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Abstract

We study the multiple radiative gluon emission off a massless and highly energetic

quark in the pQCD picture. We introduce the Maximally Helicity Violating (MHV) tech-

niques to cope with the complexities in computing cross sections in multi-jet QCD. The

multiphoton emission in QED is reviewed to emphasize the efficiency of the MHV ap-

proach. We show that the computation of the multiple photon emission current provides

insight into the understanding of the multiple radiative gluon emission in QCD. We then

compute the momentum distribution for one, two and three soft and collinear radiative

gluons from a hard struck quark. Our MHV results exhibit non-Abelian information about

the correlation of gluons. As a phenomenological analysis, we study the energy spectrum

for emitting radiative gluons using our MHV results. By comparing the MHV and the

standard Poisson approximation of uncorrelated multiple emission results, we see that

there is significant difference between the two methods.
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Chapter 1

Introduction

One of the prominent features of the non-Abelian theory of the strong force or Quan-

tum Chromodynamics (QCD) at low energy is color confinement. Color confinement is

a property of QCD which basically states that isolated quarks and gluons cannot exist

in nature [1]. In this energy regime, the non-Abelian nature of QCD makes the theory

extremely hard to solve and it may even be impossible to analytically obtain a solution.

Indeed, due to the strength of the coupling constant, the usual perturbative approach

cannot be applied and one has to rely on numerical approaches such as Lattice QCD

(LQCD) [2].

Unlike the quantum field theory of electrodynamics (QED), the coupling strength of

QCD is weak at short distances, that is at high energy. The weakening of the coupling

constant is known as asymptotic freedom. The property of asymptotic freedom was dis-

covered by D. Gross and F. Wilczek [3] and independently by D. Politzer in 1973 [4]. This

discovery leads to the prediction of the existence of a deconfined state made of free quarks

and gluons [5,6]. The aim of heavy-ion experiments at the Relativistic Heavy Ion Collider

(RHIC) at the Brookhaven National Laboratory (BNL) in the United States and the Large

Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in

Switzerland is to collide heavy-ions so as to create immensely high energy densities which

could produce a system of deconfined quarks and gluons [7, 8].

In 2003, by making head-on collisions between gold-ions (Au-Au) at the center of mass

energy of
√
sNN ∼ 200 GeV, scientists at RHIC for the first time produced an ultra-hot

and dense soup made of asymptotically free strong-interacting quarks and gluons [9–12].

This new state of matter characterized by an equilibrium system composed of deconfined

quarks and gluons is known as Quark-Gluon Plasma (QGP) [13, 14]. Starting in 2010,

1



Chapter 1. Introduction 2

CERN extended the work at BNL to even higher energy and density by colliding lead-ions

(Pb-Pb) [15–18]. Data collected from LHC have confirmed the existence of QGP. One of

the most exciting results from experiments conducted both at CERN and RHIC is the

depletion of high transverse momentum (p⊥) hadrons [19–21] which is a signature of a

color opaque medium, technically known as jet quenching. The term jet quenching refers

to the modification of the evolution of a high energetic parton passing through the QGP

due to its interaction with the medium [22]. Data collected at heavy-ion experiments

(RHIC and LHC) suggested that jet quenching is a consequence of the energy loss of the

primordial parton [23–26]. Jet quenching is important because it provides a valuable tool

to probe the properties of quark gluon plasma produced in heavy-ion collisions [27].

The jet quenching phenomenon can be understood in the following way: the formation

of a deconfined quark-gluon plasma at a very early stage of a relativistic heavy-ion collisions

engenders the creation of high momentum partons (quarks or gluons). In high energy

regimes (coupling constant αs � 1), the physics of the QGP-matter is governed by the

weak-coupling physics of Quantum Chromodynamics (QCD) [28,29] which is in the domain

of applicability of perturbative-QCD (pQCD). Indeed, due to the Asymptotic Freedom

of QCD, quark and gluon interactions become very weak at very high momenta [3, 4,

30]. Thus, in the weakly-coupled regime one may use pQCD to study the physics of

the QGP [31–33]. The interaction of these self-generated partons with the surrounding

medium leads to an energy loss. The exact source of parton energy loss is directly tied

to the balance between collisional energy loss and radiative energy loss. The collisional

energy loss occurs when the self-generated parton loses energy via elastic collision with

other particles composing the medium [34]. On the other hand, the inelastic scattering

of a high energy parton and a thermal gluon can yield the emission of gluon radiations

(Bremsstrahlung gluons) and the decrease of the energy [28, 35–37]. Data collected from

ultrarelativistic heavy-ion experiments at LHC suggested that in the high energy regime

(ET > 50 GeV), jet modification appears to be dominated by the radiative energy loss

[28, 38]. The evaluation of the amount of energy lost–via radiative process–during the

interaction with the medium can provide insights into the dynamics of the constituent of

QGP.

The study of the jet energy loss has stimulated the need to develop innovative many-

body perturbative QCD approaches. All of the computation of the radiative energy loss

formalisms were limited in the single gluon radiation [39,40]. The non-Abelian behavior of
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QCD makes the calculation beyond the first order an extremely hard problem. However,

in order to fully understand what is happening on the experimental side, a realistic energy

loss model must include multiple gluon emission [27]. From the Quantum Electrodynamic

(QED) perspective, the concept of multiple soft and collinear radiative photon emission is

fully understood [41]. The probability distribution for emitting multiple radiative photons

has been resummed and shown to follow a Poisson distribution

dN (n)
γ ({si}) =

1

n!

n∏
i=1

dN (1)
γ (si), (1.0.1)

where dN
(1)
γ (si) represents the differential probability distribution for emitting a photon

with soft momentum si. This suggests that each emission of radiative photons is indepen-

dent. In some energy loss formalisms such as GLV (Gyulassy, Levai and Vitev) [22,42,43]

and ASW (Armesto, Salgado and Wiedemann) [22], multiple gluon emission is computed

using a similar assumption where the distribution follows the Poisson convolution of the

single inclusive gluon distribution. However, a question remains as to whether the glu-

ons are emitted independently (Poisson Ansatz) or not. The main difference between the

theory of electrodynamic and the strong force lies in the fact that QCD is non-Abelian.

Therefore, it is expected that the gluons are correlated and the distribution should exhibit

a non-Poissonian nature.

The present thesis brings a new approach to the study of the radiative energy loss

formalism in QGP using rececnt mathematical tools in the computation of scattering am-

plitudes. In Chapter 2, we lay the foundations for understanding the results accomplished

in Chapter 3,4,5. For the sake of total pedagogical clarity, we briefly review some basic

mathematical tools incorporated into the so-called Maximally Helicity Violating (MHV)

techniques. First, we begin by introducing the spinor helicity formalism. In particular,

we devote ourselves to its formulation for massless gauge theories1. We show that written

in terms of the spinor variables, most of the amplitudes contributing to a given physical

process vanish and the non-vanishing ones possess a very simple analytical structure. In

order to emphasize the simplicity of using spinor variables, we compute the well known

two-to-two pure gluon process and compare the result to the expression found in literature.

The presence of the color factors makes calculations in QCD extremely complicated. In

order to reduce the color degrees of freedom in QCD processes, we introduce the color-

1Despite the fact that the spinor helicity formalism was initially formulated for massless particles,

generalization to include massive particles has been put forward in [44–47].
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kinematic decomposition. Separating the kinematic components to the color factor makes

the process of computing scattering amplitudes much easier. We then briefly move to

the formulation of the little group scaling in the context of the spinor helicity formalism.

Scattering amplitudes are objects that should remain invariant under little group transfor-

mation, and from this basic principle we show how to construct in a very simple way the

expression of any amplitudes in Yang-Mills theory. At the end of the chapter, we introduce

the famous BCFW (Britto-Cachazo-Feng-Witten) on-shell recursion relation [48,49]. This

kind of relation allows us to construct recursively any higher order amplitudes from the

most basic and fundamental three-point amplitudes. This on-shell recursion will become

important when we study the multiple radiative gluon emission in QCD. The BCFW ex-

ploits the hidden symmetries of the scattering amplitudes that are made manifest by the

spinor helicity formalism.

In Chapter 3, we first review the calculation of the full cross section of the four-point

QCD process (qg → qg) by decomposing the amplitude into three-point subamplitudes

using the BCFW on-shell recursion. The little group along with the spinor helicity formal-

ism is then used to compute the three-point subamplitudes. We show that the simplicity

and the power of the MHV techniques makes the computation of two-to-two scattering

processes in QCD easier. From the computation of the qg → qg process, we construct

the MHV formula for a process involving two gluons and one quark-antiquark pair. For

the sake of generality, we compute in Section 3.4 the general formula for the full MHV

and MHV (anti-MHV) amplitudes for any arbitrary number of gluons with one quark

antiquark pair. This has been done by relying on the power of the BCFW on-shell recur-

sion. The results from Chapter 3 will be crucial to the study of the radiative energy loss

formalism in QGP. The calculation of the kth-order Next-to-MHV (NkMHV) amplitudes

is presented in the next section.

Chapter 4 is devoted to the analytical study of the multiple radiative emission in

QCD, which might provide a crucial insight towards the full understanding of radiative

energy loss phenomena in QGP. We study the process in which a highly energetic quark

interacts hardly with an energetic gluon–represented by the QCD process, qg → qg–

leading to radiative emission. In particular, we study how the momentum distribution of

emitting radiative gluons changes in the soft and collinear limit if we take into account

the non-Abelian nature of QCD. The first section is a review of the multiple photon

emission in QED as represented in Fig.4.1. The main objective is to show, using the MHV
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techniques, that the total momentum distribution is given by the product of each emission

of a photon. The exponentiation of the final distribution gives the Poisson distribution.

The next sections are dedicated to the calculation of the momentum distribution for the

emission of one, two, and three radiative gluons. Using the soft-collinear approximation,

we successfully derive the multiplicity distribution for multiple radiative gluon emission

beyond the usual Poisson approximation. Our expressions differ from the usual Poisson

approximation results by a correction term which comes from the correlation between the

emitted gluons. This correction term represents the non-Abelian nature of the strong

force.

In oder to qualitatively assess the relevance of our results, we numerically compute in

Chapter 5 different physical quantities. We first start by parameterizing the kinematics.

We consider a configuration in which the primordial quark is significantly deflected by

the medium such that the outgoing quark is perpendicular to the direction of the initial

quark. As stated before, the radiative gluons are assumed to be emitted with a soft

momentum (si → 0) and a very small angle (θi ∼ 0) with respect to the outgoing quark.

In fact, the radiative gluons are allowed to take only a very small fraction of energy xi

from the primordial quark. In Section 5.5, we test our results under the strong angular

ordering limit. When the radiative gluons have strong angular ordering, interactions

between the emitted gluons become small and the results follow the Poisson approximation,

as they should. In Section 5.6, we compute the convoluted probability density of the total

fractional energy given by ε =
∑

i ωi/E for a quark jet with an initial energy E = 100

GeV. We perform the numerical calculation of both the expected Poisson results and the

MHV results for one, two and three gluon case and compare the results.

Conclusions are drawn in Chapter 6, with a summary of all the main results and a

brief discussion. In addition, we also suggest further developments and outlooks of our

current research. Technical details, such as the conventions for the spinor variables, the

computations of the color factors, and the calculations of the Next-to-MHV amplitudes

are shown in Appendices A, B, C, and D.



Chapter 2

MHV Techniques

The scattering amplitudes of on-shell particles are the most basic quantities in quantum

field theory. They lie directly in the heart of high energy phenomenology physics providing

a link between theoretical predictions and experimental data. In the weak coupling regime,

scattering amplitudes in QCD are given as a perturbative expansion of a set of Feynman

diagrams that encode the mathematical expressions that sum to the amplitude. The

conventional method of computing scattering processes, however, has many drawbacks

when it comes to computing QCD processes. Despite the complications arising by the

Feynman diagram methods, the final results of scattering amplitudes can be rather simple

and compact. For the last two decades, tremendous efforts have been devoted toward

reformulating scattering amplitudes in a different way in order to expose the underlying

structure responsible for the simplicity of the final results [50]. For massless theories

in particular, there is a variety of methods that simplify the calculation of scattering

amplitudes enormously, both at tree and loop levels. These techniques are collectively

referred to as on-shell techniques or Maximally Helicity Violating1 (MHV) techniques. At

very high temperature and high densities, the masses of the quarks and the gluons are

relatively small compared to the QCD scale (ΛQCD), thus neglecting the masses of these

particles are justified when studying QCD processes in high energy regime.

1The Maximally Helicity Violating or in short MHV comes from studying 2→ n scattering. By cross-

ing symmetry, an incoming particle with positive (or respectively negative) helicity becomes an outgoing

particle with negative (or respectively positive) helicity. Thus, considering all the momentum to be outgo-

ing, the process A(1+, · · · , {i−, j−}, · · · , n+) crosses over 1−2− → 3+ · · · {i−, j−} · · ·n+; this is ”Helicity

Violating”. We will see in the next sections that these kinds of amplitudes are the non-vanishing helicity

violating amplitudes; that is the reason why we call them: Maximally Helicity Violating.

6
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The first part of this chapter is devoted to the introduction of some preliminary back-

grounds in computing scattering amplitudes in gauge theories using the MHV techniques.

In particular, we discuss the spinor helicity formalism and the color structure of ampli-

tudes. The implementation of these techniques is illustrated by the computation of a well

known two-to-two process in QCD, 2g → 2g. For more details, computation of multiple

external state gluon processes can be seen in [51, 52]. The second part is instead devoted

to the construction of tree-level recursion relations between amplitudes with a different

number of external legs. In particular, the BCFW on-shell recursion is analyzed and stud-

ied in depth. The technical backgrounds from this chapter will be then applied to the

study of the radiative energy loss formalism in QGP.

2.1 Spinor helicity formalism

Perturbative QCD is primarily concerned with the interaction of quarks and gluons at

momentum scales for which the masses of these particles can be ignored. It was realized

that massless particles have remarkable properties when expressed in the helicity basis [50].

In fact, due to the symmetry obeyed by scattering amplitudes, most of the massless tree-

level amplitudes turned out to vanish in this basis [47]. In addition, the non-vanishing

amplitudes were found to possess simple structure depending on how much they violate

the helicity conservation.

