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Abstract

Spreads between swap legs referencing floating cashflows of different tenors have
widened significantly since the global financial crisis of 2008. This frequency ba-
sis can be explained by the presence of “roll-over risk”. Defining the roll-over risk
state variables in an affine form, this dissertation prices a credit default swap using
an “affine transform” methodology. This price is then compared to that obtained
from a traditional Monte Carlo simulation approach. The former is shown to pro-
duce accurate results with greater computational efficiency, providing a useful way
to price complex financial instruments when the state variables are defined in an
appropriate form.
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Chapter 1

Introduction

Appropriate modelling of the term structure of interest rates is fundamentally im-
portant in quantitative finance. It is essential for the pricing and hedging of assets
and options, particularly interest rate derivatives. In particular, one can model the
dynamics of the short rate. Specifying these dynamics allows one to derive bond
prices, and subsequently infer an arbitrage-free yield curve.

Spot-forward parity, a fundamental no-arbitrage condition linking spot and for-
ward interest rates, has been shown not to hold in markets post the global financial
crisis (GFC) of 2008. A related phenomenon also ruled out by the fundamental the-
ory is the emergence of spreads between swap legs referencing floating cashflows
of different tenors (otherwise known as the frequency basis). These have widened
significantly, eclipsing transaction costs in most cases. According to conventional
theory on interest rates (as shown for instance in Brigo and Mercurio (2007)), the
presence of such a spread would point to the existence of an arbitrage opportunity
using a simple borrowing and loan strategy. However, potential arbitrageurs are
unable to take advantage of this opportunity due to the inability to roll-over the
borrowing at market rates in the strategy. Alfeus et al. (2020) attribute this phe-
nomenon to the presence of “roll-over risk”, and seek to endogenously model this
risk in a consistent way. Their paper develops a basic model framework and cal-
ibrates the model using empirical interest rates based on different interest rate in-
struments.

This dissertation aims to price a credit default swap under a roll-over risk frame-
work. The underlying stochastic state variables are intentionally defined as affine
processes, allowing us to use key results from Duffie et al. (2000) in the pricing exer-
cise. We then compare the results to a traditional Monte Carlo simulation, showing
that the Duffie et al. (2000) approach provides a more efficient way to price complex
financial products when the underlying processes are specified appropriately.

Chapter 2 introduces the necessary theory of the term structure of interest rates
– the short rate in particular. The concept of roll-over risk is then introduced and
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a framework to accomodate this risk is constructed. In Chapter 3, credit default
swaps are introduced and pricing formulae under a roll-over risk framework are
derived. Prices are then computed using both the Duffie et al. (2000) methodology
and Monte Carlo simulations. Conclusions are then presented in Chapter 4.



Chapter 2

The Term Structure of Interest
Rates

2.1 Term structure

The term structure of interest rates is defined by Filipović (2009) as a function that
relates an interest rate to its maturity. This structure can be represented in prac-
tice as a yield curve. The accurate modelling of interest rates is essential in asset
and derivative pricing, particularly interest rate derivatives like caps, floors and
swaptions. Of particular interest in this dissertation is the concept of a short rate.

2.1.1 The short rate

The short rate, denoted r(t), is an interest rate that applies over the next short pe-
riod of time. A mathematical abstraction of this rate is one that applies over the
next instant, i.e., as the limit of time tends to zero. The short rate is extremely im-
portant in a modelling context because many important quantities can be derived
therefrom.

Many stochastic models have been posited for the dynamics of the short rate,
starting with Vasicek (1977). This process is characterised by a mean reverting drift
towards µ at a rate κ, and is given by

dr(t) = κ(µ− r(t))dt+ σdW (t),

where W (t) is a Brownian motion.
Over time, more short rate models were developed to take into account certain

features observed in empirical interest rates. In particular, the Cox et al. (1985)
model extended the Vasicek (1977) model to include a square root factor in the
diffusion term. These dynamics are given by

dr(t) = κ(µ− r(t))dt+ σ
√
r(t)dW (t).
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The square root factor ensures that r(t) is positive, an assumption that has become
less relevant in recent years.

Brigo and Mercurio (2007) show that we can construct the notion of the bank ac-
count B(t), a locally riskless investment that compounds continuously at the short
rate r(t). The value of one unit invested into the bank account at time 0 grows to

B(t) = e
∫ t
0 r(s)ds

at time t.
The stochastic discount factor D(t, T ) is simply the ratio of the bank accounts

applying over different time periods and has the function of discounting one unit
of currency from time T to time t, i.e.,

D(t, T ) =
B(t)

B(T )
= e−

∫ T
t r(s)ds.

