) 

[llh] 6,00 0,214 0,046 
4 

16 2,346 91 
6,30 0,132 0' 0173 24 

3 
X 48 1,673 79 

~ 
[11 i] 6,00 *** 0,230 0,053 

3 
10 X 20 2,346 98 

[llk] 5,90 
3 

10 X 32 2,626 93(1) 

[lil] 6,00 0,209(3) 0, 0439( li) 16 
3 

X 10 2,346 89(1) 

' * average for B in the interval 6,0 - 6,4 
** obtained from fit in B £ (6,0;6,4) 
*** obtained from a linear fit of the results in [lib] 

t obtained from the zero momentum Polyakov correlation 
function [see (3.10)] 
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Remarks 

(i) The results quoted here for ja of [lid] were obtained from [Ilf] 
as no explicit results are given there . 

(ii) From the values for JU/Al we conclude that asymptotic scaling 
only sets in for B (at least) > 6,0 . 

However, results from Monte Carlo Renormalization Group calculations 
suggest that scaling might set in forB~ 5,7 (see [llg] and references 
therein). 

(iii) The result in [IIi] was obtained from the data of [lib] using a. 
different fitting procedure . 

(iv) The "best" current estimate for the SU(3) string tension there­
fore seems to be 

(3.17) 
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4. Pure Yang-Mills Deconfinement Phase Transition (Quenched Theory) 

In pure LGT the deconfinement phase transition (d.p.t.) can be studied 
in two ways: 

(i) by looking for a discontinuity (sudden change) in the behaviour of 
thermodynamical quantities like the energy density as a function of t~e 
coupling or temperature; 

(ii) by using a specific order parameter to distinguish between the two 
phases, e.g. <L>. 

It must be kept in mind,however, that only L has a direct relation to 
confinement as £G is only the internal energy of the gluon gas. 

Although in the analysis below the Wilson form of the pure gauge sector 
action has been used, it is important to keep in mind that deconfinement 
has been shown to be independent of the choice of action (see Chapter 
3, Section 5). 

4.2 SU(2l Quenched Theory 

Calculations of the SU(2) theory provided the first numerical evidence 
of a d.p.t. in Lattice Gauge theories [5a;b]. 

Investigation of the behaviour of the order parameter <L> at the 
transition point showed a continuous change characteristic of a second 
order transition. In [5b] this analysis was repeated ~ith the interest­
ing result that for NT = 2 and 3 the approximants to Be were more or 
less the same, which suggested that the scaling region had been reached 
(i.e. the continuum limit is well represented by N

1 
= 3). 

In [13a;b] and [Ba] the energy density £a4 [(2.52)] was calculated on a 
symmetric lattice with Nu = 10, NT = 2-4. 
Perturbation theory in the high temperature limit gives the following 
result for the energy density 

where 
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For sufficiently high temperatures the SU(2) energy density should 
therefore attain the Stefan-Boltzmann limit since the coupling constant 
is a decreasing function of T 

1 2 4 
£SB = 5 7r T . (4.1a) 

To ·be consistent, the lattice results should also share this behaviour. 
This was indeed found to be the case . In fig. 4.1 the normalized 
energy density , 3 (£/~:58 } is shown as a function of the temperature T, 
evaluated on a 10 x 3 lattice. 

1.0 

0.5 

o -----1--~' I 1ft __ _ 
10 20 30 50 100 150 200 300 500 

TIAL 
FIGURE 4.1 : The .ratio ~/• for a 103 x 3 lattice versus temperature. 

SB . 
(From [Sa] l 

The following remarks are in order. 
(i} For high temperatures (T/AL ~ 100 } the MC results correspond well 

with the anticipated Stefan-Boltzmann limit which on the lattice reads 

(4.2) 

i.e. the deconfined gluon gas behaves like a gas of non-confining 
particles. 

(ii} At around T = 40AL the energy density shows a rapid change over a 
relatively small temperature interval. The shape of the transition is 
characteristic of a second order transition (i.e rapid change but not a 
singularity-like behaviour}. This is in agreement with theoretical 
predictions [5d], where it was shown that the SU(2) system is in the 
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same universality class as the 3-dimensional Ising model which is known 
to have a second order phase transition . 

To determine the critical temperature the behaviour of the q~antity 

is considered which coincides with the specific heat cv in the ther­
modynamic limit. 

The location of the critical temperature is deduced from the peak in 
2 3 

8(£/£58)/8(4/g ). For a 10 x 4 lattice, cv showed a peak at Be= 2,28. 
Assuming asymptotic scaling holds, we have Tc = 40(2)AL. Using the 
lower estimate for AL [10a-c;j], namely AL = 5,2(8), we obtain 

Tc = 208(10) MeV, (4.3a) 

while the higher estimate [10d-h] AL = 7,1(4) gives 

Tc = 284(10). (4.3b) 

Further results are summerized in table 4.1. 

Table 4.1 

Ref. 

[5b] (1,5) 0,75 310 
(2,5) I ,8 230 
(3,6) 2,15 200 

[13a;8b] (2,10) 1,90 161 
(3, 10) 2,19 224 
(4,10) 2,28 208(10) 

* Using AL = 5,2(8) MeV 
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4.2 Quenched SU(3) Deconfinement Phase Transition 

For the SU(3) Yang-Mills theory, MC calculations [14] have established 
that the deconfinement phase transition is of first order. 

This is in agreement with theoretical considerations: the pure SU(3) 
gauge system resembles a 3-state Potts ( 3-dimensional spin) model, 
which is known to have a first order phase transition [5d;e]. 

As the quenched theory has been reviewed in the literature [3b;c]~[14e] 
we will only mention a few results and rather concentrate on the issue 
of perturbative scaling. 

In most cases, a high statistics MC evaluation was carried out to ensure 
that the d.p.t. is independent of the spatial dimensions of the lattice. 
The SU(3) gauge theory in the confined phase can be in one of three 
physically equivalent z3 modes (2.27a) 

I;III = 1; exp[2~i/3] ; exp[4~i/3] (4.4) 

where I is the lattice average over all spatial sites x, i.e. 

(4.5) 

and i denotes ·a given configuration of links {Ux,~}. 

One of the characteristics of a first order transition is that the 
system can coexist in both phases at the transition point. This charac­
teristic was indeed found to be present in the behaviour of the order 
parameter <L>, calculated as a function of the number of iterations, 
starting in each case (corresponding to a specific value of the coupling 

2 . 

B = 6/g) from a completely ordered (i.e. U ,= 1, all x) and com-
x,~ 

pletely random (i.e all ux,~ different) configuration [14]. 

3 
For a 8 x 3 lattice this shown in fig. 4.2.1 [14e]. At B = 5,5531 
(T/AL= 86) there is a clear two state signal, i.e. Be= 5,5531. 

4 
In fig. 4.2.2 the energy denisty £/T as a function of the coupling B is 

3 
given for an 8 x 3 lattice. This clearly shows that the transition is 

4 
of first order (i.e a very abrupt change in £/T) at the same value of· 
B that was obtained from the investigation of the order parameter in 
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fig. 4.2.1. As was the case for SU(2), the energy density approaches the 
Stefan-Boltzmann. 1 imi t. 

4 2 2 
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Th~ problem of locating the onset of the scaling regime in SU(3) is of 
fundamental importance since it is only in this limit that continuum 
physics can be extracted from lattice calculations. 

For SU(3} the asymptotic dependence between the lattice spacing a and 
the coupling g is given by the RGE 

2 2 51 2 2 
Ala = exp [- ( 8n I 11 g ) - .121 1 n ( 11 g I 16n ) ] ( 4. 7} 

or in terms of B 

2 
4n 51 8 2 Ala= exp[-( 33 }B + 121 ln( 33 n B)]. ·(4 .8} 

For sufficiently weak coupling the functional dependence between the 
critical temperature and coupling should be given by 

2 
-1 4n 51 a 2 

=NT exp[-(33)B- 121 ln( 33 n B)]. (4.9) 
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The requirement that the physical deconfinement temperature Tc be inde­
pendent of the lattice spacing in the scaling regime implies that 

Tc/AL = constant (i.e independent of B) . 

In table 4.2 the most recent results for the critical couplings and' 
their approximants are sumed up. 

Table 4.2 

Ref. 

[14e] 

[14g] 

[14h] 

[14i] 

[14j] 

[141] 

8;10;12 
8; 10 
8; 10 

12 
16 

CIO 

CIO 

CIO 

CIO 

11 

19; 13 
17 

17; 19 
19 

16 
16 
16 

8 

10 

2 

3 

4 

5 

6 

2 

4 

6 

8 

10 

8 

10 
12 
14 

10 
12 
14 

4 

5 

5,11(1} 
5,55(1} 
5,70(1} 

5,79 - 5,82 
5,92 - 5,94 

5,097(1} 
5,696(4} 
5,877(6} 
6,00(2} 
6,09(3} 

6,02(2} 
6,15(3} 
6.32(3} 
6,47(3} 

* 

6,065(27} 
6,261(20} 
6,355(26} 

5,67(1} 
5,79(1} 

78(1} 
86(1} 
76(1} 

68,5±1 
65,5±1 

77,5 
76 
62 
53(1} 
47(1} 

54(1} 
50(1} 
51(2} 
52(2} 

46(1) 
48(1) 
45(1) 

73 
68 

* value of Be extrapolated to a lattice of infinite spatial 
dimension 
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In [14g] a pronounced non-scaling behaviour was found for B ~ 6,1, while 
[14i] reported asymptotic scaling only for 6,15 < Be < 6,50 . This 
result was {more or less) confirmed by [14j] where as~mptotic scaling 
was observed forB> 6,07. 

In fig. 4.2.3 the results for the critical temperature Tc as a function 
of Be are plotted. This clearly shows that scaling can only be con~ 
sidered to have set in forB> 6 {i.e. g- 2 > 1), which corresponds to 
N

1 
~ 8. 
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fig. 4.2.3: Schematic diagram showing the possible onset of scaling in the 
values of the critical temperature. 

A lower bound for the onset of asymptotic scaling is thus given by 
[14k]: 

B ~ 6,2. {4.10) 

The violation of asymptotic {2-loop perturbative) scaling in the 
interval 5,7 < Be < 6,2 seems to be independent of asymmetry [14k], 
i.e. the violations are not due to the particular lattice regularization 
chosen. This suggests that the coupling range 5,7 <Be< 6,2 is a 
regime of non-perturbative but universal scaling. 

Comparison of the above with the results obtained earlier for the string 
tension shows a correspondence in the general behaviour as a function of 
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the coupling g. It must however be kept in mind that the question of 
scaling has not yet been resolved {as the results of [14h;i] clearly 
show). 

To obtain a rough estimate for the relation between the critical tem­
perature and the string tension we use the B = 6,3 results from [1lg;h] 
and [14i;j] which gives 

{4.11) 

If we now make the approximation of using the SU{2) phenemological value 
for the stri.ng tension {3 .16), i.e . 

./U l::l 400 MeV, 

then the critical temperature for the quenched SU{3) Yang-Mills system 
is given by 

T l::l 224 MeV, c 

which is in qualitive agreement with the quenched SU{2) result. 

{4.12) 

It is therefore likely that the critical temperature will be in the 
i nterva 1 

200 ~ Tc ~ 240. {4.13) 
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5. Including DYnamical Quarks - Full OCD 

5.1 Introduction 

At large distances (i.e. the confinement regime) the flux tubes describ­
ing the qq potential are broken by virtual qq pairs. In addition, large 
Wilson loops will now tend to follow a perimeter law. For calculationa~ 
purposes the pure gauge theory has to be adapted to provi.de for the 
inclusion of virtual quarks, which gives rise to the following problems. 

(i) The presence of the quark term in the action breaks the global 
invariance of the original pure Yang-Mills action (described in section 
2.2) under the centre of the gauge group. This is due to the fact that 
the anti-periodic boundary conditions of the fermion fields explicitly 
breaks the Z(N) symmetry of the original action. As we have seen ear­
lier, the d.p.t. in the quenched approximation is associated with the 
spontaneous breakdown of the global Z(N) symmetry, with order parameter 
given by the Polyakov loop L. 

Because Z(N) is no longer a "good" symmetry, L cannot serve as order 
parameter for deconfinement. Production of virtual qq pairs leads to the 
situation where <L> need not be zero (even at low temperatures) due 
to their effect of effectively screening the colour field. <L> is there­
fore not a suitable order parameter to distinguish between the two 
phases, so that the deconfinement transition can only be investigated by 
looking for sudden changes in the behaviour of physical observables, 
e.g. the energy density. 

(ii) To evaluate the fermion matrices large lattices are needed due to 
the non-local nature of the fermion determinant. As the lattice sizes 
used in calculations are relatively small (due to computer limitations), 
the influence of the finite lattice size effects on the results obtained 
must always be kept in mind. 

5.2 Formalism 

In continuum field theory the QCD Lagrangian for massless quarks (one 
flavour) is given by 

(5.1) 
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with a a a · b c 
F~v = a~Av - avA~ - gfabcA~Av (5.la} 

The corresponding (Euclidian} action is 

(5.2} 

with periodic (anti-periodic} boundary conditions for the gauge 
(fermion} fields respectively. 
The full SU(N} QCO partition function is given by 

= I [dU][d~ d~] -S e (5.3} 

(5.3a} 

where SG is the gluon action defined in (2.4} and SF is the fermion 
action (Chapter 4} which may describe Wilson or Staggered fermions. 