In this section, we review the spinor helicity formalism. This formalism was first

introduced when physicists realized that the Lorentz group SO(1, 3) in four dimensions is

isomorphic to the group SL(2) × SL(2) and hence the finite-dimensional representations

are classified as (m,n), where m and n are integers or half-integers. As an illustration

of the applicability of the spinor helicity formalism, we review the computation of the

two-to-two gluon process in Section 2.1.3.

2.1.1 Spinor variables

This section is devoted to the introduction of the one of the most fundamental tools used

throughout this thesis, the spinor helicity formalism. We see that massless particles have

remarkable properties when expressed in the helicity basis. In point of fact, spinor helicity

formalism renders the analytic expression of scattering amplitudes in a more compact and

simple form compared to the standard formulation using momentum four-vectors [53,54].
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In principle, the spinor helicity formalism maps the components of a momentum four-

vector pµ into those of two-by-two matrices given by

paȧ = pµ(σµ)aȧ =

 p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

 . (2.1.1)

where σµ = (σ0, ~σ) are the usual Pauli matrices. Notice that in the above equation, the

undotted index transforms as left-handed Weyl spinor and the dotted one as right-handed.

One can in particular notice that the determinant of this two-by-two matrix is a Lorentz

invariant quantity and is given by

det(paȧ) = pµp
µ = m2. (2.1.2)

In the high energy limit where particles are massless, this determinant vanishes, det(paȧ) =

pµp
µ = 0. Thus, for a lightlike momentum p, we can write the momentum as a product

of two vectors

paȧ = λaλ̃ȧ, (2.1.3)

where λa and λ̃ȧ are respectively the left and right handed spinors with the spinor in-

dices running from 1 to 2. Notice that λa and λ̃ȧ are often called holomorphic and

anti-holomorphic spinors due to their transformation under the spinor representation of

the Lorentz group. For real valued momenta, λa and λ̃ȧ are complex conjugate of each

other (λa = λ̃∗ȧ). In case of complex momentum, λa and λ̃ȧ are independent. We will see

in the following sections that scattering amplitudes possess interesting properties when we

require some of the momenta to be complex. For the moment, let us stick to the treatment

of real-valued momenta.

Given two momentum pi and pj , their scalar product can be expressed in the helicity

basis as follows

2(pipj) = εabεȧḃ(pi)aȧ(pj)bḃ. (2.1.4)

The antisymmetric tensors εab and εȧḃ can be thought of as raising and lowering spinor

indices, similar as gµν does for vector indices. Rewriting the momentum as (pi)aȧ = λaλ̃ȧ

and (pj)bḃ = µbµ̃ḃ, we can re-express the above product as follows

2(pipj) = (εabλaµb)(ε
ȧḃλ̃ȧµ̃ḃ) = 〈ij〉[ij], (2.1.5)

where we have defined above the spinor products in terms of the angle and square brackets



2.1. Spinor helicity formalism 9

notation. The angle and square representation of the spinors are defined as

〈ij〉 ≡ εabλaµb, (2.1.6)

[ij] ≡ εȧḃλ̃ȧµ̃ḃ. (2.1.7)

Here, 〈ij〉 and [ij] are respectively the shorthand notations for 〈pi|pj〉 and [pi|pj ]. For

simplicity, we have omitted all the spinor indices. Since spinors are simple mathematical

objects, they are subject to few algebraic manipulations. For instance, one can use the

contraction conventions for left and right-handed spinors (see Appendix A) to show that

the above definitions imply 〈ii〉 = [ii] = 0 [50]. On the other hand, the correspondence

between the angle (〈i|, |i〉) and the square ([i|, |i]) brackets and the Dirac spinors are ex-

plicitly expressed in [50]. As a result, all other product of angle and square spinors vanish,

as an example 〈ij] = [ij〉 = 0. Notice also that these spinor products are antisymmetric,

which means that 〈ij〉 = −〈ji〉 and [ij] = −[ji]. Another useful relation which can be

derived from Eq. (2.1.6) and Eq. (2.1.7) is that square and angle brackets are related to

each other according to the relation 〈ij〉∗ = [ij].

As a consequence, the standard Lorentz invariant expression written in terms of a

momentum four-vector as sij = (pi + pj)
2 can now be expressed in terms of the angle and

square brackets as

sij = (pi + pj)
2 = 〈ij〉[ij]. (2.1.8)

In particular, for two-to-two processes, the above expression correctly defines the Mandel-

stam variables s, t and u.

The real power of the spinor helicity formalism appears when one would like to deal

with vector boson polarizations. In fact, for spin-1 bosons, one can also express the

polarizations in term of a pair of massless spinors. In order to construct our expression of

polarizations in terms of square and angle brackets, we must recall ourselves that physical

polarizations satisfy the condition ε∗µ(pi, k)εµ(pi, k) = −1 and the transverse condition

ensures that pµε
µ = 0. Thus, the polarization can be expressed as [55,56]:

ε−µ (pi, k) = − 1√
2

[k|γµ|i〉
[ki]

and ε+µ (pi, k) =
1√
2

〈k|γµ|i]
〈ki〉

, (2.1.9)

where k is a reference lightlike momentum that can be chosen arbitrary. This freedom in

choosing the reference momentum reflects the gauge invariance as we will discuss soon. In

fact, one can assign different reference spinors for each external spin-1 particles. However,

the reference momentum k cannot be aligned to the momentum pi since we do not want

the product 〈ik〉 and/or [ik] to vanish.
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Let us briefly verify that the abovementioned conditions are satisfied for our expression

of polarizations shown in Eq. (2.1.9). Since taking the complex conjugate of 〈k|γµ|i] gives

[k|γµ|i〉 and vice versa, these polarization vectors of definite helicity satisfy (ε±µ )∗ = −ε∓µ .

It follows straightforwardly that

[ε±µ (pi, k)]∗[(εµ)±(pi, k)] = −1

2

〈k|γµ|i]
〈ki〉

[k|γµ|i〉
[ki]

. (2.1.10)

In order to get rid of the spinor representation of the gamma matrices, we need to apply

the Fierz rearrangement which is defined by Eq. (B.2.5) in the Appendix B as

〈i|γµ|j] [l|γµ|k〉 = 2〈ik〉[lj]. (2.1.11)

By virtue of this relation we can now compute Eq. (2.1.10),

[ε∓µ (pi, k)][(εµ)±(pi, k)] = −〈ki〉[ki]
〈ki〉[ki]

= −1. (2.1.12)

The above equation shows that the condition ε∗µ(pi, k)εµ(pj , k) = −1 is satisfied. In addi-

tion, since we have 〈ii〉 = [ii] = 0 it follows straightforwardly that the transverse condition

pµε
µ = 0 is also satisfied. Similarly, we can derive the following properties for the polar-

izations, ε±µ (pi, k)(ε±)µ(pj , k) = 0 and ε+µ (pi, k)(ε−)µ(k, r) = 0.

Let us now check that two choices of reference spinors are related by gauge transfor-

mation. Let us consider two reference momenta k and k
′

and let us compute the following

expression

ω−(k, k
′
) = ε−µ (pi, k)− ε−µ (pi, k

′
) (2.1.13)

=
1√
2

[k
′ |γµ|i〉
[k′i]

− 1√
2

[k|γµ|i〉
[ki]

(2.1.14)

=
[k
′ |γµ|i〉[ik]− [k|γµ|i〉[ik

′
]√

2[k′i][ik]
(2.1.15)

=
([k
′
k]− [kk

′
])√

2[k′i][ik]
|i〉[i|. (2.1.16)

From the first to the second line, we used the fact that [k|γµ|i〉 = 〈i|γµ|k] as shown in

Appendix B. Then, we just expanded the expression to go from the second to the third

line. From the third to the last line, we evaluated the spinor products using the spinor

representation of the gamma matrices, contracted the appropriate spinor indices, and

factorized the terms related to pi. Therefore, the two polarizations are related by

ε−µ (pi, k) −→ ε−µ (pi, k
′
) + ω−(k, k

′
)pi, with ω−(k, k

′
) =
√

2
[k
′
k]

[k′i][ik]
. (2.1.17)
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One can use similar approach to show that

ε+µ (pi, k) −→ ε+µ (pi, k
′
) + ω+(k, k

′
)pi, with ω+(k, k

′
) =
√

2
〈k′k〉
〈k′i〉〈ik〉

. (2.1.18)

Here, ω±(k, k
′
) is some scalar. We see that both Eq. (2.1.17) and Eq. (2.1.18) represent

a gauge transformation. That is, the polarizations do change depending on the choice

of reference spinor but in a way that leaves the full amplitude invariant under the Ward

identity [50,57]. In fact, when summing over all possible diagrams, the final answer of the

amplitude is independent of the choice of reference momentum.

2.1.2 Vanishing condition of scattering amplitudes

In order to fully understand the behavior of the scattering amplitudes when expressed in

terms of spinor variables, let us first devote ourselves to the study of the conditions that

lead amplitudes to vanish. For this, let us consider the two-to-two gluon process–which

the cross section will be computed in the next section.

At tree-level, the expression of the 2g → 2g scattering process that we are going to

denote A4 is composed of three contributions:

A4(1, 2, 3, 4) = As(1, 2, 3, 4) +At(1, 2, 3, 4) +Au(1, 2, 3, 4), (2.1.19)

where s, t and u denotes the different channels and 1, 2, 3, 4 labels the gluons. Here, the

momenta are chosen to be incoming. Let us first focus our attention on the particular

case of the s-channel process As and consider the case where the helicity conservation is

maximally violated, i.e we have As(1h1 , 2h2 , 3h3 , 4h4) = As(1−, 2−, 3−, 4−).

Recall that every term in As has a factor εhiµ (pi, k)(εhj )µ(pj , k). As we have seen in the

previous section, in terms of angle and square brackets, the polarizations are defined as

ε−µ (pi, k) = − 1√
2

[k|γµ|i〉
[ki]

and ε+µ (pi, k) =
1√
2

〈k|γµ|i]
〈ki〉

. (2.1.20)

Using the property of the polarizations, one can straightforwardly check that all the po-

larizations in As(1−, 2−, 3−, 4−) are orthogonal: ε−µ (pi, k)(ε−)µ(pj , k) = 0. Thus, we have

As(1±, 2±, 3±, 4±) = 0, and similarly one can verify that using the same argument both

At(1±, 2±, 3±, 4±) and Au(1±, 2±, 3±, 4±) are equal to zero. That is to say, amplitudes

with all positive (or negative) helicities vanish at tree-level.

Now, let us choose the helicity of p1 (the gluon labeled by 1 with momentum p1) to

be different from the rest. Choose the reference vector for pi 6=1 to be p1, thus we have the
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following vanishing terms

ε±µ (pi, p1)(ε
∓)µ(p1, k) = 0, (i 6= 1) (2.1.21)

ε±µ (pi, p1)(ε
±)µ(pj , p1) = 0, (i, j 6= 1) (2.1.22)

We can deduce that As(1∓, 2±, 3±, 4±),At(1∓, 2±, 3±, 4±) and Au(1∓, 2±, 3±, 4±) all van-

ish. This tells us that amplitudes with all but one positive (or all but one negative) helicity

also vanish at tree-levels.

Therefore, the leading non-vanishing amplitudes must have at least two negative or

two positive helicities; such classes of amplitudes are known as the Maximally Helicity

Violating (MHV) amplitudes or the anti-Maximally Helicity Violating (MHV) amplitudes

respectively. This generalizes to the notion of Next-to-kth-order MHV (NkMHV) ampli-

tudes with (k + 2) negative helicity particles.

2.1.3 Application to 2g → 2g gluon scattering

In order to illustrate the efficiency of using spinor variables, let us compute the cross section

of the 2g → 2g QCD process. Consider all the momenta to be incoming, we already know

that the first non-vanishing amplitudes are given by the MHV (or MHV) amplitudes and

let us choose the following configuration of helicity (h1, h2, h3, h4) = (−,−,+,+). Since

all the momenta are considered to be incoming, the corresponding Mandelstam variables

considering all the gluons to be massless are given by s = 2(p1p2), t = 2(p1p4) and

u = 2(p1p3), where s, t and u represent the different topologies of the Feynman diagrams.

With the above choice of helicity configuration, we can choose as reference momentum

for the polarizations ε1 and ε2 to be the momentum p4, and choose as reference momentum

for the polarizations ε3 and ε4 to be p1. In this case, only the contraction (ε2ε3) survives

while all other contractions vanish.

The usual QCD Feynman rules [41] can now be applied to write down the expression

of the scattering amplitudes of the s-channel diagram

iAs(1, 2, 3, 4) =

ε2; a2

ε1; a1

p2

p1

e

ε3; a3

ε4; a4

p3

p4
= −ig2s f̃a1a2ef̃a3a4eAs(1, 2, 3, 4), (2.1.23)

where As(1, 2, 3, 4) is what we call color-stripped amplitude. Notice that As(1, 2, 3, 4) is
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color-free and depends only on the kinematics as defined as

As(1, 2, 3, 4) =
1

2(p1p2)

{
(ε1ε2)(p1 − p2) + 2ε2(p2ε1)− 2ε1(p1ε2)

}
×
{

(ε3ε4)(p3 − p4) + 2ε4(p4ε3)− 2ε3(p3ε4)
}
. (2.1.24)

However, by virtue of our gauge choice the above equation simplifies to

As(1, 2, 3, 4) =
2

(p1p2)
(ε2ε4)(p2ε1)(p3ε4). (2.1.25)

Translating into the spinor variables (angle and square brackets) and using the Fierz

rearrangement for spinors we have the following results,

ε−µ (p2, p4)(ε+)µ(p3, p1) = −1

2

〈1|γµ|3]

[42]

[4|γµ|2〉]
〈13〉

= −〈12〉[43]

〈13〉[42]
, (2.1.26)

pµ2 ε
−
µ (p1, p4) = − 1√

2

[4|/p2|1〉
[41]

= − 1√
2

〈21〉[42]

[41]
, (2.1.27)

pµ3 ε
+
µ (p4, p1) =

1√
2

〈1|/p3|4]

〈14〉
=

1√
2

〈13〉[34]

〈14〉
. (2.1.28)

Combining all the results and doing some simplification, we get

As(1
−, 2−, 3+, 4+) = − 〈12〉[34]2

〈14〉[12][14]
. (2.1.29)

In order to make this result compact, we can express As in terms of the angle brackets only.