As stated by Filipović (2009), the absence of arbitrage in the market implies the
existence of a risk-neutral measure. Suppose we denote this as Q – the measure un-
der which discounted bond prices are martingales. The existence of these stochastic
discount factors and the risk-neutral measure allows one to specify the zero-coupon
bond (ZCB) price P (t, T ). This is the price at time t of a contract paying one unit
at time T , with no intermediate payments. Given the information known at time
t, the bond price can therefore be specified as a conditional expectation under Q of
the stochastic discount factor. Hence, we define

P (t, T ) = EQ[e−
∫ T
t r(s)ds|Ft].

By definition, the terminal value of the bond is P (T, T ) = 1. The continuously
compounded yield y(t, T ) can then be derived directly from the bond price as

y(t, T ) = − 1

T − t
log(P (t, T )).

Thus, one way to model a term structure without arbitrage is to specify the short
rate process under the risk-neutral measure and then to derive the associated bond
prices. The yields can then be implied directly from the ZCB prices and represented
as a yield curve.

2.1.2 Spot-forward parity

Spot-forward parity is the assumption upon which much of traditional yield curve
bootstrapping is based. It can be illustrated by comparing the following example
scenarios:
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1. Borrowing in a single step at a spot rate applying from time 0 to time T ,
denoted L0T . The obligation is then to repay 1 + L0TT at maturity.

2. Borrowing at the spot rate over two steps. Suppose δ = T
2 . This would entail

borrowing at spot L0δ until time δ, and then rolling the borrowing over at the
new spot rate LδT . It is also possible to enter into a forward rate agreement
(FRA) at time 0 to pay a fixed forward rate F0δT instead of the spot rate LδT at
time δ. Hence, the amount owed at maturity would be (1 + L0δδ)(1 + F0δT δ).

Under the assumption of no arbitrage, the value of both borrowings should be
equal, i.e.,

1 + L0TT = (1 + L0δδ)(1 + F0δT δ).

However, empirical evidence shows that markets do not conform to this parity after
the GFC of 2008. In particular, it has been shown that

1 + L0TT > (1 + L0δδ)(1 + F0δT δ).

The violation of spot-forward parity shows how longer borrowing is in fact
more expensive. In other words, one has to pay a premium to avoid rolling over a
shorter borrowing. When it comes to a floating-for-floating tenor swap, it therefore
becomes better to receive the larger, longer interest rate. This is evidenced by a
consistent frequency basis in the post-GFC interest rate market. A frequency basis
refers to the spread applied to one leg of a interest rate swap to exchange some
floating interest rate for another, where the rates are applied over different tenors.
The basis is therefore paid by the party receiving the longer payment leg.

In classical interest rate theory posited by Brigo and Mercurio (2007), the pres-
ence of a frequency basis larger than transaction costs would imply the existence of
an arbitrage opportunity. A textbook strategy to take advantage of this opportunity
would be to lend at the longer tenor and borrow at the shorter tenor, where the spot
rate can be exchanged for a fixed forward rate (as shown previously). In theory, this
would generate a certain profit. However, it seems extremely unlikely that straight-
forward arbitrage opportunities are consistently present in modern markets.

2.1.3 Roll-over risk

The key limitation to the textbook strategy to take advantage of the apparent arbi-
trage is roll-over risk. This simply describes the risk that when attempting to roll
the borrowing over (on the shorter tenor end of the strategy), the borrower is un-
able to access the prevailing market rates. Alfeus et al. (2020) state that roll-over
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risk can be broadly broken down into two sources: downgrade risk and funding
liquidity risk.

Downgrade risk is the risk that creditors demand a greater credit spread than
the prevailing market average. For instance, if a prime bank drops out of its partic-
ular interbank panel, it may no longer be able to access the prime interbank rates.
Funding liquidity risk refers to the risk that market funding can only be obtained
at an additional premium due to liquidity constraints (for instance, during market
conditions seen in the GFC). This occurs even though the entity’s credit quality has
remained the same relative to the market average.

It is important to note that roll-over risk is distinct from conventional interest
rate risk. The latter is simply the risk that the market rate changes stochastically.
This risk can be hedged by taking out positions in certain derivative contracts, such
as FRAs or swaps. On the other hand, roll-over risk cannot be hedged away with
instruments like FRAs because they do not lock in future borrowing. Rather, these
instruments represent a cash–settled “swaplet” paying the difference between a
market interest rate and a fixed rate agreed when the FRA is put in place.

