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Abstract

As a consequence of the 2007 financial crisis, the market has shifted towards a
multi-curve approach in modelling the prevailing interest rate environment. Cur-
rently, there is a reliance on the assumption of deterministic- or constant-basis
spreads. This assumption is too simplistic to describe the modern multi-curve envi-
ronment and serves as the motivation for this work. A stochastic-basis framework,
presented by Mercurio and Xie (2012), with one- and two-factor OIS short-rate
models is reviewed and implemented in order to analyse the effect of the inclusion
of stochastic-basis in the pricing of interest rate derivatives. In order to preclude
the existence of negative spreads in the model, a constraint on the spread model
parameters is necessary. The inclusion of stochastic-basis results in a clear shift in
the terminal distributions of FRA and swap rates. In spite of this, stochastic-basis is
found to have a negligible effect on cap/floor and swaption prices for the admissi-
ble spread model parameters. To overcome challenges surrounding parameter es-
timation under the framework, a rudimentary calibration procedure is developed,
where the spread model parameters are estimated from historical data; and the OIS
rate model parameters are calibrated to a market swaption volatility surface.
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Chapter 1

Introduction

Prior to the financial crisis of 2007, interbank rates such as LIBOR were considered
‘risk-free’ since the credit and liquidity risks of large commercial banks were as-
sumed to be non-existent. Consequently, the behaviour of interest rate markets was
consistent with explanations provided by textbooks. A typical example is that inter-
bank deposit rates were consistent with those implied from Overnight Index Swap
(OIS) rates or that interest rate swap rates were considered independent of the tenor
of the underlying floating rate (provided the payment schedule was changed).

In reality there were slight differences. For example non-zero spreads existed
on money market basis swaps (interest rate swaps where both legs are floating)
as well as between interbank deposit and market OIS rates (Chibane et al., 2009).
However, these spreads were minimal (only a few basis points) and thus assumed
to be negligible. This can be seen in Figure 1.1 which plots the spreads between
interbank deposit rates and those implied from OIS rates — EURIBOR and EONIA
in the European context. Prior to August 2007 the spreads were less than 10bps,
not very volatile and appeared to be independent of tenor.

The events of 2007 shattered these previously held assumptions as the paradigm
that large banks cannot go bankrupt was violated. There was a large divergence in
spreads which can be clearly seen in Figure 1.1. This divergence can be explained
by noting that OIS contracts have inherently less credit risk than interbank deposits.
In the case of OIS, notionals are not exchanged and the overnight credit quality of a
counter-party is a lot more certain than for longer periods. Clearly when the credit
risk of banks was assumed to be non-existent, interbank deposit and OIS rates had
a negligible spread. However, when this assumption disappeared the rates be-
gan to differ significantly as credit and liquidity risks associated with this notional
amount were now being priced into the interbank rates.

These non-negligible money market basis spreads violate the existence of a
unique, well-defined zero-coupon curve and with it, the classic approach to in-
terest rate derivative pricing. Although the widening of the basis was caused by



Chapter 1. Introduction 2

credit and liquidity effects, explicitly modelling these effects at a market level when
pricing interest rate derivatives would be extremely complex. Instead, financial
institutions have settled on a more empirical multi-curve approach. Distinct for-
ward curves are constructed for each of the common underlying tenors: 3-month,
6-month, 12-month etc. (Mercurio, 2010). The relevant forward curve is then used
to forecast future rates while a separate curve is used for discounting.

A large body of literature has focused on the development of this multi-curve
environment with Henrard (2007b and 2010b), Chibane et al. (2009), Bianchetti
(2010) and Kenyon (2010) extending single curve bootstrapping to the multi-curve
setting. The use of these multi-curve models has allowed the market to settle
on new valuation formulas for vanilla interest rate derivatives. However, signif-
icant shortcomings still exist when it comes to the pricing of slightly more complex
derivatives where the evolution of multiple curves is required. Currently, there is
a reliance on the assumption of deterministic basis spreads, where the evolution of
a reference curve is modelled, and all other curves are evolved by adding a deter-
ministic or even constant basis spread to this reference curve (Mercurio and Xie,
2012). Looking at Figure 1.1 it can be seen that the spread is neither deterministic
nor constant and assuming these is rudimentary and often inadequate. For exam-
ple, a LIBOR-OIS swaption derives its value from the uncertainty of the LIBOR-OIS
basis spread and thus cannot be priced under these assumptions.

In the post-financial crisis interest rate market, various non-vanilla interest rate
derivatives such as money market and cross currency basis swaps and swaptions
have gained a lot of relevance due to the aforementioned changes in market be-
haviour. Consequently, accounting for the stochastic nature of basis spreads is cru-
cial for developing a more rigorous framework for the modelling of these, and
other interest rate derivatives, in the modern multi-curve environment. It is these
issues that have motivated this work which aims to analyse the effect of the inclu-
sion of stochastic-basis spreads in the pricing of interest rate derivatives through
reviewing and implementing a framework proposed by Mercurio and Xie (2012).

This dissertation begins with a brief review of the current approaches to the
modelling of stochastic LIBOR-OIS spreads before the Mercurio and Xie (2012)
stochastic-basis framework is presented. The pricing of interest rate derivatives
in a general multi-curve environment as well as under the Mercurio and Xie (2012)
framework is thoroughly investigated before a review of this framework is pre-
sented. Subsequently, the effect of stochastic-basis on the pricing of various interest
rate derivatives such as FRAs, swaps, caps/floors as well as swaptions is analysed
before investigating parameter estimation under the framework. Finally conclu-
sions and recommendations are given.
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Fig. 1.1: Money market basis spreads (Kienitz, 2014)



Chapter 2

Multi-curve Interest Rate
Modelling

2.1 Assumptions and Notation

In order to model the multi-curve interest rate environment, one has to consider
the evolution of the discounting curve as well as the various tenored interbank rate
forecasting curves.

The existence of distinct forecasting and discounting curves each indexed ac-
cording to the common market tenors x = 1m, 3m, 6m, . . . is assumed. The OIS
zero-coupon curve, or market equivalent, is deemed the most suitable proxy for a
risk-free curve, and is thus used for discounting (Amin, 2010). Conversely, forward
LIBOR curves, or market equivalents, are used for forecasting.

The first important distinction to make is that between OIS forward rates and
the LIBOR forward rates. For a particular tenor x and associated time structure
T x = {0 < T x0 , . . . , T

x
Mx
}, where T xk −T xk−1 = x, the OIS discount factor at time t for

maturity T xk is denoted by PD(t, T xk ) and the OIS forward rate can be defined using
a single-curve methodology to be

F xk (t) := FD(t;T xk−1, T
x
k ) =

1

τxk

[
PD(t, T xk−1)

PD(t, T xk )
− 1

]
, (2.1)

for k = 1, . . . ,Mx where τxk is the year fraction between T xk−1 and T xk .
Following Mercurio (2010) and Mercurio and Xie (2012), the pricing measures

considered are those associated with the OIS curve. We let QT
x
k
D denote the T xk -

forward measure whose associated numeraire is the zero-coupon discount bond —
PD(t, T xk ). While the expectation under this measure is denoted by ET

x
k
D .

The forward LIBOR rate at any time t for the interval [T xk−1, T
x
k ] is defined as the

expected future spot LIBOR rate under this measure

Lxk(t) := ET
x
k
D

[
Lx(T xk−1, T

x
k )|Ft

]
, (2.2)
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where Lx(T xk−1, T
x
k ) is the LIBOR rate that is set at T xk−1 with maturity T xk .

Lxk(t) can also be considered the fixed rate in a swap to be exchanged for the
floating rate of Lx(T xk−1, T

x
k ) at T xk which gives the swap a value of zero at time t.

Importantly, it can be easily be shown that Lxk(t) is a QT
x
k
D martingale.

In addition, we consider the multi-curve basis spreads. We denote this spread
by Sxk which is defined between the corresponding LIBOR forward rate, Lxk , and
OIS forward rate, F xk . It is noted that the actual definition will be further discussed
below.

As a result, there are in essence three processes for which the dynamics need
to be determined in order to price interest rate derivatives — the OIS forward
rates (F xk ), the LIBOR forward rates (Lxk) as well as the corresponding LIBOR-OIS
spreads (Sxk ). Clearly, the modelling of two of the three processes yields the dynam-
ics of the third, since the definition of the spread will always be a function of Lxk and
F xk (the actual definition of Sxk will be further discussed below). It is this degree of
freedom that has governed the classification of literature into implicit and explicit
basis spread modelling.

2.2 Implicit Basis Spread Modelling

In the implicit case as seen in Mercurio (2009 and 2010), the joint evolution of Lxk
and F xk is modelled in a LIBOR market model framework resulting in Sxk being
implicitly modelled through its definition. Fujii et al. (2011) as well as Moreni and
Pallavicini (2014) follow a similar approach in an HJM framework. Mercurio (2010)
aptly suggests that this allows for the simple extension of single-curve caplet and
swaption pricing formulas to those under the multi-curve environment.

That being said, this method does not necessarily guarantee the preservation of
the positive nature of the implied basis spreads. This could result in non-realistic
behaviour since the credit risk associated with deposit rates implied from OIS rates
should always be less than that associated with LIBOR deposits. As a result, new
classes of these models have recently gained popularity in the literature to over-
come these issues. Nguyen and Seifried (2015) use a multi-currency analogy to
model OIS and LIBOR curves with the relevant pricing-kernel processes while Gr-
bac et al. (2015) and Cuchiero et al. (2016) use a framework of affine LIBOR models
to ensure positive and stochastic spreads.
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2.3 Explicit Basis Spread Modelling

In the explicit case as seen in Mercurio and Xie (2012), Henrard (2013) as well as
Morino and Runggaldier (2014) the evolution of the OIS forward rates as well as
the basis spreads are modelled. This allows for the implicit modelling of the LI-
BOR rates using the spread definition. Mercurio (2010) pertinently indicates that
this could be considered more realistic since it is analogous to current market prac-
tice where LIBOR forward curves are built at a spread over the OIS curve. This
overcomes, to some extent, the problems associated with the earlier implicit basis
spread models since Sxk can be directly modelled by a positive-valued stochastic
process ensuring that its sign behaviour is in agreement with historical data and
expected future behaviour. However, closed form solutions for interest rate deriva-
tives such as caps, floors and swaptions may not necessarily exist.

In reviewing the modelling framework presented by Mercurio and Xie (2012)
this work will focus on explicit basis spread modelling. That being said, this work
does not look to invalidate implicit basis spread modelling — particularly the re-
cent approaches.

The literature on explicit basis spread modelling can be divided based on the
definition of the LIBOR-OIS spread — Sxk . In the case of Amin (2010), Mercurio
(2010), Fujii et al. (2011) and Mercurio and Xie (2012) the spread is defined to be
additive such that

Sxk (t) := Lxk(t)− F xk (t), k = 1, . . . ,Mx. (2.3)

Henrard (2013) uses multiplicative spreads where,

1 + τxk S
x
k (t) :=

1 + τxkL
x
k(t)

1 + τxkF
x
k (t)

, k = 1, . . . ,Mx. (2.4)

Alternatively, Anderson & Piterbarg (2010) define instantaneous spreads with

PL(t, T xk ) := PD(t, T xk )e
∫ Txk
t s(u)du, (2.5)

wherePL(t, T xk ) is the LIBOR discount factor at t for maturity T xk . AlthoughPL(t, T xk )

is fictitious it can be used to determine the LIBOR forward rates, Lxk(t).
In each of the three cases, a model for the spread — Sxk (t) or s(u) — is proposed

and together with the spread definition allows for the implicit determination of
the LIBOR forward rates. Mercurio and Xie (2012) appropriately suggest that dif-
ferent definitions of spread may be suited to different instruments in terms of the
simplicity of pricing formulae.
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2.4 Mercurio and Xie (2012) Stochastic-Basis Framework

Mercurio and Xie (2012) appear to provide the first generic framework for mod-
elling stochastic-basis spreads. In this section this framework is presented not-
ing the additive definition of spread (Equation 2.3). Importantly, this is a general
framework and can theoretically be combined with any model of OIS rate evolution
whether, it be a short-rate, forward-rate or market model.

First the forward basis spread, Sxk (t), related to each tenor x and corresponding
time interval [T xk−1, T

x
k ], is assumed to be a function of its OIS forward rate F xk (t)

and of an independent martingale χxk such that,

Sxk (t) = φxk

(
F xk (t), χxk(t)

)
.

For this to give a meaningful model the function φxk has to satisfy a number of
criteria:

1. The correlation between Sxk and F xk must be modelled;

2. Sxk must be a martingale under the T xk forward measure since Sxk will be de-
fined as the difference of two T xk -martingales (Equation 2.3);

3. The basis volatility must be independent of actual OIS rates (though this is
satisfied by introducing the independent basis factors χxk to the model).

While many different functions may satisfy these requirements, Mercurio and Xie
(2012) suggest that the most tractable is given by an affine function

Sxk (t) = Sxk (0) + αxk [F xk (t)− F xk (0)] + βxk [χxk(t)− χxk(0)] , χxk(0) = 1, (2.6)

where αxk and βxk are real constant parameters for all k and x. It follows that the αxk
parameters model the correlation between the OIS forward rates and correspond-
ing spreads while the βxk parameters model the basis spread volatility — thus en-
suring that φxk satisfies the necessary criteria.

It is important to note that the parameters αxk and βxk must not be chosen to
be independent of each other. This dependence is necessary to avoid unrealistic
situations where the basis spread is solely a function of OIS rates or where there
is zero basis spread volatility but the basis spread is not deterministic. Clearly
when βxk is zero then αxk must also equal zero to ensure that the model reduces to a
deterministic-basis model.

Equations 2.3 and 2.6 allow for the implicit modelling of the LIBOR forward
rates Lxk(t) via

Lxk(t) = ξxk + (1 + αxk)F xk (t) + βxkχ
x
k(t), (2.7)
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where the useful quantity ξxk is given by

ξxk = Sxk (0)− αxkF xk (0)− βxkχxk(0). (2.8)

Mercurio and Xie (2012) use an equivalent parametrisation of αxk and βxk which
easily allows for this dependence as well as giving the parameters a more intuitive
meaning. It is assumed the variances of F xk (t) and χxk(t) under QT

x
k
D are finite and

non-zero, allowing us to characterise the parameters by,

αxk =Corr
(
F xk (T xk−1), S

x
k (T xk )

)√Var
[
Sxk (T xk−1)

]
Var
[
F xk (T xk−1)

] (2.9)

(
βxk

)2
=
[
1− Corr

(
F xk (T xk−1), S

x
k (T xk )

)2]Var
[
Sxk (T xk−1)

]
Var
[
F xk (T xk−1)

] , (2.10)

where correlations and variances are taken under QT
x
k
D — the T xk -forward measure.