From the momentum conservation (see Section B.1 of Appendix B), we have 〈12〉[23] =

−〈14〉[43], and from the relations (p1 + p2)
2 = (p3 + p4)

2 and (p1 + p4)
2 = (p2 + p3)

2 we

obtain 〈12〉[12] = 〈34〉[34] and 〈14〉[14] = 〈23〉[23] respectively. Using these relations, we

can simplify Eq. (2.1.29) to get the expression of the full s-channel amplitude

As(1−, 2−, 3+, 4+) = g2s f̃
a1a2ef̃a3a4eAs(1

−, 2−, 3+, 4+), (2.1.30)

with As(1
−, 2−, 3+, 4+) =

〈12〉4

〈12〉〈23〉〈34〉〈41〉
. (2.1.31)

Similarly, by writing the mathematical expression of the u channel diagram using the

Feynman rules and then re-writing the expression in terms of the spinor variables, we can

derive a compact expression of the full u-channel diagram. Let us start with

iAu(1, 2, 3, 4) =

ε2; a2

p2

e

ε4; a4

p4

ε1; a1

p1

ε3; a3

p3

= −ig2s f̃a1a3ef̃a2a4eAu(1, 2, 3, 4), (2.1.32)
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where the expression of the u-channel color-stripped amplitude is given by:

Au(1, 2, 3, 4) =
1

2(p1p3)

{
(ε1ε3)(p1 − p3) + 2ε3(p3ε1)− 2ε1(p1ε3)

}
×
{

(ε2ε4)(p2 − p4) + 2ε4(p4ε2)− 2ε3(p2ε4)
}
. (2.1.33)

According to our choice of gauge, all the contractions of polarizations vanish except (ε2ε3),

thus the above amplitude can be written as

Au(1, 2, 3, 4) =
2

(p1p3)
(ε2ε3)(p3ε1)(p2ε4). (2.1.34)

And due to our initial choice of helicity configuration, we have

pµ2 ε
+
µ (p4, p1) =

1√
2

〈1|/p2|4]

〈14〉
=

1√
2

〈12〉[24]

〈14〉
, (2.1.35)

pµ3 ε
−
µ (p1, p4) = − 1√

2

[4|/p3|1〉
[41]

= − 1√
2

〈31〉[43]

[41]
. (2.1.36)

With the above contractions, we can now write down the expression of the u-channel

color-stripped amplitude

Au(1−, 2−, 3+, 4+) =
〈12〉2[34]2

〈13〉〈14〉[13][41]
. (2.1.37)

Again, we can express this amplitude in terms of the angle brackets only. For the u-channel

diagram, the momentum conservation implies that 〈12〉[23] = −〈14〉[43] and [31]〈12〉 =

−[34]〈42〉, and in addition, from the relation (p1 + p4)
2 = (p2 + p3)

2 we have 〈14〉[14] =

〈23〉[23]. Therefore, the full u-channel amplitude can be written as

Au(1−, 2−, 3+, 4+) = g2s f̃
a1a2ef̃a3a4eAu(1−, 2−, 3+, 4+), (2.1.38)

with Au(1−, 2−, 3+, 4+) =
〈12〉4

〈13〉〈32〉〈24〉〈14〉
. (2.1.39)

Finally, one can show that due to our choice of gauge the t-channel diagram does not

contribute in the full expression of the 2g → 2g amplitude. Using the Feynman rules, the

t-channel diagram can be expressed as

iAt(1, 2, 3, 4) =

ε2; a2 ε3; a3

p2 p3

e

ε1; a1 ε4; a4

p1 p4
= −ig2s f̃a1a4ef̃a3a2eAt(1, 2, 3, 4), (2.1.40)
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with

At(1, 2, 3, 4) =
1

2(p1p4)

{
(ε1ε4)(p1 − p4) + 2ε4(p4ε1)− 2ε1(p1ε4)

}
×
{

(ε3ε2)(p3 − p2) + 2ε2(p2ε3)− 2ε3(p3ε2)
}
. (2.1.41)

Considering our choice of helicity and polarization, all the contractions in the above expres-

sion vanish and we get At(1−, 2−, 3+, 4+) = 0. Thus, the contribution to the full amplitude

of the 2g → 2g gluon scattering for our particular choice of helicity configuration comes

from the s and u-channel. Thus, we have

A(1−, 2−, 3+, 4+) = g2s

(
Cs

〈12〉4

〈12〉〈23〉〈34〉〈41〉
+ Cu

〈12〉4

〈13〉〈32〉〈24〉〈14〉

)
, (2.1.42)

where the color factors Cs and Cu are respectively given by f̃a1a2ef̃a3a4e and f̃a1a2ef̃a3a4e.

In order to get the expression of the final cross section of the process, we need to calculate

the square of Eq. (2.1.42) and sum over the colors. Using the definition of the Mandelstam

variables, squaring the matrix elements is straightforward,∣∣∣∣ 〈12〉4

〈12〉〈23〉〈34〉〈41〉

∣∣∣∣2 =

(
〈12〉4

〈12〉〈23〉〈34〉〈41〉

)(
[12]2

[12][23][34][41]

)
=
s2

t2
, (2.1.43)∣∣∣∣ 〈12〉4

〈13〉〈32〉〈24〉〈14〉

∣∣∣∣2 =

(
〈12〉2

〈13〉〈32〉〈24〉〈14〉

)(
[12]4

[13][32][24][14]

)
=

s4

u2t2
, (2.1.44)

On the other hand, the computation of the crossed terms are trickier. While summing all

the crossed terms, we get an expression which cannot be directly expressed in terms of

the Mandelstam variables,

A∗sAu +AsA
∗
u = − s4

2t2

(
1

〈12431]
+

1

[12431〉

)
. (2.1.45)

Notice that if spinors appear in a physical quantity, then it must terminates, i.e. it has the

form 〈i1i2〉[i2i3] · · · [ini1]. In the above expression, we have introduced the shorthand no-

tation 〈i1i2 · · · ini1] for this product as shown in Appendix B.4. Notice that such quantity

can be evaluated by performing Dirac traces as follows

〈ij〉[jk]〈kl〉[li] =
1

2

[
Tr(1− γ5)/pi/pj/pk/pl

]
=

1

2
[sijskl + silsjk − siksjl − 4iε(i, j, k, l)] , (2.1.46)

where ε(i, j, k, l) = εµνρσp
µ
i p

ν
j p
ρ
kp
σ
l and εµνρσ is the completely antisymmetric tensor. This

implies that 〈12431] and [12431〉 are complex conjugate of each other. Using this, the sum
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of the crossed terms in the expression of the amplitude squared is given by

A∗sAu +AsA
∗
u = − s4

2t2
Tr(/p1/p2/p4/p3)

|〈12431]|2
(2.1.47)

= − s4

2t2
(p1p2)(p3p4) + (p1p3)(p2p4)− (p1p4)(p2p3)

4(p1p2)(p1p3)(p2p4)(p3p4)
(2.1.48)

= − s4

2t2
(s2 + u2 − t2)

s2u2
. (2.1.49)

From the first to the second line, we just expanded the trace term and the angle-square

brackets Lorentz invariant product in the denominator. From the second to the last line,

we translated the scalar product into the Mandelstam variables. One can simplify the last

equation further by recalling that the Mandelstam variables satisfy s + t + u = 0. The

later implies that (s2 + u2) = t2 − 2us. Thus, we have the extremely simple expression

A∗sAu +AsA
∗
u =

s3

t2u
. (2.1.50)

On the other hand, we can compute the expression of the color factors using the properties

of the structure constants. One can straightforwardly check that we have the following

expressions

CsC†s = CuC†u = (f̃a1a2ef̃a3a4e)2 = 4N2(N2 − 1), (2.1.51)

CsC†u = C†sCu = (f̃a1a2ef̃a3a4e)(f̃a1a3df̃a2a4d) = 2N2(N2 − 1). (2.1.52)

Notice that it is because of Eq.(2.1.52) that we managed to combine the crossed kinematic

terms in Eq. (2.1.45). Combining all the results and making some simplifications, we can

write down the expression of the amplitude squared averaged over the colors for our specific

MHV helicity configuration

|Ā(1−, 2−, 3+, 4+)|2 = 4g2sN
2(N2 − 1)

(
s4

t2u2
− s2

tu

)
. (2.1.53)

In order to get full expression of the amplitude, one has to do the summation over all

possible helicity configurations. For our two-to-two process, one can check that there are

in total four possible helicity configurations for non-vanishing MHV amplitudes. However,

one can check that all the remaining MHV amplitudes are related to Eq.(2.1.53) by crossing

symmetry. This is because flipping the helicity flips the labels. For instance, in order to go

from |Ā(1−, 2−, 3+, 4+)|2 to |Ā(1−, 2+, 3−, 4+)|2 one has just to swap s and u. Therefore,

the non-vanishing cases are given by the six permutation of the Mandelstam variables s, t

and u. So, we have

|Ā(gg → gg)|2 = 4g2sN
2(N2 − 1)

∑
P3(s,t,u)

(
s4

t2u2
− s2

tu

)
. (2.1.54)
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To get the final expression of the differential cross section, we need to average over the

initial states which is given by 4(N2−1)2 possibilities for the spins and the colors. Taking

N = 3 and doing some fair amount of simplification using the Mandelstam properties, we

get the standard expression as shown in Eq. (2.1.55). One can verify that this result is

consistent with [58].

1

256
|Ā(gg → gg)|2 =

9

2
g4s

(
3− ut

s2
− us

t2
− st

u2

)
. (2.1.55)

2.2 Color structure of amplitudes

QCD can be thought as an expanded version of the quantum version of the theory of

electrodynamics or in short QED. Whereas in QED there is just one kind of charge, QCD

comes with three different kinds of charges, labeled by colors [1]. Thus, scattering ampli-

tudes in QCD are functions of momenta, helicities and color charges. The presence of color

charges–which manifests by the non-Abelian nature of the force–makes the calculations in

QCD extremely complicated. So in order to simplify calculations, it is useful to separate

the color charges apart from the kinematics. Works based on dividing systematically the

computation of scattering amplitudes into gauge invariant components have been reviewed

in [59, 60]. There was found that one can nicely organize the color degrees of freedom in

order to separate the kinematic part. This approach to disentangle the color factors and

the kinematics is referred to as color-kinematic decomposition. In this section, we describe

some conventions for organizing the color structure of gauge theory amplitudes in Yang-

Mills theory. In particular, we will introduce the notion of color-ordered partial amplitudes

which emerges from the trace-based color-decomposition.

2.2.1 Insight from the 2g → 2g process

To get an intuition of how the color factors can be stripped off from the kinematics,

let us consider again the 2g → 2g scattering of gluons and choose all the momenta to

be incoming. As we have already shown in the previous section, at tree-level, the full

amplitude is given byA = As +At +Au, where s, t and u represent the different channels.

Let us first focus on the color-stripped amplitude As(1, 2, 3, 4) of the s-channel. We

can see from Eq. (2.2.56) that As(1, 2, 3, 4) is antisymmetric under swap of 1→ 2 or 3→ 4

and symmetric under simultaneous interchange of both 1→ 2 and 3→ 4. Thus, we have
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the following equalities for the color-stripped amplitudes:

As(1, 2, 3, 4) = As(2, 1, 4, 3) = −As(2, 1, 3, 4) = −As(1, 2, 4, 3). (2.2.56)

On the other hand, by eliminating the color structures f̃abc in favor of the generator

matrices T a, the color structure for the s-channel diagram can be written as:

f̃a1a2ef̃a3a4e = −Tr ([T a1 , T a2 ][T a3 , T a4 ]) (2.2.57)

= −Tr (T a1T a2T a3T a4) + Tr (T a2T a1T a3T a4)

+ Tr (T a1T a2T a4T a3)− Tr (T a2T a1T a4T a3) . (2.2.58)

One can notice that the color factor of the s-channel amplitude is also a sum of four terms

that is antisymmetric under the swap of 1 → 2 or 3 → 4. Therefore, the full s-channel

amplitude can be written as a sum of terms that have gluons ordered the same in the

color-stripped amplitudes and the color traces:

As(1, 2, 3, 4) = g2s
{
Tr (T a1T a2T a3T a4)As(1, 2, 3, 4) + Tr (T a2T a1T a3T a4)As(2, 1, 3, 4)

+ Tr (T a1T a2T a4T a3)As(1, 2, 4, 3) + Tr (T a2T a1T a4T a3)As(2, 1, 4, 3)
}
.

(2.2.59)

The above equation shows that the full s-channel amplitude can be written as a sum of

single traces and color-stripped amplitudes. Notice that the t- and s-channel color-stripped

amplitude are just a 2 ↔ 4 (At(1, 2, 3, 4) = As(1, 4, 3, 2)) and 2 ↔ 3 (Au(1, 2, 3, 4) =

As(1, 3, 2, 4))-cross of the s-channel one. Thus, the full 2g → 2g scattering amplitude

A = As+At+Au is composed of twelve terms, all of which can be written as a product of

a trace and color-stripped amplitude Tr(· · · )As(· · · ). However, one can simplify further

the expression by pairing-up terms using the cyclic property of the trace. For instance,

Tr(T a1T a2T a3T a4)
{
As(1, 2, 3, 4) +At(1, 4, 3, 2)

}
= Tr(T a1T a2T a3T a4)A4(1, 2, 3, 4)

where the color-stripped amplitude A(1, 2, 3, 4) is given by

A4(1, 2, 3, 4) =

2

1

3

4

+

2 3

1 4

=

2

1 4

3

. (2.2.60)

By doing repeatedly this process, we can nicely write the expression of the full amplitude

for the four-gluon scattering process. In fact, one will end up to the following expression

A4(1, 2, 3, 4) = g2s
∑
P4/Z4

Tr(T a1T a2T a3T a4)A4(1, 2, 3, 4), (2.2.61)
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where the summation is performed over the non-cyclic permutation of the four gluons. In

the next section, we see how this generalizes into the case where we have n gluons and a

presence of a pair of quark-antiquark.