Much of the literature on this topic has been focused on trying to exogenously
model the multiple term structures that result from the bootstrapping of forward
rates that violate spot-forward parity. According to Alfeus et al. (2020), the limita-
tion of this approach is that it does not link the term structure of interest rates of
different tenors in any meaningful way. Backwell et al. (2020) also point out that rel-
atively little attention is paid to the financial economic interpretaion of why these
spreads arise in the first place.

Filipović and Trolle (2013) made a key contribution in trying to break down and
identify the drivers of the basis spread seen in interest rate markets. They utilise
time series data to define “interbank risk”, and divide this risk into default and
non-default components. Alfeus et al. (2020) extend the framework of Filipović
and Trolle (2013), to accomodate a more explicit analysis of roll-over risk. Their
model endogenously leads to basis spreads, producing multiple term structures by
design. The structural links between the yield curves are also built into the model.
The model dynamics are then calibrated according to Cox et al. (1985) processes.

2.2 Roll-over risk framework

The approach to accounting for roll-over risk in Alfeus et al. (2020) will form the
basis of the pricing exercise in this dissertation.
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2.2.1 Model variables

A number of model variables are defined in the framework.
The continuously compounded short rate, rc(t), resembles the relevant overnight

rate in the market (for example, the European Overnight Index Average rate, EO-
NIA). This is an unsecured rate subject to credit risk. It is defined as

rc(t) = r(t) + Λ(t)q

for t ∈ [0, T ], where r(t) denotes the risk-free (secured) continuously compounded
short rate, and Λ(t) denotes the default intensity of the market on average. The
loss fraction assuming default is denoted q, so Λ(t)q then defines the average credit
spread across the panel under consideration. This is the ”fractional recovery of
market value at default” approach proposed by Duffie and Singleton (1999).

Roll-over risk is introduced into the model via π(t), the total spread over rc(t)
that must be paid by an arbitrary entity when borrowing overnight. This is defined
as

π(t) = φ(t) + λ(t)q

for t ∈ [0, T ], where φ(t) denotes the idiosyncratic liquidity spread of the borrower
and λ(t)q denotes the idiosyncratic credit spread of the borrower (i.e., over and
above the market average Λ(t)q). Note that this roll-over risk is applied symmet-
rically to borrowing and lending. It follows therefore that the credit spread of an
arbitrary entity in the market is Λ(t)q + λ(t)q, with the default intensity given by
Λ(t) + λ(t).

Two key points follow from this model specification. Firstly, the rate that an
arbitrary entity will roll borrowing over is

rc(t) + π(t),

namely the unsecured overnight market rate plus the additional roll-over risk faced
by the entity. Secondly, because the credit risk of an arbitrary entity is Λ(t)q+λ(t)q,
unsecured lending can be discounted at the default-free rate plus the credit risk,
i.e.,

r(t) + Λ(t)q + λ(t)q = rc(t) + λ(t)q.

As for collateralised contracts, Filipović and Trolle (2013) show that these should
be discounted at the collateral rate, defined as rc(t) in this framework. Note that
this is a fairly standard term in an ISDA Credit Support Annex (the document that
stipulates the conditions for collateralised derivative transactions).
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2.2.2 Model framework

The general model framework in Alfeus et al. (2020) can be illustrated by consid-
ering the LIBOR/OIS spread. The London Interbank Offered Rate (LIBOR) is a
global benchmark interbank interest rate in multiple currencies. An Overnight In-
dexed Swap (OIS) is a swap where a fixed payment is exchanged for a floating
overnight interest rate compounded over the required tenor. The fixed leg of the
swap is based on the so-called OIS rate. Although they are quoted distinctly in the
market, the LIBOR/OIS spread can be viewed as an extreme case of the frequency
basis.

Suppose the period of borrowing is τ = T − t. Then a possible strategy to take
advantage of this spread in a textbook market is shown in table 2.1. Note that since
the OIS contract is free to enter for either party, it has zero value at inception. The
strategy yields a profit of the LIBOR/OIS spread so there appears to be a clear and
simple arbitrage opportunity here.

At time t
1. Borrow 1 unit at overnight rate and roll
borrowing over continuously

1

2. Enter long OIS 0

3. Lend 1 unit at LIBOR spot L(t, T ) −1

0

At time T

1. Repay rolled-over borrowing −e
∫ T
t rc(s)ds

2. Long OIS payoff - receiving floating
and paying fixed OIS(t, T )

e
∫ T
t rc(s)ds − (1 + OIS(t, T )τ)

3. Receive LIBOR loan repayment 1 + L(t, T )τ

(L(t, T )−OIS(t, T ))τ = LIBOR/OIS spread

Tab. 2.1: Naive “arbitrage” strategy to take advantage of the LIBOR/OIS spread.