We then set

ρxk :=Corr
(
F xk (T xk−1), S

x
k (T xk )

)
(2.11)

νxk :=
√

Var
[
Sxk (T xk−1)

]
. (2.12)

This allows us to parametrise the basis spreads in terms of terminal standard devi-
ations νxk and correlations ρxk giving

Sxk (t) = Sxk (0)+
νxkρ

x
k√

Var
[
F xk (T xk−1)

] [F xk (t)− F xk (0)]

+

√(
1− ρxk

)2
νxk√

Var
[
χxk(T xk−1)

] [χx(t)− χx(0)] . (2.13)

Under this parametrisation, the model reduces to a constant spread model when
the basis spread volatility is zero; while the spread can solely be a function of the
corresponding OIS rates only when ρxk = 1. Consequently this parametrisation
ensures model consistency. At this stage it is also important to point out that the
affine nature of the spread model means that it does not preclude negative spreads -
a point not mentioned by Mercurio and Xie (2012). As the non-negativity of spreads
is seen to be a crucial requirement of a stochastic spread model, this is investigated
in detail in Section 4 in particular.

The next issue surrounds the definition of the basis factors χxk . Basis spread
volatilities have historically varied with both underlying tenor and the considered
term. The definition of the basis factors is general enough that they can be different
for different tenors x and indexes k which ensures consistency. That being said,
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the movements of basis spreads are highly correlated and therefore a simple one
or two factor model can be assumed to model the joint evolution of the stochastic
processes χxk (Mercurio and Xie, 2012). For example using a one-factor log-normal
process and assuming that for each given tenor x, basis factors χxk follow a common
Brownian motion, the dynamics of χxk(t) = χx(t) would be given by

dχx(t) = ηx(t)χx(t)dZx(t), χx(0) = 1, (2.14)

where ηx(t) is a deterministic process modelling basis volatilities, and Zx is a Brow-
nian motion independent of OIS rates.

Equations 2.13 and 2.14 together with a chosen model for the OIS forward rates,
F xk (t) provide the complete specification of a multi-curve model that accounts for
stochastic-basis. It is this multi-curve model that is reviewed and implemented.



Chapter 3

Interest Rate Derivative Pricing in
the Multi-Curve Environment

In the present chapter the pricing of various interest rate derivatives in the multi-
curve environment is reviewed. For each instrument, general and model - indepen-
dent pricing expressions are derived before the effect of the different definitions of
the basis spread, on the complexities of the final pricing formulae, are examined.
Pricing formula under the multi-curve model presented by Mercurio and Xie (2012)
are then derived for the case of a one-factor OIS rate model. Finally, an extension
to the case of a two-factor OIS rate model is presented.

3.1 Forward Rate Agreements

The pay-off of a T xk−1 x T xk FRA at the settlement date T xk−1 is given by

τxk
(
Lx(T xk−1, T

x
k )−K

)
1 + τxkL

x(T xk−1, T
x
k )

,

where K is the fixed rate.
The fair FRA rate at time t < T xk−1, which we denote by FRA(t;T xk−1, T

x
k ), is the

fixed rate that gives the FRA contract zero values at time t. Valuing the FRA under
Q
Txk−1

D , the T xk−1 forward measure with associated numeraire PD(t, T xk−1), gives

VFRA(t) = E
Txk−1

D

[
τxk
(
Lx(T xk−1, T

x
k )− FRA(t;T xk−1, T

x
k )
)

1 + τxkL
x(T xk−1, T

x
k )

∣∣∣∣∣Ft
]

= 0

∴ 0 = E
Txk−1

D

[
1−

1 + τxk FRA(t;T xk−1, T
x
k )

1 + τxkL
x(T xk−1, T

x
k )

∣∣∣∣∣Ft
]
.

Taking all terms known at time t out of the expectation and rearranging gives

(
1 + τxk FRA(t;T xk−1, T

x
k )
)
E
Txk−1

D

[
1

1 + τxkL
x(T xk−1, T

x
k )

∣∣∣∣∣Ft
]

= 1
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∴ FRA(t;T xk−1, T
x
k ) =

1

τxkE
Txk−1

D

[
1

1+τxkL
x(Txk−1,T

x
k )

∣∣∣Ft] −
1

τxk
.

Applying the classic change of numeraire technique, the expectation under Q
Txk−1

D

can be written as an expectation underQT
x
k
D whose associated numeraire isPD(t, T xk ).

It can be shown that under this measure, the fair FRA rate is given by (see Appendix
A.1

FRA(t;T xk−1, T
x
k ) =

1 + τxkF
x
k (t)

τxkE
Txk
D

[
1+τxk F

x
k (T

x
k−1)

1+τxkL
x(Txk−1,T

x
k )
|Ft
] − 1

τxk
. (3.1)

Equation 3.1 provides a general, model independent, formula to determine FRA
rates.

3.1.1 Pricing Using an Additive Spread Definition

In order to evaluate Equation 3.1 when using the additive definition of spread
approximations may be required. Using the second-order Taylor series expansion
of 1

1+x ≈ 1− x+ x2, for |x| < 1, we can simplify

ET
x
k
D

[
1 + τxkF

x
k (T xk−1)

1 + τxkL
x(T xk−1, T

x
k )
|Ft

]

≈ ET
x
k
D

[ (
1 + τxkF

x
k (T xk−1)

) (
1− τxkLx(T xk−1, T

x
k ) + (τxk )2Lx(T xk−1, T

x
k )2
)
|Ft
]

= ET
x
k
D

[
1− τxk (Lxk(T xk−1)− F xk (T xk−1)) + (τxk )2

(
Lxk(T xk−1)(L

x
k(T xk−1)− F xk (T xk−1))...

+τxkF
x
k (T xk−1)L

x
k(T xk−1)

2
)
|Ft
]

= ET
x
k
D

[
1− τxk Sxk (T xk−1) + (τxk )2

(
Lxk(T xk−1)S

x
k (T xk−1) + τxkF

x
k (T xk−1)L

x
k(T xk−1)

2
)
|Ft
]

≈ 1− τxk Sxk (t) + (τxk )2
[
Corr

(
Sxk (T xk−1), L

x
k(T xk−1)|Ft

)
+ Sxk (t)Lxk(t)

]
,

where we use the facts that Lx(T xk−1, T
x
k ) = Lxk(T xk−1) from Equation 2.2; Lxk(T xk−1)−

F xk (T xk−1) = Sxk (T xk−1) from the definition of additive spreads; and Sxk (T xk−1),

Lxk(T xk−1) are QT
x
k martingales.

By using another second order Taylor series expansion Equation 3.1 can be ap-
proximated by

FRA(t;T xk−1, T
x
k ) ≈ Lxk(t)− τxkCov

(
Sxk (T xk−1), L

x
k(T xk−1)|Ft

)
. (3.2)

The term τxkCov
(
Sxk (T xk−1), L

x
k(T xk−1)|Ft

)
can be considered a FRA convexity cor-

rection. Clearly in the single curve case it vanishes since Sxk (t) = 0. Depending on
the chosen additive spread multi-curve model it may be possible to derive a closed
form approximation of the convexity correction.
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In the case of our chosen Mercurio and Xie (2012) stochastic-basis spread model,
a closed form approximation of the convexity correction can be derived assuming
that the explicit QT

x
k
D variances for F xk (t) exist for the chosen OIS model. Assuming

these do exist we can write the covariance as

Corr
(
Sxk (T xk−1), L

x
k(T xk−1)

)
= Cov

(
αxkF

x
k (T xk−1) + βxkχ

x
k(T xk−1), (1 + αxk)F xk (T xk−1) + βxkχ

x
k(T xk−1)

)
= αxk

(
1 + αxk

)
Var
[
F xk (T xk−1)

]
+
(
βxk
)2

Var
[
χxk(T xk−1)

]
.

Using the expression for the covariance as well as ξxk (defined in Equation 2.8) we
can write

FRA(t;T xk−1, T
x
k ) ≈

(
1 + αxk

)
F xk (t) + βxkχ

x
k(t) + ξxk−

τxk

(
αxk
(
1 + αxk

)
Var
[
F xk (T xk−1)

]
+
(
βxk
)2

Var
[
χxk(T xk−1)

])
=
(
1 + αxk

)(
F xk (t)− τxkαxkVar

[
F xk (T xk−1)

])
+ ξxk

+ βxk

(
χxk(t)− τxk βxkVar

[
χxk(T xk−1)

])
.

(3.3)

Equation 3.3 provides an approximation for the fair FRA rate in a multi-curve
framework with stochastic-basis which can be easily implemented.

3.1.2 Pricing Using a Multiplicative Spread Definition

When using an additive spread definition, approximations are required to derive
a closed form expression for the fair FRA rate. The expectation in Equation 3.1,
which drives the need for approximation, is much easier to handle when using the
multiplicative spread definition given by Equation 2.4. Instead of using a Taylor-
series approximation we just simplify

ET
x
k
D

[
1 + τxkF

x
k (T xk−1)

1 + τxkL
x
k(T xk−1)

∣∣∣∣∣Ft
]

= ET
x
k
D

[
1

1 + τxk S
x
k (T xk−1)

∣∣∣∣∣Ft
]

=
1

1 + τxk S
x
k (t)

.

Since Sxk (t) is a QT
x
k
D martingale. The fair FRA rate is therefore given by

FRA(t;T xk−1, T
x
k ) =

1

τxk

[(
1 + τxkF

x
k (t)

)(
1 + τxk S

x
k (t)

)
− 1
]

=
1

τxk

[(
1 + τxkL

x
k(t)

)
− 1
]

=Lxk(t).
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Therefore when assuming a multiplicative definition of spread, fair FRA rates are
simply equivalent to forward LIBOR rates and no convexity correction is required.
This results in a more straight-forward bootstrapping procedure since the LIBOR
forward rates at time-0 are simply the corresponding market FRA rates, assuming
the market is in equilibrium.

3.2 Interest Rate Swaps

In this section we value linear interest rate derivatives in the multi-curve envi-
ronment. We consider an interest rate swap with floating leg payments at times
T xk based on the LIBOR rate Lx(T xk−1, T

x
k ) set at the previous time T xk−1 for k =

a+1, . . . , b and fixed leg payments based on a fixed rateK at TSj for j = c+1, . . . , d.
First we value the floating leg. At time T xk , the pay-off of the floating leg is given
by

FL(T xk ;T xk−1, T
x
k ) = τxkL

x(T xk−1, T
x
k ),

where Lx(T xk−1, T
x
k ) is the LIBOR rate that is set at T xk−1 with maturity T xk . We de-

termine the value of each T xk floating leg cashflow by pricing under the T xk -forward
measure to give

FL(t;T xk−1, T
x
k ) = τxkPD(t, T xk )ET

x
k
D

[
Lx(T xk−1, T

x
k )
]
.

From the definition given in (5) this reduces to

FL(t;T xk−1, T
x
k ) = τxkPD(t, T xk )Lxk(t).

It is noted that in the multi-curve environment the expected LIBOR rate does not
equal the forward rate F xk (t) and thus FL(t;T xk−1, T

x
k ) does not reduce to PD(t, T xk−1)

−PD(t, T xk ) as in the single-curve case. The time-t value of each floating is then
summed to give the present value of the swaps floating leg

FL(t;T xa , . . . , T
x
b ) =

b∑
k=a+1

FL(t;T xk−1, T
x
k ) =

b∑
k=a+1

τxkPD(t, T xk )Lxk(t).

The present value of the fixed leg is more straight forward since its present
value is simply the sum of each discounted fixed payment

FIX(t;TSc , . . . , T
S
d ) =

d∑
j=c+1

τSj PD(t, TSj )K = K

d∑
j=c+1

τSj PD(t, TSj ).

The value of the IRS is simply the difference in the present value of the two legs
and is therefore given by (to the fixed rate payer)

IRS(t,K;T xa , . . . , T
x
b , T

S
c , . . . , T

S
d ) =

b∑
k=a+1

τxkPD(t, T xk )Lxk(t)−K
d∑

j=c+1

τSj PD(t, TSj ).
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The fair swap rate is defined as the fixed rateK that gives the IRS a time-t value
of 0. We denote the fair swap rate at time t for a swap with floating leg tenor of
x, floating leg dates T xa , . . . , T xb and fixed leg dates TSc , . . . , TSd as Sxa,b,c,d(t) which is
given by

Sxa,b,c,d(t) =

∑b
k=a+1 τ

x
kPD(t, T xk )Lxk(t)∑d

j=c+1 τ
S
j PD(t, TSj )

. (3.4)

This is a general formulation of the fair swap rate for 0 < t < (T xa ∧ TSc ) and can be
used to determine forward starting swap rates.

An important case is the spot-starting swap with floating leg payment dates
T x1 , . . . , T

x
b and fixed leg payment dates TS1 , . . . , T

S
d . In this case the fair swap rate

is given by

Sx0,b,0,d(0) =

∑b
k=1 τ

x
kPD(0, T xk )Lxk(0)∑d

j=1 τ
S
j PD(0, TSj )

.

As in the traditional bootstrapping approach, the market expectations of forward
LIBOR rates can be implied from market rates of spot-starting swaps by using the
relationship given in Equation 8 noting that the discount factors PD(0, T xk ) can be
obtained from market OIS quotes.

3.2.1 Pricing Using an Additive Spread Definition

The expression for the fair swap rate in a multi-curve environment, given by Equa-
tion 3.4, is suited to an additive definition of spread since it is a ratio of two sums.
In the case of the chosen Mercurio and Xie (2012) stochastic-basis spread model we
simply replace Lxk(t) using Equation 2.7 to give

Sxa,b,c,d(t) =

∑b
k=a+1 τ

x
kPD(t, T xk )ξxk∑d

j=c+1 τ
S
j PD(t, TSj )

+

∑b
k=a+1 τ

x
kPD(t, T xk ) (1 + αxk)F xk (t)∑d
j=c+1 τ

S
j PD(t, TSj )

+

∑b
k=a+1 τ

x
kPD(t, T xk )βxkχ

x(t)∑d
j=c+1 τ

S
j PD(t, TSj )

.

(3.5)

3.2.2 Pricing Using an Multiplicative Spread Definition

Conversely, it can be clearly seen that a multiplicative definition of spread would
result in a complex expression for the fair swap rate. We do not derive the swap
rate under this spread definition since the Mercurio and Xie (2012) framework uses
an additive definition of spread. Again, as in the case of the fair FRA rates, these



3.3 Interest Rate Caps and Floors 15

differences in the fair swap rate expressions illustrate how something as fundamen-
tal as the definition of the spread can have a large effect on the complexity of the
pricing formula.