Wilson fermions on an asymmetric lattice are defined by 

where (M~}x,x' = U~(I-1~}&x,x'-~ + u~!~(1+1~}&x,~'+~· (5.4a} 

For an asymmetric lattice the couplings Ki and Ki are defined by [8b] 
1 u 

(5.5a} 
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(5.5b) 

Note that for a symmetric lattice <e = 1) the above reduces to 

(5.5a) 

where Kiis the "usual" hopping parameter defined in Chapter 4. Also, for 
2 2 

non-interacting quarks, ka(g ,e) and k
1

(g ,e) are equal to unity [8b]. 

\ 2 2 
For sufficiently small g , thee dependence of k{g ,e) is small [15]: 

2 2 4 
k(g ,e>l g 2~0 = 1 + f{e)g + O(g ). (5.6) 

2 • 
Hence, for small g the hopping parameter K~,T can be approximated by 

which follows from f(1) z 0,11 [15]. 

Staggered fermions on an asymmetric lattice are defined by 

n 
= }; 

f=1 

where o<P> = 
x,x' 

and D = 3 (p) 
}; 0x x' · 

p=O ' 

(5. 7) 

(5.8) 

(5.8a) 

For calculation purposes it is convenient to express the partition 
function (5.3) in terms of purely bosonic variables by integrating out 
the fermion fields (see App. C). 
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This leads to the following form of the partition function 

(5.9) 

where e-Seff = -S 
e G detnQ (5.9a) 

with n = Nf (Wilson fermions) 

(Staggered fermions) 

For positive definite Q the effective action can be written as 

Seff = SG(U) - nlr ln[Q(U)], (5.10) 

where Tr denotes the trace over colour, space and spin indices. 

For Wilson fermions we note that detQ(U)/detQ(1) is positive definite, 
while for Staggered fermions more care must be taken as Q = 0 + m is not 
positive definite: using the shorthand notation 

s - -sF = x(o + m)x = xQx 
we note that ot = -0, so that 

i.e. 

Hence 

2 
Q is positive definite. 

2 
nlr ln Q = %nlr lnQ 

2 2 
= %nlr ln[-0 + m ]. 

5.3 Physical Observables 

(5.11) 

(5.12) 

For the full theory, the analogue of the thermal expectation value of a 
physical observable 0 in (2.8) is given by 

with 

<0> = z- 1 I [dU][d~ d~] O{U,~,~) e-s 

z =I [dU][d~ d~] e-s. 

{5.13) 

(5.13a) 
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Carrying out the gaussian integration over the fermionic variables gives 

<0> = zE1 I [dU] <O(U,~,~)>u e-Seff 

where ZE =I [dU] e-Seff 

with Seff defined as in (5.9) or (5.10). 

(5.14) 

(5.14a) 

<O>u now is the expectation value of 0 in the presence of a fixed back­
ground gauge field ux,~' 

S -S 
<O>u =I [d~ d~] o e- F; I [d~ d~] e F. (5.14b) 

The Euclidian energy density for the full theory is defined analogously 
to (2.46), with the difference that ZE represents the full partition 
function, i.e. 

(5.15) 

with £E = £~ +;£~. (non-interacting theory) (5.16) 

(a) Wilson fermions 

For the gluon energy in the full theory we obtain the same result as for 
the quenched theory (Sec. 2.4), except that P

0 
is now defined by 

(5.17) 

i.e. the averaging is carried out with both the Boltzmann factor and 
fermion determinant as weights (and similarly for P ). For € = 1 the 

. 1 
SU(N) physical gluon energy is given by 

(5.18) 

The quark-gluon energy density is defined by (Nf=1) 
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E __ 1 ( a1 nZE ) 
tF - V aB V 

(€.2 /N;Nra 4ZE) ( :~E ) . 
a 

= - (5.19) 

Using the identity detQ = eTrlnQ we have 

( a ) ( -1 £!2 ) ae TrlnQ a = Tr Q <ae>a 

Hence 

(5.21) 

For € =1 this implies 

(b) Staggered fermions [3c] 

For Staggered fermions we use 

_ _1 ( a1 nZE ) 
tE = -V ~ 

v 

= - v- 1 <as;a(T- 1>>v 

(5.22) 

where for a non-interacting theory we again have 

tE = £~ + £~ , with ZE the full partition function [{5.9)]. 

For an asymmetric lattice the above implies 
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E 3 3 ( 2 ~ ~ p~V - 2 }: }: p~4> £G = (2N/NUNTau aT) <(aT/augu) ~ ~ x (au/aTgT) x 
X ~<V<4 X ~<4 

+ (a;/a )(ag~2/daT)<}: }: P~v> + au(ag;2;daT)<}:. }: P~4>) (5.23) 
U X ~<V<4 X ~<4 

Using the relations 

(ag~2/daT>Ie=1 = 

(ag;2/daT>Ie=1 = (5.23a) 

(which are numerically known for SU(N) and different Nf [16]), we have 
for a symmetric lattice 

- c' <}: }: P~v> - c' <}: }: p~4> ) 
U X ~<V<4 X T X ~<4 X 

(5.24) 

In order to obtain the physical gluon energy density (£G) the vacuum 
contribution must be subtracted . This can be approximated by using the 
energy density evaluated on a large enough symmetrical lattice with Nu= 
NT (see section 2.4) , which gives 

£vaca4 

G 

The quark-gluon energy density is given by 

where we used 

= -n Tr[ (D+m)- 1 ~a D] 
T 

( 

(5.25) 

(5.2~) 
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The physical quark-gluon energy density for a symmetric lattice is given 
by [3c] 

(5.29) 

5.4 Renornalization Grou~ Equation CRGE) for Lattice OCD 

For SU(N) QCD with Nf (massless) flavours the RGE is given by (2.40), 
with universal constants 

2 
B

0 
= (liN - 2Nf)/48~ 

B1 = (17N
2

- 5NNf- ~[(N
2

-l)/Nl) (384~
4

f 1 . 

Explicitly for SU(3), in terms of the coupling B, this gives 

(5.30) 

aAL= exp(-[4~ 2 B/(33-2Nf)] + [(459-57Nf)/(33-2Nf) 2 ]log[8~ 2 B/(33-2Nf)]J. 
(5.31) 

In order to convert estimates from MC calculations from lattice into 
physical units, we use the following perturbative results for Wilson and 
Staggered fermions with Nf ; 0 . 

Table 5.1: Wilson fermions 

Ref. Nf AMOM/AL AMS 

[17a] 0 83,5 10,8 
1 89,4 
2 96,7 
3 105,8 19,2 
4 117,5 24,7 

[17b] 0 83,5 
3 105,7 
4 117,0 
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Table 5.2: Staggered fermions 

Ref. Nf AL/AMIN AMIN/AL 

[17c] 0 0,0922 10,85 
2 0,0605 16,52 
3 0,0339 29,50 
4 0,0347 28,78 

Ref. Nf AL/AMS AMs/AL 

[20f] 0 0,0347 28,8 
2 0,0332 30,1 
3 0,0176 56,8 

4 0,0131 76,3 



172 

6. The Deconfinement Phase Transition in the full Theory - Monte Carlo 
CMCl results 

The inclusion of fermions in the quenched theory leads to an action that 
is highly non-local. In addition to very large lattices needed for the 
calculations it is of course impossible to simulate Grassmann variables 
by MC methods. The following algorithms have been used to approximat~ 
the full theory: 

(a) Hopping parameter expansion (HPE) [18d;e] 
(b) Pseudofermions (PF) [ 18j] 
(c) Molecular Dynamics (MD) [18f-i] 
(d) Exact algorithm (EA) [18a-c] 
(e) Langevin algorithm (LA) [18k-o] 
,(f) Hybrid algorithm (HA) [18p-t] 

(the references above refer to technical discussion~ of the various 
methods). 

In addition to the deconfinement transition, the restoration of chiral 
symmetry will also be investigated - we will treat the two cases 
seperately at first, although in most cases (i.e. for quarks in the 
fundamental representation), the chiral and deconfinement transitions 
occur almost coincidentally (see later). 

The results for Wilson and Staggered fermions are summarized in tables 
6.1 and 6.2 respectively. 

6.1 Hopping Parameter Expansion CHPE) 

The use of Wilson fermions in calculations has certain advantages and 
disadvantages. Their virtue is that they include no spurious unphysical 
states in the zero mass limit and give the correct form of the Dirac 
Lagrangian in the continuum limit. However, Wilson fermions explicitly 

' 
break the chiral symmetry (even for zero mass fermions) except in the 
continuum limit (see Chapter 4). We will now briefly review the HPE and 
some of the quantities used in this approximation. 

The HPE is based on the observation that for Wilson fermions detQ 
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[= det{1 - KM)] is strictly positive for 0 s K s 1/8, i.e. KM < 1. 
{Note for MC purposes the lattice is usually chosen to be symmetric). 

An expansion in powers of K {or equivalently m- 1 asK·~ m~ 1 ) [18d;e] 
can therefore be made: 

co Kp 
= -N Tr }; - Mp 

f p=1 p 

4 
where M - }; M{#) 

#=1 

(6.1) 

(6.1a) 

This expansion corresponds to a sum of Wilson loops by virtue of the 
trace (i.e. only closed loops will contribute) . 

For NT = 2, 3 the lowest order term in K corresponds to a Polyakov 
1 oop, i.e. 

NT ~ 4 
Seff = SG(U) + constant.K Nf }; Re L(x) + O(K ) . (6.2) 

~ 

X 

More explicitly~ to fourth order in K we have [18d] 

N 
= SG{U) - 2Nf{2K) T }; {L{x) + c.c.) 

~ 

X 

(6.3) 

(6.4) 
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It is interesting to note that the effect of the third term [O(K )] in 
the effective action is only to shift the coupling by 

(6.5) 

The effect of the fermions is therefore mainly present in the term 
containing the Polyakov loop. For small values ~f the hopping paramete~ 
(i.e. large mq)' the quark propagator may be expanded 

(6.6) 

with M again as in (6.1a). 

For free Wilson. fermions on a symmetric lattice the relation between the 
hopping parameter K and the corresponding quark masses (mi) is [3c] 

with K = 1/8 . c (6. 7) 

Note that the above is not valid for the interacting theory (i.e. for 
U + 1), for which Kc is not k~own explicitly. 

Substituting (6.6) in (5.20) we obtain the following expression for the 
quark-gluon energy density in the HPE (€ = 1): 

(6.8) 

Using the property that only closed loops contribute we obtain the 
following expression [19d] 

(6.9) 

or in terms of the physical temperature 



175 

£F/T4 = N; Nf[3(2K)N1Re[ + 144K
4
(Pu- P1) + O(K

5
)]. (6.9a) 

The gluon energy density is given by (5.18), with c' 
1 

numerically known u, \ 
from [16]. · 

To compensate for finite lattice-size effects we normalize the energy 
densities to their respective Stefan-Boltzmann limits calculated on 
lattices of similar sizes. 

For the quark-gluon energy density the limiting expression is obtained 
for the free theory which has P

1
,u = 0 (because U = 1) and K = 1/8 

so that 

(6.10) 

For other physical variables in the HPE (e.g. pressure etc.) the reader 
is refered to [19e]. 

Monte Carlo results using HPE 

In [19b] the normalized gluon energy density (5.18) for SU(3) was calcu-
3 2 

lated on a 8 x 3 lattice as a function of the coupling B (= 6/g ) 
using a fourth order HPE. This is shown in fig. 6.1 (where the result 
for the quenched theory is also included for comparison). 
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FIGURE 6.1 : Energy density £G as a function of 6/g2 for K • 0.2 (squares) 
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gives the corresponding ideal gas value I from (191~ 1. 
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What clearly emerges is that the deconfinement phase transition now 
occurs at a lower value of B (forK= 0,15 , Be= 5,38 while for 
K = 0,20· Be = 5,24). The RGE (5.31) with Nf= 1 gives the following 
estimates for the critical temperature: 

(6.11) 

Comparing the above with the result for the pure gauge theory 
(calculated on a lattice with the same size), i.e. Tc/AL = 86, one sees 
that Tc seems not to have been effected much by the inclusion of 
dynamical fermions into the theory. From the form of £ one also sees 
that the phase transition now seems to be of second order (i.e. £shows 
a continuous change for the interval around Be>· 

Using the Strong Coupling value for Kc, i.e. Kc = 0,25, the following 
values for the quark masses are obtained using (6.7): 

mqa = 0,840 
mqa = 0,40 

(K = 0,15) 
(K = 0,20) . 

For a N
1 

= 3 lattice this gives 

mq/Tc = 2,5 
mq/Tc = 1,2 

respectively. 

(6.12) 

(6.13) 

The effect of higher order terms in the HPE can be seen in fig. 6.2 
where the total (normalized) energy density £/£sB is plotted for dif­
ferent values of the coupling using a fourth and fifth order HPE on a 

3 
8 x 3 lattice [19d]. 

The effect of the higher order terms is to shift Be to lower values -
the fourth. order results should therefore be considered as an upper 
bound. Further results are given in table 6.1. 

3 
Hasenfratz et. al. [19c] studied the order parameter Lon a 8 x 2 lat-
tice with Nf = 3. They found that the first order transition of the 
quenched theory gradually weakened as K was increased, and for K > 0,055 
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{rna < 2,1) it disappeared completely. Although this result has been 
verified using·analytical techniques [29] {see Sec. 9), it must be kept 
in mind that only a lowest order HPE was used. 

Table 6.1 {from [19d]) 

3 

4 

5 

3 

5,300{50) 
5,575{25) 
5, 725{25) 
5,250{50) 

O{K) 

4 

4 

4 

5 

152{10) 
162{5) 
157{5} 
142{10) 

All other approximations use Staggered fermions, as they are well suited 
for the study of chiral symmetry. The chiral limit is at m = 0 with m 
the bare quark mass. For Wilson fermions the value of the hopping 
parameter for which the pion mass is zero must be found first before the 
chiral limit can be investigated. When dealing with Staggered fermions 
it is also important to keep in mind that the use of Nf to represent the 
number of flavo~rs is only valid close to the continuum limit. 