However, this strategy does not consider the idea of roll-over risk. In the Alfeus
et al. (2020) framework, this LIBOR/OIS spread is attributed to compensation for
roll-over risk when borrowing at the shorter tenor in the strategy (the overnight
loan in table 2.1).

We now look to define roll-over risk explicitly in the strategy. For ease of no-
tation, let Et[·] denote the conditional expectation under the risk-neutral measure
Q given the filtration at time t. With the inclusion of roll-over risk, an arbitrary
entity will roll borrowing over at rc(t) + π(t). Thus, the amount due at time T after
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borrowing 1 unit at t is
e
∫ T
t (rc(s)+π(s))ds.

Since the borrowing is unsecured, it can be discounted at rc(t) + λ(t)q. Hence, its
expected present value is

− Et
[
e−

∫ T
t (rc(s)+λ(s)q)dse

∫ T
t (rc(s)+π(s))ds

]
= −Et

[
e
∫ T
t φ(s)ds

]
, (2.1)

where the value of the expectation is negative because we are repaying the loan at
T .

Now we note that an OIS is a collateralised contract, so we discount at the col-
lateral rate rc(t). Thus, taking the expectation of the discounted payoff of a long
position in the OIS yields

Et
[
e−

∫ T
t rc(s)ds

(
e
∫ T
t rc(s)ds − (1 + OIS(t, T )τ)

)]
= Et

[
1− e−

∫ T
t rc(s)ds(1 + OIS(t, T )τ)

]
.

(2.2)
Lastly, since the LIBOR loan is defaultable, we again discount at rc(t) + λ(t)q.

The expected present value is

Et
[
e−

∫ T
t (rc(s)+λ(s)q)ds(1 + L(t, T )τ)

]
. (2.3)

As shown in table 2.1, the strategy has zero value at time t. Hence, letting
equations 2.1, 2.2 and 2.3 sum to zero gives

0 = −Et
[
e
∫ T
t φ(s)ds

]
+Et

[
1− e−

∫ T
t rc(s)ds(1 + OIS(t, T )τ)

]
+Et

[
e−

∫ T
t (rc(s)+λ(s)q)ds(1 + L(t, T )τ)

]
.

⇒ Et
[
e
∫ T
t φ(s)ds

]
= Et

[
1− e−

∫ T
t rc(s)ds(1 + OIS(t, T )τ) + e−

∫ T
t (rc(s)+λ(s)q)ds(1 + L(t, T )τ)

]
.

(2.4)
In the case where the downgrade risk λ(t) is zero, we have an explicit depen-

dence of the LIBOR/OIS spread on funding liquidity risk, i.e.,

Et
[
e
∫ T
t φ(s)ds

]
= Et

[
1 + e−

∫ T
t rc(s)ds(L(t, T )−OIS(t, T ))τ

]
.

In addition, observing that an OIS contract has zero value at inception, setting
equation 2.2 to zero gives

0 = 1− Et
[
e−

∫ T
t rc(s)ds

]
− Et

[
e−

∫ T
t rc(s)ds

]
OIS(t, T )τ.

⇒ Et
[
e−

∫ T
t rc(s)ds

]
=

1

1 + OIS(t, T )τ
(2.5)

The dynamics of rc(t) should therefore be consistent with equation 2.5, while
φ(t) and λ(t) should be consistent with equation 2.4.
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This example illustrates why there is actually no arbitrage opportunity present
in this market, and the spread can in fact be seen as compensation for taking on roll-
over risk. Alfeus et al. (2020) extend this basic case to consider the OIS with multiple
payments, rather than the single exchange of fixed and floating payments in table
2.1. They also introduce contracts with longer maturities and floating-for-fixed in-
terest rate swaps. However, this simple case illustrates the framework sufficiently.

2.2.3 Stochastic modelling under the framework

Suppose the model is driven by affine stochastic processes Xi(t) with Cox et al.
(1985) dynamics. We have that for i = 1, ..., d,

dXi(t) = κi(θi −Xi(t))dt+ σi
√
Xi(t)dWi(t).

where each Wi(t) is a standard Brownian motion. Note that the Wi(t) are uncorre-
lated in this case, and the Xi(t) are therefore independent.

The key model variables are then defined as

rc(t) = a0 +

d∑
i=1

aiXi(t), (2.6)

λ(t) = b0 +
d∑
i=1

biXi(t), (2.7)

φ(t) = c0 +
d∑
i=1

ciXi(t), (2.8)

where ai, bi and ci are constants. In general, a0, b0 and c0 can be set to be time
dependent but we do not consider this formulation. For the purpose of the pricing
exercise in Chapter 3, we will set d = 3 (as is also the case in Alfeus et al. (2020)). In
other words, each model variable will be defined as a linear combination of three
independent Cox et al. (1985) processes.