3.3 Interest Rate Caps and Floors

An interest rate cap is a popular vanilla interest rate option often used by corporates
to manage interest-rate risk on floating rate debt. A cap pays τk[Lx(T xk−1, T

x
k )−K]+

at each cap payment date, T xk for k = a+ 1, ..., b, where T xb is the expiry date of the
cap. As a result caps can be considered as a portfolio of adjacent caplets (a simpler
interest rate derivative product) and caps are priced as a sum of the component
caplet prices. We express the time-0 price of the cap with strike K, start date T xa
and expiry T xb as

Cap(0,K, T xa , T
x
b ) =

b∑
k=a

Cplt(0,K;T xk ). (3.6)

3.3.1 Interest Rate Caplets

A caplet is simply a call option on forward interest rates. The pay-off of a caplet
written on forward LIBOR at time T xk is given by

τxk
[
Lx(T xk−1, T

x
k )−K

]+
.

The time-0 price can be obtained under the QT
x
k
D forward measure, which gives

Cplt(0,K;T xk ) = τxkPD(0, T xk ) ET
x
k
D

{[
Lx(T xk−1, T

x
k )−K

]+}
.

In the single-curve case the future spot LIBOR rate Lx(T xk−1, T
x
k ) can be replaced

by the LIBOR forward rate using a classic no-arbitrage replication argument. In
addition theQT

x
k
D forward measure is simply theQT forward measure, under which

forward LIBOR is a martingale. Assuming log-normal dynamics of this forward
rate as per the LMM of Brace et al. (1997) leads to the classic Black-like caplet price.

However, in the multi-curve environment the valuation of the caplet is more in-
volved. The problem with pricing in the multi-curve environment is thatLx(T xk−1, T

x
k )

is not necessarily a martingale under the pricing measure (QT
x
k
D ) since they relate to

different curves. One way to overcome this is to model the LIBOR forward rate
(F x,Lk ) under QT

x
k
x — the forward measure relating to the LIBOR curve with tenor

x. Then one can model the Radon-Nikodym derivative dQT
x
k
x /dQ

Txk
D defining the

change of measure from Q
Txk
x to Q

Txk
D . Mercurio (2009) suggest an alternative ap-

proach where the LIBOR rate in the caplet pay-off is replaced by an equivalent
forward rate which is a martingale under the new pricing measure (QT

x
k
D ).
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Remembering the definition given by Equation 2.2 we note that

Lxk(t) = ET
x
k
D

[
Lx(T xk−1, T

x
k )|Ft

]
∴ Lxk(T xk−1) = Lx(T xk−1, T

x
k ).

The caplet can therefore be viewed as call option onLxk(T xk−1) rather thanLx(T xk−1, T
x
k )

since the two rates Lx and Lxk coincide at the reset date T xk−1. Thus, the price is
rather given by

Cplt(0,K;T xk ) = τxkPD(0, T xk ) ET
x
k
D

{[
Lxk(T xk−1)−K

]+}
. (3.7)

Since the price requires the expectation of Lxk(T xk−1) one may also consider pricing
under the T xk−1-forward measure which gives

Cplt(0,K;T xk ) = τxkPD(0, T xk−1) E
Txk−1

D

{
PD(T xk−1, T

x
k )
[
Lxk(T xk−1)−K

]+}
. (3.8)

Equations 3.7 and 3.8 provide general, model-independent caplet pricing formulae
in the multi-curve environment.

Pricing with the Chosen Multi-curve Model

With our chosen multi-curve model with stochastic-basis we replace Lxk(T xk−1) us-
ing Equations 2.3 and 2.6. Using this replacement together with the definition of
F xk (t) it can be shown that if OIS rates are driven by a one-factor stochastic process
(X), then

τxkPD(T xk−1, T
x
k )[Lxk(T xk−1)−K]+ =

[
C
(
XTxk−1

)
χx(T xk−1)−D

(
XTxk−1

)]+
,

where

C
(
X
)

:=τxk β
x
kPD

(
T xk−1, T

x
k ;X

)
(3.9)

D
(
X
)

:=(1 + αxk)
[
PD
(
T xk−1, T

x
k ;X

)
− 1
]

+ τxkPD
(
T xk−1, T

x
k ;X

)
(K − ξxk ). (3.10)

Noting that PD
(
T xk−1, T ;XTxk−1

)
denotes the zero-coupon bond price calculated us-

ing the chosen OIS rate model which is a function of one stochastic variableX . This
allows the caplet price to be expressed as

Cplt(0,K) = PD(0, T xk−1) E
Txk−1

D

{[
C
(
XTxk−1

)
χx(T xk−1)−D

(
XTxk−1

)]+}
= PD(0, T xk−1) E

Txk−1

D

[
E
Txk−1

D

{[
C
(
XTxk−1

)
χx(T xk−1)−D

(
XTxk−1

)]+∣∣∣X = x
}]

= PD(0, T xk−1)

∫ ∞
−∞

E
Txk−1

D

{[
C
(
x
)
χx(T xk−1)−D

(
x
)]+}

fX(x) dx,

where fX is the probability density function of X under the QT
x
k−1 forward mea-

sure.
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Looking at the expectation within the integral it is noted that since it is condi-
tioned on a specific value of X , D(x) is constant. As a result it can be viewed as
the time-0 price of a vanilla European option on some multiple of χx(t) expiring
at T xk−1. By definition χx(t) is log-normal under forward measures which suggests
the use of a Black-type formula to analytically evaluate the expectation. To do this
requires the consideration of four possible cases relating to the values of C(x) and
D(x).

Case 1: C(x) > 0 and D(x) > 0 — The expectation is simply the time-0 price of
a call option on C(x)χx(t) with strike D(x).

Case 2: C(x) < 0 and D(x) < 0 — In this case we rewrite the expection as:

E
Txk−1

D

{
[C(x)χx(T xk )−D(x)]+

}
= E

Txk−1

D

{[(
−D(x)

)
−
(
− C(x)χx(T xk )

)]+}
.

This can be seen as the time-0 price of a put option on −C(x)χx(t) with strike
−D(x).

Case 3: C(x) ≥ 0 and D(x) ≤ 0 — This can be seen as a call option with a
negative strike. Since the underlying is log-normal, the option will always expire
in the money which allows us to write:

E
Txk−1

D

{ [
C(x)χx(T xk−1)−D(x)

]+ }
= E

Txk−1

D

{
C(x)χx(T xk−1)−D(x)

}
= C(x)−D(x).

Case 4: C(x) ≤ 0 and D(x) ≥ 0 — Similarly to case 2, this can be seen as the
time-0 price of a put option on −C(x)χx(t) with strike −D(x). However the strike
is negative in this case and since χx(t) is log-normal −C(x)χx(t) ≥ 0. The option is
therefore always out the money and therefore worthless.

To deal with these various cases, we define a new function as well as making
use of the general log-normal option pricing formula

h(A,B, V )



Bl(A,B, V, 1) if A,B > 0,

Bl(−A,−B, V,−1) if A,B < 0,

A−B if A ≥ 0, B ≤ 0,

0 if A ≤ 0, B ≥ 0

(3.11)

where:

Bl(F,K, v, w) := wFΦ

(
w
ln(F/K) + v2/2

v

)
− wKΦ

(
w
ln(F/K)− v2/2

v

)
.

Noting that χx(0) = 1, we are able to express the time zero caplet price by

Cplt(0,K) = PD(0, T xk−1)

∫ ∞
−∞

h
(
C(x), D(x), Vχ(T xk−1)

)
fX(x) dx. (3.12)
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where C(x) and D(x) are given by Equations 3.9 and 3.10 as before, while Vχ(T xk−1)

is the standard deviation of lnχx(T xk−1).
While Equation 3.12 provides a simple one-dimensional integral which can be

easily evaluated numerically, the OIS rates are only being modelled by a single-
factor interest rate model. The limitations of such models has been well docu-
mented by many authors such as Longstaff et al. (2001). Consequently, the multi-
curve model under review needs to be considered with a multi-factor OIS rate
model.

In the case of a two-factor OIS rate model we see that all techniques applied in
the one-factor case apply. However, one has to condition on two random variables
as opposed to one. This results in an extra dimension in the pricing expression
which is given by

Cplt(0,K) = PD(0, T xk−1)

∫ ∞
−∞

∫ ∞
−∞

h
(
C(x, y), D(x, y), Vχ(T xk−1)

)
fXY (x, y) dxdy,

(3.13)
where fXY is the joint probability density function of X and X under the T xk−1
forward measure. The C and D functions are now also defined to be a function of
two-variables since bond prices are driven by two-factors:

C
(
X,Y

)
:=τxk β

x
kPD

(
T xk−1, T

x
k ;X,Y

)
(3.14)

D
(
X,Y

)
:=(1 + αxk)

[
PD
(
T xk−1, T

x
k ;X,Y

)
− 1
]

+ τxkPD
(
T xk−1, T

x
k ;X,Y

)
(K − ξxk ). (3.15)

3.4 Interest Rate Swaptions

3.4.1 Physical Delivery Swaptions

A European payer swaption (with physical delivery) gives the holder the right (but
not the obligation) to enter into a long IRS position at time T xa = TSc with floating
leg payment times of T xa+1, . . . , T

x
b and fixed leg payment times of TSc+1, . . . , T

S
d ,

with T xb = TSd and fixed rate K. A European receiver swaption, on the other hand,
gives the holder the right to enter into a short IRS position at time T xa = TSc . The
pay-off of a European swaption at time T xa = TSc is therefore given by

[
ω
(
Sxa,b,c,d(T

x
a )−K

)]+ d∑
j=c+1

τSj PD(TSc , T
S
j ),

where Sxa,b,c,d(T
x
a ) is the fair swap rate at time T xa = TSc (see Equation 3.4) and ω = 1

for a payer swaption and ω = −1 for a receiver swaption.
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In the single-curve case, future spot LIBOR rates in the fair swap rate expres-
sion can be replaced by forward rates using the classic no-arbitrage replication ar-
gument. As a result swaptions are priced under the swap measure QA whose nu-
meraire is given by the annuity Ac,dt =

∑d
j=c+1 τ

S
j PD(t, TSj ); as forward swap rates

can be shown to be martingales under this measure. This allows for the derivation
of a Black-like pricing formula.

In the multi-curve environment the forward swap rates are no-longer necessar-
ily martingales under the swap measure and thus we rather price under the T xa
forward measure. The time-t swaption price can then be written as

SWPN(t,K;T xa+1, . . . , T
x
c , T

x
c+1, . . . , T

x
d )

= PD(t, T xa ) ET
x
k
D

[ω (Sxa,b,c,d(T xa )−K
)]+ d∑

j=c+1

τSj PD(TSc , T
S
j )

∣∣∣∣Ft
 . (3.16)

Equation 3.16 provides a general expression for the price of a swaption in the multi-
curve environment. In this section we do not attempt to use the multiplicative
definition of basis spreads due to the untidy expressions obtained when replacing
LIBOR forward rates in the fair swap rate expression using this definition.

Pricing with the Chosen Multi-curve Model

Again we derive a pricing formula using the multi-curve model presented by Mer-
curio and Xie (2012) with a one-factor OIS rate model. Under this model it can be
shown that (see Appendix A.2)

[
ω
(
Sxa,b,c,d(T

x
a )−K

)]+ d∑
j=c+1

τSj PD(TSc , T
S
j ) =

[
ωC
(
XTxa

)
χx(T xa )− ωD

(
XTxa

)]+
,

(3.17)
where the C and D functions are defined differently to those used in the caplet
pricing derivation

C(X) :=
b∑

k=a+1

τxkPD(T xa , T
x
k ;X)βxk

D(X) :=K

d∑
j=c+1

τSj PD(TSc , T
S
j ;X)− 1− αxa+1 + PD(T xa , T

x
b ;X) [1 + αxb − τxk ξxb ]

−
b−1∑

k=a+1

PD(T xa , T
x
k ;X)

[
αxk+1 − αxk + τxk ξ

x
k

]
,

where ξxk is given by Equation 2.8 and noting that PD(T xa , T ;X) denotes the zero-
coupon bond price determined using the chosen OIS rate model which is a function
of one stochastic variable X .
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Consequently, the swaption price can be expressed as

SWPN(t,K) = PD(t, T xa ) ET
x
a
D

[[
ωC
(
X(T xa )

)
χx(T xa )− ωD

(
X(T xa )

)]+ ∣∣∣∣Ft] .
Using the tower property and the fact that χx(t) and OIS rates (and thus X) are
independent it can be seen that

SWPN(t,K) = PD(t, T xa ) ET
x
a
D

[
ET

x
a
D

[[
ωC
(
XTxa

)
χx(T xa )− ωD

(
XTxa

)]+∣∣∣∣Ft, X = x

]]

= PD(t, T xa )

∫ ∞
−∞

ET
x
a
D

[[
ωC(x)χx(T xa )− ωD(x)

]+]
fX(x) dx,

where fX is the probability density function of X under the T xa forward measure.
Looking at the expectation within the integral it is noted that, since it is condi-

tioned on a specific value of X , ωD(x) and ωC(x) are constant. As a result it can
be viewed as the time-t price of a vanilla European option on ωC(x)χx(t) which,
by definition is a log-normal martingale under forward measures. Similarly to de-
riving the caplet price in Section 3.3, we consider four cases relating to the values
of ωC(x) and ωD(x). This can be shown to result in the following swaption price
semi-analytical formula

SWPN(t,K) = PD(t, T xa )

∫ ∞
−∞

h
(
ωC(x), ωD(x), Vχ(T xa )

)
fX(x) dx, (3.18)

where Vχ(T xa ) is the standard deviation of lnχx(T xa ) and the h-function is defined
above by Equation 3.11.