2.2.2 Color-kinematic decomposition

Although the gauge group of QCD is SU(3), for generalization let us consider consider a

Yang-Mills theory with gauge group SU(N). For the external state particles, we consider

two different SU(N) representations: (i) the adjoint representation where the color indices

labeled by a run over 1, 2, · · · , N2−1 for the gluons, and (ii) the fundamental representa-

tion N , with its conjugate representation N̄ , for quarks and antiquarks respectively. For

the fundamental representation the color indices are labeled by i ∈ {1, 2, · · · , N} while

anti-fundamental indices are denoted by j ∈ {1, 2, · · · , N}. The generator matrices of

SU(N) in the fundamental representation are traceless hermitian N × N matrices, de-

noted by (T a)ij . Throughout the calculations, the generators T a are normalized such

that Tr(T aT b) = δab and [T a, T b] = if̃abcT c where the constant structure is defined as

f̃abc =
√

2fabc. Thus, for a generic Feynman diagram the color factor contain a factor of

(T a)ij for each gluon-quark-antiquark vertex, a factor of f̃abc for each pure three-gluon

vertex, and a contracted pair of structure constants f̃abcf̃ cde for each pure four-gluon

vertex. These are the only vertices we will encounter in our computations.

To expose and identify all different types of color structures that can appear in a

given scattering amplitude, we first eliminate the structure constant f̃abc in favor of the

generator T a (as we saw in the previous section) using the relation

if̃abc = Tr(T aT bT c)− Tr(T aT cT b), (2.2.62)

which follows from the definition of the structure constants. Thus, for a typical pure-

gluon Feynman diagram one can apply such transformation repeatedly in order to obtain

a large number of traces of the generic form Tr(· · ·T a · · · ) · · ·Tr(· · · ). In addition, if we

have a presence of external quarks-antiquarks pair, then there will be also strings of T a’s

terminated by fundamental and anti-fundamental indices, of the form (T a · · ·T b)ij , one for

each external quark-antiquark pair. In order to reduce the number of traces, the following

relation can be repeatedly used

(T a)ij(T
b)kl = δilδkj −

1

N
δijδkl. (2.2.63)
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The above relation is known as the Fierz identity and the term proportional to (1/N)

reflects the fact the generator matrices T a are hermitian and traceless.

In the particular case of tree-level amplitudes with external states in the adjoint rep-

resentation, such as pure n-gluon amplitudes, we can always reduce the color factors to

end up with a single trace Tr(T a1 · · ·T an) where ai here denotes the color index and the

label i represents the gluons (which runs from 1 to n). Thus, for n-gluon tree amplitudes

this reduction leads to a trace-based decomposition as follows

An({pi, hi, ai}) = gn−2s

∑
Pn/Zn

Tr(T a1 · · ·T an)An(1h1 , · · · , nhn), (2.2.64)

where the sum is performed over the non-cyclic permutation of the gluons due to the

cyclic property of the trace. In the above expression, An denotes the full amplitude which

depends on the external momenta of the gluons pi, the helicity hi and the adjoint indices ai

(for i = 1, · · · , n). An(1h1 , · · · , nhn) is called color-ordered partial amplitudes which have

all the color factors removed, but hold the information about the kinematics. In literature,

various name have been given to this gauge invariant component, such as color-ordered

amplitude and dual amplitudes [50,61,62]. It was shown that amplitudes with color factor

stripped off are much easier to compute and that the average number of amplitudes that

must be evaluated is much smaller compared to the full amplitude [49, 59]. It is worth

emphasizing that each partial amplitude corresponds to a particular color flow, which can

be naively thought as the ordering in which the gluons are emitted.

The color-kinematic decomposition provides a good organization of the colors in the

expression of scattering amplitudes [61] and leaves apart the computation of partial am-

plitudes. It turns out that these gauge invariant amplitudes possess a lots of properties

making their computations easy. In particular, it was shown in [63] that the average num-

ber of partial amplitudes, for the scattering of n gluons, that must be evaluated is much

smaller compared to the full amplitudes (see Table 2.1).

Similarly, we can extend the above factorization to decompose tree-level amplitudes

that involve n-gluons and one pair of quark-antiquark. In presence of external quarks and

antiquarks, amplitudes can be reduced to single strings of the generator matrices T a:

An+2 (p, {ki, hi, ai}, q) = gns
∑
Pn

(T a1 · · ·T an)ijAn+2

(
php , {ki, hi}, qhq

)
. (2.2.65)

In Eq. (2.2.65) the summation is performed over all possible permutation of n gluons.

The quark and the antiquark are denoted by p and q respectively, and the gluons are
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] Particles 4 5 6 7 8 9 10

] Diagrams Partial amplitude 3 10 36 133 501 1991 7335

] Diagrams Full amplitude 4 25 220 2485 343000 559405 10525900

Table 2.1: Comparison of the number of diagrams that contributes to the full and partial-

amplitudes. The first row indicates the number of particles involved in the process. The

second and the third row compare the number of diagrams contributing respectively for

the partial and full amplitude for n arbitrary external state particles.

labeled by i which runs from 1 to n. Notice that in this color basis, the indices of the

quark and the antiquark are fixed and do not participate in the permutation. We say that

the colors flow from the quark, pass through the gluons and end up to the antiquark.

One might worry that the color-kinematic decomposition will lead to a fair amount of

proliferation in the number of partial amplitudes that have to be computed. However, the

power of such decomposition lies in the fact that partial amplitudes exhibit interesting

properties that make manifest the analytical symmetry of scattering amplitudes. One can

straightforwardly check that partial amplitudes satisfy the following properties:

(i) Charge conjugation: A(p, 1, · · · , n, q) = −A(q, 1, · · · , n, p). This is because flipping

the charges on a quark-antiquark line gives rise to a minus sign.

(ii) Color-ordered identity: A(1, 2, · · · , n−1, n) = (−1)nA(n, n−1, · · · , 2, 1). This prop-

erty directly follows from the antisymmetry of color-ordered partial amplitudes.

(iii) Cyclic in the sense that A(1, 2, · · · , n − 1, n) = A(n, 1, 2, · · · , n − 1). This property

is an immediate consequence of the color-ordered amplitudes.

(iv) Parity under change of hi → −hi: |A({pi, hi, ai})|2 = |A∗({pi,−hi, ai})|2. This is

because changing the helicity of the particles into the opposite sign changes all angle

brackets into square brackets and vice-versa. We will have a particular look at this

property when computing the 2g → 2g and qg → qg-process.

2.3 Little group scaling

Spinor helicity variables possess certain aesthetic elegance. Their utility resides from the

fact that they make manifest the symmetry obeyed by the scattering amplitudes. These

symmetries are the Lorentz invariance and the so-called little group. In this section, we
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introduce the little group scaling in the context of the spinor helicity formalism. Recall

that in terms of the angle and square brackets, the momentum of a particle is given

by pi = |i〉[i| (we have suppressed the spinor indices). The little group is the group of

transformation that leaves invariant the momentum of an on-shell particle [64]. Thus, the

little group transformation is the scaling:

|i〉 −→ t|i〉 and |i] −→ t−1|i]. (2.3.66)

By virtue of this rescaling, one can setup some ground rules for the external fermions and

spin-1 bosons:

(i) Spinors for fermion scale as t−2h, where h denotes the helicity of the fermion (h =

±1/2) as already shown above.

(ii) Polarization vectors for spin-1 bosons scale as t−2h for h = ±1. By rescaling the

spinors |i〉 and |i], one can indeed check in the expression of the polarization in

Eq. (2.1.20) that this rule is true. So, we have:

ε−µ → t2ε−µ = − t2√
2

[k|γµ|i〉
[ki]

and ε+µ → t−2ε+µ =
t−2√

2

〈k|γµ|i]
〈ki〉

, (2.3.67)

Hence, the little group scaling of each polarization encodes its associated helicity. A

scattering amplitude with multiple external state particles will be then multi linear in the

corresponding polarizations,

A(1h1 , · · · , nhn) = εh1µ1 · · · ε
hn
µnA

µ1···µn(1, · · · , n). (2.3.68)

Recall that the tensorial object on the right-hand side of the above equation is the usual

amplitude computed from Feynman diagrams in the standard approach, and the object on

the left-hand side represent a set of functions corresponding to different helicity configu-

rations. These objects are known as the true scattering amplitudes in the sense that they

are gauge invariant. Therefore, for on-shell amplitudes, the scaling of a particle labeled

by i gives rise to a weight (−2hi) where hi labels the helicity of the particle i,

A(· · · , {ti|i〉, t−1i |i]}, · · · ) = t−2hiA(· · · , {|i〉, |i]}, · · · ). (2.3.69)

From this expression, one can easily compute all three-point amplitudes in QCD. An

example of such computation will be shown in the next chapter.
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2.4 On-shell recursion relation

Despite the fact that the spinor helicity formalism and the color-kinematic decomposition

provide an efficient way to compute MHV amplitudes, the computation of the kth-order

NMHV amplitudes remain a challenge. However, in order to understand processes with

multiple external states in QCD, NkMHV amplitudes have to be computed. To overcome

that challenge, one can rely on on-shell relations to construct recursively higher order

amplitudes [65] from lower order amplitudes. The most well known on-shell recursion

is referred to as BCFW on-shell recursion relations formulated by Britto-Cachazo-Feng-

Witten [48]. The idea behind recursion relations is to exploit the analytic structure of the

amplitude in order to reduce the calculation of higher-point amplitudes into the compu-

tation of subamplitudes with lower order.

This section focuses on the properties of scattering amplitudes in Yang-Mills theory.

By studying amplitudes on a complex plane, we develop recursion relations, namely the

BCFW on-shell recursion. We see that the astonishing power of the on-shell recursion

allows us to construct the generalization for any higher order QCD processes.

2.4.1 Complex shifts and Cauchy’s theorem

An on-shell partial amplitude An is basically defined by the momenta of the external state

particles (which are reals) and their respective helicity. The idea behind the complexifi-

cation of momenta is to transform An into a meromorphic function Ân(z), where z ∈ C.

However, by shifting the momentum, we must assure that it preserves the momentum

conservation and the on-shell condition.

Let us consider the following transformation:

pi −→ p̂i = pi + zri, with z ∈ C. (2.4.70)

The above transformation is linear in z and has to satisfy the following conditions:

(i) In order for the momentum conservation to be satisfied,
∑

i p̂i = 0, we require that

the momentum ri to satisfy
∑

i ri = 0.

(ii) In order to preserve the on-shell condition, p̂2i = 0 ∀i ∈ {1, n}, we require that

rirj = 0 ∀i, j ∈ {1, n} (in particular r2i = 0) and ripi = 0.
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2.4.2 Analytic study of the tree-level amplitude Ân(z)

At tree-level, the complex partial amplitude Ân(z) does not have any branch cuts, its

analytical structures are captured by its singularities, and the only possible singularities

at tree-level arise from the propagators [50]. This can be seen from the perspective of

a Feynman diagram. The only place where we can get poles is from the propagator

1/P̂i where P̂i here represents an arbitrary propagator containing shifted momenta. An

interesting property which can be inferred from the definitions in Section 2.4.1 is that P̂ 2
i

is also linear in z.

To see that, let us start by defining a subset of generic momenta {pi}i∈I and define

P̂i =
∑

i∈I p̂i. According to the definitions in Section 2.4.1 we have

P̂ 2
i =

(∑
i∈I

pi

)2

+ 2z

(∑
i∈I

pi

)(∑
i∈I

ri

)
+ z2

(∑
i∈I

ri

)2

, (2.4.71)

= P 2
I + 2zPIRI . (2.4.72)

When the singularity occurs at the pole P̂ 2
i = 0, we can derive from the last line of the

above equalities the expression

zI = −
P 2
I

2RIPI
, (2.4.73)

from which we can rewrite Eq. (2.4.72) to have an expression of P̂ 2
i as a function of the

complex number zI ,

P̂ 2
i = −

P 2
I

zI
(z − zI). (2.4.74)

From this last equation, we can see that 1/P̂ 2
i only gives pole at zI = −P 2

I /(2PIRI) and for

generic momenta zI 6= 0. For the leading order tree-level diagrams, no diagram can have

more than one power of 1/P̂ 2
i . This tells us that the complex tree-level partial amplitude

Ân(z) only has simple poles and they are all located away from the origin.

We can now study the behavior of Ân(z) in the complex plane. Let us consider the

following contour integral

I = − i

2π

∮
C
dz
Ân(z)

z
, (2.4.75)

where the contour C is big enough to include all infinite poles and defined to be

C = lim
R→∞

CR, CR = {z ∈ C|z = Reiθ, 0 ≤ θ ≤ 2π}. (2.4.76)

By deforming the contour C to surround all the possible poles, Cauchy’s theorem tells us

that the evaluation of I is equivalent to calculating poles and residues of Ân(z)/z,

Bn =
∑
zI

Res

[
Ân(z)

z
, zI

]
. (2.4.77)
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Notice that the complex function Ân(z)/z has three different kinds if poles: (i) at z = 0

with residue Ân(z = 0) = An, (ii) at z = zI with residue Res
[
Ân(z)/z, zI

]
, and (iii) at

z =∞ with residue Bn. Thus, we have the following expression

Bn = An +
∑
zI 6=0

Res

[
Ân(z)

z
, zI

]
. (2.4.78)

In order to understand how Ân(z) behaves at poles zI , we need to understand how Ân(z)

behaves as z → zI , -ie- when P̂I → 0. Consider a partial amplitude, only diagrams with

internal propagator P̂I contribute to the limit P̂I → 0, which allows us to factorize the

amplitude into two subamplitudes and the propagator connecting the two subamplitudes

has momentum PI . We thus have the following factorization property:

Res

[
Ân(z)

z
, zI

]
zI 6=0

= −ÂL(zI)
1

P 2
I

ÂR(zI). (2.4.79)

Notice that both the two subamplitudes are on-shell in the limit P̂I → 0. As a final result,

we have

An =
∑
I,hI

ÂL(zI)
1

P 2
I

ÂR(zI), (2.4.80)

where the summation is performed over both all possible diagrams giving non-trivial subset

of I and all possible on-shell particle states that can be exchanged on the internal line.

Represented diagrammatically, the above mathematical expression can be represented as

shown in Fig. 2.1.