Alfeus et al. (2020) then calibrate the parameters of Xi(t) to market data of vari-
ous instruments; the results of which will be utilised for the pricing exercise.



Chapter 3

Credit Default Swaps

A credit default swap (CDS) is defined by Hull (2012) as a credit derivative between
two parties that effectively acts as an insurance contract on a company’s bond. If
a credit event (i.e. a default on the bond) takes place, the seller makes a protection
payment to compensate for the losses experienced by the buyer. This is known
as the protection leg. In return, the buyer makes periodic spread payments to the
seller until the CDS terminal time or the default time, whichever is earlier. This is
known as the payment leg. CDSs are typically quoted on their spread, which can
be calculated as the value (as a percentage of the notional principal amount) of the
periodic spread payment such that the payment leg is equal to the protection leg.

Having defined the roll-over risk framework, we now seek to price a one-year
credit default swap.

3.1 Derivation of CDS pricing formulae

The protection leg of the CDS pays out the protection in the event of a default oc-
curring before the terminal time of the contract. Suppose that τ now denotes this
random default time. Recall that the default intensity in the roll-over risk frame-
work was given earlier by Λ(t) + λ(t). A well-known result, extremely useful for
evaluating defaultable payments, is the following:

Et[X1{τ>T}] = Et[Xe−
∫ T
t (Λ(u)+λ(u))du], (3.1)

where X is an integrable random variable. Note, to be fully rigorous, a minor
adjustment in the filtrations is needed when applying equation 3.1. See Backwell
et al. (2020) for more detail.

This result is key in the construction of the pricing formulae for the CDS. Sup-
pose the CDS contract has N spread payments, with inception time t and maturity
time TN = T (since the final spread payment corresponds to the maturity date).
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Since q denotes the constant loss fraction given default, it is only this fraction
of the market value of the underlying that is insured as part of the protection leg
of the CDS. Recall that collateralised payments can be discounted at rc(t). Hence,
assuming a unit notional, the present value of the protection leg is

qEt[e−
∫ τ
t rc(s)ds1{τ≤T}].

The indicator reflects the fact that protection payment is only made if default occurs
during the life of the contract. The stochastic discount factor accounts for the fact
that the CDS is a collateralised derivative.

To derive the pricing formula for the protection leg, we utilise a disintegration
technique, subdividing the indicator function into discrete time steps. Suppose the
tenor of the swap is divided into an even mesh of m points, i.e., ti = t+ i(T−tm ) for
i = 0, 1, ...,m. Applying the mesh and equation 3.1, we have

qEt
[
e−

∫ τ
t rc(s)ds1{τ≤T}

]
= q lim

m→∞

m∑
i=1

Et
[
e−

∫ τ
t rc(s)ds1{ti−1<τ≤ti}

]
= q lim

m→∞

m∑
i=1

Et
[
e−

∫ ti−1
t rc(s)ds1{ti−1<τ≤ti}

]

= q lim
m→∞

m∑
i=1

Et
[
e−

∫ ti−1
t rc(s)ds(1{ti−1<τ} − 1{τ≤ti})

]

= q lim
m→∞

m∑
i=1

Et
[
e−

∫ ti−1
t rc(s)ds(e−

∫ ti−1
t (Λ(s)+λ(s))ds − e−

∫ ti
t (Λ(s)+λ(s))ds)

]
.

(3.2)

Now note that if we define

f(u) = e−
∫ u
t (Λ(s)+λ(s))ds,

then by applying the Mean Value Theorem, we get

f(ti−1)−f(ti) = −f ′(ti−1)(ti−ti−1) = [Λ(ti−1)+λ(ti−1)]e−
∫ ti−1
t (Λ(s)+λ(s))ds(ti−ti−1).

(3.3)
Thus, equation 3.2 can be simplified to

q lim
m→∞

m∑
i=1

Et
[
e−

∫ ti−1
t rc(s)ds(Λ(ti−1) + λ(ti−1))e−

∫ ti−1
t (Λ(s)+λ(s))ds

(
T − t
m

)]
= q

∫ T

t
Et
[
e−

∫ u
t rc(s)ds(Λ(u) + λ(u))e−

∫ u
t (Λ(s)+λ(s))ds

]
du

= q

∫ T

t
Et
[
(Λ(u) + λ(u))e−

∫ u
t (rc(s)+Λ(s)+λ(s))ds

]
du.