Again we extend the result to the multi-curve model with a two-factor OIS rate
model. As before, we see that all techniques applied in the one-factor case apply.
However, one has to condition on two random variables as opposed to one. This
results in an extra dimension in the pricing expression which is given by

SWPN(t,K) = PD(t, T xa )

∫ ∞
−∞

∫ ∞
−∞

h
(
ωC(x, y), ωD(x, y), Vχ(T xa )

)
fXY (x, y) dxdy,

(3.19)
where fXY is the joint probability density function of X and Y under the T xa for-
ward measure. The C and D functions are now also defined to be functions of
two-variables since bond prices are driven by two factors

C(X,Y ) :=
b∑

k=a+1

τxkPD(T xa , T
x
k ;X,Y )βxk

D(X,Y ) :=K
d∑

j=c+1

τSj PD(TSc , T
S
j ;X,Y ) + PD(T xa , T

x
b ;X,Y ) [1 + αxb − τxk ξxb ]

−
b−1∑

k=a+1

PD(T xa , T
x
k ;X,Y )

[
αxk+1 − αxk + τxk ξ

x
k

]
− 1− αxa+1.
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3.4.2 Cash-settled Swaptions

The pay-off of a cash-settled swaption with maturity T xθ written on an IRS with
start date T xa = TSc , floating payment times of TSa+1, . . . , T

S
b , fixed payment times of

TSc+1, . . . , T
S
d and fixed rate K is given by

PD(T xθ , T
x
a )
[
Ψ
(
Sxa,b,c,d(T

x
θ )−K

)]+ d∑
j=c+1

τSj(
1 + τSj S

x
a,b,c,d(T

x
θ )
)j . (3.20)

It is noted that we distinguish between the swaption maturity and underlying
swap-start date in this subsection. The summation term is often denoted as the
cash-settled annuity, C(SxTa), defined by

C (Sxt ) :=
d∑

j=c+1

τSj(
1 + τSj S

x
a,b,c,d(t)

)j .
It can be seen that the pay-off, while being similar to that of a physical delivery
swaption, is discounted using the underlying swap rate which is set at maturity.
It is this swap rate that is affected by the inclusion of stochastic-basis and conse-
quently its inclusion may have a larger effect when compared to that of the typical
physical delivery swaption.

The standard swaption settlement method in the EUR and GBP interbank mar-
kets is cash-settlement (Henrard, 2010a). The cash-annuity (C(Sxt )) relies on one
market rate (the fair swap rate) as opposed to a multitude of zero-coupon bond
prices in the case of the standard swap-annuity (At), making the amount easier to
calculate. That being said, cash-settled swaptions are significantly more difficult
to price than their physical delivery counterparts since the pay-off is a complex
function of the swap rate.

Market Formula

If we consider instead the time-0 price under the general EMM N with associated
numeraire Nt, then

CSS(0) = N0EN


[
Ψ
(
Sxa,b,c,d(T

x
θ )−K

)]+
C(SxTθ)

NTxa

 .
Henrard (2010b) suggests that one can choose PD(t, TSθ )C(St) as the numeraire (to
follow a similar process to pricing physical delivery swaptions) which gives

CSS(0) = C(S0)EC
[[

Ψ
(
Sxa,b,c,d(T

x
θ )−K

)]+]
.
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The problem here lies in the fact that the swap-rate is not a martingale under this
measure. However, the market standard is then to substitute the numeraire C by A
where Ac,dt is the standard swap annuity defined by Ac,dt =

∑d
j=c+1 τ

S
j PD(TSc , T

S
j ).

This allows the price to be approximated by

C(S0)EC
[[

Ψ
(
Sxa,b,c,d(T

x
θ )−K

)]+] ≈C(Sx0 )EA
[[

Ψ
(
Sxa,b,c,d(T

x
θ )−K

)]+]
=ΨC(Sx0 )Bl(Sx0 ,K, σ,Ψ).

However, even this approximation relies on the fact that the swap rate is a martin-
gale under the swap measure with associate numeraire At. This no longer holds
since in the multi-curve environment, the swap rate is no longer a tradable asset
divided by the numeraire At since classic no-arbitrage replication of future spot
LIBOR rates no longer holds. For more information on other issues with this ap-
proximation see Henrard (2010a) and Mercurio (2007).

Pricing with the Chosen Multi-curve Model

Due to the complexity of the payoff given in Equation 3.20 one of the expectations
cannot be simplified to a vanilla European option-like payoff as seen in Equation
3.17 for the case of physical delivery swaptions. To overcome this we are forced to
make use of an approximation presented by Henrard (2010a) but still price under
the T xθ forward measure. The pricing formula derivation is done for receiver cash-
settled swaptions before we generalise the final results.

Under the T xθ forward measure the time-0 price of a receiver cash-settled swap-
tion is given by

CSS(0) = PD(0, T xθ )ET
x
θ
D

[
PD(T xθ , T

x
a )
[
K − Sxa,b,c,d(T xθ )

]+
C(SxTθ)

]
. (3.21)

From Equation 3.4, we know that the fair swap rate Sxa,b,c,d(t) is driven by some
stochastic interest rate factor, which we have denoted X , as well as the stochastic-
basis factor, denoted χx. We again use the tower property however, we condition
on a specific value of χx as opposed to X , as was the case when deriving the ex-
pressions for physical delivery swaption prices. This gives

CSS(0) = PD(0, T xθ ) ET
x
θ
D

[
ET

x
θ
D

[
PD(T xθ , T

x
a )
[
K − Sxa,b,c,d(T xθ )

]+
C(SxTθ)

∣∣∣∣χx = x

]]

= PD(0, T xθ )

∫ ∞
−∞

ET
x
θ
D

[
PD(T xθ , T

x
a )
[
K − Sxa,b,c,d(T xθ )

]+
C(SxTθ)

∣∣∣∣χx = x

]
fχx(x) dx,

where fχx is the probability density function of χx under theQT
x
θ forward measure.
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The conditional expectation inside the integral is a function of one stochastic
variable, the stochastic interest rate factor X . This allows us to use the efficient
approximation for cash-settled swaption prices presented by Henrard (2010b). This
approximation is model dependent and is given for a one-factor Hull-White model
for OIS rates — luckily this coincides with our use of this model as our one-factor
model of choice for OIS rates in this dissertation.

First we recall some facts about the Hull-White one-factor model. Most impor-
tantly, that bond prices under the QT

x
θ
D forward measure can be written explicitly in

terms of a standard normal random variable Z

PD(T xθ , T
x
i ) =

PD(0, T xi )

PD(0, T xθ )
exp (−0.5γ2i − γiZ), (3.22)

where γi is defined in Appendix B.2, Equation B.13.
Using this fact, the swap rate (when conditioned on a specific value of χx) can be

considered as a function of a single standard normal variable Z. The difficult parts
in evaluating the conditional expectation are the cash annuity and the swap rate
exercise (SxTθ(Z) < K in the receiver swaption case). Henrard (2010a) deals with the
swap rate exercise by extending techniques used in the pricing of constant maturity
swaps (CMS) presented in Henrard (2007a) where the exercise boundary is defined
by a value of κ such that SxTθ(κ) = K. The exercise condition then becomes Z < κ,
which provides the integration bounds. A third order Taylor series approximation
is then used to replace

(
K − Sxa,b,c,d(T xθ )

)
C(SxTθ)(

K−Sxa,b,c,d(T xθ )
)
C(SxTθ) ≈ U0+U1(Z−Z0)+

1

2
U2(Z−Z0)

2+
1

3!
U3(Z−Z0)

3, (3.23)

where the recommended choice for the reference point, Z0, is κ in order to sig-
nificantly reduce the approximation error for out-the-money options. It is noted
that the Taylor series expansion coefficients (U0, U1, U2 and U3) will differ to those
of Henrard (2010a) due to the presence of stochastic-basis in our definition of the
forward swap rate Sxa,b,c,d(t).

Using the Henrard (2010a) approximation, the conditional expectation can be
given to the third order in closed form by

PD(0, T xθ )ET
x
θ
D

[
PD(T xθ , T

x
a )
[
K − Sxa,b,c,d(T xθ )

]+
C(SxTθ)

∣∣∣∣χx = x

]

= PD(0, T xa )

[(
U0 − U1γ̃a +

1

2
U2(1 + γ2a)− 1

3!
U3(γ̃a

3 + 3γa)
)

Φ(κ̃) (3.24)

−
(
U1γ̃a +

1

2
U2(−2γ̃a + κ̃)− 1

3!
U3(−3γ̃a

2 + 3κ̃γ̃a − κ̃2 − 2)
) 1√

2π
exp

(
−1

2
κ̃2
)]

,
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where κ̃ = κ+ γ0 and γ̃0 = γ0 + Z0.
Consequently, the price of a cash-settled swaption, when accounting for stochas-

tic - basis and using a one-factor OIS rate model, can be given by a one-dimensional
integral. The closed form approximation for cash-settled swaptions presented by
Henrard (2010a) allows one of the integrals to be evaluated analytically.



Chapter 4

Model Review

In this chapter, some of the issues with the Mercurio and Xie (2012) framework are
reviewed and methods of overcoming these are suggested.

4.1 General Implementation Notes

First, a brief note on the implementation of the spread model for Sxk is presented
via the following steps:

1. Calculate initial spread values, Sxk (0):

• Bootstrap OIS curve from market OIS rates or retrieve bootstrapped OIS
curve from Bloomberg/Reuters;

• Bootstrap relevant x-month Euribor curve using multi-curve bootstrap-
ping techniques 1 or retrieve bootstrapped x-month curve from Reuters
or Bloomberg;

• Determine initial relevant forward rates F xk (0) and Lxk(0) using curves.

2. Calculate αxk and βxk :

• Choose νxk and ρxk parameters;

• Determine Var[F xk (T xk−1)] (for all k) by implying the F xk (T xk−1) volatil-
ity from the OIS caplet price (see Appendix B.2.2 and Appendix B.3.4
for more details in the case of a Hull-White or G2++ OIS model respec-
tively);

• Determine Var[χx(T xk−1)] (for all k) using a log-normal variance
expression;

1 see Chibane et al. (2009), Pallavicini and Tarenghi (2010) or a number of other authors for multi-
curve bootstrapping algorithms
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3. Determine F xk (t) and χx(t):

• Generate standard normal random variables to simulate realisations of
F xk (t) and χx(t);

• Use these and the distributions of the OIS forward rates and stochastic-
basis factors to simulate realisations of F xk (t) and χx(t).

4. Finally calculate Sxk (t).

This implementation of the spread model to determine Sxk (t), together with the
simulation of F xk (t) allows for the implicit simulation of Lxk(t). It is noted that this
explicit implementation to determine Sxk (t) and consequently Lxk(t) is only required
in this form when analysing the distributions of Sxk (t) as well as the distribution
of fair FRA and Swap rates. However, when pricing instruments such as caps and
swaptions the evaluation of the integrals in the pricing formulae given in Equations
3.12, 3.13, 3.18 and 3.19 are required. In this case, realisations of F xk (t) and χx(t) are
not generated. Rather, F xk (t) and χx(t) are determined for the given distributions
of the short-rate factor(s)2 and stochastic-basis factor.

4.2 Possibility of Negative Spreads

One of the most important considerations when modelling the multi-curve inter-
est environment is ensuring the non-negativity of the spread between interbank
deposit rates and those implied from OIS rates. Historically, spreads have almost
always been positive and this is likely to be preserved in the future since interbank
deposits inherently have more credit risk than their OIS counterparts. This argu-
ment only breaks down in the presence of large liquidity shortages OIS market —
a highly irregular case which is noted but not accounted for.

Examining the spread model given by Equation 2.6, it can be clearly seen that
there is nothing guaranteeing the non-negativity of Sxk (t). Both [F xk (t)− F xk (0)] and
[χxk(t)− χxk(0)] can easily by negative and the predicted spread will be negative as
soon as

αxk [F xk (t)− F xk (0)] + βxk [χxk(t)− χxk(0)] < −Sxk (0). (4.1)

In order to examine the extent of this drawback, a Monte-Carlo experiment is per-
formed to analyse the distribution spreads on a variety of forward rates. The for-
ward rates are those relevant to the pricing of a 5-year swaption on a 5-year swap
with the semi-annual floating and fixed leg payments (i.e. 6-month tenor). The al-
ternative formulation of the spread model, given by Equation 2.13, is used together
with a Hull-White model for OIS rates. The model parameters follow those used
by Mercurio and Xie (2012) for pricing a 5Y5Y swaption given by: a = 0.001, σ =
0.008, ηxk = η = 0.5, νxk = 0.015, ρxk = −0.5. The spreads were simulated indepen-
dently over-time out to 5 years with a sample size of 50 000. The distributions of
the spread after 2-, 3-, 4- and 5-years on the forward rate set at 5-years expiring at
5.5-years are shown in Figure 4.1.

2 F xk (t) is governed by one short-rate factor when using the Hull-White model and two short-rate
factors when using the G2++ model for OIS rates
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(a) 2-Year terminal spread distribution
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(b) 3-Year terminal spread distribution
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(c) 4-Year terminal spread distribution
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(d) 5-Year terminal spread distribution

Fig. 4.1: Distribution of the spread on the forward rate set at 5-years expiring at
5.5-years for a variety of times

In Figure 4.1 it is noted that the first bar in each histogram represents the num-
ber of negative spread realisations. This clearly shows that a significant number of
the spread realisations are less than zero. In addition, the proportion of negative
spread realisations to total realisations increases as the time-period over which the
spreads are simulated. This is as expected, since the longer the simulation period
the more uncertainty there is and more variation can be expected. Similar distri-
butions for the spreads on a variety of other forward rates can also be generated.
Using these Monte-Carlo experiment results, the number of negative spread reali-
sations can be used to estimate the probability of negative spreads on a variety of
forward rates over time. The results are given in Figure 4.2, which clearly show the
significant probability of negative spreads.

It can be seen that as the time-period over which the spreads are simulated
increases, so too does the probability of the spread being negative. This is expected
due to the increased variation in F xk (t) and χxk(t) over time. When pricing a 5Y5Y
swaption one would need to simulate these spreads out to 5 years. Worryingly, this
means that the a large portion of the realisations used to obtain the price are not
consistent with the prevailing environment — resulting in an incorrect price.
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Fig. 4.2: Estimated probability of negative spreads

The different forward rates all exhibit different probabilities of negative spreads
and it appears that the further along the yield curve the forward rate lives, the
smaller the probability of negative spreads. However, it will be shown that the
degree of negative spread probability is rather governed by the shape of the initial
yield curves and initial spread levels rather than the position of the forward rate on
the yield curve.

The condition for the existence of negative spreads, given by Equation 4.1, is
clearly dependent on the spread model parameters αxk and βxk . This motivates the
following subsection in which constraints are placed on the model parameters in
order to make the probability of negative spreads negligible.

4.2.1 Constraining the Spread Model Parameters

In deriving the constraint, first the simplifying assumption that the OIS forward
rates, F xk (t), are strictly positive is made. This assumption is clearly violated in
the European interest rate markets. In addition, a number of interest rate models
which could be used for F xk (t) allow negative rates — for example those belonging
to the Gaussian class of short-rate models which are used in this work. That being
said, the assumption serves as an analytical starting point.