6.2 Pseudofermion Stochastic Algorithm 

The Pseudofermion {PF) method provides an approximation for detQ in 
{5.9) {with n = Nf/4). This method uses the property that if Q is a 
positive operator, then it satisfies the relation [18j] 

-1 -
Q • • = <ifJ • q, . > 

J1 1 J • 

= J [d~][difJ] ~.q,.exp[-}: ~.Q .. ifJ.]/ J 
1 J . J' 1 lJ J 

1 ' 

where ~ and q, are complex bosonic fields called pseudofermions {which 
have the properties of fermions but are ordinary numbers). 

For Staggered fermions we have seen that the operator Q is not positive 
2 

definite, while Q is. For calculational purposes the form 
f 

. . 2 2 

Seff = S{U) - Nf/8 Trln[-D + m] {6.15) 
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is therefore used. 

If the Metropolis algorithm is used for example, the whole determinant 
need not be calculated, only the change if 

(6.16) 

i.e. if the links are suitably updated 

Under the update (6.16) the matrix Q changes, Q ~ Q + 6Q, hence the 
ratio det(Q + 60) is needed, which for small enough 6U gives detQ 

det(Q + 6Q) = det(1 + Q- 16Q) 
detQ 

The PF method can now be used to find Q-!Y 

where we used 

= <~ ~ > Q t 
~z~x zy 

(6.18) 

(6.19) 

(6.19a) 

The PF method proposed by Fucito et al. [18j] uses the observation that 
if the Metropolis algorithm is used, then in calculating the change 
(6.16) one only,needs 

(6.20) 

2 
If higher order corrections 
be approximated by [18j;20a] 

[0(6U )] can be neglected, then 6Seff can 

6Seff = 6SG - ~ Nf ~ ~U Tr[ln(D+m)(-D+m)] 
x,~ 

with 6Seff = seff(O) - seff(U) etc. 

Now ~U Tr[ln(D+m)(-D+m)] 

(6.21) 

(6.21a) 
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Tr( %711'(x} 
1 

- -o!m 1) = [D+m X+J.Li,xj 

Tr( %771'(x} 
1 1 ) [D+m --] X+J.Li,xj ot+m 

- Tr(JX,J.L}ij• (6.21b} 

Hence 

(6.22} 

Note that (6.22a} 

The "current" J can now be calculated using the PF method. X,JL 

The deconfining phase transition has been studied by Fucito et al. 
3 3 

[20d;e] using the PF method described above on 6 , 8 x 4 lattices. 

Using the real part of the Polyakov loop (2.25} as order parameter, 
metastable states (indicative of a first order transition} were found at 

* Be = 5,3 ± 1 'for Nf = 3 and mqa = 0,1 (* improving the statistics of 
their method around Be, they obtained the more accurate estimate 
Be =. 5, 2455 [20i]}. 

Comparison with quenched data (using a lattice of the same size} showed 
that Be had shifted to a lower value while the transition remained first 
order. This was confirmed by the rna = 0,2 data, which gave 
Be = 5.35. 
If asymptotic scaling is assumed to hold, the following value for the 
critical coupling is obtained 

(6.23} 

However,for the same number of flavours and quark mass, Gavai and Karsch 
[20g] found that the Polyakov loop and energy density showed a con­
tinuous change over a small coupling range (~B = 0,1} reminescant of a 
second order transition. This confirmed some of the earlier results of 
[20b;c], where it was found that the behaviour of the energy density and 
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Prilyakov loop indicated a second order transition for Nf= 2 and mqa = 
· 0,1; 0,5 and 0,2. 

A recent investigation by Attig et al. [20j] showed that for Nf= 8 and a 
3 

fixed quark mass rna = 0,1 the phase transition calculated on a 6 x 2 
lattice is no longer of first order (which was the case for the quenched 
theory corresponding to Nf = 0). 
Instead the order parameter <Rel> showed a smooth continuqus change 

3 
around Be suggesting a second order transition. However, for a 6 x 4 
lattice the calculations showed that the first order transition of the 
quenched theory was still present for Nf= 8 and rna = 0,1 <~c= 4,81). 
This is in agreement with the result of Gavai [20h] for a 8 x 4 lat­
tice, where a first order transition was obtained with Be= 4,78 . This 
also reflects well on the small effect of the finite volume which leads 
to ~B ~ 0,03. The results of [20j] and [20h] for N

1
= 4 are shown in fig. 

6.3. 
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3 

For the larger lattice (6 x 6) the previous results for NT = 4 also 
applied with Be = 4,99. To test for possible scaling the critical cou­
pling was evaluated using a different algorithm (but still the basic PF 

4 . : 
method) on a 4 lattice with rna = 0,!5 and Nf = 8. This was compared 
with the results obtained on the 6 x 6 lattice . With Bc(NT=4) z 

4,825 this gives (using the RGE) 

(6.24) 

which is consistent with scaling. 

6.3 Other methods 

Using the Microcanonical method [18f-i] to incorporate the full fermion 
determinant into the quenched theory, Polonyi et al. [21a] calculated 
t~e energy density (see section 5.3) for Nf= 4, rna= 0,10 and 0,08 on a 
8 x 4 lattice. They found a very abrupt deconfining transition at 
B z 5,1 (rna = 0,08) similar to the one obtained from the quenched theory 
on a lattice of similar size. 

A strong first order transition was also obtained by Kogut et al. [2lb] 
3 

using the same method for Nf= 8 and rna = 0,1 on a 8 x 4 lattice. The 
results are summed up in table 6.2 below. 

The first results using an exact algorithm were obtained by Fishler and 
4 

Roskies [25a] on a 4 asymmetrical lattice. For four flavours and mass-
less quarks they found no evidence for a phase transition. 
Although in principle a method using an exact algorithm should be 
preferable, no qualitative estimates (e.g. for Tc, Tch) can be made. 
This is due to the fact that the lattice size is restricted by the 
complicated nature of the algorithm, and the fact that NT= Nu, which i~ 

not suited for finite temperature calculations as the finite lattice­
size effects will be comparable with the finite temperature effects that 
one wants to measure. 
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Table 6.2 

Ref. lattice Nf rna Be 

3 3 
[20d;e] 6 ,8 X 4 3 0,1 5,30(10) 

3 0,2 5,35(10) 

3 3 
[20i] 6 ,8 X 4 3 0,1 5,2455 

[20g] 8 
3 

X 4 3 0,1 ::::5.25 

[20h] 8 
3 

X 4 8 0,1 4,78 

[20j] 6 
3 

X 2 8 0,1 
3 

6 X 4 8 0,1 4,81 
3 

6 X 6 8 0,1 4,99 

[21a] 
3 

8 X 4 4 0,08 :::: 5,1 

[21b] 
3 

8 X 4 8 0,1 4,67(1) 
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7 Chiral Syrometry on the Lattice 

7.1 Preliminaries 

Chiral symmetry in physics is based on the observation that the u and d 
quark masses are very ssmall. However, since the masses are non-zero this is 
only an approximate symmetry (i.e chiral symmetry is only exact for mq ~. 0). 

Chiral symmetry is spontaneously broken at T = 0 even if the u and d quarks 
are massless. This is due to the effect of instantons (E·B fluctuations) 
which do not respect handedness in the QCD cacuum. 

A suitable order parameter in this limit is the fermion condensate 
<¢~> - a non-zero value would give the amplitude for a left-handed quark to 
move in a closed loop and end up as a right handed. If the chiral symmetry 
phase transition (c.s.p.t.) is strong first order, then the transition 
should persist for small but finite quark mass. 

Possible forms for the generic phase diagram are given in fig. 7.1 

~A 
.~~ m m m 

~ 6 

y 

T T T 

(a) (b) (c) 

fig. 7.1 

If both transitions are first order, the phase diagram may look like the one 
in fig.· 7.1(a), where A is the critical point (i.e. continuous'transition) 
at the end of a line of first order deconfinement transitions (with the 
circle (o) denpting the result for the quenched theory} while B is the 
critical point of the line of first order chiral symmetry phase transitions. 
For a specific range of m values the high and low temperature regimes will 
be continuously connected, with no phase transition present if T is raised. 

. 
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Another possibility is that the deconfined and chiral transitions are linked 
by a phase boundary fig. 7.1(b). A phase transition would then be 
inevitable. If the chiral transition is second order, th~ phase diagram will 
have the form of fig. 7.1(c). This specific scenario has been suggested by 
Nf = 2 results (See Section 7.3.1). 

In [22b] a study of effective u models predicts a first order c.s.p.~. at 
finite temperature for the SU(N) flavour group with Nf ~ 3 (massless 
flavours). For Nf= 2 the transition is predicted to be first order if and 
only if the effects of the U(1) axial anomaly are much weaker at finite than 
at zero temperature. The transition is second order if and only if the 
anomaly is temperature independent. 

At high enough temperatures and/or densities it is expected that chiral 
symmetry will ·be restored. For Lattice Gauge theories this has been 
rigorously shown to be the case [22c]. 

We will also see (section 7.2) that for quarks in the fundamental repre­
sentation of SU(N) there is a simultaneous deconfinement transition. This is 
not true for other representations e.g. the adjoint one. 

Questions that have been tackled in the literature include the possibility 
of a deconfined chirally symmetric state and the nature of the transition 
(i.e. is it discontinuous, continuous or just a cross-over. 

Order parameter 

As ~~ is not invariant under the chiral transformation ~ ~ 1 5~, it can be 
used as order parameter for the c.s.p;t. . The usual criterion for chiral 
symmetry breaking is that the chiral condensate <~ ~(m)> should vanish as m 
~ 0. For a lattice with finite volume (i.e. Nu finite) this has to be 
modified as a finite system will (in a large enough time interval) rotate 
through all its degenerate minima of the effective potential [23b;c]. This 
implies that <~ ~(m)> = 0 even if the symmetry is dynamically broken. The 
correct expression is given by [23b] 

lim lim <~ ~(m)> =constant + 0 
~ON~ s . 

' (7.1) 

In terms of the one component fermion fields (used for Staggered fermions) 
the expression above takes on the form 
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lim lim <~ ~{m)> =lim lim {Ns- 1<xx iXx i>) 
m-+0 N -+co m-+0 N -+co ' · ' 

{7.2} 
s s 

where is the colour index and Ns is the number of sites • The order of 
the limits above is important. We also note that the condensate 
<~ w(m)> is the quark propagator at zero spacing (averaged over gauge 

fields), i.e. 

{7.3) 

7.2 Quenched theory 

It. has been shown in [23a] that for quenched SU(2) 

= 1,60(20) (7.4} 

for quarks in the fundamental representation. 

For QCD [SU(3)] the deconfinement temperature and chiral symmetry restora­
tion temperature are almost coincident [14b]: 

(7.5) 

·For fermions in the adjoint representation the two transitions take place at 
different temperatures (see [23a;d]). In fig. 7.2 the results for the order 
parameter <xx> is shown for quenched SU(2) and SU(3). 
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7.3 Full theory 

As we have noted previously, Staggered fermions have a remnant continuous 
chiral symmetry which results in mq = 0 being the chiral limit. For QCD 
(with colour group SU(3}} the parameters for the analysis of the chiral 
symmetry is the quark mass and the number of fermions. We will now discuss 
the results for different numbers of quark flavours. [References with the 
same roman numbers use more or less the same MC method, e.g .. all references 
denoted by [26] uses the Hybrid Stochastic method]. All results will be 
tabulated seperately after each section. 

7.3.1 Results for 2 Staggerd flavours 

Gavai et al. [20b;d;e] investigated the chiral phase transition on a 
3 

6 x 2 lattice for m a = 0,1; 0,15 and 0,20. Compared to the quenched 
. q -

results, the order parameter<¢¢> (extapolated linearly tom~ 0} showed a 
smoother, more continuous behaviour (fig. 7.3.1) which suggested a possible 
second order transition. This behaviour was also present for <l> and the 
energy density. 
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0.8 1- f -

1- II -

1-

If 

-
f 

-
f 

-

0.4 

0 I I I I I J 
4.0 4.4 4.8 5.2 

(J 

FIGURE 7.3.1 The chiral condensate as a function 

of 8 on a 6 3 X 2 lattice. The filled 

circles represent two flavour QCD 

while the open circles are for the 

quenched theory (from [20~). 
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Fukugita et al. [24b] however claimed that the chiral transition 
strengthened as mqa ~ 0, changing from a continuous cross-over at mqa = 0,2 
to a first order one (as soon as) m a= 0,1 . 

q ' 

This is again in contrast to the results of Gottlieb et al. [26e], where an 
increasing rapid crossover in <¢¢> was found as the mass was lowered, but no 

* conclusive evidence for a first order phase transition existed even at rna = 
0,025 [*the metastability signals in <Rel> were not unambig~ous, altho~gh 

<¢¢> did change in a narrow interval of B for 
rna= 0,025]. 

Kogut and Sinclair [26g] found a first order transition for rna = 0,0125 
(with clear evidence for coexisting states in the behaviour of <L>), but 
none for rna= 0,025. This seems to be in agreement with [26e]. 

1.5 .----.--.----,---,----,---,---, 1.10..--~-~----.------, 

1.3 1.00 

1.1 
0.90 

0.9 r-. 
.J 

~ 0.7 

FIGURE 7.3.2 : Metastability signals for two-flavour QCD on an 83 x 4 lattice with 

ma = 0.025. Squares and triangles describe runs from disordered and 

ordered runs respectively. ·(From [2 4d] ) 

Gavai et al. (24d], however, did find clear metastability signals for the 
Polyakov loop and chiral order parameter for rna= 0,025 (fig. 7.3.2) which 
strongly suggests that the transition is indeed first orde~. For higher 
masses no metastability signals were obtained in agreement with the previous 
results of [24b] and [26e]. 