(3.4)
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Next, we look to derive an expression for the payment leg. We can divide this
leg of the swap into two parts.

The first part accounts for the full spread payments assuming no default occurs.
Hence, we consider the sum over over all spread payment dates of the expectation
of an indicator function where the default time is greater than that particular spread
payment date. Being collateralised, we again discount these cashflows at the rate
rc(t). Suppose the spread is denoted C. Then the first payment leg is easily calcu-
lated as

C
N∑
i=1

Et
[
e−

∫ Ti
t rc(s)ds(Ti − Ti−1)1{τ>Ti}

]
= C

N∑
i=1

Et
[
e−

∫ Ti
t rc(s)ds(Ti − Ti−1)e−

∫ Ti
t (Λ(s)+λ(s))ds

]
= C

N∑
i=1

(Ti − Ti−1)Et
[
e−

∫ Ti
t (rc(s)+Λ(s)+λ(s))ds

]
,

(3.5)

which follows again by application of equation 3.1.
The second payment leg accounts for all the partial spread payments that have

been accrued in the event of default. Because spread payments are usually made
in arrears, the proportion of protection that has been accrued when default occurs
in that particular period must be valued. Thus the proportion of the spread from
the previous spread payment date until the default date should be considered. We
therefore sum over all spread payment dates, taking the expectation of an indicator
function where the default occurs in between these dates. As before, we utilise
a disintegration technique and the result from equations 3.1 and 3.3 to derive the
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expectation. We have

C
N∑
i=1

Et
[
e−

∫ τ
t rc(s)ds(τ − Ti−1)1{Ti−1<τ≤Ti}

]
= C

N∑
i=1

Et

[
e−

∫ τ
t rc(s)ds(τ − Ti−1)1{Ti−1<τ≤Ti} lim

m→∞

m∑
k=1

1{tk−1<τ≤tk}

]

= C
N∑
i=1

lim
m→∞

m∑
k=1

Et
[
e−

∫ tk−1
t rc(s)ds(tk−1 − Ti−1)1{tk−1<τ≤tk}

]

= C

N∑
i=1

lim
m→∞

m∑
k=1

Et
[
e−

∫ tk−1
t rc(s)ds(tk−1 − Ti−1)

(
1{τ>tk−1} − 1{τ>tk}

)]

= C
N∑
i=1

lim
m→∞

m∑
k=1

Et
[
e−

∫ tk−1
t rc(s)ds(tk−1 − Ti−1)

(
e−

∫ tk−1
t (Λ(s)+λ(s))ds − e−

∫ tk
t (Λ(s)+λ(s))ds

)]

= C

N∑
i=1

lim
m→∞

m∑
k=1

Et
[
e−

∫ tk−1
t rc(s)ds(tk−1 − Ti−1)(Λ(tk−1) + λ(tk−1))e−

∫ tk−1
t (Λ(s)+λ(s))ds

(
T − t
m

)]

= C

N∑
i=1

∫ Ti

Ti−1

(u− Ti−1)Et
[
(Λ(u) + λ(u))e−

∫ u
t (rc(s)+Λ(s)+λ(s))ds

]
du.

(3.6)

Note in this equation that the sum over k discretises the interval [Ti−1, Ti].
To solve for the fair spread payment C, we simply find the payment that sets

the value of the protection leg equal to the value of the payment leg, i.e.,

Protection leg = C ∗ (Payment leg 1) + C ∗ (Payment leg 2)

⇒ C =
Protection leg

(Payment leg 1 + Payment leg 2)
. (3.7)

3.2 Parameters

A feature of standard CDS contracts is that they have fixed roll dates, which decide
the dates of the spread payments and therefore the maturity of the contract. The
normal roll dates are 20 December, 20 March, 20 June and 20 September. Hence, the
actual term of the CDS is almost always less than what is quoted.

In this example, we price a one-year CDS on the 31st of October 2017, since it al-
lows us to use the model parameter values that have been calibrated to market data
in Alfeus et al. (2020). This means the maturity date of the contract is 20 September
2018, with spread payments made on 20 December 2017, 20 March 2018, 20 June
2018 and 20 September 2018.
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The time between the valuation date and the first spread payment date is T1−t
365 =

0.137 ≈ 0.14. The approximation is necessary because a discretisation interval of
dt = 0.01 is used during the numerical integration process. The next three spread
payments are assumed to be full quarters apart, i.e., T2 = 0.39, T3 = 0.64 and
T3 = 0.89.