The assumption allows a lower bound of zero to be placed on the future value of
F xk (t). This is strictly the case for the log-normal χxk(t). Using these facts it becomes
easy to define the constraint that needs to be met to ensure non-negative spreads.
This is given in Equation 4.2

ξxk := Sxk (0)− αxkF xk (0)− βxk ≥ 0. (4.2)

It is noted that the definition of ξxk is conveniently equivalent to the quantity defined
in Equation 2.8 which is used in the derivation of most of the interest rate derivative
prices. It is interesting to note that Mercurio and Xie (2012) also use this quantity,
however no mention of the required constraint is made. The constraint values from
the Monte-Carlo experiment performed above for each of the forward rates are
given in Table 4.1.
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Tab. 4.1: ξxk constraint values

Tk ξxk
5.5 -0.0049
6.0 -0.0041
6.5 -0.0037
7.0 -0.0034
7.5 -0.0029
8.0 -0.0028
8.5 -0.0025
9.0 -0.0022
9.5 -0.0017
10 -0.0018

It can be seen that for every single one of the forwards rates for which the cor-
responding spread was simulated, the constraint was violated — explaining the
prevalence of negative spreads in Figure 4.2. The constraint parameter values pro-
vide further insight into the different probabilities of negative spreads for the vari-
ous forward rates. It can be seen that the greater the violation of the constraint (that
is the more negative ξxk is) the greater the probability of negative spreads. This pro-
vides further evidence to the validity of the constraint proposed. To further analyse
the ability of the constraint to prevent negative spreads, the Monte-Carlo experi-
ment presented above is repeated with adjusted parameters. The νxk value is varied
to adjust the αxk and βxk parameters keeping ρxk .
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Fig. 4.3: Negative spreads for νxk = 0.012

Tab. 4.2: ξxk constraint values with ad-
justed spread parameters

Tk ξxk
5.5 -0.0022
6.0 -0.0016
6.5 -0.0014
7.0 -0.0013
7.5 -0.0009
8.0 -0.0010
8.5 -0.0009
9.0 -0.0006
9.5 -0.0003
10 -0.0005

Clearly from Figure 4.3 and Table 4.2 it can be seen that reducing the standard
deviation of the spread reduces the ξxk values and thus results in lower probabilities
of negative spreads.

Finally, the effect of assuming non-negative forward rates when deriving a con-
straint for αxk and βxk is investigated. For this case νxk and ρxk are not defined but
an arbitrary αxk is chosen and used to determine βxk such that ξxk = 0 for all k. The
results can be seen in Figure 4.4
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Fig. 4.4: Probability of negative spreads when ξxk = 0

Figure 4.4 illustrates that even if the constraint is perfectly met there will still be
negative spreads since F xk (t) is not bounded below by zero when using the Hull-
White short-rate model. However, if the constraint is met it can be seen that the
probability of negative spreads is well below 2.5% for each forward rate.

This suggests that although the constraint was derived under the assumption
of positive rates, it is still sufficient to ensure negligible probabilities of negative
spreads even if negative forward rates are allowed in the model. Re-examining the
assumption on the back of these results, validates the approximation even though
it is violated in practice. Although negative rates are prevalent in the EUR market,
these typically occur on the shorter end of the yield curve. When pricing swaptions
one is typically looking towards the longer end of the yield curve and thus these
rates are either positive or small negative numbers. As a result, a lower bound of
zero on F xk is a valid approximation and can be used in defining a constraint on the
model parameters. The spread model parameters that satisfy the constraint on ξxk
are denoted admissible spread model parameters.

It is noted that although results are presented exclusively when using the Hull-
White model for OIS rates; similar trends are observed when using the G2++ model
since they are both Gaussian short-rate models.

It is also important to note that this is by no means the only method that can
be used to derive constraints on the model parameters. Instead of making the sim-
plifying assumption of non-negative OIS forward rates, the derivation could rather
start from any (possibly negative) lower bound on the OIS forward rate. This lower
bound could then be treated as an additional parameter in the model. This could
possibly reduce the probability of negative spreads however this has to be weighed
up with additional calibration costs.



Chapter 5

The Effect of Stochastic-basis on
Interest Rate Derivative Pricing

In this chapter the pricing formulae derived in Chapter 3 are implemented in or-
der to illustrate the effect that the inclusion of stochastic-basis has on interest rate
derivative pricing. Results are presented for two different interest rate models for
the OIS rates where relevent — a one-factor Hull-White model and the two-factor
G2++ model. In the case of the one-factor Hull-White model, the parameters used
are those given by Mercurio and Xie (2012) in order to produce comparable results
so that the consistency of our implementation of the spread model can be con-
firmed. Furthermore, market data from the same day is used for calibrating the
Hull-White model to the initial term structure as well as the initial spread model
parameters. This market data is Euro data from August 3, 2012. While the data is
relatively old, it is noted that the aim of this work is centred around the implemen-
tation of the stochastic spread model and the exact date from which market data
is obtained is not an important consideration. Instead, the focus is on producing
comparable results to Mercurio and Xie (2012) and examining trends.

5.1 FRA Rates

In order to analyse the effect of stochastic-basis on FRA’s, the expression given by
Equation 3.3 for an approximation of the fair FRA rate is implemented. The fair
forward rate for a 6x12 FRA is simulated over a period of 5 years for a sample size
of 50 000. The resulting terminal distribution for varying αxk and βxk parameters is
analysed (noting that this is achieved by varying νxk and ρxk since the alternative
parametrisation of the spread model given by Equation 2.13 is used).

A Hull-White model for the OIS rates is used with a = 0.001 and σ = 0.008
while the stochastic-basis factor volatility parameter is given by η = 0.25 as per
Mercurio and Xie (2012). The results can be seen in Figure 5.1; noting that the
histograms are plotted using the same bin widths for ease of comparison.

Figure 5.1 clearly shows a shift in the terminal distribution of the fair FRA
rates. If the deterministic-basis case (Figure 5.1a) is compared against any of the
stochastic-basis cases it can be seen that the inclusion of stochastic-basis clearly
increases the variance of the distribution of the fair FRA rates. Additionally the
prevalence of the stochastic-basis factors can be seen in the lognormal-like distribu-
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Fig. 5.1: Effect of stochastic-basis on the terminal distribution of FRA rates

tions that result. It is also noted that the larger the standard deviation of the spread
(νxk ) the greater the variation in the FRA rate; as is expected. Finally, it is noted that
when using the G2++ model for the OIS rates similar trends are observed.
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5.2 Swap Rates

In order to analyse the effect of stochastic-basis on swaps, the expression given by
Equation 3.5 for the fair swap rate is implemented. The fair swap rate for a 5 year
swap with semi-annual fixed and floating payments is simulated over a period of 5
years using a sample size of 50 000. The resulting terminal distribution for varying
αxk and βxk parameters is then analysed.

A Hull-White model for the OIS rates is used with a = 0.001, σ = 0.008, while
η = 0.25. The results are given in Figure 5.2 where again the histograms are plotted
using the same bin widths.
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Fig. 5.2: Effect of stochastic-basis on the terminal distribution of Swap rates

Similar trends to those observed for the effect on FRA rates can be seen. Again,
it can be seen that the inclusion of stochastic-basis results in a more varied distri-
bution of swap rates when compared to the deterministic-basis case (Figure 5.2a).
The swap rates also appear log-normal due to the prevalence of the log-normal
stochastic-basis factors. Furthermore, the larger the standard deviation of the spread
the larger the observed variation in the swap rate distribution as expected. The
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effect on the fair swap rate shown here is important when considering the pricing
interest rate swaptions. It is this swap rate that needs to be evolved to the maturity
of the swaption and the variation thereof dictates the price of the option to a large
extent.

5.3 Interest Rate Caps

In order to analyse the effect of stochastic-basis on interest rate caps, cap volatility
skews for varying αxk and βxk parameters are generated. To generate these Equation
3.6 is used together with the semi-analytical formulae for caplet prices given by
Equation 3.12 for a one-factor OIS rate model and Equation 3.13 for a two-factor
OIS rate model. The integrals in Equations 3.12 and 3.13 are evaluated numeri-
cally using a one-dimensional and two-dimensional numerical integration scheme
respectively with simple quadrature techniques. Since the two OIS rate models
used are both Gaussian short-rate models, the integrals over the entire Gaussian
densities can be accurately approximated by integrating the short-rate factors over
an appropriate number of standard deviations from the mean1. Once the relevant
cap has been priced, the cap volatility is then implied using the market formula for
caps given by Mercurio (2009)

Capmkt(0,K, σ, T
x
a , T

x
b ) =

b∑
k=a

τxkPD(0, T xk )Bl
(
K,Lxk(0), σ

√
T xk−1

)
. (5.1)

In order to generate a volatility skew, each cap is priced with a variety of strikes.
Bloomberg or Reuters provide cap volatilities for at-the-money strikes as well as
fixed strikes from 1% up to 10%. Consequently, caps are priced at each of the market
quoted strike values.

5.3.1 Caps with Hull-White Model for OIS rates

Using a one-factor Hull-White model for the OIS rates with parameters a = 0.001,
σ = 0.008 and stochastic-basis factor volatility parameter η = 0.5 the cap volatility
skews for the above mentioned strikes for varying stochastic-basis model param-
eters (νxk = ν, ρxk = ρ) are generated. It is noted that our parameter choices are
restricted to those values of ν and ρ that ensure ξxk ≥ 0 for all k.

Following the approach of Mercurio and Xie (2012), the volatility skew for the
deterministic-basis model (vxk = 0) is first determined. Then, for each change in the
stochastic-basis model parameters the Hull-White volatility parameter (σ) is recal-
ibrated so that the ATM volatilities match. Using this recalibrated σ the remainder
of the volatility skew is then generated. This method follows from typical market
practice where some of the interest rate model parameters are calibrated to market
data. In this case, the stochastic-basis model is calibrated to ATM data from our
deterministic model and thus the effect of stochastic-basis on calibrated volatility
skews can be analysed. The results can be seen in Figure 5.3.

1 ±6 standard deviations were found to be more than sufficient
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Fig. 5.3: Effect of varying stochastic-basis model parameters on cap volatility skews
with a Hull-White OIS rate model

From Figure 5.3 the impact of changing the stochastic-basis model parameters
on out-the-money-caps can be seen since the ATM volatilities have been calibrated
(noting that the ATM strike ≈ 0.01). It can be seen that the larger the spread stan-
dard deviation, the larger the price (and thus volatility) of these caps. This can be
explained by considering that the inclusion of stochastic-basis increases the varia-
tion of the LIBOR forward rates Lxk(t). Consequently, this increases the likelihood
of these out-the-money caps ending in-the-money — increasing the price of the
option.

In terms of the effect of the correlation between the OIS forward rates and the
spread (ρxk), it can be seen that a correlation of zero results in a marginal increase in
the out-the-money volatilities when compared to a correlation of −0.5. A negative
correlation results in a negative αxk . In addition, a more negative correlation results
in a smaller βxk . This results in smaller spreads and consequently lower prices (and
thus volatilities). In the case of a positive correlation, the larger the correlation, the
smaller the resulting βxk . Once again this leads to lower prices (and volatilities).

It is important to note that the effect of stochastic-basis is only evident at strikes
of around 4%. This is more than 300bps above the ATM strike which begs the
question: what is the relevance of these caps — especially in the prevailing low
interest rates in the European market? Typically, the more liquid caps are those
traded much closer to the ATM strikes. Interestingly, Figure 5.3 illustrates that the
inclusion of stochastic-basis has a very limited effect on the pricing of these caps
when admissible spread model parameters are used.

5.3.2 Caps with G2++ Model for OIS rates

The two factor G2++ model for OIS rates is used to generate similar graphs with
a = 0.001, b = 0.001, σ = 0.004, ζ = 0.005 and ρG2 = −0.5 while η = 0.5. It is
noted that by equating a and b, the G2++ model is forced to behave like a single-
factor model. This serves as a consistency check of our semi-analytical cap pricing
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formula with a two-factor OIS rate model. The results are given in Figure 5.4.
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Fig. 5.4: Effect of varying stochastic-basis model parameters on cap volatility skews
with a G2++ OIS rate model

As expected, similar trends are observed in Figure 5.4 when compared to those
in the case of the Hull-White OIS rate model. This confirms the consistency of our
extension of the stochastic-basis framework presented by Mercurio and Xie (2012)
to include a two-factor OIS rate model in pricing caps. To price caps under this
model (which is in fact a three-factor model due to the presence of the stochastic-
basis factors) requires the evaluation of a two-dimensional integral for each caplet
contained in the cap. Consequently, the use of a two-dimensional numerical in-
tegration scheme results in a significant increase in computational time, since the
implementation thereof is not conducive to vectorisation techniques. For example,
pricing a 5Y cap (containing 10 caplets) across 12 strikes takes 30 seconds when us-
ing a two-factor OIS rate model compared to 0.01 seconds when using a one-factor
OIS rate model. Consequently, any calibration using this model in its current form
is extremely infeasible. It is suggested that closed-form approximations for at least
one of the integrals are necessary if any calibration is to be performed. Furthermore,
if additional factors are added to either the OIS rate or the stochastic-basis factor
models then it is recommended that Monte-Carlo methods be used to evaluate the
multi-dimensional integrals required in the pricing formula.

5.4 Interest Rate Swaptions

In order to analyse the effect of stochastic-basis on swaptions, volatility skews for
varying αxk and βxk parameters are generated. To generate these, swaptions are
priced using the semi-analytical formulae given by Equation 3.18 for a one-factor
OIS rate model and Equation 3.19 for a two-factor OIS rate model. Again, the inte-
grals in Equations 3.12 and 3.13 are evaluated numerically using simple quadrature
techniques — integrating the short-rate factor(s) over an appropriate number of
standard deviations. Once the relevant swaption is priced, the volatility is implied
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using the market formula for swaptions given by Mercurio (2009)

Swptnmkt(0,K, σ, T
x, T S) =

d∑
j=c+1

τSj PD(0, TSj )Bl
(
K,Sxa,b,c,d(0), σ

√
T xa

)
. (5.2)

5.4.1 Consistency with Mercurio and Xie (2012)

Swaptions are the only derivative that Mercurio and Xie (2012) present pricing re-
sults for. Consequently, this is used as a consistency check for our implementation
of the stochastic-basis framework. It is noted that although swaptions are presented
as the last instrument in this chapter, the consistency of our implementation was
confirmed first and the order of presentation is rather a reflection on the simplicity
of the instruments.

To ensure comparable results are produced, Mercurio and Xie (2012) was fol-
lowed to price 5Y5Y payer swaptions — with semi-annual fixed and floating legs
on 3 August 2012 — using the same Hull-White model parameters. In addition,
the swaptions are priced at the same strikes (ATM as well as ATM ±100bp, ±50bp,
±25bp).

First, two versions of our deterministic-basis spread model are compared to that
of Mercurio and Xie (2012). The first, where the OIS and 6-month curves are boot-
strapped from the relevant market quotes using multi-curve bootstrapping tech-
niques. In the second case, bootstrapped OIS and 6-month curves are instead re-
trieved from data providers such as Reuters or Bloomberg 2. The results are shown
in Figure 5.5.
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Fig. 5.5: Comparison of deterministic-basis model swaption vol. skews

It can be seen that using different OIS and 6-month curves results in a different
deterministic-basis swaption volatility skew. The differences in the input curves
result from variations in the multi-curve bootstrapping techniques; as well as the

2 Results are only present when using the Reuters curves since the differences between these and
those from Bloomberg are negligible
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type of interpolation used. These curves play a role in the calibration of the Hull-
White model to the initial OIS term structure; as well as in the initial spread values
and thus have a noticeable effect on pricing.