Also, Gavai et al. [24e] have found that the transition is first order for 
an interpolation of an isodoublet of quarks with rna = 0,025 and a third 
whose mass can be varied between 0,025 and ~. 
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In a recent calculation by Gupta et al. [25c] using an exact algorithm on a 
4 

4 lattice, evidence was found that the transition persists for larger quark 
masses (rna= 0,20). This is consistent with the transition seen at rna= 0,1 
in [24b]. 

The results above seem to suggest that the line of first order transitions 
should extend at least to rna= 0,0125 in the phase diagram (fig. 7.1). In 
addition to the problem of the uncertainty in the critical mass mch [where 
the line of first order transitions end (point Bon the phase diagram 7.1)], 
there is also a lack of theoretical predictions on the order of the transi­
tion for Nf = 2. 

Table 7.1 (Nf= 2) 

Ref. lattice rna 

3 
[20b;c] 6 X 2 -+ 0 z 4,6 

3 
[24b] 8 X 4 0,10 5,37 - 5,39 

-+ 0 5,29 - 5,32 

3 
[24d] 8 X 4 0,10 5,37 - 5,38 

0,025 z 5,33 

3 * [24e] 8 X 4 0,025 

3 
[26g] 8 X 4 0,0125 5,2875 

4 
4 0,025 5,25 

0,0125 5,225 

4 
[25c] 4 z 0,2 

* mass for an isodoublet of qaurks (see discussion) 
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7.3.2 Results for 3 Staggered flavours 

For Nf = 3 theoretical considerations [22b] . predi~t a first order 
transition. 

1\ 

II) 
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~ (a) ~~ 
0 

f I . ·---1--·---,---,----,----,-----.-----, 
o.oo 10.00 :J2.00 10.00 61.00 00.00 90.00 

Mon\.e Carlo ILm·al.iou .. 10' 

FIGUHE 7.3.3 t Polyakov loop expecl:atJ.on value as a 

f\Jnction of l:he number of itP.rntJ.ono 

at Pc • 5.3 (m = 0.1) (from J20aJ ). 

Fucito et al. [20e;f] have confirmed this; the value of the quark con-
densate undergoes 
metastability was 
of the transition 
interesting is that 

a discontinuous change, while clear signs of 
found in the behaviour of <Rel> in the neighbourhood 
with Bch = 5,25(10) (see fig. 7.3.3). What was also 

for quark masses as high as 0,10 and 0,20 the decon-
finement and chiral restoration phase transitions coincided. 

Gavai and Karsch [20g] found however that although <~¢'>~0 · showed a 
rapid change in behaviour as a function of the coupling, no signs of 
metastability was found around Bch ~ 5,3. Hence, although a strong first 
order transition was unlikely, they could not rule out a weak 
(fluctuation driven) first order transition. 
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more recent results of Gavai et al. [24c] seem to support However, the 
the notion of 
haviour of <Rel> 

a first order transition. Metastabilities in the be-
4 3 

was found for rna = 0,025 using a 4 and 8 x 4 lattice, 
with the larger lattice having a stronger signal which suggests a strong 
first order transition {fig. 7.3.4). This result has been confirmed by 
Kogut et al. [26g] using the Hybrid MC method. 
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• ... 0.20 .... .... .... .... .... 0.20 .... .... .... 

.... .... .... .... 
1- .... .... o.oc ,_· .... .... .... .... .... .... •• .... .... 

0.00 .... .... -
.... 

-0.20 0.20 I 

0.0 500.0 1000.0 1500.0 0.0 500.0 1000.0 

• 

.... 

1500.0 

FIGURE 7.3.4 Metastability signals for the Polyakov loop in three flavour QCD on a 4~ and 8 3. x 4 

lattice (left and right respectively) with ma 0 0.025 (from (24c]l 

Table 7.2 {Nf= 3) 

Ref. lattice rna 

3 3 
[20e; f] 6 ,8 X 4 0,1;0,2 

-+ 0 5,25(1) 

[20g] 8 
3 

X 3 0,1; 0,074 
-+ 0 ~ 5,25 

[24c] 8 
3 

X 4 ~ 5, 1 

[26g] 8 
3 

X 4 0,025 ~ 5,1 
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7.3.3 Results for 4 Staggered flavours 

There seems to be concensus that for N
1 

= ~and 4 continuous degener~te 
flavours the chiral symmetry phase transition for small .quark masses 
(i.e rna s 0,025) is of strong first ~rder. 

4 
On· 4 lattices using an exact algorithm this transition has been shown 
to survive up· to rna= 0,2 [25c], although the·ma = 0,20 d~ta did not 
show signs of metastability (see fig. 7.3.5). 
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1.2 

0.8 

0.6 

1\ 

>< 
i >< '• 
v 
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0.4 0. 6 L_JLJ_.J.__,L__J.___J__L_J_.J__.J.._L........,JL........J.----L._.L-W 

0 200 400 601 0 200 400 600 

FIGURE 7.3.5 Time evolution of the chiral condensate f'or four flavour· QCD 

on a 4 4 lattice for rna = 0.10 and 0.20 (left and right respectively) 

(from [25c] ) • 

3 
However, results calculated on a 6 x 4 lattice using the same algorithm 
seem to suggest that the problem of finite volume effects has not yet 
been resolved, especially for large masses (i.e rna~ 0,2). 
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3 

For larger lattices (usually 8 x 4) approximate methods are used. 
Fukugita and Ukawa [24a] obtained metastability for rna= 0,1 indicating 
a first order transition 1 while for rna ~ 0,2 - 0,3 the phase transition 
was continuous. Their results therefore supports the scenario that the 
first order deconfining transition of the quenched theory (at m ~ ~> 
smoothly continues into the region of small mq. They also found that the 
two transitions appeared simultaneously. 

Most of the approximate results for Nf = 4 have been obtained using the 
Hybrid Stochastic method. Kogut and Sinclair [26a;b] found a rapid 
crossover for rna = 0,1 and 0,5, but no metastability, while for rna= 
0,250 there was a definite first order transition. The deconfinement 
transition for large m seemed therefore to have been weakened by the 

. q 
inclusion of finite intermediate masses. 

Karsch et al. [26d] and Gottlieb et al. [26e] only found a clear signal 
of metatsability for rna = 0,025 (in agreement with [25b]). 
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-

0.5 
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3 
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SWEEP NUMBEH = TXlOO 

FIGURE 7.3.6 : 

Evidence of coexisting states 

in the time evolution of the 

chiral condensate at B = 5.125 

(corresponding to rna =0.025) 

evaluated on a 103 x 6 lattice 

(from (26c]). 

On a 10 x 6 lattice Kovacs et al. [26c] found a first order transition 
at rna = 0,025 (fig. 7.3.6), but not for rna= 0,05 (in agreement with 
[26b]). If asymptotic scaling is assumed to hold, the zero mass extapo­
lated data in [26b;c] suggests that Tc/AMS = 2,14(10) (while [26d] 
obtained Tc/AMS = 2,77(15)). 

.· 
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3 

The most recent results of Kogut et al. [26f] using a 8 x 4 lattice 
show that the transition is first order for rna = 0,0375; 0,0250 and 

3 
0,0125 (with metastable states found in all cases). On a 10 x 6 lattice 
long runs with rna = 0,0250 also favoured a first order transition. with 
Bch = 5,125 (see fig. 7.3.7). This result is significant, as it has been 
shown by Kogut [26a] that (within statistical and systematic 
uncertainties) asymptotic scaling starts around B ~ 5,10 .The results 
above can therefore be regarded as being characteristic of the continuum 
limit. This is not the case for the smaller lattice, where the criti­
cal couplings are typ!cally near Bch = 5,00, i.e. in the Strong Coupling 
region. For the 10 x 6 lattice the critical coupling was found to be 
Tch/AMS = 2,14(10). It is also interesting to note that the discon­
tinuities in the observables (e.g. A<l>, A<~~>) are larger for rna =· 
0,0125 than for rna= 0,0250 [26d], which implies that the chiral transi­
tion is strenghening as m ~ 0 (as expected [22b]). 

Using the Langevin algorithm, Gavai et al. [24c] confirmed earlier 
3 

results of a ·first order transition for rna = 0,0250 on a 8 x 4 
lattice. 

1-

0.6 -
'r 

v 
0.5 - ~fi I~ .......... 

0.4 

0.3 ~ 
_j iII I I I _II ~~I I I I 

60000 100000 150000 

SWEEP NUMBEH = TX100 

FIGURE 7.3. 7.: Time evolution of the chiral condem;ate on 

a 103 x 6 lattice at m = 0.025, 8 = 5.125 

for four-flavour .QCI> (from [26f]). 
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Ref. lattice rna 

[24c] 8 
3 

X 4 0,0250 ::: 5,03 

[25b] 4 
4 

0,0250 ::: 4,9 

[25c] 4 
4 

0,20 5,14 
0,10 5,04(3) 
0,050 4,95 
0,0250 4,910(3) 

3 
[26a;b] 10 X 6 0,250 5,509 

0,100 5,325 
0,050 5.175 
.... 0,00 5,010(25) 

[26c] 10 
3 

X 6 0,0250 5,125(25) 

[26d] 4 
4 

0.0250 4.94(4) 
3 

8 X 4 0,0250 4,96(3) 
.... 0,00 4,91(3) 

[26e] 8 
3 

X 4 ' 0,500 5,45 
0,400 5,42 
0,100 5,13 
0,050 4.96(3) 
0,0250 4,96(3) 
-+0,00 4,90(3) 

3 
[20f] 8 X 4 0,0375 4,99(1) 

0,0250 4,94(1) 
0,0125 4,920(6) 
.... 0,00 4,90(1) 

3 
10 X 6 0,0250 5,125(25) 
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7.3.4 Resulti for many Staggered flavours 
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Kogut et al. [21b] have found a strong first order phase transition at 
B§h = 4,67{10) with evidence for metastable states for Nf = 8 using a 
8 x 4 lattice with rna = 0,10. This was confirmed by Gavai [20h], who 
found a two-state signal at 6 = 4,78. Their combined results are shown 
in fig. 7.3.8. 

More recently, 
using lattices 
They obtained 

Kogut and Sinclair [26h] have investigated Nt= 8 and 12 
4 4 4 

of sizes 4 , 6 and 8 with fixed quark mass rna = O,l. 
first order transitions in almost all cases, but the 

results were strongly influenced by finite lattice size effects. 
Also, the fact that lattices with Na= N

1 
were used, make it difficult to 

distinguish between a possible finite temperature transition or a finite. 
lattice size induced one. 
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8. OCD at Finite Density 

To obtain a realistic explanation of most physical applications the 
concept of a system at finite baryon density (i.e non-zero chemical 
potential) must be introduced. It is generally believed that at suf­
fiently high densities and zero temperature, QCD will have a deconfining 
phase transition analogous to the one at p = 0 for finite temperature 
systems. 

Starting from first principles, chemical potential is introduced via the 
partition function 

A 

Z(B,p) = tr e-B(H-pN) 

A 
where N is the particle number operator with 

For the spin ~.continuum theory the operator N is given by 

which is the fourth component of the (conserved) Noether current 

The Dirac action for the continuum theory is therefore given by 

with corresponding partition function 

z = I [d~d~] -S e 

(8.1) 

(8.1a) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

where the chemical potential was introduced via the source term N. 
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8.1 Chemical potential on the lattice 

8.1.1 Naive formalism 

To illustrate how chemical potential can be incorporated into the for­
malism we first consider the Naive lattice action [27;28a]. For the 
continuum theory the conserved current was obtained by 

~ 6$ - 6$ J/J = 0, 
. 6~ 61/J 

which gives ~x (~(x)r~J/J(x)) = 0 . 
~ 

The naive action is defined by (see Chapter 4) 

Therefore 

a -4 ( ~ 65 _ 65 J/J ) 
6~ 61/J 

(8.6) 

= ~a ~ ( ~(x)r~J/J(x+~) - ~(x)r~J/J(x-~) - ~(x-~)1~1/J(x) + ~(x+~)1~l/J(x)) 
~ 

= a- 1 ~ (% [~(x)r~l/J(x+~) + ~(x+~)1~l/J(x)] 
~ 

- %[~(x-~)1~l/J(x) + ~(x)r~J/J(x-~)1) 

= 0, 

with the conserved current given by 

The corresponding expression for the particle number operator is 

* N = ~ J 
0 

* 3 - A _ A 
= ~ a %[l/J(x)r0l/J(x+O) + l/J(x+O)r0l/J(x)] 

(8.10) 

(8.11) 
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* ~ where ~ denotes the sum for x £ plane and 1 constant. 

Proceeding analogously to the continuum case we have the following 
result for the naive action 

In order to obtain a finite expression, counterterms must be added 
{27a;b]. One choice (27a;28a] is to replace 

l+aJL ~ e+JLa 
* which making the change JL ~ -JL gives 

(8.13) 

{* in the literature cited, the chemical potential is introduced via 
-JLN, and not JLN as is the case here). 

Another choice that has been proposed is to replace [27b] 

(8.15) 

It is important to note that these counterterms do not influence the 
continuum limit. 

8.1.2 Staggered fermions 

The Staggered fermion action is given by 

{8.16) 
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Now 

= 0 , so that 

(8.17) 

and 

* 3 - A _ A 
N = ~ %a ~ 0 (x)[X(X)X(X+O) + X(X+O)X(X)]. (8.18) 

The appropriate form of the Staggered action is therefore [using (8.13)] 

3 
+ (2a)-

1 ~ [x(x)x(x+3) - x(x+3)x(x)] + mx(x)x(x)) . 
j=1 

8.1.3 Wilson fermions 

(8.19) 

The most general form of the lattice fermion action containing no 
species doubling effects is 

with r = 1 corresponding to Wilson fermions. 