An

2

b

a =n

1

j

i

∑
hI=±
{ab}∈I

hI

î

1̂

2̂

n̂ b̂+1

P̂ab

AL

â−1

AR
−hI

ĵâ

b̂

ĵ+1

ĵ+2

Figure 2.1: Diagrammatic illustration of how An partial amplitude is split into two sub-

diagrams each with a number of legs less than n via the general on-shell recursion. The

summation is performed over all possible topological diagrams and the helicity. In the

subdiagrams, i±m are shorthand for (i±m).

Recall that in this particular recursion we shifted all external gluon lines. As illustrated

by Fig. 2.1, this particular all-line shift produces recursion relations that could allow us
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to construct all MHV and non-MHV amplitudes from lower-point subamplitudes. This

construction of amplitudes can be extended to the notion of MHV vertex expansion or

CSW (Cachazo-Svrcek-Witten) expansion [66]. Notice that the all-line shift is not the only

transformation that can be performed. We see in Section 2.5.2 how to construct recursion

relations with only two shifted momenta with a presence of fermion lines.

2.5 The BCFW on-shell recursion

Recursion relations have been developed by Berends and Giele in 1988 in order to construct

n-point parton amplitudes from the most building block–three-point–amplitudes with one

leg off-shell [67]. They found that this off-shell recursion method remains useful as an

algorithm for efficient numerical calculations of scattering amplitudes. The newer and

most known on-shell recursion methods, referred to as BCFW recursion relations were

formulated in 2005 [48, 49], whose building blocks are themselves on-shell subamplitudes.

These on-shell recursions are elegant and beautiful as they use as input gauge invariant

objects which make manifest the hidden symmetry of the scattering amplitudes.

In this section, we describe the construction of tree amplitudes via the Britto-Cachazo-

Feng-Witten (BCFW) on-shell recursion which is a particular case of the general on-

shell recursion. As alluded in the previous section, the BCFW recursion is based on

introducing a complex parameter-shift of the external massless spinors. The general on-

shell recursion in Section 2.4 does not define a specific choice of shift-vectors ri while the

BCFW deformation does. In addition, the dimension of the BCFW recursion is specified

to d = 4 while the dimension is not specified for the general recursion. Undoubtedly, the

main feature of the BCFW is the fact that it only shifts two of the external legs. We see in

the next chapter how to compute the general formula of MHV amplitudes using the BCFW

for a process involving an arbitrary number of gluons and one pair of quark-antiquark.

2.5.1 BCFW deformation

Start by choosing two external legs labeled i and j with momentum pi and pj respectively

and shift by a vector q multiplied by the complex number z, so we have the following

linear transformations

pi −→p̂i = pi + zq, (2.5.81)

pj −→p̂j = pj − zq, (2.5.82)
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where q = |i]〈j|. One can straightforwardly check that the overall momentum is conserved

since p̂i + p̂j = pi + pj , and the on-shell condition is satisfied, p̂2i = p̂2j = q2 = 0.

Thus, expressing the above transformations in terms of the square and angle brackets

we have the following equations

|̂i〉[̂i| = |i〉[i|+ z|i〉[j|, (2.5.83)

|ĵ〉[ĵ| = |j〉[j| − z|i〉[j|. (2.5.84)

By doing a simple identification, we can arrive at the following results
|̂i] = |i] + z|j]

|̂i〉 = |i〉
, and


|ĵ] = |j]

|ĵ〉 = |j〉 − z|i〉
. (2.5.85)

Such deformations are called [i, j〉-shift. Indeed, it only affect the two external legs i

and j. One can straightforwardly verify that any spinor products of the form 〈kî〉 and

[kĵ] are linear in z (where k is an arbitrary momentum) while the other quantities such as

〈̂iĵ〉, [̂iĵ], 〈jî〉 and [iĵ] remain unshifted. One has the freedom to choose the helicity (hi, hj),

however, a good choice of helicity will lead to a maximum vanishing diagrams and therefore

simplifies the calculation. One should be aware that the validity of the BCFW recursion

relations requires that the residue of Ân(z) at z = ∞ vanishes. Argument based on

background field methods in pure Yang-Mills theory establishes that the following types

of helicity configurations (−,−), (−,+) and (+,+) give valid BCFW recursion relations

at large z-behavior.

2.5.2 The BCFW recursion relation

Initially, the BCFW on-shell recursion relation was first constructed for pure gluon pro-

cesses. However, it can be naturally extended to include quarks with some exceptions.

Identically, one chooses two external legs to take as reference lines, either gluons or quarks,

then deforms the momentum exactly in the same way as shown in Eq. (2.5.85), and fi-

nally combines the two subamplitudes as expressed by Fig. 2.1. However, in order to not

running into inconsistencies and preserving the vanishing condition of Ân(z) at z = ∞,

one can neither shift two adjacent quark lines of different types with the same helicity,

nor two adjacent quark lines of different types with different helicity, nor a quark and an

adjacent gluon with the same helicity. To illustrate this, let us consider the QCD process

involving n external gluons and one pair of quark-antiquark. By choosing a [i, j〉-shift, we

can represent diagrammatically the recursion relations as follows
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An+2

p

b

a =n

q

j

i

∑
hI=±
{ab}∈I

hI

î

q

p

n b+ 1

P̂ab

AL

a− 1

AR
−hI

ĵa

b

j + 1

j + 2

Figure 2.2: Diagrammatic representation of how An+2 partial amplitude with n external

gluons and one pair of quark-antiquark is split into two subdiagrams each with a number

of legs less than (n+ 2) via BCFW recursion. Again, the summation is performed over all

possible topological diagrams and the helicity hI .

The above diagrams can be mathematically expressed as

An+2 =
∑
hI ,O

AL

(
1, · · · , î, · · · , a− 1, P̂ hIab , b+ 1, · · · , n

) 1

P 2
ab

AR

(
−P̂−hII , a, · · · , ĵ, · · · , b

)
,

(2.5.86)

where O = {{ab}|i /∈ {ab} ∧ j ∈ {ab}}. Note that î and ĵ cannot belong to the same

subdiagram. To see that, let us consider an internal propagator PI . The shifted legs î

and ĵ cannot belong to the same subdiagram because in that case P̂I = PI . This is due

to the fact that p̂i + p̂j = pi + pj . As expressed in Fig. 2.2, the internal shifted propagator

now writes as P̂I = PI + zq (with PI =
∑

i∈I pi) and the poles are now at zI = −PI/(2q).

Of course, we can now have diagrams with quarks as an internal line. However, their

propagators are the same as for the gluons. This case appears when the quark and the

antiquark each belongs to different subdiagram.

2.6 Summary

In this Chapter, we first introduced in Section 2.1 the notion of spinor helicity variables

using the square and angle bracket notations. As illustrated by the computation of the

pure four-gluon process, the calculation of individual Feynman diagram becomes extremely

simple when expressed in terms of their helicity. We introduced in Section 2.2 the concept

of color-kinematic duality. We emphasized the simplicity of computing scattering ampli-

tudes by separating the color factors from the color-ordered partial amplitudes. Section

2.4 focused on the development of on-shell recursion relations. We showed that the on-

shell recursion relations allow us to construct recursively all higher order amplitudes from
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the most basic three-point amplitudes. In particular, we focused on the most well known

recursion relation, that is the BCFW. We will see in the next section the application of

the BCFW recursion relation.



Chapter 3

Review of the qg −→ qg calculation

In this Chapter, we try to achieve two main goals. The first is to re-derive the expression of

the full cross section of the QCD process qg → qg using the mathematical tools introduced

in the previous chapters. In particular, we use the BCFW on-shell recursion relations to

decompose the amplitude into a product of three-point ones. We then use the little group

scaling along with the color-kinematic decomposition and the spinor helicity formalism to

compute those three-point subamplitudes. The second is to construct a general formula

for any order MHV amplitudes (again) using the BCFW formalism. This will be extremely

useful when we compute the multiple radiative emission in Chapter 4 and Chapter 5 for

the study of the radiative energy loss phenomena.

3.1 Computation of the 3-point amplitude using the little

group scaling

It has been shown in the previous sections that in Yang-Mills theory, all higher-point

amplitudes can be constructed from the basic three-point amplitudes. In this section, we

see how three-point amplitudes can be trivially computed using the little group scaling

and the spinor helicity formalism.

Recall that in order for three-point amplitudes to not vanish, they can only depend

either on the angle or square brackets. To see that, let us consider a three-point amplitude

where the momentum of the particles are labeled by p1, p2 and p3. Considering all the

momentum to be incoming, the momentum conservation writes as p1 + p2 + p3 = 0,

which implies that (p1 + p2)
2 = p23 = 〈12〉[12] = 0. This tells us that either 〈12〉 or

[12] must be equal to zero. Let us first suppose that 〈12〉 does not vanish, then we have

30
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〈12〉[23] = 〈1|p2|3] = −〈1|(p1 + p3)|3] = 0 and similarly 〈12〉[13] = 〈2|(p2 + p3)|3] = 0 since

〈ii〉 = [ii] = 0. This clearly demonstrates that [12], [13] and [23] vanish while 〈12〉 6= 0.

Using similar approach, one can straightforwardly show that 〈13〉 and 〈23〉 vanish if we

consider the case where 〈12〉 vanish while [12] does not. Therefore, a non-vanishing three-

point amplitude has to be a function of either square or angle brackets.

Let us now compute the partial three-point amplitude A3(p, k, q) where p and q denote

the quark and the antiquark with the helicity (−1/2) and (1/2) respectively. Let us choose

the gluon k to have a negative helicity in order to have an MHV amplitude. The partial

amplitude A3(p, k, q) can be therefore expressed in terms of angle brackets as follows

A3(hp, hk, hq) = 〈pk〉x〈pq〉y〈kq〉z. (3.1.1)

The value of x, y and z are fixed by the little group scaling via the following equations

x+ y = −2hp, (3.1.2)

x+ z = −2hk, (3.1.3)

y + z = −2hq. (3.1.4)

Recalling that the helicities are given by hp = −1/2, hq = 1/2 and hk = −1, the above

system can be straightforwardly solved to find that, x = 2, y = −1 and z = 0. Thus, the

three-point partial amplitude with the above choice of helicity can be expressed as

A3(p
−, k−, q+) =

〈pk〉3〈qk〉
〈pk〉〈kq〉〈qp〉

. (3.1.5)

For an MHV three-point amplitude, one can take similar approach to show that

A3(p
+, k+, q−) =

[pk]3[qk]

[pk][kq][qp]
. (3.1.6)

One can notice that the expression of the three-point amplitudes are simple and compact.

We will see in the next section that the general expression of MHV amplitudes involving

a pair of quark-antiquark and an arbitrary number of gluons can be constructed in a very

simple form using these three-point amplitudes.

3.2 Decomposition of the four-point amplitude using BCFW

formalism

In order to compute the cross section of the QCD process qg → qg, one can of course use

the Feynman rules to express each tree-level diagram contributing to the process and then
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rewrite the expression in terms of the spinor variables before squaring the full amplitude.

This approach, however, seems complicated and rather tedious. In this section, we see

how the BCFW on-shell recursion can be applied to compute efficiently QCD processes.

Considering all the momenta to be incoming, we end up computing the amplitude

A4(qggq̄) where one of the quark has to become an antiquark. This can be restored

later on using crossing symmetry. In this case, the only non-vanishing amplitude appears

when two of the external state particles have negative helicity. Let us denote by p and

q the momenta of the incoming quark and antiquark with the helicity (−1/2) and (1/2)

respectively. In the same way, denote by k and l the momenta of the two gluons with the

respective helicity (−1) and (1). We can make a [k, l〉-shift which linearly transforms the

momenta of the two gluons to get the following equations

|k] −→ |k̂] = |k] + z|l] and |l〉 −→ |l̂〉 = |l〉 − z|k〉. (3.2.7)

By virtue of these transformations, we can decompose the partial amplitude A4(p, k, l, q)

into three-point subamplitudes. According to our initial choice of helicity configuration,

there are two possible BCFW diagrams as shown in Fig. 3.1. One can notice that the

=

k−

p− q+

l+

A4

k̂−

p−

+ P̂lq
A3

−

l̂+

q+

+A3
−

k̂−

p−

P̂lq
A3

+

l̂+

q+

A3

Figure 3.1: BCFW diagrammatic representation of the decomposition of the four-point

MHV amplitude into three-point subamplitudes via the [k, l〉-shift. Only two diagrams

contribute to the full MHV partial amplitude A4(p
−, k−, l+, q+).

second diagram in Fig. 3.1 vanishes and does not contribute to the general expression of

the scattering amplitude since A3(−,−,−) and A3(+,+,+) are both equal to zero. Thus,

the four-point partial amplitude expresses as

A4(p
−, k−, l+, q+) = A3(p

−, k̂−, P̂+
lq )

1

P 2
lq

A3(−P̂−lq , l̂
+, q+) (3.2.8)

=
〈pk̂〉3〈P̂lqk̂〉

〈pk̂〉〈k̂P̂lq〉〈P̂lqp〉
1

〈lq〉[lq]
[ql̂]3[P̂lq l̂]

[P̂lq l̂][l̂q][qP̂lq]
. (3.2.9)

The first line is just the application of the BCFW formula while from the first to the

second line we used the Eq. (3.1.5) and Eq. (3.1.6). Notice that the above expressions still
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a function of the shifted momentum. To get rid of the shifted momentum, one should

recall the on-shell condition of the internal line (P̂ 2
lq = 0), the shift equation and the

momentum conservation. The on-shell condition implies that 〈l̂q〉[l̂q] = 0, which tells us

that 〈l̂q〉 must vanish since [l̂q] = [lq] is not equal to zero. This means that |l̂〉 and |q〉 are

collinear and we can write |l̂〉 = x|q〉. Moreover, using the shift equations in Eq. (3.2.7)

and taking into account that 〈l̂q〉 = 0, we can find the value of the complex parameter

z = 〈lq〉〈kq〉−1. Thus, the shift equations now become

|k̂] = |k] +
〈kl〉
〈kq〉
|l] and |l̂〉 = |l〉 − 〈kl〉

〈kq〉
|k〉. (3.2.10)

By virtue of these equations and the fact that |l̂〉 = x|q〉, it naturally follows that

|l〉 − 〈kl〉
〈kq〉
|k〉 = x|q〉. (3.2.11)

We can easily solve the above equation by multiplying each side by 〈l| to find x =

〈kl〉〈kq〉−1. On the other hand, recall that the internal momentum writes as P̂lq = |P̂lq〉[P̂lq|

which from the momentum conservation can also be rewritten as the sum of l̂ and q,

P̂lq = |l̂〉[l̂|+ |q〉[q|. Developing this last expression will give us the value of the square and

angle component of P̂lq,

P̂lq = |q〉
(
〈kl〉
〈kq〉

[l|+ [q|
)

=⇒ |P̂lq〉 = |q〉 and [P̂lq| =
(
〈kl〉
〈kq〉

[l|+ [q|
)
. (3.2.12)

We now have the explicit values of |k̂], |l̂〉, |P̂lq〉 and |P̂lq], and recall that the other mo-

mentum remain unchanged. Putting these expressions back in Eq. (3.2.9), rearranging

the terms and doing some simplifications we get the expression of the partial amplitude

A4(p
−, k−, l+, q+) given as follows

A4(p
−, k−, l+, q+) =

〈pk〉3〈qk〉
〈pk〉〈kl〉〈lq〉〈qp〉

. (3.2.13)

The above expression represents the MHV partial amplitude for the case of one pair of

quark-antiquark and two external gluons. This formula can be generalized to include n

external gluons using the BCFW on-shell recursion as we will show in Section 3.4.