A “time-homogenous” version of the Alfeus et al. (2020) model is used, where
the potentially time dependent functions a0 and b0 (from equations 2.6 and 2.7)
are set to zero. These parameters can be allowed to be time dependent (which is
especially useful in a calibration exercise), but is not necessary for the purpose of
pricing the product. Note also that φ(t) (equation 2.8), the idiosyncratic liquidity
spread process, does not appear in any of the expectations to price the CDS.

Filipović and Trolle (2013) note that it is not possible to reliably determine the
value of Λ(t), the systemic default intensity, from market data. However, they note
that any “reasonable variation” in the process value does not materially affect re-
sults in the pricing exercise, so it is safe to fix the value at five basis points.

Table 3.1 shows the parameters calibrated to market data in Alfeus et al. (2020)
on the valuation date.

i 1 2 3
Xi(0) 0.773084 0.013896 0.065454

ai 0.00334 0.00000 0.00000

bi 0.0000539 0.113603 0.0000794

κi 0.260876 0.397512 0.903787

θi 0.798057 0.0002119 0.805810

σi 0.264573 0.004227 0.403512

Tab. 3.1: Calibrated model parameters from Alfeus et al. (2020) on 31 October 2017.

3.3 Calculation of the expectations

Using these parameters and the derived pricing formulae, we now seek to calculate
the value of the CDS spread with the explicit inclusion of roll-over risk.

Our specification of the state variables in an affine form in section 2.2.3 is in-
tentional and important. It allows us to utilise the closed form solutions to certain
expectations of these state variables, detailed in Duffie et al. (2000). The paper pro-
vides solutions in the form of Riccati ODEs. In fact, much of the challenge in pricing
this instrument lies in trying to define the form of the expectations appropriately to
match the formulation in Duffie et al. (2000) exactly.
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The simplest expectation we need to solve in the CDS pricing formulae is

Et
[
e−

∫ Ti
t (rc(s)+Λ(s)+λ(s))ds

]
,

found in equation 3.5, the first payment leg.
The “affine transform” in Duffie et al. (2000) solves an expectation of the form

ψ(u,Xt, t, T ) = Et
[
e−

∫ T
t R(Xs)dseu·XT

]
, (3.8)

where
dXt = µ(Xt)dt+ σ(Xt)dWt + dZt,

and R, u, µ and σ are specified appropriately. Note that in our calculations, we are
actually using a special case of Duffie et al. (2000) since the jump term dZt is set to
zero.

We then have that the solution to the expectation in equation 3.8 is

ψ(u,Xt, t, T ) = eα(t)+β(t)·Xt ,

where α(t) and β(t) satisfy certain ODEs.
For our particular case, we are required to solve the following Riccati ODEs:

∂α

∂t
= (a0 + b0 + Λ(t))− κ1θ1β1(t) + κ2θ2β2(t) + κ3θ3β3(t)

∂β1

∂t
= (a1 + b1) + κ1β1(t)− 1

2
σ2

1β1(t)2

∂β2

∂t
= (a2 + b2) + κ2β2(t)− 1

2
σ2

2β2(t)2

∂β3

∂t
= (a3 + b3) + κ3β3(t)− 1

2
σ2

3β3(t)2

with terminal conditions α(Ti) = 0 and β(Ti) = u = [0, 0, 0].
The integral of the expectation is then approximated using a simple quadrature

technique, where the ODEs are calculated at discrete time points and then multi-
plied by an interval term dt = 0.01.

In both equation 3.4 (the protection leg) and equation 3.6 (the second payment
leg) we can split the integral into two parts since Λ(t) = Λ is defined as a constant.
These components with the constant coefficient Λ can be solved with the standard
transform as above. We are then only left with the expectation

Et
[
λ(u)e−

∫ u
t (rc(s)+Λ(s)+λ(s))ds

]
to solve. This requires the use of the so-called “extended transform” in Duffie et al.
(2000), where the solution to an expectation of the form

φ(υ, u,Xt, t, T ) = Et
[
e−

∫ T
t R(Xs)ds(υ ·XT )eu·XT

]
,
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is given by
φ(υ, u,Xt, t, T ) = eα(t)+β(t)·Xt(A(t) +B(t) ·Xt).

Here, α(t) and β(t) are defined as before and A(t) and B(t) satisfy a new set of
ODEs.

In our particular case, the new Riccati ODEs that need to be solved are

∂A

∂t
= −κ1θ1B1(t)− κ2θ2B2(t)− κ3θ3B3(t)

∂B1

∂t
= κ1B1(t)− β1(t)σ2

1B1(t)

∂B2

∂t
= κ2B2(t)− β2(t)σ2

2B2(t)

∂B3

∂t
= κ3B3(t)− β3(t)σ2

3B3(t)

with terminal conditions A(u) = 0 and B(u) = υ = [b1, b2, b3]. Again, simple
quadrature techniques are employed to calculate the required integrals.