While neither implementation reproduces the Mercurio and Xie (2012) result
perfectly, the use of the Reuters curves produce the most consistent results and is
thus the method of choice. The mean relative error of less than half a percent is con-
sidered negligible — especially due to the uncertainties surrounding the bootstrap-
ping procedures; as well as the interpolation methods actually used by Mercurio
and Xie (2012).

5.4.2 Swaptions with Hull-White Model for OIS Rates

Volatility skews are then generated for the above mentioned strikes for varying
stochastic-basis model parameters (νxk , ρxk) following those used by Mercurio and
Xie (2012). Again, the Hull-White volatility parameter is recalibrated for each vari-
ation in the stochastic-basis model parameters in order to reproduce the results
presented by Mercurio and Xie (2012). The results can be seen in Figure 5.6:
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Fig. 5.6: Effect of varying stochastic-basis model parameters on payer swaption
volatility skews with a Hull-White OIS rate model

It is first noted that Figure 5.6 accurately reproduces the results given by Mer-
curio and Xie (2012). It can be seen that increasing the spread standard deviation
results in a rotation of the volatility skews. This can be explained by considering
that in-the-money payer swaptions have a larger chance of ending out-the-money
for larger spread standard deviations; while out-the-money payer swaptions have
a larger chance of ending in-the-money. Consequently, the in-the-money swaption
prices (and thus volatilities) are lower; while out-the-money swaption prices (and
thus volatilities) are higher.

In terms of the effect of the correlation between the OIS forward rates and the
spread (ρxk), it can be seen that an increase in the correlation from −0.5 to 0 in-
creases the degree of rotation that is observed. A negative correlation results in a
negative αxk , while the larger the absolute value of ρxk the smaller βxk . This results
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in smaller spreads and consequently lower prices (and thus volatilities) explaining
the increase in the degree of rotation.

It is important to note that although it appears as if the inclusion of stochastic-
basis has a large effect on the pricing of swaptions; every νxk parameter choice used
by Mercurio and Xie (2012) — and thus presented in Figure 5.6 — violates the con-
straint placed on the αxk and βxk parameters. Recalling Figure 4.2 from Section 4.2,
it can be seen that even the smallest νxk value of 0.015 results in significant prob-
abilities of negative spreads. Consequently, swaption prices obtained using this
parameter cannot be considered consistent and are thus not valid. In Figure 5.7,
results when using only νxk and ρxk parameters that ensure ξxk ≥ 0 for all k are pre-
sented.
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Fig. 5.7: Effect of varying stochastic-basis model parameters on payer swaption
volatility skews with a Hull-White OIS rate model

Figure 5.7 illustrates that when the constraint on αxk and βxk is enforced, the
inclusion of stochastic-basis has a minimal impact on swaption pricing in the Mer-
curio and Xie (2012) framework.

5.4.3 Swaptions with G2++ Model for OIS Rates

The two factor G2++ model for OIS rates is used to generate similar graphs with
a = 0.001, b = 0.001, σ = 0.004, ζ = 0.005 and ρG2 = −0.5 while η = 0.5. Again, it
is noted that by equating a and b, the G2++ model is forced to behave like a single-
factor model. This serves as a consistency check of our semi-analytical cap pricing
formula with a two-factor OIS rate model. The results are given in Figure 5.8.

Figure 5.8 shows similar trends to those obtained when using a Hull-White
model for the OIS rates — confirming the consistency of our extension of the stochas-
tic -basis framework of Mercurio and Xie (2012) to include a two-factor OIS rate
model when pricing swaptions. This two-factor OIS rate model, together with the
stochastic -basis factor, results in a three-factor multi-curve model. To price swap-
tions under this model requires the evaluation of a two-dimensional integral how-
ever, the implementation thereof is conducive to vectorisation techniques. Conse-
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Fig. 5.8: Effect of varying stochastic-basis model parameters on swaption volatility
skews with a G2++ OIS rate model

quently, the extra computational requirements moving from 1001 function evalua-
tions in the one-factor case, to evaluating the function on a 1001x1001 grid in the
two-factor case, results in a tenfold increase in computational requirements when
pricing swaptions across 8 strikes.

While this additional factor can be seen to result in a significant increase in com-
putational time, the current implementation (using numerical integration to evalu-
ate the two-dimensional integral) is still computationally tractable and calibrations
using this model are still possible. However, it is suggested that if additional factors
are added to either the OIS rate, or stochastic-basis factor model, then Monte-Carlo
methods should be used to evaluate the multi-dimensional integrals in the pricing
expressions.



Chapter 6

Parameter Estimation

One of the extensions to Mercurio and Xie (2012) that is considered in this disserta-
tion surrounds the parameter estimation in the stochastic-basis framework.

6.1 Issues with Parameter Estimation in this Framework

In the field of interest rate modelling, typically parameter estimation can be di-
vided into two general approaches. The first concerns the use of historical data
parameters are found though Maximum Likelihood Estimation (MLE), or Kalman
Filtering and MLE, in the case of parameter estimation for hidden processes (i.e.,
short-rate modelling since the short-rate cannot be observed in the market). The
second uses a cross-section of information from the market in the form of cap or
swaption volatility surfaces. Subsequently parameters are estimated by finding
those that best reproduce the current market prices.

At first glance, the spread model seems best suited to historical parameter esti-
mation. The spreads between OIS and LIBOR rates can be observed in the market,
and historical data should provide a wealth of information on the volatilities of the
spreads, as well as the spread correlations with OIS rates. That being said, the use
of short-rate models for OIS rates (which this work has focused on) means that no
closed-form distribution of the spreads

(
Sxk (t)

)
is available. This is because F xk (t)

follows a shifted log-normal process (see Appendix B.2.1) while χx(t) follows a log-
normal process. Consequently, the use of MLE or Kalman filtering is by no means
straight-forward and lies outside the scope of this work due to the time constraints
surrounding this dissertation. Furthermore, even if MLE or Kalman filtering was
possible, one cannot obtain the stochastic-basis model parameters independently
from those of the short-rate model. As a result, the model would be unable to take
into account market information contained in swaption or cap volatility surfaces.

This suggests the use of cross-sectional parameter estimation where the short-
rate model parameters, as well as the stochastic-basis model parameters, are es-
timated by finding those that best reproduce the market surfaces. When using a
Hull-White model for the OIS rates, this would involve the estimation of five pa-
rameters: a, σ, νx, ρx and η, where it was assumed that νxk = νx and ρxk = ρx.
Whereas when using a G2++ model for the OIS rates, eight parameters are in-
volved, namely: a, b, σ, ζ, ρG2, νx, ρx and η. Unfortunately, due to the number
of parameters in both instances, as well as the sensitivity of the pricing formula to
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the stochastic-basis model parameters one is not even able to calibrate to a model-
generated surface and recover the input parameters.

6.2 Rudimentary Calibration of the Multi-curve Model

To overcome some of the issues discussed above with reference to classical param-
eter estimation techniques, a rudimentary calibration protocol was developed to
investigate the feasibility of the calibration of this multi-curve model. A two-step
process is proposed:

1. The νxk and ρxk parameters are estimated from a historical time series of yield
curves for each k.

2. The short-rate model parameters are then calibrated to a market cap or swap-
tion volatility surface.

Each of these steps is discussed in more detail below.

6.2.1 Historical Estimation of νxk and ρxk

Using a historical time series of OIS and x-month yield curves, one can approximate
νxk and ρxk with historical spread standard deviations and correlations respectively.
For example, Figure 6.1 shows the historical spread values, Sxk (t), for a variety of
different forward rates with a 6-month underlying tenor for 22 March 2011 to 28
July 2015.
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Fig. 6.1: Historical spreads on various forward rates

Figure 6.1 provides an example of the variation of the spread over the past 6
years. Data such as this can be used to determine historical estimations of νxk and
ρxk . Table 6.1 shows the estimated parameters relevant to the pricing of a 5Y5Y
swaption using the entire historical data sample.

The first thing to note from Table 6.1 is that the estimated parameters satisfy the
constraint on αxk and βxk which ensures non-negative spreads and are thus admis-
sible spread model parameters. If this was not the case, and historical estimations
of spread parameters resulted in significant probabilities of negative spreads then
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Tab. 6.1: Historical parameter estimation

Tk νxk ρxk
5.5 0.0009 0.16
6.0 0.0009 0.17
6.5 0.0008 0.18
7.0 0.0008 0.19
7.5 0.0007 0.20
8.0 0.0007 0.21
8.5 0.0007 0.22
9.0 0.0007 0.23
9.5 0.0006 0.24
10 0.0006 0.26

the stochastic-basis framework would be a poor representation of the prevailing
environment. Furthermore, it is noted how small the spread standard deviations
are despite the volatile period in 2013. If one was to use more recent data (i.e., af-
ter March 2014) these standard deviations would be even smaller. It was shown in
Chapter 5 that the inclusion of stochastic-basis on both caps and swaptions is neg-
ligible when νxk ≤ 0.009. The historical estimations of νxk are all less than a tenth of
than this, bringing into question the effect of including stochastic-basis in cap and
swaption pricing.

6.2.2 Calibrating to a Swaption Volatility Surface

Using the historical estimates for νxk and ρxk , the calibration of the short-rate model
parameters is attempted by finding those that best reproduce a market swaption
volatility surface.

First, the calibration to a model-generated surface is attempted. A model - gen-
erated swaption volatility surface consisting of 70 ATM swaptions with varying
maturities of 1-5 as well as 7 and 10 years, and varying swap lengths of 1 to 10
years is used. Finally, the calibration of the short-rate model parameters to a market
swaption volatility surface containing the same ATM swaptions is attempted. For
continuity, market data from 3 August 2012 is used and the relative error between
the market surface and the calibrated model surface is examined. This relative error
is calculated using

Relative Error =
Model Price−Market Price

Market Price
.

Calibrating Hull-White OIS Rate Model

When using a Hull-White OIS rate model, the input parameters can be adequately
recovered. This can be seen in Table 6.2.

The parameters obtained when calibrating the Hull-White OIS rate model pa-
rameters to market data can be seen in Table 6.3 while the resulting relative error
can be seen in the Figure 6.2.
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Tab. 6.2: Hull-White calibration to model data

Parameter Input Initial Guess Output
a 0.001 0.02 0.000995
σ 0.008 0.3 0.00800

Tab. 6.3: Hull-White calibration to market data

Parameter Initial Guess Output
a 0.02 -0.01216
σ 0.3 0.00742
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Fig. 6.2: Relative error when calibrating Hull-White OIS rate model parameters to
market swaption vol. surface
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It is noted that the mean reversion parameter (a) is negative which would actu-
ally result in a ”mean-diverging” model. However, Brigo and Mercurio (2007) note
that this is a common occurrence when calibrating a Hull-White model to either
market cap or swaption volatility surfaces.

It can be seen that the calibration is by no means perfect and is especially inept
for the swaptions with shorter maturities on shorter swaps. That being said, the
relative error is, for the most, part well below 5%. The swaptions with short matu-
rities on short swaps typically perform poorly in calibrations as suggested by Brigo
and Mercurio (2007).

It is important to note that typically interest rate models are only calibrated to
the most significant swaptions in the market (ignoring those that are illiquid). Al-
ternatively, the calibration will be governed by the product that needs to be priced
and the model will only be calibrated to swaptions that are relevant to the product
itself (i.e., the product may only be influenced by certain swap rates). The results
presented here serve as a feasibility study to investigate the robustness of the im-
plementation, by attempting to calibrate a large swaption surface containing up to
70 instruments. Consequently, it can be concluded that the current implementa-
tion of the stochastic-basis framework with a one-factor OIS rate model (namely
the Hull-White short-rate model) allows for the calibration of the model parameter
to large swaption volatility surfaces.

One concern with this calibration is the dependence of αxk on the short-rate
model parameters. For each step in the optimisation, a new Var[F xk (Tk−1)] has to
be calculated since the OIS caplet prices (from which the F xk (Tk−1) volatilities are
implied) change. Implying these volatilities is fairly computationally intensive —
accounting for approximately 40% of the swaption pricing time and consequently
significantly affects the calibration time. To speed up the calibration and possibly
improve the calibration it is suggested an efficient approximation for Var[F xk (Tk−1)]
under the Hull-White model is found. Alternatively, only interest rate models that
have a closed form expressions for the variance of discrete forward rates should be
used.

Calibrating the G2++ OIS rate model

When using a G2++ model for the OIS rates the calibration is not as straight-
forward. The number of parameters to calibrate increases significantly from two to
five. In addition, there is an extra dimension in the integrals that have to be deter-
mined to calculate the swaption prices; adding to the computational requirements.
Consequently, the calibration to model data performs poorly when compared to
that of the Hull-White OIS rate model. This can be seen in Table 6.4.

It can be seen that the input model parameters are not adequately recovered.
This is concerning, as the calibration to model data is significantly simpler than
a calibration to actual market data. If the G2++ correlation parameter, ρG2, is re-
moved from the calibration then the input parameters can be adequately recovered.
This can be seen in Table 6.5.

It can be seen in Table 6.5 how the removal of one of the five parameters from
the calibration allows for the adequate recovery of the remaining parameters. The
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Tab. 6.4: G2++ calibration to model data

Parameter Input Initial Guess Output
a 0.01 0.015 0.02458
b 0.003 0.005 0.02451
σ 0.005 0.001 0.21969
ζ 0.005 0.008 0.21528
ρG2 -0.5 -0.2 -0.99958

Tab. 6.5: G2++ calibration to model data excluding ρG2

Parameter Input Initial Guess Output
a 0.010 0.015 0.00979
b 0.003 0.005 0.00298
σ 0.005 0.001 0.00501
ζ 0.005 0.008 0.00498

parameters obtained when calibrating the G2++ OIS rate model parameters to mar-
ket data can be seen in Table 6.6, while the resulting relative error can be seen in
the Figure 6.3.