3.3 Total differential cross section

Let us now compute the full MHV amplitude A4(p
−, k−, l+, q+). From the color-kinematic

decomposition, one can decompose the amplitude as follows

A4(p
−, k−, l+, q+) = g2s(T

akT al)A4(p
−, k−, l+, q+) + g2s(T

alT ak)A4(p
−, l+, k−, q+),

(3.3.14)
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where the partial amplitudes are given by

A4(p
−, k−, l+, q+) =

〈pk〉3〈qk〉
〈pk〉〈kl〉〈lq〉〈qp〉

, A4(p
−, l+, k−, q+) =

〈pk〉3〈qk〉
〈pl〉〈lk〉〈kq〉〈qp〉

. (3.3.15)

From A4(p
−, k−, l+, q+) to A4(p

−, l+, k−, q+) one has just to interchange the k and l in

the denominator. In order to compute the differential cross section we have to take the

square of Eq. (3.3.14), sum over the colors and all the possible helicities. One can of

course directly compute the amplitude squared. However, a much better way to do the

calculation is to compute the square with respect to the color basis. We will see the

necessity of such approach when we compute the square of the multiple radiative emission

current. Therefore, the MHV amplitude squared, traced over the colors can be expressed

as follows

|A4(p
−, k−, l+, q+)|2 = g2s Cs(k, l)Ks(k, l) + g2s Ca(k, l)Ka(k, l), (3.3.16)

where the color factors expressed as a function of the Casimir factors are given by

Cs(k, l) = Tr(T akT alT alT ak) = CAC
2
F , (3.3.17)

Ca(k, l) = Tr(T akT alT akT al) = −CF . (3.3.18)

Recall that the ordering of the kinematics follows exactly the ordering of the colors. Thus,

the two kinematic terms are also function of the symmetric and the antisymmetric product

of the permutation of the two gluons expressed as

Ks(k, l) = |A4(p
−, k−, l+, q+)|2 + |A4(p

−, l+, k−, q+)|2

=
4(pk)3(qk)

(qp)2

∑
P2(k,l)

〈pq〉
〈pk〉〈kl〉〈lq〉

[pq]

[pk][kl][lq]
, (3.3.19)

and on the other hand, we have

Ka(k, l) = A4(p
−, k−, l+, q+)A∗4(p

−, l+, k−, q+) +A∗4(p
−, k−, l+, q+)A4(p

−, l+, k−, q+)

=
4(pk)3(qk)

(qp)2

∑
P2(k,l)

〈pq〉
〈pk〉〈kl〉〈lq〉

[pq]

[pl][lk][kq]
. (3.3.20)

Therein, the terms with parentheses represent the usual dot product. Rearranging the

colors and the kinematics so we can recover the full permutation, the amplitude squared

simplifies as

|A4(p
−, k−, l+, q+)|2 = g2s CAC

2
F (Ks(k, l) +Ka(k, l))− (CF + CAC

2
F )Ka(k, l). (3.3.21)
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We are now left with the evaluation of the kinematics. Using the Schouten identity, one

can straightforwardly check that∑
P2(k,l)

〈pq〉
〈pk〉〈kl〉〈lq〉

=
∏
i=k,l

〈pq〉
〈pi〉〈iq〉

. (3.3.22)

The above relation is also satisfied for square brackets. Using the Lorentz invariant prod-

uct, the first kinematic in Eq. (3.3.21) can be simplified as

Ks(k, l) +Ka(k, l) =
(pk)3(qk)

(pk)(kq)(pl)(lq)
. (3.3.23)

For the second term in Eq. (3.3.21), we can use the shorthand notation introduced in

Section 2.1.3 and remark that 〈pkqlp] and 〈plqkp] are complex conjugate of each other.

Therefore, Ka(k, l) can be evaluated by performing Dirac traces which implies that

Ka(k, l) = −4(pk)3(qk)

(kl)(qp)

Tr(/p/k/q/l)

|〈pkqlp]|2
(3.3.24)

=
(pk)3(qk)

(kl)(qp)

(
1

(pk)(lq)
+

1

(pl)(kq)
− (pq)(kl)∏

(pi)(iq)

)
. (3.3.25)

We can now translate the variables into the Mandelstam variables appropriate for the

process qg → qg. After rearranging the terms and making some simplifications, the

amplitude squared for our specific choice of helicity can be written as

|Ā4(p
−, k−, l+, q+)|2 = g4s CAC

2
F

(
9

4

u

s
− s2

t2

)
. (3.3.26)

To complete the calculation, we need to sum the amplitude squared over all the possible

helicities configuration. For our two-to-two process, only 4 possible configuration of helicity

gives non-vanishing amplitudes: (−,−,+,+), (−,+,−,+), (+,−,+,−) and (+,+,−,−).

However, due to the parity of the partial amplitudes,

|Ā4(p
−, k−, l+, q+)|2 = |A4(p

+, k+, l−, q−)|2 (3.3.27)

|Ā4(p
−, k+, l−, q+)|2 = |A4(p

+, k−, l+, q−)|2 (3.3.28)

This implies that we only have to compute the amplitude squared for two configurations:

(i) |Ā4(p
−, k−, l+, q+)|2 which we have already computed (ii) |Ā4(p

−, k+, l−, q+)|2 which

is related to (i) by flipping the helicity of the two gluons. That is to say, we do not have to

take into consideration the helicity of the (anti-)quark while doing the average. Flipping

the helicity of the gluons is equivalent to swapping the momentum of the k and l. In terms

of Mandelstam variables, this is equivalent to the interchange of u and s. Physically, this

swap of momentum represents the case where the two gluons are interchanged. Taking
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into account the factors for averaging over the colors and helicities, we get the final cross

section of our process

dσ

d cos θ
(qg → qg) =

2

9

πα2
s

s

(
9

4

u2 + s2

us
− s2 + u2

t2

)
(3.3.29)

where we rewrite the coupling constant as g2s = 4παs, s is the square of the center of mass

energy and θ is the scattering angle. One can compare this result to [58] and check that

it is consistent.

3.4 Generalizing the MHV amplitudes

Having established the BCFW on-shell recursion and applied it to the calculation of the

qg → qg scattering process, we now give a simple yet non-trivial derivation of the general

MHV formula for (n + 2)-point amplitudes which involves n arbitrary gluons and a pair

of quark-antiquark. Let us take an inductive approach, which means that we assume that

the MHV formula in Eq. (3.4.30) is true at the order (n+ 1) and show that it is still true

at order (n+ 2).

A(p−, 1+, · · · , i−, · · · , (n− 1)+, q+) =
〈pi〉3〈qi〉

〈p1〉〈12〉 · · · 〈(n− 1)q〉〈qp〉
. (3.4.30)

For simplicity, but without loss of generality, let us assume that the negative helicity gluon

is at position i, and the remaining gluons have positive helicity. According to the previous

discussion, we will obtain a valid BCFW recursion without boundary term if we consider

the [i, i+1〉-shift. Thus, we have the following shift equations: |̂i] = |i] + z|i+1], |̂i〉 = |i〉

|̂i+1〉 = |i+1〉 − z|i〉, |̂i+1] = |i+1].
(3.4.31)

With our choice of helicity and momentum shift, one can check that only two diagrams

contribute to the full MHV amplitude as shown by the diagrammatic representation in Fig.

3.2. Each subdiagram is either an MHV or MHV-subamplitude which we can translate

into its mathematical expression.

We can now write the respective mathematical expressions for the different diagrams

using the square and angle bracket notations. In particular, the expression of the first

diagram D1 is given by

D1 = AL(p−, · · · î−, P̂+, i++3, · · · , n, q)
1

〈i+1i+2〉[i+1i+2]
AR(−P̂−, î++1, i

+
+2) (3.4.32)

=
〈p̂i〉3〈qî〉

〈p1〉 · · · 〈̂iP̂ 〉〈P̂ i+3〉 · · · 〈nq〉〈qp〉
1

〈i+1i+2〉[i+1i+2]

[̂i+1i+2]
4

[P̂ î+1][̂i+1i+2][i+2P̂ ]
, (3.4.33)
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k−
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n+

q+

[i, i+1〉An+1

k−
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p−

+

l̂−

q+
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+
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Figure 3.2: Diagrammatic representation of the BCFW on-shell recursion for the general

MHV amplitude with quark-antiquark line. The quark p and the gluon i are chosen to have

negative helicities with a [i, i+1〉-shift. P̂ and Q̂ are respectively the shorthand notations

for (p̂i+1 + pi+2) and (p̂i + pi−1).

where we used the following conventions for the analytic continuation: | − P̂ 〉 = −|P̂ 〉

and | − P̂ ] = |P̂ ]. The on-shell condition tells us that P̂ 2 = 〈̂i+1i+2〉[̂i+1i+2] = 0. Since

[̂i+1i+2] = [i+1i+2] 6= 0 we have 〈̂i+1i+2〉 = 0. This implies that |̂i+1〉 and |i+2〉 are collinear

so we can write |̂i〉 = x|i+2〉. Thus, using the shift equation for |̂i+1〉 we have the following

expression for |̂i+1〉,

|̂i+1〉 = |i+1〉 − z|i〉 = x|i+2〉. (3.4.34)

We can solve the above equation for x by multiplying each side by 〈i| in order to eliminate

z. So, we have x = 〈ii+1〉/〈ii+2〉. On the other hand, we can find the value of the complex

parameter z by considering the on-shell condition:

〈̂i+1i+2〉 = 〈i+1i+2〉 − z〈ii+2〉 = 0 =⇒ z =
〈i+1i+2〉
〈ii+2〉

. (3.4.35)

Furthermore, the internal in the first diagram can be expressed in terms of the spinor

representation of the two external legs as P̂ = |P̂ 〉[P̂ | = |̂i+1〉[i+1| + |i+2〉[i+2|. It follows

from this expression that

P̂ = |i+2〉
(
〈ii+1〉
〈ii+2〉

[i+1|+ [i+2|
)
. (3.4.36)

With the above expressions, we can now get rid of the shifted momentum in Eq. (3.4.33).

One can straightforwardly check that we have the following

|P̂ 〉 = |i+2〉, |P̂ ] =
〈ii+1〉
〈ii+2〉

[i+1|+ [i+2|, (3.4.37)

|̂i] = |i] +
〈i+1i+2〉
〈ii+2〉

|i+1], |̂i+2〉 = |i+1〉 −
〈i+1i+2〉
〈ii+2〉

|i〉. (3.4.38)

Notice that all the other momentum remain unshifted. Plugging back the above expres-

sions in Eq.(3.4.33), rearranging the terms and doing some simplifications, we get the final
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expression for the first diagram in Fig. 3.2

D1 =
〈pi〉3〈qi〉

〈p1〉〈12〉 · · · 〈nq〉〈qp〉
. (3.4.39)

On the other hand, by taking similar approach we can write down the mathematical

expression of the second diagram D2 in Fig. 3.2

D2 = AL(i+−1, î
−, Q̂+)

1

〈i−1i〉[i−1i]
AR(−Q̂−, î++1, · · · , n

+, q+, p−, · · · ) (3.4.40)

=
[i−1Q̂]3

[i−1î][Q̂î]

1

〈i−1i〉[i−1i]
〈pQ̂〉3〈qQ̂〉

〈p1〉 · · · 〈i−3Q̂〉〈Q̂î+1〉〈̂i+1i+2〉 · · · 〈nq〉〈qp〉
, (3.4.41)

where again for analytic continuation we used the conventions |− Q̂〉 = −|Q̂〉 and |− Q̂] =

|Q̂]. We can show that the above amplitude vanish. Recall that the on-shell condition

requires that Q̂2 = (pi−1 + p̂i)
2 = 0. This implies that 〈i−1î〉[i−1î] = 0. For generic

momenta, 〈i−1î〉 = 〈i−1i〉 6= 0, so [i−1î] = 0. In addition, as

|Q̂〉[Q̂i−1] = Q̂|i−1] = (pi−1 + p̂i)|i−1] = pî|i−1] = |̂i〉[̂ii−1] = 0, (3.4.42)

so we have [Q̂i−1] = 0. Thus, all spinor products in the first part of Eq. (3.4.41) vanish,

with the three powers in the numerator versus the two in the denominator, we conclude

that the second diagram D2 in Fig. 3.2 vanishes.