We now seek to compute the same expectations using a Monte Carlo simulation.
Unfortunately, there is no explicit solution to a Cox et al. (1985) stochastic differen-
tial equation, unlike under Vasicek (1977) dynamics for instance. However, we can
utilise a “transition density approach” outlined by Cox et al. (1985) which produces
exact simulations. This approach uses the fact that the conditional distribution of
the Cox et al. (1985) process Xi+1 given its value at the previous time point Xi, has
a non-central chi-square distribution. We simulated n = 10000 paths for the three
state processes, again with time steps of dt = 0.01.

Table 3.2 shows the values of each swap leg under the Duffie et al. (2000) method-
ology compared to the Monte Carlo simulation, along with the standard errors for
the Monte Carlo estimates. CDS spreads were then calculated using equation 3.7.

Duffie et al. Monte Carlo Standard error
Payment leg 1 0.888664354 0.887739338 1.68255e− 06

Payment leg 2 2.083663e− 04 2.009702e− 04 3.25512e− 08

Protection leg 0.001013292 0.001010743 1.45942e− 07

CDS Spread 0.001139974 0.001138301

Tab. 3.2: Comparison of results of Monte Carlo and Duffie et al. pricing methods.

Table 3.2 shows that the Duffie et al. (2000) method produces accurate prices.
This method also takes a fraction of the time that it takes to produce the same prices
using Monte Carlo simulations. Of course, as the sample size of the Monte Carlo
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simulation is increased, this disparity in efficiency will only be exacerbated. Note
that the Monte Carlo standard errors are very small (several orders of magnitude
smaller than the estimates themselves), so simulating 10000 paths is sufficient. The
errors are small in part because we aren’t actually simulating the default indicators
directly. Rather, we simulate based on the result in equation 3.1 which stabilises
the Monte Carlo estimates. Price differences between methodologies can also be
reduced by shortening the discretisation interval.

The result of this pricing exercise has implications for the pricing of other in-
struments under roll-over risk, such as interest rate swaps. It shows that if the
underlying state variables are defined appropriately, one can utilise the Duffie et al.
(2000) methodology to price the product accurately and efficiently.



Chapter 4

Conclusion

Starting with the observation that a frequency basis is prevalent in post-GFC swap
markets, we used the Alfeus et al. (2020) roll-over risk framework to explain why
this is the case. We then went on to illustrate the general model through the exam-
ple of a naive “arbitrage” strategy that earned the LIBOR/OIS spread. Stochastic
dynamics for the roll-over risk variables were then specified, allowing us to for-
mulate pricing equations for the various legs in a credit default swap. The affine
structure of the underlying state variables allowed us to use Duffie et al. (2000) to
find explicit solutions to the required expectations in the CDS pricing formulae. We
were then able to compare these results to those obtained from a traditional Monte
Carlo simulation.

The pricing exercise shown in the dissertation is significant for two main rea-
sons. Firstly, to price a single CDS using Monte Carlo simulations is computa-
tionally intensive. For many practical applications where instruments need to be
repriced for different state variables and model parameters, the Monte Carlo method
is intractable. The entire calculation must be redone for any change in state vari-
ables or parameters, so this method is generally more useful for benchmarking and
testing purposes. The Duffie et al. (2000) pricing methodology is far more power-
ful because the solution to the pricing calculation is given as an exponential affine
function of the state variables. Hence, if the states are changed, the entire calcula-
tion does not have to be redone and is therefore far less computationally intensive
for many practical purposes. For example, in time-series estimation, the state vari-
ables change over time, but the expensive calculations only have to be done once.

The other particular application of this pricing exercise is slightly more subtle.
We note that the idiosyncratic liquidity spread, φ(t), does not enter into the CDS
calculations. However, it does enter into calculations of the interbank rate and
therefore, by extension, into the calculation for swap rates. This presents a practi-
cal problem in that if only swap data is used for pricing in the roll-over risk frame-
work, the individual contributions of λ(t) and φ(t) to this risk cannot be explicitly
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separated. Since the CDS price is not a function of φ(t), if CDS data is included in
the pricing exercise, the effect of λ(t) can be calculated explicitly. Thus, being able
to accurately and efficiently price a CDS in this framework is essential to better un-
derstand the interplay between the liquidity risk and credit risk of the underlying
entity being modelled.
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