Tab. 6.6: G2++ calibration to market data

Parameter Initial Guess Output
a 0.004 0.017926
b 0.004 0.026476
σ 0.008 0.008641
ζ 0.008 0.005628

When calibrating the G2++ model parameters to the swaption volatility sur-
face, it can be seen that positive mean reversion parameters are now obtained.
As was the case when using the Hull-White OIS rate model, the calibration is by
no means perfect and is again inept for the swaptions with shorter maturities on
shorter swaps. The relative error is again, for the most, part well below 5%. If the
relative errors for the case of the Hull-White OIS rate model are compared to those
for the case of the G2++ OIS rate model, a significant difference cannot be observed.
Since the G2++ model has extra degrees of freedom and does not assume the per-
fect correlation of rates when compared to the Hull-White model, it is expected
that a significantly better calibration to market data would be achieved. Contrary
to this, the sum of the relative errors is in fact less in the case of the Hull-White OIS
rate model calibration.

This contradiction speaks to the increase in the computational requirements of
pricing swaptions with stochastic-basis with a two-factor OIS rate model. While
the feasibility of our implementation has been proven by the reasonable calibration
of four of the five parameters to a signifincant swaption surface; it was expected
that the use of a two-factor OIS rate model would improve the ability of multi-
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Fig. 6.3: Relative error when calibrating G2++ OIS rate model parameters to market
swaption vol. surface

curve model to fit a market volatility surface. This was found not to be the case.
Furthermore, each calibration of the G2++ model parameters took at least 20 min-
utes. While the calibration of a single curve G2++ model to a swaption surface of a
similar size takes a few minutes according to Brigo and Mercurio (2007), it can be
seen that the inclusion of stochastic-basis greatly increases the computational re-
quirements. If this slowdown, together with the negligible effect that the inclusion
of stochastic-basis has been shown to have on swaption prices (especially when
historical estimations of the spread model parameters are used) is considered, then
the validity of the use of the stochastic-basis framework is brought into question.



Chapter 7

Conclusion

In conclusion, it was found that general pricing formulae in the multi-curve en-
vironment for FRA’s, swaps, caps/floors as well as physical delivery swaptions
could be extended under the Mercurio and Xie (2012) framework to take into ac-
count stochastic-basis. Importantly, it was shown how the fundamental choice of
the definition of the spread between OIS and LIBOR rates affects the complexity
on the resulting pricing formulae. The additive definition of spread used in this
framework is better suited for swap and swaption modelled while a multiplicative
definition may be better suited to FRA and cap/floor pricing.

Furthermore, it was possible to derive a consistent extension of the Mercurio
and Xie (2012) semi-analytical formula for physical delivery swaptions with a one-
factor OIS rate model to one with a two-factor OIS rate model. It was found that
similar semi-analytical formulae to price caps/floors for a one- and two-factor OIS
rate model could also be derived.

In terms of a fundamental review of the model, it has been shown that although
the framework uses an explicit spread model it does not preclude the possibility of
negative spreads. While this is a significant drawback of the framework, a con-
straint can be placed on the αxk and βxk parameters to ensure negligible probabilities
of negative spreads. Worryingly, the model parameters used by Mercurio and Xie
(2012) violate these constraints which results in prices being obtained where a sig-
nificant number of the realisations are not consistent with the prevailing environ-
ment.

It was also shown that the inclusion of stochastic-basis has a clear effect on the
terminal distribution of fair FRA and swap rates. As expected, the inclusion thereof
was shown to cause increase in the variation of these distributions. In addition, the
prevalence of the stochastic-basis factors was illustrated in the resulting log-normal
distributions.

The effect of the inclusion of stochastic-basis on the FRA and swap rate distri-
butions was expected to resonate with the effect on cap/floor and swaption prices.
However, when ensuring that the constraint on the αxk and βxk parameters is met
it was shown that the inclusion of stochastic-basis has a small effect on cap/floor
and swaption volatility smiles within reasonable distances from the ATM strikes.
Importantly, it was found that the parameters used by Mercurio and Xie (2012) to
price swaptions violate the necessary constraint and as a result over-estimate the
effect that stochastic-basis has on swaption prices.

Finally, issues surrounding the parameter estimation within the stochastic-basis
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framework were identified. It was shown that it is not well-suited to classic histor-
ical parameter estimation techniques such as Maximum Likelihood Estimation as
a closed-form distribution of the spread process does not exist when using a short-
rate model for the OIS rates. In addition, the number of model parameters makes
calibration to a cross-section of market information, in the form of a cap or swap-
tion volatility surface, difficult.

Instead, a rudimentary calibration procedure was found to overcome some of
these issues and was used to investigate the feasibility of calibrating this multi-
curve model. It was demonstrated that the stochastic-basis model parameters could
be estimated from a historical time-series of yield curves. Even over a period of
close to six years the variance of the spread was found to be minute, resulting in
small νxk parameters; much smaller than those used by Mercurio and Xie (2012).
That being said, the estimated parameters were shown to obey the constraints on
the spread model parameters; resulting in a consistent model. Moreover, the corre-
lation between the OIS rates and the spread was found to be positive.

Using the historical estimates for the stochastic-basis spread model parameters,
it was found that the short-rate model parameters could be calibrated by fitting
the model-generated ATM swaption volatility surface to that of the market. When
calibrating the Hull-White OIS rate parameters, the mean reversion parameter, a,
was found to be negative. Although this would result in a mean diverging model,
this was found to be consistent with results from Brigo and Mercurio (2007). The
relative calibration errors were found to be all less than 5% — excluding the swap-
tions with short maturities on short swaps. However, this is in line with Brigo and
Mercurio (2007) who suggest that these swaptions present difficulties when using a
short-rate model. This calibration confirmed the feasibility of our implementation
of the stochastic-basis framework to price swaptions since a reasonable calibration
of a relatively large swaption surface of 70 swaptions was achieved. When using
this framework to price other product such as CMS spread options one would only
need to calibrate to the swaptions relevant to the product; which would improve
the calibration error.

In addition to being able to be combined with any OIS rate model, the Mercurio
and Xie (2012) stochastic-basis framework was found to allow for the derivation of
semi-analytical caps/floors and swaption pricing formulae since the use of the ad-
ditive definition of spreads allows for the analytical evaluation of one of the pricing
integrals. That being said, it was found that the inclusion of stochastic-basis under
this framework does not have a significant impact on the pricing of the these in-
terest rate derivatives when admissible spread model parameters are used. The
effect of stochastic-basis is only significant when the chosen parameters result in
large probabilities of negative spreads which is not consistent with the prevailing
environment. In addition, it can be seen that although there has been a large diver-
gence of spreads since the financial crisis of 2007 the spreads remain fairly constant
for significant periods of time and are volatile only for short periods. As a result,
the possibility of including jump processes in the stochastic-basis factors model is
suggested as a log-normal process is not a good representation of these features.
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Appendix A

Supplementary Derivations for
Interest Rate Derivatives

A.1 FRA Rate Derivation
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A.2 Swaption Pricing Derivation

Using the definition of Sxa,b,c,d(T
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Finally this gives
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Interest Rate Models

B.1 The Hull and White (1993) Short-rate Model

In this section we introduce the Hull and White (1993) short-rate model and derive
the results required for its use as the OIS rate model when pricing swaptions. These
results include:

• Fitting the model to the initial observed term structure

• The distribution of the short-rate under the QT forward measure

• The volatilities of discrete forward rates

B.1.1 Model Fundamentals

The classic formulation of the Hull and White (1993) extension of the Vasicek (1977)
short-rate model is given by:

dr(t) = (v(t)− ar(t))dt+ σdWt (B.1)

where a and σ are constants and v(t) is a deterministic function which is chosen to
fit the initial term structure of interest rates.

The ability of the Hull-White model to fit the initial term structure is clearly
attractive. However, determining this v(t) function that allows for this is often a
non-trivial task as will be seen below.

The Hull-White model is an Affine Term Structure Model and thus bond prices
are of the form:

P (t, T ) = eA(t,T )−B(t,T )r(t) (B.2)

where in the case of the Hull-White model the functions B(t, T ) and A(t, T ) can be
shown to be:

B(t, T ) =
1

a
(1− e−a(T−t)) (B.3)

A(t, T ) =

∫ T

t
−v(u)B(u, T ) +

1

2
σ2B2(u, T ) du (B.4)
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B.1.2 Fitting the Model to the Initial Term Structure

Clearly, the function v(t) needs to be chosen to ensure that the model reproduces the
term structure of interest rates observed in the market. That is, P (0, T ) = PM (0, T )
where PM (0, T ) is the market price of the bond with maturity T at time 0. It can be
shown that to ensure this v(t) must be given by:

v(t) =
∂fM (0, t)

∂T
+ afM (0, t) +

σ2

2a
(1− e−2at) (B.5)

where fM (0, T ) denotes the market instantaneous forward rate for maturity T de-
fined by:

fM (0, T ) = −∂ lnPM (0, T )

∂T
(B.6)

The issue with this formulation is that it requires observed forward rates as well
as their derivatives. The observed term structure of interest rates is typically boot-
strapped from a discrete set of market quotes and is thus heavily dependent on
interpolation. Consequently, the differentiability of the yield curve and especially
the forward curve is very seldom guaranteed.

Certain interpolation methods such as those presented by (Hagan and West,
2006) as well as (Du Preez and Maré, 2013) ensure a continuous forward curve i.e.
a differentiable bond curve. However even these continuous forward curves are
not differentiable at the knot points (the specific points on the yield curve that the
bootstrapped rates apply to). Clearly this makes the numerical implementation of
Equation B.5 difficult.

That being said when using the Hull-White model to price bonds, the explicit
form of the v(t) function given by Equation B.5 is not needed. This can be shown
by solving the SDE given by Equation B.1 which gives:

r(t) = e−a(t−s)r(s) +

∫ t

s
v(u)e−a(t−u)du+ σ

∫ t

s
e−a(t−u)dW (u) (B.7)

Looking at the second term and substituting Equation B.5 for v(u) gives∫ t

s
v(u)e−a(t−u)du =

∫ t

s
e−a(t−u)

∂fM (0, u)

∂T
du+ a

∫ t

s
e−a(t−u)fM (0, u)du

+
σ2

2a

∫ t

s
e−a(t−u)(1− e−2at)du.

Using integration by parts, the first integral can expressed as∫ t

s
e−a(t−u)

∂fM (0, u)

∂T
du = fM (0, t)− fM (0, s)e−a(t−s) − a

∫ t

s
e−a(t−u)fM (0, u)du.
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As a result,∫ t

s
v(u)e−a(t−u)du = fM (0, t)− fM (0, s)e−a(t−s) +

σ2

2a

∫ t

s
e−a(t−u)(1− e−2at)du

= fM (0, t)− fM (0, s)e−a(t−s) +
σ2

2a2

[
1− e−a(t−s) + e−2at − e−a(t+s)

]
= fM (0, t)− fM (0, s)e−a(t−s) +

σ2

2a2

[
(1− e−at)2 − e−a(t−s)(1− e−as)2

]
= θ(t)− θ(s)e−a(t−s),

where θ(t) is given by

θ(t) = fM (0, t) +
σ2

2a2
(1− e−at)2. (B.8)

Consequently, rt can be written as

r(t) = e−a(t−s)r(s) + θ(t)− θ(s)e−a(t−s) + σ

∫ t

s
e−a(t−u)dW (u).

Defining a new process x (which we denote as the short-rate factor) under the risk-
neutral measure Q by

dx(t) = −ax(t)dt+ σdW (t), x(0) = 0

⇒ x(t) = e−a(t−s)x(s) + σ

∫ t

s
e−a(t−u)dW (u).

This allows us to write r(t) as

r(t) = θ(t) + x(t). (B.9)

Finally bond prices can be expressed as

P (t, T ) = eA(t,T )−B(t,T )(θ(t)+x(t)), (B.10)

where B(t, T ) is given as before in Equation B.3

B(t, T ) =
1

a

[
1− e−a(T−t)

]
,

whileA(t, T ) is obtained by integrating the expression given in Equation B.4 to give

A(t, T ) = ln

(
PM (0, T )

PM (0, t)

)
+

[
B(t, T )fM (0, t)− σ2

4a
(1− e−2at)B(t, T )2

]
.

This formulation can be easily numerically implemented to model bond prices
since derivatives of the forward curve are no longer required and x(t) is driven by a
simple linear SDE. Consequently calibrating the model to the initial term structure
is relatively straightforward so long as the interpolation scheme ensures a continu-
ous forward curve. In addition the distribution of x(t) under the risk-neutral or any
forward measure can be easily determined enabling the straightforward modelling
of bond prices. The distribution of x(t) (which we denote as the short-rate factor)
under forward measures is presented in the following section.
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B.1.3 Hull-White Short-rate Factor Distribution

Given the stochastic differential equation of the short-rate factor x(t) under the
risk-neutral measure Q:

dx(t) = −ax(t)dt+ σdW (t), x0 = 0

Since Hull-White is an Affine Term Structure model the volatility of the T -maturity
zero-coupon bond (P (t, T )) is simply given by −σB(t, T ). Consequently, the dy-
namics under the time-T forward measure QT with associated numeraire P (t, T )
can be easily shown to be

dx(t) =
[
−ax(t)−B(t, T )σ2

]
dt+ σdW T (t), (B.11)

where W T := W +
∫ t
0 σB(s, T )ds is a QT -Brownian motion with

B(t, T ) =
1

a

[
1− e−a(T−t)

]
.

The SDE given by Equation B.11 can be seen to be linear with additive noise so we
define

z(t) = e−
∫ t
0 −a ds = eat Zt = z(t)x(t).

Then by Itô’s formula

dZt = az(t)x(t) dt+ z(t) dx(t)

= z(t)[ax(t)−B(t, T )σ2 − ax(t)]dt+ z(t)σdW T (t)

= −z(t)B(t, T )σ2dt+ z(t)σdW T (t)

∴ Zt = Z0 − σ2
∫ t

0
z(s)B(s, T )ds+ σ

∫ t

0
z(s)σdW T (s)

∴ z(t)x(t) = x(0)− σ2
∫ t

0
z(s)B(s, T )ds+ σ

∫ t

0
z(s)dW T (s)

∴ x(t) = e−atx(0)− σ2
∫ t

0
B(s, T )e−a(t−s)ds+ σ

∫ t

0
e−a(t−s)dW T (s)

∴ x(t) = −σ2
∫ t

0

e−a(t−s) − e−a(T+t−2s)

a
ds+ σ

∫ t

0
e−a(t−s)dW T (s).

Consequently,

x(T ) = −σ2
∫ T

0

e−a(T−s) − e−2a(T−s)

a
ds+ σ

∫ T

0
e−2a(T−s)dW T (s).
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Recalling Itô’s isometry which states that
∫
h(s)dW (s) ∼ N

(
0,
∫
h2(s)ds

)
if h(s) is

deterministic, it follows that

ET [x(T )] = µ(T ) :=− σ2
∫ T

0

e−a(T−s) − e−2a(T−s)

a
ds

=− σ2

a2
[
1− e−aT

]
+

σ2

2a2
[
1− e−2aT

]

VarT [x(T )] = ν(T ) := σ2
∫ T

0
e−2a(T−s)ds

=
σ2

2a

[
1− e−2aT

]
.