Now 

a -4 ( ~ 6:_ _ 6S 1/J ) 
61/J 61/J 

= a- 1 ~ (% ~ [~(x-~)(r- rp)l/J(x) - ~(x)(r+rp)l/J(x-~)] 
p p 
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- %[~(x)(r-1~)¢(x+~) - ~(x+~)(r+1~)¢(x)) 

= 0 

which implies that [27b] 

(8.21) 

Putting r = 0 (naive case) we again obtain the earlier result (8.10). 

With a little manipulation the following expression for the Wilson 
fermion action on a asymmetric lattice is obtained [27b] 

S = ~ ~(x)Qx x'¢(x') 
x,x' ' 

(8. 22) 

and 

(8.22a) 

In eq.(8.22), f 1 (~a) - 1+~a and f2 (~a) = 1-~a, which can now be re­
placed by either (8.13) or (8.15). 

The corresponding interacting theory at finite densities is obtained by 
making the following substitutions: 

ut ... e-~aut 
x,4 x,4 or (8. 23~) 

t 2 2 I t 
ux, 4 -+ [(1-~a)/(1-~ a )~]Ux, 4 . (8.23b) 
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The above apply to both Staggered and Wilson fermions. 

The connection between chemical potential and the number of quarks 
present can be interpreted by using (8.23a). 
The replacements U ~ e~au and ut ~ e-~aut describe the propagation of 
quarks in the positive and negative time directions respectively. Only 
those fermions that complete a full trajectory in the finite temporal 
direction will, pick up factors of e±~a, e.g. for n compl~te trajec~ 
tories, the factors will be e±n~a. Those who tumble back will acquire 
exponential factors that cancel. 

8.2 MC results of finite density QCD 

One seemingly insurmountable problem of finite density MC calculations 
is that th~ fermion determinant is complex. This is due to the fact that 
for~ + 0 the U and ut terms in Q are no longer hermitian-conjugates. 
[It is however important to note that due to the nature of integration 
over the Haar measure, the partition function remains real]. 

8.2.1 Quenched approximation 

The first calculations for the quenched theory at finite densities were 
done by Kogut et al.[28a] using Staggered fermions to calculte <J 0 >, 

which is defined by 

<Jo> = {BV)-1 8lnZ 
a~ 

3 3 -1 8lnZ 
= {NaNraa) a(~a ) 

1 

with J0 as defined in (8.17). 

Similarly, the chiral order parameter is obtained from. 

(8.24) 

(8.25) 
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FIGURE 0.1 : 'fhe chiral order parameter ~ f f > versus m for various 

values of p with 8 = 5.2 evaluated on a 6 1
' lattice 

I from [20a)). 

4 
Although the results for SU(3) suffered from finite size effects (a 6 
lattice was used) they did find that chiral symmetry was abruptly * 
restored for the extrapolated data (m ~ 0) at ~cha z 0,3 (* although 
the transition was abrupt, there was not enough evidence for a first 
order transition). The results for the order parameter are shown in fig. 
8.1. It is interesting to note that the MC results compared well with 
the Mean Field predictions. 

8.2.2 Full theory 

The behaviour of quarks and gluons at finite temperature and density was 
first investigated by Nakamura [28b] for SU(2) (using Wilson fermions). 
Although no definite predictions for Tch and Bch were obtained, it was 
found that the gluon energy density was influenced strongly by an in­
crease in ~: for large values of the chemical potential the gluon gas 
exhibited a limiting behaviour far removed from the ideal gas one of the 
quenched theory. The quark energy density also showed more rapid in­
crease compared to the ~ = 0 case. 

The SU(3) deconfinement transition at finite baryon density has been 
investigated by Engels and Satz [28c] and Berget al. [28d] using the 
hopping parameter expansion for Wilson fermions. Before discussing 
their results, we first give a brief review of the formalism used (which 
is only a slight modification of the results given in sec. 6.1.1). 
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From (6.3) it follows that a suitable modification of the effective 
action to include a finite chemical potential will have the form (to 

'leading order): 

N N ~a * ~ -N ~a 
SF(L) = -2Nf(2K) 1 ~ [L(x) e 1 + L (x) e 1 

] 
~ 

(8.26) 
X 

~ 

where L(x) is the Polyakov loop defined in (6.4). 

Using L(x) = ReL(x) + i ImL(x), Sf(L) will have the form 

N 
SF(L) = -4Nf(2K) 1 ~ [ Rel(x)cosh(N1~a) + ilmL{x)sinh(N1~a)]. 

~ 

{8.27) 
X 

I 
-SG(U)-SF(L) 

with full partition function Z = [dU] e . {8.28) 

It is apparent from the above that SF(L) is only real if ~ = 0. Also, 
exchanging variables U ~ ut we see that 

(8.29) 

vanishes, which implies that Z is real. 

It can now be shown that [28d] 

<lml(x)> = 0 

~ 

<Im SF(L)> - < ~ L(x) > = 0 
~ 

{8.30) 
X 

which serves as motivation for making a "partial quenching" approxima­
tion in which ImSF(L) = 0 everywhere. 

Monte Carlo calculations can now be performed using only the real part 
of the action together with SG(U) - explicit M dependence of the physi­
cal quantities are guaranteed by the presence df the term 
Re SF(L). 
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We also note here that we can write 

N1 ... 
= -4Nf(2K) ~ Re l(x)cosh(N ~a) 

_. T 
X 

... 
- -h ~ ·Re l(x) (8.31) 

... 
X 

N 
with h = 4Nf(2K) 1cosh(N;~a). (8.32) 

This form of the effective action will be discused in section 9 where 
analytical methods will be considered. 

3 
Calculations were performed on a 8 x 3 lattice with Nf= 2, using the 

4 
lowest order (K ) HPE. The results of [28d] are given in table 8.1. In 
fig. 8.2 the behaviour of <Rel> as a function of B for different values 
of the chemical potential is plotted. 
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The results showed that the critical coupling had shifted to lower 
values (i.e. lower temperatures) as the chemical potential was increased 
but also that the transition became less abrubpt for higher values of~· 

The same behaviour was apparent for the total energy density, where 
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£ = v-1[T2<a1~z>p,V + pT(a1~z>T,vl . (8.33) 

* In fig. 8.3 the normalized energy density is plotted ~s a function of 
' 4 

the coupling (* the energy density is normalized to the value £~B for 
3 

an ideal gas of quarks and gluons calculated on a 8 x 3 lattice using a 
fourth order HPE). 

The transition parameters can now be obtained from either £ or <Rel> for 
different values of p. They are given in table 8.1, along with the 
critical temperatures using the (Nf= 2) RGE [(5.31)]. 

For the highest value of the chemical potential considered (p/Al z 200), 
the critical temperature compared to the p = 0 case dropped by ± 25%: 

(8.34) 

Table 8.1 (from [28d]) 

0,10 45 5,299 151 5,288 149 
0,20 89 5,282 148 5,294 150 
0,33 139 5,239 180 5,239 140 
0,40 161 5,194 132 5,214 136 
0,488 184 5,151 125 5,128 126 
0,60 203 5,063 112 5,077 114 

To conclude this section, we note that all attempts so far to include 
the full fermionic determinant have met with little success [28e]. The 
results obtained from existing calculations are in general inconsistent 
with conventional ideas of chiral symmetry breaking. It seems therefore 
that the only reliable way to study systems at finite chemical potential 
is to use analytical approximation methods. These methods will be dis­
cussed in the next section. 
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9. Analytical methods in Finite Temperature LGT 

Analytical methods are important to verify whether the results from MC 
calculations (sections 6 - 8) are physically meaningfull and not for 
example due to the specific approximation or the size of the lattice 
used. This is because in most cases, analytical methods can be used to 
evaluate the theory exactly. Also, as we have seen in section 8, MC 
calculations for systems at finite densities run into difficulties due 
to the complex determinant [28e]. 

9.1 Mean Field Techniques 

In [29a] an analogy was made between the full SU(3) theory (including 
non-zero chemical potential) and the Z(3) spin model in the high tern­

* perature- strong coupling limit, i.e. the SU(3) QCD partition function 
can be approximated by the Z(3) partition function 

where h(K,~) denotes the external magnetic field dependent on both the 
hopping parameter and chemical potential. In general h can have a real 
as well as imaginary part [29a]. 
[* the Strong Coupling limit here implies that a

1
/au << 1, so that only 

the time-like part of SG{U) and SF are considered]. 

Using a MC and MF analysis of the Z(3) theory it was found that the 
first order transition of the quenched theory [with ~ = 0 (corresponding 
to h = 0)] was weakened by the external magnetic term and disappeared 
for suffiently large K (i.e. suffiently small mq). Hence, for h >her 
the transition will be entirely absent, while at 
h = her the transition will be second order. For SU(3) this was a con­
firmation of the MC results obtained in [19c]. It must however be kept 
in mind that the existence and value of her is theory dependent. The 
Z(3) results therefore do not bear directly on the phase structure of 
the SU(3) theory. 

An of SU(N) LGT at finite temperature and Strong Coupling was done by 
Green and Karsch [29d]. For the pure gauge theory they confirmed numeri­
cal calculations in obtaining a second order transition for N = 2, while 
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for N ~ 3 the phase transition was of first order. Using Wilson fer­
mions, they utilized a HPE to incorporate the effect of quarks into the 
quenched theory. As their method can be used in a wide v~riety of forms 
we will discuss it briefly. 

Consider the full QCD partition function defined in section 5: 

Z = [dU] detnQ e G , J 
-s (U) 

(9.2) 

where for Wilson fermions n = Nf , SG(U) is the Wilson pure gauge action 
and for a symmetric lattice we have that 

(9.2a) 

Considering first the pure gauge sector (i.e. with K =0), an approxima­
tion whereby the spacelike plaquettes are neglected for sufficiently 
small B is implemented [29d]. This effectively means that the partition 
function is evaluated under the constraint Up = 1 (where: P

0 
denotes the 

a 
space-like plaquettes). We first rerwrite the pure gauge (Wilson) action 
in terms of a character expansion (see Chapter 6) 

(9.3) 

where the product is over all timelike plaquettes (P
1

) only. As all 
time-like plaquettes contain two spacelike links, these must now be 
integrated out (see fig. 9.1). 

• • • • • 

a 
.. 
X. T 
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Consider one such ladder with N = 4 as example (fig. 9.2). r 

..,.. 
" 

--__.;._ - - - -r--~<;__--- - - - . .__ -·-
~~ 

..... u, 

./ 

' lj\ 

U, 
r-

u, ~~ j\ 

..... u, 
"': 

u,, /i' 

...... 
/ --- -- -- '----->~---~- -- --

fig. 9.2 fig. 9.3 

[Note that because the lattice is finite in the temporal direction (NT = 
4) and the gauge fields satisfy periodic boundary condjtions, the links 
u3 and ul2 will be the same (except for having different directions)]. 

The spacelike links (U1 , U6 , U9 and U12 ) can now be integrated out using 
the properties of group integrations (see Chapter 5, sec. IV), which 
gives the following effective partition function (up to a constant 
factor that includes the trivial character coefficient) 

where W(x) is similar to the Polyakov loop at a spatial site x: 

NT 
= n u ... 

T=l (x,r),4 
(9.5) 

and with the first and second products in (9.4) running over all spatial 
sites and links of a three dimensional lattice respectively (see 
fig. 9.3). 
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A second ,approximation, namely that B is small enough that only the 
fundamental term in (9.4) need be considered, gives 

=I ( ~ dWX) exp ( 2B'(-+}: Re tr W(x) tr wf(x+~))), (9.6) 
x . x,~ 

N 
where B' = (zf) 1 [SU(3)] • 

[In terms of the notation introduced in Chapter 6, 

(9. 7) 

(9.8) 

where in general br = crfc
0 

, with cr the character expansion coeffi­
cient (1.6.43) 

Explicitly, we have [29d] (see also Chapter 6) 

2 -1 where B = (3g ) 

so th~t, to lowest order (N
1 

= 2) 

2 3 9 4 
B' = B + 3B + 4 B + 

(9.9) 

(9.9a) 

(9.10) 

Equation (9.6) describes an effective (3 dimensional) spin model [29b;d] 
with the Hamiltonian formed by nearest neighbour interactions between 
the spins tr W(x). 

Introducing fermions via the Wilson formalism, we have the following 
form of the effective action for a system with ~ t 0 (see sec. 8.2.2) 
[30a;b] 
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z =I ( ~ dWX) exp ( 2B'(~~ Re tr W(x) tr wt(x+~) 
X x,e 

NT ~ , ) + 4Nf(2K) ~ [Re tr W(x) cosh(N
1
pa) + ilm tr W(x) sinh(N

1
pa)] 

X 

=I [dW] exp[-SG(U) - SF(W)]. {9.11) 

N 
The factor h = 4Nf(2K) 1 may be considered as an external field: a non-
zero h will imply that the global Z(N) symmetry of the pure gauge theory 
is broken. For h = 0, a MF analysis of eq.(9.11) will give the same 
self-consitent equations as obtained for the chiral model in [29b] {see 
Chapter 7, sec. 58): 

ZMF = Zss =I dW exp[2B'(2d) Re tr W(x) tr m- SF(W)] 

=I dW exp[4dB' Re trW - SF(W)], (9.12) 

where the number of nearest neighbour spatial links is given by 

~ => 2d. (9.12a) 

The self-consistency equation is therefore given by 

<Re trW> = m, (9.13) 

with <Re trW>= (12B'm)- 1 ~m Zss· (9.14) 

2 
Hence FMF = 6B'm + Fss (9.15) 

with· Fss = -ln Zss' (9.16) 

so that (9.17) 

where FMF is the MF free energy. 