Combining all these results, we can finally write down the general MHV formula for

amplitudes with n arbitrary number of gluons with a presence of a pair of quark-antiquark,

AMHV
n+2 (p−, 1+, · · · , i−, · · · , n+, q+) =

〈pi〉3〈qi〉
〈p1〉〈12〉 · · · 〈nq〉〈qp〉

. (3.4.43)

The above expression agrees with previous results in the literature, such as the five-point

case in [59]. One can exactly take similar approach using the BCFW on-shell recursion

relations to show that the general formula for MHV amplitudes is given by

AMHV
n+2 (p+, 1−, · · · , i+, · · · , n−, q−) =

[pi]3[qi]

[p1][12] · · · [nq][qp]
. (3.4.44)

By adding the appropriate color factors and the coupling constant, we can write down the

general formula for both the full MHV and MHV amplitudes. Taking into account the

ordering of the kinematics, the expressions are given as follows

AMHV
n+2 (p−, · · · , i−, · · · , q+) = gns 〈pi〉3〈qi〉

∑
Pn

(T a1T a2 · · ·T an)

〈p1〉〈12〉 · · · 〈nq〉〈qp〉
, (3.4.45)

and

AMHV
n+2 (p+, · · · , i+, · · · , q−) = gns [pi]3[qi]

∑
Pn

(T a1T a2 · · ·T an)

[p1][12] · · · [nq][qp]
. (3.4.46)
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Notice that all next-to Maximally Helicity Violating amplitudes can be derived from these

expressions using the BCFW on-shell recursion relations. In fact, we will see an illustration

of such computation in the next sections.

3.5 Summary

In this Chapter, we reviewed the calculation of the cross section of the QCD process

qg → qg. We showed that this particular two-to-two scattering process can be computed

in a very efficient and elegant way using the BCFW on-shell recursion relations and the

little group scaling. In particular, we derived the expression of the four-point amplitude

from three-point amplitudes using the BCFW on-shell recursion. We then used the BCFW

on-shell recursion to compute the general expression of the MHV and MHV partial ordered

amplitudes. The generalization formulas, represented by Eq. (3.4.43) and Eq. (3.4.44),

will be used in the next section when computing the momentum distribution of emitting

multiple radiative gluons.



Chapter 4

Radiative emission

Over the past decades, various signatures have been proposed to study the hot QCD

matter formed at RHIC and LHC. A potential pQCD model to study the physics of the

QGP is to consider a process in which a self-generated parton (quark or gluon) interacts

with a gluon coming from the medium and induces final state radiative gluons. Such

picture has been first pioneered by Bjorken in 1982 [34] from which one can compute the

multiplicity distribution for emitting Bremsstrahlung gluons.

On the QED side, the emission of Bremsstrahlung photons is fully understood. Indeed,

the probability distribution for emitting multiple photon Bremsstrahlung has been trivially

resummed and shown to follow the Poisson distribution [41]. Such result implies that

each emission of Bremsstrahlung photon is independent. On the QCD side, however, the

calculations are much more complicated due to the non-Abelian nature of the strong force

and it seems that conventional method of pQCD fails to cope with the complexities of

computing multiple radiative processes.

In the past few years, tremendous efforts have been put forward to address the question

how the evolution of jet is altered by the presence of the QGP medium formed at RHIC and

LHC. Alas, the current existing energy loss formalisms have a number of weaknesses which

may have a large quantitative impact on the result. At the present day, the generalization

of the parton energy loss for multiple radiative gluon emission is not known and all current

calculations are based on the convolution of the single inclusive gluon. In some radiative

energy loss formalisms such as GLV (Gyulassy, Levai, and Vitev) [42] and ASW (Armesto,

Salgado, and Wiedemann) [22], multiple gluon emission is computed using the Poisson

Ansatz which assumes that each emission of radiative gluon is independent. However,

multiple gluon emission cannot assumed to be independent since as we know gluons can

40
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interact with themselves.

In this section, we first review the simplest picture of multiple radiative particles emis-

sion given by a QED process. The study of the photon Bremsstrahlung in QED under

the MHV scheme could be an important way forward towards the study of the radiative

energy loss in QGP. Indeed, understanding the momentum distribution of multiple radia-

tive photon emission can give us some insights on how the non-Abelian nature of QCD

affects the distribution of the radiative gluon emission. Then, we move to the calculation

of the momentum distribution of emitting up to three radiative gluons using both soft and

collinear approximation.

4.1 Review of the photon bremsstrahlung in QED

The study of the photon Bremsstrahlung in QED is an important way forward towards

the study of the radiative energy loss in QGP. Understanding the momentum distribution

of the multiple radiative photon emission can give us some clue to understand how the

non-Abelian nature of the QCD changes the multiplicity distribution of emitting multiple

radiative gluons. Consider the process where a highly energetic quark is tickled by a photon

and then emits radiations (see Fig.4.1). Similar calculation using the MHV techniques has

been initially introduced in [68]. However, our main interest here is to prove Eq. (4.1.11).

p
q

k

s1

sn

Figure 4.1: Diagrammatic representation of the multiple photon Bremsstrahlung in QED

in the process qγ → q + ng where n represents the number of photon Bremsstrahlung.

The soft photons have momentum si (i runs from 1 to n).

Let us consider the case where we have an MHV amplitudes. Choose the incoming

quark and the tickling photon to have positive helicity and all the remaining particles

to have negative helicity. Going from the general formula for the MHV amplitudes, we

change generator matrices T a to 1 and coupling constant to ẽ. Thus, the expression of the
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amplitude for our QED process is given by

AMHV
n+3 ({pi, γi}) =

[pk]3[qk]

[qp]

∑
Pn+1

ẽn+1

[pk][k1][12] · · · [nq]
, (4.1.1)

where the sum is performed over the permutation of the photons. We can factorize out

the photon with momentum k from the soft photons. In that case, we reduce the sum

over permutation Pn+1 into a sum over the permutation Pn. So, we have

AMHV
n+3 =

[pk]3[qk]

[qp]

∑
Pn

ẽn

[p1] · · · [nq]

(
[p1]

[pk][k1]
+

[12]

[1k][k2]
+ · · ·+ [nq]

[nk][kq]

)
× ẽ, (4.1.2)

Applying the Schouten identity, the terms inside the parentheses simplifies into one term

that is independent of the momentum of the soft photons,

AMHV
n+3 =

[pk]3[qk]

[qp]

[pq]

[pk][kq]

∑
Pn

1

[p1][12] · · · [nq]
. (4.1.3)

Here, the summation is performed over the permutation of the soft photons. We can

rearrange this expression in order to separate completely the soft part from the hard

scattering. Thus, we get the following expression

AMHV
n+3 ({pi, γi}) =

(
ẽ

[pk]3[qk]

[pk][kq][qp]

)
× ẽn

(∑
Pn

[pq]

[p1][12] · · · [nq]

)
(4.1.4)

From the above equation, one can isolate the emission current that contains the informa-

tion about the Bremsstrahlung photons. Therefore, for the Abelian theory of the quantum

electrodynamics the emission current is given by

J
(n)
QED(1, · · · , n) = ẽn

∑
Pn

[pq]

[p1][12] · · · [nq]
. (4.1.5)

Let us now show that the emission of radiative photons are independent. This is equivalent

to saying that the total emission current is given by the product of independent emission

of each photon

J
(n)
QED(1, · · · , n) = ẽn

∑
Pn

[pq]

[p1][12] · · · [nq]
= ẽn

n∏
i=1

[pq]

[pi][iq]
. (4.1.6)

As a direct consequence of the Schouten identity, this relation is certainly true for n = 2

(ignoring the coupling). Let us now check if this relation still holds for n = 3. We have,∑
P3

[pq]

[p1][12][23][3q]
=
∑
P2

[pq]

[p1][12][2q]

(
[p1]

[p3][31]
+

[12]

[13][32]
+

[2q]

[23][3q]

)
(4.1.7)

=
[pq]

[p3][3q]

∑
P2

[pq]

[p1][12][2q]
(4.1.8)

=
3∏
i=1

[pq]

[pi][iq]
(4.1.9)
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We used the Schouten identity to go from the first to the second line. From the second

to the third line, we just the fact the identity (4.1.6) is true for n = 2. Let us approach

the problem by induction assuming that the identity is true for any arbitrary number n

of radiative photons and show that it is still true for (n + 1) number of Bremsstrahlung

photons. We can always write

∑
Pn+1

[pq]

[p1][12] · · · [(n+ 1)q]
=
∑
Pn

[pq]

[p1][12] · · · [nq]

{
[pq]

[p(n+ 1)][(n+ 1)q]

+ · · ·+ [nq]

[n(n+ 1)][(n+ 1)q]

}
. (4.1.10)

Again, one can see here that the term inside the parentheses simplifies to one term and

depends only on the momentum of the quarks and the (n + 1)th radiative photons. On

the other hand, the summation over the permutation of photons becomes a product of the

independent emission

∑
Pn+1

[pq]

[p1][12] · · · [(n+ 1)q]
=

n+1∏
i=1

[pq]

[pi][iq]
. (4.1.11)

This result shows that the identity in Eq. (4.1.6) is indeed true and each emission of

photon is independent. As a result, the distribution of Bremsstrahlung photons follows

the Poisson distribution.

Replacing the Bremsstrahlung photons by Bremsstrahlung gluons, it is straightforward

to show that the emission current is given by Eq.(4.1.12). The difference is that gluons can

carry color charges and two Bremsstrahlung gluons can be emitted from one gluon decay.

Mathematically speaking, the difficulty in the calculation lies in the fact the generator

matrices T ai do not commute. Therefore, one can naively expect that the momentum

distribution of emitting Bremsstrahlung gluons does not follow the Poisson distribution.

In fact, one would expect that the emission current for multiple gluon emission is given

by JQCD = JQED + JNA, where second term comes from the non-Abelian nature proper

to the strong force.

p
q

k

s1
sn

=⇒ J (n)
g = g2s [pq]

∑
Pn

(T a1 · · ·T an)

[p1][12] · · · [nq]
. (4.1.12)
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4.2 Soft-collinear gluon radiation off a massless quark

In this section, we compute the qg −→ qg process with emission of one soft and collinear

gluon with respect to the outgoing quark. At the tree level, for soft-collinear emission, we

expect the leading term in the momentum expansion of the amplitude to be controlled by

the soft-collinear factor. This section both reviews and improves the work done in [69]

for the computation of one and two radiative gluon emission. We aim to compute the

amplitude |Ā(qg −→ qg + ng)|2, where n = 1, 2, 3 represents the number of the radiative

gluons. In addition to the soft-collinear approximation, we consider the case where we

have a hard scattering, that is the direction of the outgoing quark is perpendicular to the

direction of the primordial quark.

4.2.1 One radiative gluon emission

Let us now start by computing the momentum distribution of emitting a single radiative

gluon. Label the momentum of the soft gluon to be s1, the remaining momenta are labeled

in the same way as in Chapter 3 (see Fig. 4.2).

p
q

l

k

s1

Figure 4.2: MHV diagrammatic representation of the single gluon emission in the qggq̄-

process. The soft radiative gluon s1 (s1 ∼ 0) is assumed to be collinear to the high

energetic quark which scatters with a single gluon.

According to the color-kinematic decomposition, the full amplitude for this process can

be expressed as

A5({pi, hi, ai}) = g3s
∑
P3

(T akT alT a1)A5(p, k, l, 1, q), (4.2.13)

where the sum is performed over the permutation of the three gluons k, l, 1. It was shown

in Chapter 3 that we do not have to worry about the helicities of p and q as soon as they

have different helicities. That is to say, once fixed the amplitude for the whole process

does not depend on the helicities of the pair of quark-antiquark. Let us first impose the
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helicity of the first gluon to be negative, and the helicity of the soft and the second gluon

to be positive (hk, hl, h1) = (−,+,+). With our choice of helicity, we can write down the

expression of the MHV partial amplitude in Eq. (4.2.13),

A5(−,+,+) = g3s
〈pk〉3〈qk〉
〈qp〉

∑
P3(k,l,1)

(T akT alT a1)

〈pk〉〈kl〉〈l1〉〈1q〉
. (4.2.14)

From this expression, we can factorize out the expression of the partial amplitudes of the

what we call the parent process, qggq̄. In that case, we can break up the sum over the

permutation P3 into a sum over the permutation P2 which gives us the following result:

A5(−,+,+) = g3s
∑
P2(k,l)

(
T a1T akT al〈pk〉
〈p1〉〈1k〉

+
T akT a1T al〈kl〉
〈k1〉〈1l〉

+
T akT alT a1〈lq〉
〈l1〉〈1q〉

)
A4(k, l),

(4.2.15)

where the partial amplitudes A4 are given by the following expressions

A(k, l) =
〈pk〉3〈qk〉

〈pk〉〈kl〉〈lq〉〈qp〉
and A(l, k) =

〈pk〉3〈qk〉
〈pl〉〈lk〉〈kq〉〈qp〉

(4.2.16)

In order to completely recover the full expression of the parent process, we have to deal

with the color factors. Notice that product of generator matrices can always be written

in terms of commutators. The idea is to regroup the color terms for the parent amplitude

in such a way that we can factorize them out of the color term of the radiative process.

Thus, using the decomposition shown in Appendix C.3 we have

A5(−,+,+) = g3s
∑
P2(k,l)

T akT alT a1
(
〈pk〉
〈p1〉〈1k〉

+
〈kl〉
〈k1〉〈1l〉

+
〈lq〉
〈l1〉〈1q〉

)
A4(k, l)

+ g3s
∑
P2(k,l)

(
[T a1 , T akT al ]

〈pk〉
〈p1〉〈1k〉

+ T ak [T a1 , T al ]
〈kl〉
〈k1〉〈1l〉

)
A4(k, l). (4.2.17)

The first term in this expression is what we call A5(parent) since it can be explicitly

written as a function of the full amplitude A4 of the parent amplitude. Indeed, the sum

over the permutation P2 is independent of the momentum of the radiative gluon s1, thus

we can extract T a1 from the summation, and thanks to the Schouten identity (Appendix

B.3.10) the expression of the kinematics simplifies as,

〈pk〉
〈p1〉〈1k〉

+
〈kl〉
〈k1〉〈1l〉

+
〈lq〉
〈l1〉〈1q〉

=
〈pq〉
〈p1〉〈1q〉

. (4.2.18)

This expression is interesting in two ways, (i) it is invariant under scaling of 〈p| → a〈p|

and |q〉 → b|q〉, (ii) it does not depends explicitly on the momentum of the two hard
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gluons k and l. Thus, after rearranging the terms and doing some simplifications, the

MHV amplitude expressed in Eq. (4.2.17) simplifies as

A5(−,+,+) = g3s

 ∑
P2(k,l)

T akT alA4(k, l)

T a1
〈pq〉
〈p1〉〈1q〉

+

g3s
∑
P2(k,l)

(
[T a1 , T akT al ]

〈pk〉
〈p1〉〈1k〉

+ T ak [T a1 , T al ]
〈kl〉
〈k1〉〈1l〉

)
A4(k, l). (4.2.19)

Recall that we are here interested in the case where the soft gluon is assumed to be

emitted with a very small angle with respect to the outgoing quark while the direction of

the outgoing quark is considered to be perpendicular to the direction of the primordial

quark (large scattering angle). These conditions imply that the spinor product 〈1q〉 goes to

zero. The leading contribution in Eq. (4.2.19) is therefore dominated by term A5(parent).