It is also noted that given the above expectation and variance under theQT -forward
measure the probability density function of y(T ) is

1√
2πν(T )

exp

{
− [y − µ(T )]2

2ν(T )

}
.

B.2 Explicit Form of Discount Factors

As seen in Henrard (2010a), bond prices under the Hull-White model under the
Q
Txk
D can be explicitly represented using a standard normal random variable

PD(T xθ , T
x
i ) =

PD(0, T xi )

PD(0, T xθ )
exp (−0.5γ2i − γiZ). (B.12)

where

γi =

∫ Tθ

0
[σB(s, Ti)− σB(s, Tθ)] ds

=
1

2a
[σB(Tθ, Ti)− σB(Tθ, Tθ)]

2 − 1

2a
[σB(0, Ti)− σB(0, Tθ)]

2

(B.13)
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B.2.1 Hull-White Forward Rate Distribution

In this section we attempt to derive the distribution of the discrete forward rates
F xk (t) in the Hull-White short rate model under the T xk forward measure. This is
required to determine the volatilities of the discrete forward rates which are one of
the input to the model. First we recall the definition of the discrete forward rate at
time t:

F xk (t) :=
1

τxk

[
PD(t, T xk−1)

PD(t, T xk )
− 1

]
(B.14)

which is the simple rate applying over the period [T xk−1, Tk] for k = 1, . . . ,Mx where
τxk is the year fraction between T xk−1 and Tk. Clearly:

dF xk (t) =
1

τxk
d

(
P (t, T xk−1)

P (t, T xk )

)
Since Hull-White is an affine term structure model bond have been seen to be given
by Equation B.2 and thus the risk neutral bond dynamics are given by:

dP (t, T )

P (t, T )
= rdt− σB(t, T )dWQ

t

First using Ito’s lemma and then changing measure to the T xk -forward measure

with associated numeraire P (t, T xk ) noting that
P (t,Txk−1)

P (t,Txk )
is a QT

x
k -martingale it can

be shown that:

d
(
P (t,Txk−1)

P (t,Txk )

)
(
P (t,Txk−1)

P (t,Txk )

) = [...]dt− σ
[
B(t, T xk−1)−B(t, T xk )

]
dWQ

t

= −σ
[
B(t, T xk−1)−B(t, T xk )

]
dWQTk

t

where WQTk
t is a QT

x
k Brownian motion.

As a result it can be seen that:

dF xk (t) =
1

τxk

(
P (t, T xk−1)

P (t, T xk )

)
σ
[
B(t, T xk )−B(t, T xk−1)

]
dWQTk

t

=
(
F xk (t) + 1

τxk

)
σ
[
B(t, T xk −B(t, T xk−1))

]
dWQTk

t

This is the SDE of a shifted log-normal process and thus has no closed form
distribution. As a result, we are forced to use an alternate approach to obtain the
discrete forward rate volatilities.
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B.2.2 Implying Forward Rate Volatilities using Caplet Prices

An alternative approach to obtaining the forward rate volatilities is to imply them
from caplet prices. If we consider a caplet written on OIS rates then the time T xk
pay-off is given by

τxk
[
F xk (T xk−1)−K

]+
, (B.15)

where F xk (T xk−1) is the OIS forward rate for the period [T xk−1, T
x
k ] set at T xk−1.

Since the OIS forward rates, F xk (t), are martingales under the T xk forward mea-
sure, the pricing follows the classic single-curve approach

Cplt(t,K;T xk−1, T
x
k ) = τxkPD(t, T xk ) ET

x
k
x

{[
F xk (T xk−1)−K

]+ |Ft} .
Assuming that the forward rates F xk (t) are lognormal which was formally justified
by the LMM of Brace et al. (1997) allows us to write the QT

x
k dynamics of F kk (t) as:

dF xk (t) = σkF
x
k (t)dZk(t), t ≤ T xk−1

where σk is a constant and Zk is a QT
x
k Brownian motion. This leads to the Black-

like pricing formula

Cplt(t,K;T xk−1, T
x
k ) = τxkPD(t, T xk )Bl

(
K,F xk (t), σk

√
T xk−1 − t

)
, (B.16)

where

Bl(K,F, v) = FΦ

(
ln(F/K) + v2/2

v

)
−KΦ

(
ln(F/K)− v2/2

v

)
.

Under the Hull-White model, closed form solutions for options on zero-coupon
bonds and as a result closed form solutions for caplets exist. As a result, one can de-
termine caplet prices and imply the volatility of the forward rates, σk, using Equa-
tion 3.12.

It can be shown that the price at time t of a European put option with strike X
and maturity K written on a zero-coupon bond maturing at time S is given by

ZBP(t, T, S,X) = XP (t, T )Φ(−h+ σp)− P (t, S)Φ(−h), (B.17)

where,

σp = σ

√
1− e−2a(T−t)

2a
B(T, S)

h =
1

σp
ln
(

P (t, S)

P (t, T )X

)
+
σp
2
.

Noting that B(t, T ) is given by Equation B.3.
To use the expression for zero-coupon bond options prices to price caplets, one

notes that the T xk pay-off given in Equation B.15 is equivalent to a pay-off at T xk−1
of

τxk
[
F xk (T xk−1)−K

]+
1 + F xk (T xk−1)τ

x
k

.
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However,

τxk
[
F xk (T xk−1)−K

]+
1 + F xk (T xk−1)τ

x
k

= (1 +Kτxk )

(
1

1 +Kτxk
− 1

1 + F xk (T xk−1)τ
x
k

)+

= (1 +Kτxk )

(
1

1 +Kτxk
− P (T xk−1, T

x
k )

)+

.

This is the same pay-off of (1+Kτxk ) many European put options with strike 1
1+Kτxk

and maturity T xk−1 written on the zero-coupon bond PD(t, T xk ). The caplet price can
therefore be written as

Cplt(t,K;T xk−1, T
x
k ) = (1 +Kτxk ) ZBP

(
t, T xk−1, T

x
k ,

1

1 +Kτxk

)
. (B.18)

Consequently, we price the relevant OIS caplet using Equation B.18 and then imply
the required F xk (T xk−1) volatility using Equation B.16.



B.3 The Two-Additive-Factor Gaussian (G2++) Short-Rate Model 63

B.3 The Two-Additive-Factor Gaussian (G2++) Short-Rate
Model

In this section we introduce the G2++ short-rate model and present the results re-
quired for its use as the OIS rate model in our multi-curve model with stochastic-
basis. Again these results include:

• Fitting the model to the initial observed term structure;

• The distribution of the short-rate under the QT forward measure;

• The volatilities of discrete forward rates.

It is noted we rely heavily on the results presented in Brigo and Mercurio (2007).

B.3.1 Model Fundamentals

The G2++ model is an interest rate model where the addition of two Gaussian fac-
tors with correlation ρ as well as a deterministic function models the short-rate
process. Clearly the G2++ model is closely related to a two-factor extension of the
Hull-White model (Hull and White, 1994). Brigo and Mercurio (2007) in fact prove
the natural equivalence of these two approaches however, we use the G2++ formu-
lation due to the ease of implementation and less complicated formulas.

Under this framework, the dynamics of the short-rate under the risk neutral-
measure are assumed to be follow

r(t) = x(t) + y(t) + ϕ(t), r(0) = r0, (B.19)

where the process x(t) and y(t) are driven by

dx(t) =− ax(t)dt+ σdW1(t), x(0) = 0 (B.20)
dy(t) =− by(t)dt+ ζdW2(t), y(0) = 0, (B.21)

with dW1(t)dW2(t) = ρdt where −1 ≤ ρ ≤ 1 and r0, a, b, σ, ζ are positive con-
stants. The ϕ(t) is a deterministic function to ensure the observed term-structure is
fitted with ϕ(0) = r0. It is noted that x(t) is the same as the Hull-White short-rate
factor defined in the previous section.

Time-t zero-coupon bond prices can be shown to be given by

P (t, T ) =exp

{
−
∫ T

t
ϕ(u)du− 1− e−a(T−t)

a
x(t)

− 1− e−b(T−t)

b
y(t) +

1

2
V (t, T )

}
, (B.22)
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where

V (t, T ) =
σ2

a2

[
T − t+

2e−a(T−t)

a
− e−2a(T−t)

2a
− 3

2a

+
ζ2

b2

[
T − t+

2e−b(T−t)

b
− e−2b(T−t)

2b
− 3

2b

+ 2ρ
σζ

ab

[
T − t+

e−a(T−t) − 1

a
+
e−b(T−t) − 1

b
− e−(a+b(T−t) − 1

a+ b
. (B.23)

(B.24)

B.3.2 Fitting the Model to the Initial Term Structure

Brigo and Mercurio (2007) show that the G2++ model fits the observed term-structure
if and only if for each T :

ϕ(T ) =fM (0, T ) +
σ2

2a2
(1− e−aT )2

+
ζ2

2b2
(1− e−bT )2 + ρ

σζ

ab

(
1− e−aT

) (
1− e−bT

)
(B.25)

Similarly to the Hull-White one-factor case, the deterministic function requires the
market instantaneous forward rates, fM (0, T ), which were defined in Equation
B.6. To obtain these market instantaneous forward rates, one has to differentiate
the market bond (discount) curve. However, the market bond curve is built using
bootstrapping procedures for a finite set of maturities via interpolation. Interpola-
tion methods do not necessarily guarantee the differentiability of this bond curve
which appears to complicate the implementation of the G2++ model. That being
said, in order to price bonds, only the integral of the ϕ function between two times
is required. Using Equation B.25 enables us to evaluate this integral and it can be
shown that

exp

{
−
∫ T

t
ϕ(u)du

}
=
PM (0, T )

PM (0, t)
exp

{
− 1

2

[
V (0, T )− V (0, t)

]}
. (B.26)

Consequently, the only market curve that is required is the market bond curve
which does not need to be differentiated and it is only required for certain ma-
turities - limiting the need for interpolation.

As a result, the time-t zero-coupon bond prices can therefore be expressed as

P (t, T ) =
PM (0, T )

PM (0, t)
exp

{
A(t, T )

}
, (B.27)

where

A(t, T ) :=
1

2

[
V (t, T )− V (0, T ) + V (0, t)

]
− 1− e−a(T−t)

a
x(t)− 1− e−b(T−t)

b
y(t). (B.28)
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This formulation, like the Hull-White one factor model can be easily implemented
to model bond prices since x(t) and y(t) are driven by simple linear SDE’s. In the
next section we present the distributions of the x(t) and y(t) processes under the
forward measure.

B.3.3 G2++ Short-rate Factor Distributions

As given in Brigo and Mercurio (2007), the processes x(t) and y(t) evolve under the
QT forward measure according to

dx(t) =
[
− ax(t)− σ2

a

(
1− e−a(T−t)

)
− ρσζ

b

(
1− e−b(T−t)

) ]
dt+ σdW T

1 (t) (B.29)

dy(t) =
[
− bx(t)− ζ2

b

(
1− e−b(T−t)

)
− ρσζ

a

(
1− e−a(T−t)

) ]
dt+ ζdW T

2 (t), (B.30)

where W T
1 and W T

2 are QT Brownian motions with dW T
1 (t)dW T

2 (t) = ρdt
It can also be shown, using a similar derivation to that presented in Section

B.1.3, that the explicit solutions for x(t) and y(t) are given by

x(t) =x(s)e−a(T−t −MT
x (s, t) + σ

∫ t

s
e−a(T−u)dW T

1 (u)

y(t) =y(s)e−b(T−t −MT
y (s, t) + σ

∫ t

s
e−b(T−u)dW T

2 (u),

(B.31)

where

MT
x (s, t) =

(
σ2

a2
+ ρ

σζ

ab

)[
1− e−a(t−s)

]
− σ2

2a2

[
e−a(T−t) − e−a(T+t−2s

]
− ρσζ

b(a+ b)

[
e−b(T−t) − e−bT−at+(a+b)s

]
MT
y (s, t) =

(
ζ2

b2
+ ρ

σζ

ab

)[
1− e−b(t−s)

]
− ζ2

2b2

[
e−b(T−t) − e−b(T+t−2s

]
− ρσζ

b(a+ b)

[
e−a(T−t) − e−aT−bt+(a+b)s

]
.

As a result, the short-rate factors can be seen to bivariate normal with correlation ρ
and means and variance given by

ET [x(T )] =−MT
x (0, T ) (B.32)

VarT [x(T )] =

∫ T

0
σ2e−2a(T−u)du (B.33)

=
σ2

2a

[
1− e−2aT

]
, (B.34)
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and

ET [y(T )] =−MT
y (0, T ) (B.35)

VarT [y(T )] =

∫ T

0
ζ2e−2b(T−u)du (B.36)

=
Tζ2

2b

[
1− e−2bT

]
. (B.37)

B.3.4 Implying Forward Rate Volatilities using Caplet Prices

Since the G2++ model is also a short-rate model, we follow the approach used for
the Hull-White one-factor model and imply the discrete forward rate volatilities
from caplet prices (see Section B.2.2).

Under the G2++ model, closed form solutions for options on zero-coupon bonds
and as a result closed form solutions for caplets exist. As a result, one can deter-
mine caplet prices and imply the volatility of the forward rates, σk, using Equation
3.12.

It can be shown that the price at time-t of a European put option with strike X
and maturity T written on a zero-coupon bond maturing at time S is given by

ZBP(t, T, S,X) =XP (t, T )Φ

 lnXP (t,T )
P (t,S)

Σ(t, T, S)
− 1

2
Σ(t, T, S)


− P (t, S)Φ

 lnXP (t,T )
P (t,S)

Σ(t, T, S)
+

1

2
Σ(t, T, S)

 ,

(B.38)

where

Σ(t, T, S)2 =
σ2

2a3

[
1− e−a(S−T )

]2 [
1− e−2a(T−t)

]
+

ζ2

2b3

[
1− e−b(S−T )

]2 [
1− e−2b(T−t)

]
+ 2ρ

σζ

ab(a+ b)

[
1− e−a(S−T )

] [
1− e−b(T−t)

] [
1− e−(a+b)(T−t)

]
.

To use the expression for zero-coupon bond options prices to price caplets, one
notes that the pay-off of the caplet with reset date T xk−1 and payment date T xk and
strike K is equivalent to the pay-off of (1 +Kτxk ) many European put options with
strike 1

1+Kτxk
and maturity T xk−1 written on the zero-coupon bond PD(t, T xk ). The

caplet price can therefore be written as

Cplt(t,K;T xk−1, T
x
k ) = (1 +Kτxk ) ZBP

(
t, T xk−1, T

x
k ,

1

1 +Kτxk

)
. (B.39)
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