The single site integral in eq.(9.12) can be rewritten in the form 
[30a;b] 



211 

Zss = J dW exp[(4dB' + f 1 )Re tr W + if2 Im tr W], (9.18) 

Nr 
where f1 = 4Nf(2K) cosh(n1~a); 

N 
f 2 = 4Nf(2K) 1 sinh(n1~a). (9.19) 

There is a remarkable similarity between the (MF) single site integral 
above and the full partition function of eq.(8.28) used for the MC 

_calculations. This is also true if W(x) £ Z(3), in which case eq.(9.18) 
resembles the partition function defined earlier for the Z(3) spin model 
(eq.(9.1)). 

For small ~ (~ z 0), the imaginary part of the external field h is small 
and can hence be neglected. This would correspond to the "partial 
quenching" approximation where ImSF = 0 was taken [28d]. For small ~ 

one therefore obtains the following minimum value for f 1 : 

(9.20) 

while the partition function has the f~rm of a single link integral (see 
discusssion in Chapter 5). 

If~ is large enough however, both f 1 and f 2 will contribute. The single 
site partition function can be evaluated analogously to the chiral 
single site integral in [29b] (see Chapter 7), which gives [30a;b] 

~ 

zss = e:-~exp(-3e~) detle+j-i(a) (9.21) 

2 2 % where a = [(2dB' + f 1 ) - f 2 ] (9.22) 

(9.23) 

From eq.(9.15) it follows that the MF energy is given by 

(9.24) 
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Results 

A. Pure gauge theory CK = u = 0) 

Celik et al. [30a;b] have evaluated the single site integral feq.(9.21)] 
using a series expansion of the modified Bessel functions (up tp 30 th 
order in a). In fig. 9.4 the MF free energy (eq.(9.22) is plotted as a 
function of <L(x)> (= <trW> = m) for different values of 2dB' and N = 2.' . 1 

r,,. 

0.03 • 

0. 01 • 

r 
t~------~·.,--------•------~ 0,0 u.s 1.0 1.5 

FIGURE 9.4 Mean fi~ld. energy FmF versus <L(x)> 

for several values of 2dB' witlt 

11a = 0 = I< (from [.Joa:b]). 

For 2dB' = 0,806 (i.e. d = 3 => B' = 0,134), there are two degenerate 
minima which confirms MC results that the phase transition is first 
order. 

B. Full theory ·cu = O) 

In [19b;d], MC results showed a second order transition at 
Be (=6/g~) ~ 5,35 (see table 6.1) for Nf = 2, N

1 
= 3 and K 0,12 which 

corresponds to and external field value 

N 
h = 2Nf(2K) 1 0,055. (9.25) 
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For N
1 

= 3 and h = f 1 = 0,059 (value for which the line of first order 
2 

transitions end [30b]}, the value obtained for Be = 6/gc was 5.94, with 
2 

the transition now of second order and A(6/gc} = 0,59._.There is there-
fore a remarkable correspondence between the MC and MF results. 

C. Full theory Cu + 0) 

In [30a] the MF energy was evaluated for K =0,05 (which fixes the value 
of mq by virtue of the relation (6.7} with the (SC} value for Kcrit> and 
pa = 0,1. This is shown in fig. 9.5. For 2dB' = 0,7495, two degenerate 
minima characteristic of a first order phase transition were obtained. 
It must however be kept in mind that the quark mass that was used is 
very high, so that no-qualitative predictions regarding Tc etc. can be 
made . 
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FIGURE 9.5 r Mean field energy vs. <L(x)> 

calculated at fixed valuen 

ua 8 .. 0.1 and It a 0.05 (from [JOn)). 

"·'' o.rs o.u o.n 

FIGURE 9.6 r Value of the mean field vs. 2dn' for two valueR 
of the hoppl.ng pn<nmeter (from (Jon)). 

To obtain the critical curve in the T-p plane, the MF was evaluated for 
different values of B' with different sets of values for p and K. This 
is shown in fig. 9.6. For K =0,5 and p = 0,45, the sharp change in the 
value of <L(x}> disappeared, which implies that the two degenerate 
minima of FMF coincides, i.e. the transition is now second order. 
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9.2 Extreme Strong Coupling limit 

Another possible analytical approach to LGT is to use an effective 
action in the extreme SC limit (where the contribution from the pure 

- 2 
gauge theory is totally neglected, i.e. the limiting value g =~is 
taken). The advantage in considering the SC limit is that the effective 
action is linear in the link variables ux,#· If, in addition, gaug~ 
fixing is also applied, then the integration over the link variables can 
be gr~atly facilitated. The resulting effective action is a functional 
of only the fermionic variables x and x, which can be integrated out 
using the standard rules of Grassmann integration (see App. C). It is 

· important to note that in this ultra SC limit there can be no deconfine­
ment, so that only the chiral transition is generally investigated. 

We will now discuss the SC method proposed by Damgaard et al. [32a;b], 
altough other similar techniques have been applied (see [31;32c-f]). 

Let us first consider QCD at finite temperature, with colour gauge group 
U(N) in d+1 dimensions. A finite chemical potential will be considered 
later. The choice of U(N) (which has no non-trivial centre) implies that 
only ,meson states will be present. In addition, to obtain a consistent 
continuum flavour interpretation for the Staggered fermions, N

1 
must be 

even (see Chapter 4). The lattice action in this limit is given by (Nf= 
1) 

(9.26) 

with corresponding partition function 

(9.27) 

where [dU] = [dU
0
][dUj] (with U

0 
and~Ujdescribing the temporal and 

spacelike links ~espectively and U
0 

= U
0

(x,r) etc.), [dx] = ~ dxx etc .. 

(also note that B now stands for B = N
1
a

1 
= T- 1) 

As the gauge variables satisfy periodic boundary conditions (2.1), a 
gauge can be found in which the gauge variables U

0 
are time-independent 

and diagonal [29c] (see also Chapter 7) 
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u.(X,r)- D(X) - diag[e 1 ~'(X)/B •...•• 
1~N(X)/B) . (9.28} 

The corresponding expression for the Haar measure is 

(9.29} 

The action now reads 

(9.30} 

As the fermionic action is linear in ux,j' the integration can be done 
explicitly. Considering only the term containing the space-like links we 
have 

d 

( 
I -a b -b a . ) = exp - 4N ~ .~ XxXx+J·Xx+·Xx + h1gher orders , 

-+ J=l J 
X 

{9.31} 

where the colour indices are explicitly shown. The four fermion {meson} 
term corresponds to the leading term in a ~ expansion, which has been 
shown to offer a good approximation to the full effective action 
[3la;b]. 
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The action (9.30} now has the form 
B , ( - 1 d -a b -b a 

S = ~ ~ -mx X - 4N ~ XxXX+J·Xx+J·Xx 
1=1 ~ X X j=1 

X 

(9.32} 

This integration has therefore yielded an effective (fermion} actio.n 
involving only interactions between Fermi fields at equal.times 1 at 
nearest sites in space. We note in passing that if we define [32bl 

t _ -b a 
Jx,j - %~j(x}xxXx+j 

-b a 
Jx,j = -%~j(x}xx+jXx ' (9.33a} 

then we can use the results of the one-link integrals given in Chapter 5 
as all the Uj links will have the form 

(9.33b} 

In order to simplify integration over the Grassmann fields, the meson­
meson factor in the four fermion term is decoupled by introducing an 
auxilliary field ux by means of the following identity (see also 
[32c;d]} 

(9.34} 

where we have the following correspondence 

(9.35a} 

which can be made precise by using the (vacuum} expectation values, i.e. 

1 -
<u> = N <xx>. (9.35b} 

Making the approximation that ux is a classical field (i.e. ux z u or in 
other words expanding ux around its constant value· and ignoring the 
corrections} we have the following expression for the action (9.32} 
(using also the identity (9.34}} 
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s = ~ ~ ( -mx x - l Nda
2 

- %adx x 
T=I ~ X X 4 X X 

X 

{9.36) 

Introducing a Fourier transform {to. accomodate the antiperiodicity 
constraint of the fermion fields) we have 

~ B I 
X(X,T) = {I//B) ~ exp[2ni{m+%)TB- ] Xm(x) 

m=l 
(9.37) 

and similarly for X(X,T). 

Substituting the above into the action (and performing the ~ summation) 
T 

we obtain 

( 
I 2 B N s = ~ - 4 NdBa - ~ ~ Xm(x){(m+%ad) 

~ m=I b=I 
X 

(9.38) 

We note in passing that for systems at zero temperature (including the 
possibility of a non-zero chemical potential), the requirement of intro­
ducing a Fourier transform like the one in (9.37) is not necessary, and 
the integrations over the time-like links can be done similarly to the 
space-like links in (9.3I) {see [32c;d],[3Ib;c]) 

Integrating out the Grassmann variables (see App. C) and omitting the 
mass term (which may be reinstated by a shift a ~ a + 2m/d) (9.39) 
gives the determinant 

N B 
IT IT (%da + isin([2n(m+%) + Ob]/B)), 

b=I m=I 

so that the action (9.38) now reads 

(9.40) 

B N 
S = ~ ( - i NdBa

2 
- ~ ~ ln[%da + isin([2n(m+%) + Ob]/B)) 

x m=I b=I 
(9.4I) 
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and only the interpretation over the auxilliary field u and the time 
like links remaining, i.e. 

(9.42) 

The fact that B is even (which has already been used in the integration 
over the Grassmann variables) can be used to give the following identity 
(obtained in [30a;b]) 

B 
IT [sinh(s) - icosh( 2~m + 8)] = 21-B[cosh(Bs) - i8cos(B8)]. 

m=1 

Making the identification 

%du = sinh(s), 

(9.43) 

(9.44) 

we can rewrite the expression in (9.40) (and in the process get rid of 
the product n ) 

m 

12 = g ~ (%du + isin([2n(m+%) + 8b]/B)) 

= g ~ ( sinh(s) - icos( 2~m + 8' + ~)) [8' = (n+8b)/B] 

= IT (21-B[cosh(Bs) - i 8cos(B8)]) [8 = 8'+~] 
b . 

Using cos(B8) = (-1) 812 + 1cos(8b) we therefore have 

12 = g (2 1-B[cosh(Bs) + cos(8b)]] 

= 2-BN IT [2cosh(Bs) + 2cos(8b)]. 
b 

The partition function (suitably nomalized) now reads 

Z = J [du][dU0 ] exp(- i NdB: u
2
) ~ g W(8b), 

X X 

where W(8b) = 2cosh(Bs) + 2cos(8b). 

(9.45) 

(9.45a) 

(9.46) 

(9.46a) 
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Considering first the integration over the time-like links, we can use 
the expression for the Vandermonde determinant given in Chapter 7, which 
gives the general result {see also [33]} 

1r 

= N! det {I I . . I } , J-1 

where In= J ~! W{Ob}eiO 
-1( 

{9.47) 

{9.47a} 

and the factor N! was obtained because the particular form of W{O} 
implies that In= I_n· 

From {9.47a} it follows that 

{9.48} 

The determinant CN = det{IIn-ml} {9.49} 

can now be evaluated using the following recursion relation: 

{9.50} 

which was obtained exactly from the orthogonal polynomial method [33]. 

Further evaluation of {9.50} now gives 

{9.51} 

which follows as the first matrix on the RHS is independent of N. 

Now 



220 
2 

= 4 cosh (Bs) - I; 

and c1 = 1
0 

= 2 cosh(Bs), (9.52) 

·so that 

-1~ ]N-
2 

[ 4cosh
2
(Bs) -I] 

0 2cosh(Bs) . (9.53)' 

eN can now be written in terms of the eigenvectors ~± (see [32] 1) 

(9.54) 

where ~+ + ~- = 1
0 

= 2cosh(Bs) 

(9.55) 

Using the expressions in (9.55), the value of~+ and~- can be obtained, 
which finally gives 

e _ sinh[(N+I)Bs] 
N - sinh(Bs) 

The final form of the partition function (9.46) is therefore 

z =I [da] ~ (exp[- * NdBa
2
] eN) 

X 

=I [da] exp[-: Veff]' 
X 

where V (a) = l NdBa2 - ln(sinh((N+I)Bsl) 
eff 4 s1nh(Bs) · 

(9.56) 

(9.57) 

(9.58) 

For sufficiently small a _the effective potential is of the form [30a;b] 

I I 2 4 
Veff = 4 NBd(I- 6 (N+2)Bd)a + O(a ). (9.59) 

2 2 

From (a Veffjaa >la=o = 0 (9.60) 

it follows that t (N+2)Bd = I, (9.60a) 
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which, after restoring the appropriate lattice spacings a
1 

and au show a 
clear second order phase transition at the critical temperature 
Tch = (a

1
Bch)-1 determined by 

... 
(9.61) 

For T < T ch the system will be in a chi ra 1 symmetric phase. The effect 
of the bare quark mass can be incorporated by the shift (9.39). The 
resulting effective potential will contain a mass term with negative 
coefficient which is linearly coupled to u, so that the phase transition 
is completely washed out. For a futher discussion see [30b]. 

The next logical step would be to include a finite chemical potential. 
For ~ + 0 and T = 0 this has been discussed by Damgaard et al. [32c]. 
Working with colour gauge group SU(N), they considered the effects of 
the baryon terms (in addition to the meson terms), which have the form 

(9.62) 

After integrating out both the spatial and timelike links, the following 
. form of the effective action (to leading order) was obtained 

(9.63) 

Collecting the baryon terms in a baryon potential (V8) and again in­
toducing an auxilliary_ field u for the meson terms, the following form 
for the partition function is obtained 

(9.65) 
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which is valid for N even and odd, and where v8 contains the ch~mical 
potential factors e±N~ as the meson fields carry zero net quark number. 

For large values of ~' eq.(9.65) would correspond to a one parameter 
action 

with 1 2 
Veff = 4 Ndu (9.66) 

An analysis of Veff for the different gauge groups in four dimensions 
gave the following predictions: 

for N = 2 the transition was second order, while for N ~ ·3 all transi­
tions were found to be of first order (only the cases of N = 2,3,4 were 
explicitly calculated). 

If the baryon terms are neglected, the effective potential reduces to 

1 2 
Veff ~ 4 Ndu - lnu , (9.67) 

which shows remarkable correspondence to the earlier result in (9.58). 

For SU(2) the effect of the presence of the baryon mass terms manifests 
itself in baryonic condensate <B> which is non-zero at finite ~ [32d] 
(while for most other gauge groups (i.e. N ~ 3) the baryon condensate is 
either zero or very small [32e;f]). Dagotto et al. have claimed that the 
nonvanishing baryon 
symmetry, so that 
mesonic condensate 
T=O). 

condensate is responsible for the breaking of chiral 
2 

no transition occured at g = m, even though the 
vanished for all non-zero chemical potentials (and 
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10. Concluding Remarks 

The significance of MC results lies in the fact that they provide the 
first numerical investigation of QCD properties such as.the phase tran­
sitions signalling confinement and chiral symmetry restoration. In the 
preceding, I gave a review of QCD on the lattice at finite temperature 
and density. An attempt was made to include most relevant data up to the 
end of 1987, and to update existing reviews on the subject. 

For the pure (quenched) theory results seem to be unanimous· in predict­
ing a first order transition. However, for the full theory where the 
effect of quarks are also included, results at present are still not 
conclusive. From the latest results it is apparent that some kind of 
phase transition (be it strong or fluctuation driven first order or even 
second order) is indeed present, which for Nf ~ 3 is in fair agreement 
with theoretical predictions based on the investigation of the sigma 
model [22b]. The uncertainties in the values of the critical quantities 
(e.g. mch' Tch) are to a large extent due to the inadequate size of the 
lattices used in the calculations (in turn a result of present day 
limits on computer technology) and the algorithms that are used to 
approximate the full theory. 

Regarding systems at finite baryon density, the situation at present is 
even more uncertain [28e]. Calculations have been done using the so­
called partial quenching approximation (sec. 8.2), but in order to 
obtain qualitative estimates for the critical quantities the full 
(complex) determinant must be considered. Although several methods have 
been proposed (see e.g. [35]), the results obtained up till now are not 
combatible with the generally assumed behaviour of systems at finite 
densities. 

Analytical methods have led to several interesting results. Some of the 
most important of these and their results have been discussed in section 
9. The SC method is based on the assumption that the effects of the 
gauge plaquettes can be ignored to lowest order. This greatly 
facilitates the integration over the link variables (usually one of the 
biggest problems facing analytical techniques) as these are now only 
present in the quark-gluon interaction terms of the fermion action. 
Except for the case of SU(2), SC methods, combined with a mean field 
analysis, applied to lattice SU(N) at finite density have predicted a 
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first order chiral transition for N ~ 3 [32c;d;e] in agreement with 
(quenched) MC results. 

As a further probe of the phase diagram, calculations have been done for 
finite T at zero baryon density, using a SC analysis for the U(N) 
theory. The transition was found to be of second order [32b]. A more 
general method that can be applied to both U(N) and SU(N) systems has 
been presented recently [36]. The necessary condition for the occurence 
of a phase transition was determined, but no explicit numerical calcula­
tion was given. The possibility exists of extending this method to 
include baryon terms, which in turn could be used to include a finite 
chemical potential in the theory. 
A pure MF analysis of SU(N) has shown that the line of first order 
transitions end in a critical point (corresponding to a critical value 
of an external "magnetic" field) [30a;b]. 

The investigation of the intermediate region of the T-~ phase diagram 
(i.e. with T,~ + 0) is still in a preliminary stage. Predictions have 
been made that for SU(N), with N > 3 (N even), the theory in the SC 
limit has a chiral symmetry restoration phase transition. For low T and 
high ~ the transition is of first order, while for low ~ and high T it 
is of second order [33f]. 

To conclude, the possibilities for future research using analytical 
methods are still far from being exhausted. In addition, it is not 
unreasonable to expect that MC methods will provide more conclusive 
results in the near future. 
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APPENDIX A: METRIC NOTATIONS 

Minkowski Space 

Using the covariant notation we define the metric tensor 

g/}.11 = g = [1 -1 -1 ) 
/}.11 -1 

h h l'f X/}. = ( 0 1 2 3) sue t at, x , x , x , x 

then 

0 -+ = {x ,-x) 

where x0 = x
0 

= t. (c = 1) 

The metric of the Minkowski space is therefore given by 

2 -+ -+ 
= X - X•X • 

0 

The derivatives are defined by 

[a·a a] where V = ax'ay'az 

2 

such that a
11
a11 = ~ - v.v 

axo 

The momentum vector is given by 

p/1. = (E ' p) 

(A.1) 

.{A.2) 

(A.3) 

(A.4) 

(A. 5) 

(A.6) 

(A. 7) 

{A.8) 

{A.9) 

(A.IO) 
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Euclidian Space 

For Euclidian space we define the positive metric 

6/lV = 6 
/lV 

The Wick rotation implies that 

x4 = ix
0 

(or 1 = it); 

Therefore 

s
2 

= x x11 = 
ll 

= - (x·x + x!) 

(A.ll) 

(A.l2) 

(A.l3) 

(A.l4) 
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APPENDIX B : DIRAC MATRICES 

Minkowski Space 

The 1 matrices satisfy the anti-commutation relations 

, 2gllV (8.1) 

(8.2) 

(8.3) 

with 1° the hermitian and 1i the anti-hermitian, 

(8.4) 

5 0 1 2 3 
Also 1 "' 15 "' 1 1 1 1 

(8.5) 

5 2 
(1 ) = I (8.6) 

(B. 7) 

(8.8) 

ll o i a ~ ~ a ~ ~ 
1 a = 1 a + 1·a = 1 - + (-1)·(-v) = 1

0 
at+ 1·v ll 0 1 0 axo 

(8.9) 

Representations for 1 matrices 

The most frequently used representation which satisfies (8.1) is the 
Dirac representation with 
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-+ = ( Q g) (8.10) 1 -u 

where ui are the Pauli matrices 

1 (0 u = 1 ~) u 2 = (~ -~) u 
3 g = -~) {8.11) 

Euclidian Space 

For the Euclidian space definitions of the 1 matrices we can make use of 
one of two possible choices. 

1. Hermitian choice 

Here -y
0 

is left unaltered while -yi is changed 

<-ro>E = ho>o = (~ -~) 
-+ {-y) E = -i(r> 0 

= - i ( Q g) -u 

(.2 .-+) 
= -lg 

lU 

Note that 

i v (-yi)E = +(-y )E because 1p = 6pv 1 

{1s)E = 11121314 = (-~ -~) · 

This choice of 1 matrices satisfy 

with 

Also 

0 -+ ;t = 1 a + -r·v 0 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 
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2. Antihermitian choice 

We can define Euclidian 1 matrices which satisfy 

(8.19) 

This would correspond to the.choice 

(8.20) 

(8.21) 
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APPENDIX C: GRASSMANN VARIABLES 

1. Motivation 

For boson fields (e.g. spin 0) the vacuum expectation value of a time 
ordered product of fields is represented in the path integral formalism 
by a functional integral (i.e. partition function in Euclidian space) 
over ordinary c-number functions (classical scalar fields~). 

To extend functional methods to the case of fermion fields however, 
demands that the classical fields act as anti-commutating c-numbers 
which will ensure that the anti-commutation property of the fermion 
fields is preserved. 

Therefore, to extend the path integral formalism to include fermions it 
is necessary to introduce a representation of the fermion Hilbert space 
as monomials of generators x1 ,x 2 , ••• of a Grassmann algebra [27;28]. 
(Note that all references quoted refer to those in Part I) 

2. Finite Dimensional Grassmann Algebra 

If the generators x1 , ••• ,x of an algebra satisfy the relations 
- n 

= 0, (C. I) 

then it is called a Grassmann algebra (Gn) with n generators. 

In particular (C.l) implies 

2 
X. = 0 • 

1 
= 1, .... , n (C.2) 

The dimension of the algebra is n while the linear space formed by then 
generators and linear combinations thereof (also denoted by Gn) is 2n 
dimensional, 

e.g. if n = 2 (G 2 ), then the algebra is formed by x1 , x2 and the 
linear space has the basis. 1, x1 , x2 , x1x2 
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In general a basis for the linear space Gn is given by the monomials 

(C.3} 

Every e 1 ement · f(x) of the a 1 gebra Gn can be written in genera 1 as a 
linear combination of monomials 

(C.4) 

This expansion is not unique. However, this can be brought about by 

choosing the coefficient functions fi(r 1 , ••• ,ri} (which are usually 
real or complex numbers} to satisfy the condition 

if r. > r. 
1 - J 

for at least one pair of indices i<j 

The resulting expression is unique, 

n 
f(x) = f 0 + ~ f 1 (r)xr + ~ 

r=l r 1<r 2 

The following remarks are in order. 

(C.S} 

(i) In general the expansion will always be finite because of the 
property (C.l). 

(ii) The simplest example of the expansion (C.S) is the one-dimensional 
algebra 

(C.6) 
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where, if f is a c-number, then f 0 is also one while f 1 must be a 
Grassmann variable- . 

(iii) Instead of having the coefficients f as ordinary c-numbers they 
can be chosen to be anti-symmetric functions of the indices r 1 , ••• ,rn, 
i.e. fi(r 1 , ••• ,rn) will change sign under the permutation of any pair 
of arguments. It can be shown [27] that this specific choice will 
ensure that the general expansion of (C.4) is unique. 

3. Derivatives of Grassmann Variables 

Because of the property (C.1) we need to define both a left and right 
a a derivative ( a x.f) and (fax.) of an element f(x) of the algebra 

1 1 

As both derivatives are linear operators in Gn they can be defined on 
the basis (C.3) of Gn. The derivatives are then given by 

a 
a X xr ... xr 

i 1 n 
= 

+ ... + 

61. r xr ... xr - 61. r - xr xr ... xr 
1 2 n 2 1 3 n 

+ ... + n-1 
(-1) xr ... xr 

1 n-1 

+ ... + n-1 a 
(- 1) xr ... xr (xr ax~ 

2 n 1 1 

+ ... + n-1 
(-1) 6.r xr ... xr 

1 1 2 n 

(C.7a) 

(C.7b) 
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To calculate the derivative of the product xr ... xr with respect to 
1 n 

xi' the element xp must be permutated [using {C.l)] to the first posi-
tion in the product for the left derivative to be calculated, while for 
the right derivative xp has to be permutated to the last position. 

The properties of the derivatives can be summed up by the relations 

(C.8) 

where we introduced the notation ~ x to denote the right derivative. 

As an example we calculate the derivatives of the two dimensional al­
gebra G2 with 

Now 

a a a x f(x) c + ex 2 a x f{x) = - ex 1 
1 2 

a a (C.9) f(x) a x = c - ex2 f(x) a x = -ex 2 
1 1 

For differentiation with respect to Grassmann variables the chain dif­
ferentiation rule also holds. This follows immediately from the 
definition of the derivatives in (C.7). 

For example, let xk = ~ ckrYr , and hence f(x) = f[x(y)]. 
r 

Then 
a . a a xk 
a Y f[x(y)] =a x f[x(y)] ---a 

r k Yr 

f(x(y)] ~ y = f(x(y)] aa X a Xk 
r k a Yr 

where for both cases summation over the index k is implied. 

(C. lOa) 

{C.lOb) 
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For the differentiation of a product of arbitrary elements f 1 and f 2 of 
the Grassmann algebra we have the result [27] 

(C.ll} 

Using the relation a a 
{a x. 'a x) = 0 · 

1 1 

(C.12} 

(which follows trivially from the definition of the derivatives}, we can 
write for the second derivatives 

a a a x <a x f) 
1 2 

a a 
= - a x <a x f) 

2 1 

a a 
(f a x > a x = 

1 2 

a a 
- (f a x > a x 

2 1 

a a <ax f) -a 
1 X2 

4. Integration 

Consider the one dimensional Grassmann algebra with 

f(x} = a + bx . 

2 

This means that £__2 f(x} = 0 . 
a x 

(C.13} 

(C.14} 

In the usual Riemann-Lebesgue formalism integration is usually defined 
as the inverse of differentiation. However, as the example above 
clearly shows, such an inverse for Grassmann variables is ill defined. 

In order to construct a suitable integral we therefore have to resort to 
a formal definition of the integration operation which preserves some 
of the general properties of integration over c-numbers. The requirement 
used is that the integral over the Grassmann variables should be in­
variant under a translation of the integration variable oy a constant 
factor, i.e. 
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J dx f(x) = J dx f(x+a). (C.16) 

This requires that 

J dx = 0 

J dx X= 1 , (C.18) 

which for the n-dimensional case would correspond to the following 
definition for the single integrals 

J dxi = 0 

J dx.x. = 6 .. 
1 J lJ 

Examples 

i,j 1, ... ,n 

{a) For f defined in (C.l4) we note that 

J dx f(x) = J dx (a+bx) =.b 

a = ax f(x). 

C.18) 

(C.19) 

For the one-dimensional case the definition of integration and (left) 
differentiation therefore lead to the same result. 

(b) let x and x be independent Grassmann variables such that 

J dx = J dx = o 

J dx x = J dx x = 1 . 

2 -2 
Then, because x = x = 0 we have that 

-
-XX 

1 
_ -e = XX , 

and hence 

J dxdx e-xx = J dxdx - J dxdx XX 
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= o + J dxdx xi 

= 1. (C.20) 

For the n-dimensional Grassmann algebra we define the set 

dx 1 , dx 2 , ••• , dxn satisfying the conditions 

(C.21) 

Using the above, multiple integrals can be constructed by iteration of 
the single integrals defined in (C.18). 

The integral defined by the formulas (C.18} and (C.21} is called the 
integral on the Grassmann algebra by the generators x1 , ••• ,xn ,and is 
given for any element f(x) of the algebra by [27] 

(C.21a} 

5. Properties of Grassmann Integrals 

5.1 Change of variables 

Consider a linear change of variables 

i,k = 1, ... ,n (C.22} 

E.g. for n = 2 we have 
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with c = (C.23) 

In genera 1, for i = n we have· 

· = (detC) y1 ••• Yn . (C.24) 

To ensure that the normalization conditions of (C.18) are still 
satisfied we must have that 

-1 dxn ... dx 1 = (detC) dyn ... dy 1 

hence 

(C.26) 

This result can be compared to the one obtained using the (usual) 
Riemann integration where the transformation determinant is given by 
detC (and not det- 1c). 

5.2 Calculation of Gaussian-type integrals with Grassmann variables 

Consider the integral 

I(A) = I dxn ... dx 1 exp[%(xTAx)] 

= I dxn 
1 n 

... dx 1 exp[2 2: x. (A) .kxk] . k 1 1 1 , 

(C.27) 

with A a real n x n anti-symmetric matrix. 

(a) For illustration we calculate the integral for n = 2. 

0 al2 
Then A = 0 -al2 

= I dx 2dx 1 
1 2 

and I(A) exp[ 2 2: x.(A).kxk] 
i,k=l 1 1 



= J dx 2dx 1 exp[ a12 x1x2 ] 

= J dx 2dx 1 [1 + a12 x1x2 ] 

.!, 
= det 2 A. 
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(C.28) 

(b) We now want to calculate the integral for the n-dimensional case 
(C.27) [28]. 
Noting that A is real and anti-symmetric, we consider the matrix 
iA = Ah (which is hermitian). Ah can now be diagonalized using a unitary 
transformation 

(C.29) 

where Ad is real and diagonal. 

The elements of Ad satisfy the eigenvalue equation 

detj Ah - Alj = 0. (C.30) 

Since AT= -A, 

Thus, if A is·a solution then so is -A, and Ad is of the form 

a 
-a 0 

b 
-b (C.31) 

0 

Using a proper orthogonal transformation the matrix Ad can be brought 
into the form As, where 
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0 

This can easily be verified using a 2 x 2 unitary matrix 

-k ( i 1 ) s = 2 2 1 i 

which has the property 

s(-i) ( ~ -~) sf = ( -~ ~) . 

Thus SV(A)Vfsf = UAUt 

- As 

s 
s 0 

s 
where (i) s = s 

0 

(ii) u = sv 

(iii) As is given by (C.32). 

Carrying out a linear substitution 

x. = 2: u.kyk, 
1 k 1 

(C.32) 

(C.32a) 

(C.32b) 

(C.33) 

(C.33a) 

(C.33b) 

and using (C.26), together with detU = det(SV) = (detS)(detV) = 1, give 

J 1 n 
In= dyn ... dy 1 exp[~ 2: y.(A ) .. y.]. 

i,j 1 s 1J J 

For n even this gives 

(C.34) 
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+ ... 

The only non-zero contribution to (C.35a) is -given by 

In= I dyn ... dyl (nJ2)![.Alyly2 

1 
= (n/2)! ~ ).1).2 ... .A~n 

.!.: = det 2 A 
n 

+ ... 

(C.35a) 

(C.35b) 

where the summation index P above imlplies that the sum over all pos­
sible combinations of {1; ... , ~n} must be taken. 

For n odd, In= 0 as the series expansion of the exponent will always 
result in one dxi having an integrand that is equal to one . 

Remarks 

The following results are a direct consequence of the above (n even): 

(ii) 

(ii-i) 

.!.: = detzA n 

In = I dyl ... 

.!.: = det 2A n 

In = I dxn ... 

= 2~n ).1).2 

.!.: = det 2 2A . 

[ = (C.35b)] (n even) 

dyn exp[- ~ yTAy ] 

dx 1 exp[xTAx] 

••• A1 n 
"2 

The following extensiori of the integrand is often encountered: 

(C.35c) 

(C.35d) 

(C.36) 
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In= I dxn ... dxl exp[- %xTAx + aTx] (C.37) 

where the a. are Grassmann variables satisfying the additional con-
1 

straints 

{a., a.)= 0 
1 J 

{a., x.) = 0 . (C.37a) 
1 J 

Completing, the square in the exponent and shifting the integration 
variable we have 

with y = x + A- 1a. Note that we made explicit use of the anti-symmetry 
of A, i.e. AT= -A. 

Hence 

In= J,dyn ... dy 1 exp[- %YTAy + %aTA-la] 

= det%An exp[%aTA- 1a] 

6. Extension of Grassmann Integration to Complex Matrices 

(C.37c) 

In order to extend Grassmann variables to represent complex fermion 
fields the concept of a Grassamnn algebra with -involution is introduced 
as follows [27]. 

Let G be a Grassmann algebra with inner product in which there is 
defined a one to one mapping of the any element onto itself, 

* f +-+ f 

such that the following conditions are satisfied: 
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* * {i) {f ) = f 

* * * (ii) (f1f2) = f2f1 

* =a f * (iii) {ct f) {ct complex) 

{iv) If the inner product is defined for f and g, then it is also 
* * * * defined for f and g and f .g = g.f 

1 
(v) Each of the topological subspaces E of the Grassmann algebra can 

be decomposed into the direct sum of subspaces 

1 * E = F + F 

1 F* (\ H1 1 F {\ H is orthogonal to where H is the appropriate 
Hilbert space [33]. 

The mapping satisfying these conditions is called an involution in G 
{i.e an invol~tion of the algebra on itself) . 

The elements of the Grassmann algebra with involution is g1Ven by 
f 1, ... , fn, f 1 , ••• , fn {and we introduced the notation f = f*). It 
follows from the definition that they obey the anti-commutation rela­
tions (C.l). 

If G is now an algebra with involution, we can define the integral 

I(f) =I (TI dx.dx) f(x,x) • 1 
1 

n 
where .n dxidx = dxndxn··· dx1dx 1 

1=1 

and f(x;*) is. usually of the form e± x M x 

Example 

I (f) =I 

=I 

- - X M X {TI dx.dx.) e 
• 1 1 
1 

(TI dx.dx.) exp[-2: x.(M) .. x.] 
• 1 1 • • 1 1J J 
1 1J 

(C.38) 

(C.38a) 
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n 

= I (IT dx
1
.dx.)[l - ~ x.(M) .. x. + 

i 1 j 1 1J J 
~ - n + 1 ( ~ x.(M) .. x.) + ... ] n. . . 1 1J J 

1J 

n 

=I 
- ~ -(IT dx .dx.) 1 ~ (x. (M). . X. )( 

i 1 1 n. P{ij) 11 11Jl Jl 

= ~ 
P(i,j) 

= det Mn , (C.39) 

where ~ denotes the sum over all possible permutations of i and j 
P(i,j) 

and the £ factors were introduced to ensure that the property (C.l) is 
satisfied. 

The following results are a direct consequence of the above: 

( i) I - -xMx I - - -xMx (IT dx.dx.) e . = dxndxn ... dx 1dx 1 e 
. 1 1 
1 

(C.40a) 

{ii) I ·x M X (IT dx.dx.) e = 
• 1 1 
1 

{C.40b) 

It is important to note that for the integrals above n may assume even 
or odd values as the combination will always result in an even number of 
Grassmann variables. 

7. Infinite Dimensional Grassmann Algebras 

The linear space E is called the direct sum of the spaces E. if it can 
1 

formally be written as 

f = f 0 + f 1 + ... + fi + ..• (C.4la) 

where f £ E . 
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An infinite dimensional Grassmann algebra is an alge~ra with an infinite 
number of generators, with the algebra constructed by the direct sum of 
topological linear spaces Ei. 

It· can be shown [27] that any arbirtary element f of the algebra G can 
uniquely be written in the form 

{C.42) 

where {i) ~{x 1 , ••• ,xn) is an anti-symmetric function of then variables 
{usually a generalized function) , 

{ii) a{xi) are the generators of the algebra G which for ar­
bitrary algebras play the same role as the generators for the finite 
dimensional algebras, 

~ 

a{x) = ~ bn{x)an{x), 
n=o 

{C.42a) 

with {bn} a suitable basis in the Hilbert space {i.e. {bn} forms an 
orthonormal complete basis [33]). 

let M be some set with measure dx and G be a Grasmann algebra with 
inner product and a set of generators a(x), x £ M . 

We can now define left and right derivatives . We first define the 
derivatives with respect to the basis elements a{x) of the algebra: 

left derivative 

n-1 + {-1) 6(x -xn)a{x 1 ) ••• a(xn_ 1 ) 

right derivative 6 [a(x 1 ) ••• a{xn) 6a(x)l = 6{x -xn)a{x 1 ) ••• a{xn_ 1) 



(C.43) 

where 6(x-x1) is the Dirac delta function defined on M 

J 6(x-y)f(y) dy ~ f(x). (C.44) 

The left and right derivatives of an element f(y) £ G, where 

(C .45) 

follows immediately [using (C.43)] ; 

(C.46) 

where the fact that ~(x 1 , ••• ,xn) was chosen to be anti-symmetric was 
also used . 

8. Integrals on an Infinite Dimensional Grassmann Algebra 
(Continual Integrals) 

Let G be a Grassmann algebra with involution and corresponding decom-
1 1 * position of the defining space E , E = F + F 

Consider the subalgebra GL of G which is generated by the subspace 
* n -

Ln : Fn + Fn , and let {ai} and {a1} be an orthonormal basis for Fn and 
Fn repectively . 

Consider the integral 

where fn(a,a) is the value of f on GL . 
n 

(C.47). 

It can be shown [27] that the integral in (C.47) is independent of the 
choice of the orthonormal basis in Fn. 
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Definition: If the limit I(f) = lim ln(fn) exists independent of a 
n-+co 

specific choice of the system of subspaces Fn (and the corresponding 
* adjoint spaces fn ), then this limit is called the continual .integral of 

the functional f on the algebra G 

l(f) = I [d~ da] f(~,a) (C.48) 

where [d~ da] = lim d~ndan 
n-+co 

(C.48a) 

and [da] - [da(x)]. (C.48b) 

Examples 

Consider the integral 

I(f) =I [daf exp[% I dxdy a(x) A(x,y)a(y)] (C.49) 

where [da] = [da(x)] = 1 im dan ... da 1 
n-+co 

(C.49a) 

and A(x,y) =- A(y,x). (C.49b) 

The matrix element Apq of the operator A in a suitable orthonormal basis 
can be written formally as 

(C.SO) 

where the symbols b.(x) , b.(y) satisfy the relations 
1 J 

(C.SOa) 

This ensures that 

(C.SOb) 

Hence 

(C.Sl) 
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Noting the correspondence with the result obtained in (C.35) we can 
immediately write 

I = lim [det An]%, 
n-+IX) 

(C.52) 

where An is again a real n x n anti-symmetric matrix. 

The final result is 

I = J [da] exp[% J dxdy a(x) A(x,y)a(y)] 

I 

= det;z A (C.53) 

with A(x,y) = - A(y,x}. 

We note that this result is independent of the basis {b1(x}} (due to the 
linear substitution that was carried out in the evaluation }. 

Also, 

J [da] exp[ J dxdy a(x) A(x,y}a(y}] 

(C.54} 

For an algebra with involution, and measure as defined in (C.48a), we 
can repeat the analysis above by noting that the generalization of 
(C.38} gives 

J [dada] exp[ -J dxdy a(x} M(x,y}a(y}] 

= det M 

= exp[tr ln M], (C.55} 

where M(x,y} is arbitrary. 
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APPENDIX D: MODIFIED BESSEL FUNCTIONS 

The modified Bessel function In(z) is defined as 

2n 
I {z) _= !_I d~ cos(n~) ez cos~ n 2n 

0 

n 

= ~I d~ cos(n~) ez cos~ . 
0 

Using symmetry arguments we can also write the above in the form 

2n 
ln(z) = ~n I d~ ez cos~ ± in~ 

0 

The modified Bessel functions satisfy the following equality 

Proof: Using the notation of {0.3) we can write the LHS as 

2n 
I { ) I ( ) = 

2
1« I d~ ez cos~ [ei(2j~) _ ei(2j+2)~] 

2j z - 2j+2 z " ~ 
0 

2n 
= - ~I d~ e zcos~ ei(2j+l)~ sin~ 

0 

2n 

(0.1) 

(0.2) 

(0.3) 

(0.4) 

= i I d(cos~) 1 ( d . ez cos~)ei(2j+l)~ 
n z d(cos~) 

0 

2n 
= 2(2j+l) I d~ z cos~ ei(2j+l)~ 

2nz ~ e . 
0 
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Also 

which follows from 

21r 

~z In(z) = ~1£ ~z (J d~ cos(n~) ez cos~) 
0 

21r 21r . 

= l1r (J d~ cos(n+l)~ ez cos~ + J d~ cos(n+l)~ ez cos~) 
0 0 

Note that 

(0.5) 

(0.6) 

If the argument is small we have the following power-series expansion 

co 2 k 
In(z) = (%z)n I (%z ) /[k!J(n+k+l)] 

k=o 
(D. 7) 
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