As a result for our first MHV amplitude, the expression is given by the following

A5(−,+,+) ≈ A4(−,+)× J (1)
g (1), (4.2.20)

where the single emission current J (1)
g (1) is defined as

J (1)
g (1) = gs

T a1〈pq〉
〈p1〉〈1q〉

. (4.2.21)

We can now compute the square of the amplitude in Eq.(4.2.20) and sum over the colors for

our particular MHV helicity configuration. By multiplying the expression in Eq. (4.2.20)

by its conjugate, taking the trace and using the cyclic property of the trace one can show

that we get the following expression∑
col.

|A5(−,+,+)|2 ≈ Tr
(
|J (1)
g (s1)|2 × |A4(−,+)|2

)
. (4.2.22)

One can verify that while extracting the expression of the amplitude squared and summed

over the colors for the parent process, the above expression leads to∑
col.

|A5(−,+,+)|2 ≈ 1

CA
Tr
(
|J (1)
g (s1)|2

)
×
∑
col.

|A4(−,+)|2. (4.2.23)

In order to simplify the notation, let us write |J̄ (1)
g (1)|2 = Tr

(
|J1(1)|2

)
. Now, the com-

putation of the soft-collinear current squared is straight forward,

|J̄ (1)
g (1)|2 = g2sTr(T

a1T a1)

∣∣∣∣ 〈pq〉〈p1〉〈1q〉

∣∣∣∣2 . (4.2.24)

Translating the product of square and angle brackets into a dot product and evaluating

the trace in terms of the Casimir operator, it follows that∑
col.

|A5(−,+,+)|2 ≈ g2s
CF
2

(pq)

(ps1)(s1q)

∑
col.

|A4(−,+)|2. (4.2.25)
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In order to get the final expression of the momentum distribution, we have to sum the above

expression of amplitude over all possible helicity configurations. Let us recall that from the

properties of partial amplitudes, we have A5(hk, hl, h1) = A∗5(−hk,−hl,−h1). This implies

that |A5(hk, hl, h1)|2 = |A∗5(−hk,−hl,−h1)|2. With this property, is straight forward to

see that one has to compute three different MHV amplitudes associated, each associated

with a particular helicity configuration. They are given by A5(−,+,+),A5(+,−,+) and

A5(+,+,−). Since we have already computed the case where (hk, hl, h1) = (−,+,+),

we can straightforwardly derive the expression of the other MHV helicity configurations.

Indeed, one can check that two of the MHV amplitudes are given by

A5(+,−,+) = g3s
〈pl〉3〈ql〉
〈qp〉

∑
P3

T akT alT a1

〈pk〉〈kl〉〈l1〉〈1q〉
, (4.2.26)

A5(+,+,−) = g3s
〈p1〉3〈q1〉
〈qp〉

∑
P3

T akT alT a1

〈pk〉〈kl〉〈l1〉〈1q〉
. (4.2.27)

The contribution from the case where the soft radiative gluon has the minus helicity is

negligibly small due to the fact that both 〈p1〉 〈q1〉 go to zero in the soft and collinear

approximation. We can therefore neglect A5(+,+,−) and only consider the case where

the helicity of the gluons k and l are different. Recall that flipping the helicity of the two

gluons involved in the hard scattering is equivalent to swapping the two gluons, that is

to say interchanging k and l. Furthermore, by taking the same approach as before it is

straight forward to show that the amplitude squared, summed over the colors is given by∑
col.

|A5(+,−,+)|2 ≈ g2s
CF
2

(pq)

(ps1)(s1q)

∑
col.

|A4(+,−)|2. (4.2.28)

Therefore, the full amplitude squared–summed over the colors and all possible helicities–

for the process with emission of single radiative gluon can be expressed as∣∣Ā5(qg → qg + 1g)
∣∣2 ≈ g2s CF2 (pq)

(ps1)(s1q)

∣∣Ā4(qg → qg)
∣∣2 . (4.2.29)

With this result, one can write down the full expression of the single emission current

|J̄ (1)
g (1)|2 that is given by the following expression

|J̄ (1)
g (1)|2 = g2s

CF
2

(pq)

(ps1)(s1q)
. (4.2.30)

From this expression, one can deduce the expression of the single gluon multiplicity dis-

tribution dN
(1)
g (x) = |J̄ (1)

g (1)|2d3s1/(2π)32ω1 that a single radiated gluon is emitted with

a very small angle with respect to the outgoing quark. One can check that the expression

of the multiplicity distribution exhibits two divergences: (i) soft divergence when s1 → 0,

(ii) collinear divergence when the scalar product (s1q) goes to zero.
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4.2.2 Two radiative gluon emission

In the previous section, we computed the probability distribution that the soft radiative

gluon can be emitted from a highly energetic quark with an eikonal trajectory. We found

that at the leading approximation, the distribution tends to follow the Poisson distribu-

tion. In this section, we compute the case where we have two emission of soft radiative

gluons. We now have to divide our calculation into two main parts. First, we compute

the contribution from the MHV helicity configuration and then compute the case where

we have an NMHV amplitudes. We show that in the soft-collinear limit, the contribution

from the NMHV amplitudes are small and therefore can be neglected.

Let us now label the momentum of the second radiative gluon to be s2 as represented

in Fig.4.3. From the color kinematic decomposition, the general expression for the process

with emission of two soft radiative gluons is given by

A6({pi, hi, ai}) = g4s
∑
P4

(T akT alT a1T a2)A6(p, k, l, 1, 2, q), (4.2.31)

In Eq. (4.2.31), the summation is performed over the permutation of the four gluons. This

means that the expansion of Eq. (4.2.31) will give rise to 4!=24 terms. A generic helicity

configuration is denoted by (hk, hl, h1, h2) where again we do not have into account the

helicity of the quark and the antiquark.

p
q

l

k

s1

s2

Figure 4.3: MHV diagrammatic representation of the two gluon emission in the qggq̄-

process. The soft radiative gluons s1 and s2 (s1, s2 ∼ 0) are assumed to be collinear to

the high energetic quark which undergoes a single scattering.

MHV amplitudes

Let us first consider the following configuration of helicity, H1 = (−,+,+,+). All the

gluons have positive helicities except the gluon with momentum k. We argued in the

computation of the single gluon emission that all other configuration of helicities lead to a
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vanishing amplitudes except for H2 = (+,−,+,+). This is due to the fact that the spinor

products 〈1q〉 and 〈2q〉 tend to zero in the collinear limit. For the helicity H1, the MHV

amplitude is given by the following expression

A6(H1) = g4s
〈pk〉3〈qk〉
〈qp〉

∑
P4

(T akT alT a1T a2)

〈pk〉〈kl〉〈l1〉〈12〉〈2q〉
. (4.2.32)

Similarly to the calculation of the single gluon emission, we can factorize out the partial

amplitudes for the parent process. This allows us to break the summation over the permu-

tation P4(k, l, 1, 2) into two summations over the permutation P2(k, l) and P ′2(1, 2). This

can be expressed mathematically as

A6(H1) = g4s
∑
P2

∑
P ′2

(
(T akT alT a1T a2)〈l2〉〈kq〉
〈l1〉〈12〉〈k2〉〈2q〉

+
(T akT a1T alT a2)〈kl〉〈lq〉
〈k1〉〈1l〉〈l2〉〈2q〉

+
(T a1T akT alT a2)〈pk〉〈lq〉
〈p1〉〈1k〉〈l2〉〈2q〉

+
(T a1T a2T akT al)〈pk〉〈1k〉
〈p1〉〈1k〉〈12〉〈2q〉

+
(T a1T akT a2T al)〈pk〉〈kl〉
〈p1〉〈1k〉〈k2〉〈2l〉

+
(T akT a1T a2T al)〈k2〉〈kl〉
〈k1〉〈12〉〈k2〉〈2l〉

)
A4(k, l). (4.2.33)

By decomposing the color factors as shown in the Appendix C.3, we can decompose

the amplitude above as A6(H1) = A6(parent) + A6(extra). The amplitude A6(parent)

has a well ordered color factor and depends explicitly on the amplitude of the parent

process that contains the information about the hard scattering. On the other hand,

the amplitude A6(extra) contains all the extra-terms coming from the re-ordering of the

colors. The full expression of A6(extra) is shown in the Appendix C. Using the soft and

collinear approximation, we can show that A6(extra) is small compared to A6(parent)

and therefore can be neglected. The details of such calculation is shown in Appendix

D.1. Thus, the expression of the amplitude A6(H1) is approximatively equivalent to the

amplitude A6(parent) as follows

A6(H1) ≈ g4s
∑
P2

∑
P ′2

(T akT alT a1T a2)J(k, l, 1, 2)A4(k, l). (4.2.34)

Here, J(k, l, 1, 2) can be thought as a partial current that contains the information about

the kinematics of the soft scattering. The partial current J(k, l, 1, 2) can be simplified

using the Schouten identity. The full calculation is shown in Appendix D.1. The result

turns out to be an expression independent of the momentum of the two gluons involved in

the hard scattering. Thus, we can nicely write down the expression of the full amplitude
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for our MHV helicity configuration as

A6(H1) ≈ g4s

∑
P2

(T akT al)A4(k, l)


∑
P ′2

(T a1T a2)
〈pq〉

〈p1〉〈12〉〈2q〉

 . (4.2.35)

By separating the soft from the hard scattering, we can introduce the two gluon emission

current denoted J (2)
g (1, 2). Thus, for the two possible MHV helicity configurations we get

the following expressions

A6(H1) ≈ A4(−,+)× J (2)
g (1, 2), (4.2.36)

A6(H2) ≈ A4(+,−)× J (2)
g (1, 2). (4.2.37)

Similarly to the calculation of the single gluon emission, squaring the above amplitudes,

summing over the possible MHV configurations and taking the trace leads to the following

expression ∑
MHV

∣∣A6(H1/2)
∣∣2 ≈ 1

CA
|J̄ (2)
g (1, 2)|2

∑
MHV

|A4(∓,±)|2 . (4.2.38)

Computing directly |J̄ (2)
g (1, 2)|2 will be extremely complicated because of the color de-

pendence. Indeed, while taking the square of the current the color components will be

mixed. We can bypass such computation by computing the current square in the basis of

the colors. We could then write |J̄ (2)
g (1, 2)|2 as follows

|J̄ (2)
g (1, 2)|2 = g4sCs(1, 2)Ks(1, 2) + g4sCa(1, 2)Ka(1, 2), (4.2.39)

where the different color configurations are given by Cs(1, 2) and Ca(1, 2) (see Eq. 4.2.40,

4.2.41). Once evaluated, we can write the result in terms of the Casimir operators CA, CF

(refer to Appendix C.2). On the other hand, the information about the kinematics are

carried by Ks(1, 2) and Ka(1, 2) (see Eq. 4.2.42, 4.2.43).

Cs(1, 2) = Tr(T a1T a2T a2T a1) = CAC
2
F , (4.2.40)

Ca(1, 2) = Tr(T a1T a2T a1T a2) = CAC
2
F −

1

2
C2
ACF , (4.2.41)

Ks(1, 2) =
∑
P ′2

〈pq〉
〈p1〉〈12〉〈2q〉

[pq]

[p1][12][2q]
, (4.2.42)

Ka(1, 2) =
∑
P ′2

〈pq〉
〈p1〉〈12〉〈2q〉

[pq]

[p2][21][1q]
. (4.2.43)

We can simplify further the expression of the current squared using the expression of the

color factors. So, we have

|J̄ (2)
g (1, 2)|2 = g4sCAC

2
F (Ks(1, 2) +Ka(1, 2))− g4s

2
C2
ACF Ka(1, 2). (4.2.44)
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We can now straightforwardly compute the kinematic terms. One can in particular notice

that the color stripped kinematic in the first term contains all the set of permutation

similar to the QED case of two Bremsstrahlung photons emission. Let us call this term

JQED and is evaluated as,

JQED(1, 2) =

∑
P ′2

〈pq〉
〈p1〉〈12〉〈2q〉


∑
P ′2

[pq]

[p1][12][2q]

 (4.2.45)

=

(
2∏
i=1

〈pq〉
〈pi〉〈iq〉

)(
2∏
i=1

[pq]

[pi][iq]

)
(4.2.46)

=
1

22

2∏
i=1

(pq)

(psi)(siq)
. (4.2.47)

This result looks exactly similar to the emission current squared for the case of two

Bremsstrahlung photon emission in QED (see Section 4.1). As a difference, the fact

that gluons carry color charges appears in the color factor. However, because of the

non-Abelian nature of the strong force we have an extra term which also contributes to

the expression of the total emission current squared. In Eq. (4.2.44), this information is

contained in JNA = Ka, where NA stands for Non-Abelian.

JNA(1, 2) = − (pq)

(s1s2)

(
1

〈p1〉〈2q〉[p2][1q]
+

1

〈p2〉〈1q〉[p1][2q]

)
(4.2.48)

= − (pq)

(s1s2)

(
1

〈p1q2p]
+

1

〈p2q1p]

)
(4.2.49)

= − (pq)

(s1s2)

Tr(/p/s1/q/s2)

24
∏
i(psi)(siq)

. (4.2.50)

From the first to the second line, we just used the shorthand notation introduced in Section

2.1.3 to re-write the terms in the denominators. From the second to the third line, we

evaluated the spinor quantities by performing Dirac traces. Notice that the denominator

in Eq. (4.2.50) is a direct consequence of the fact that 〈p1q2p] and 〈p2q1p] are complex

conjugate of each other.

Combining all these results, summing over all possible MHV helicity configurations,

the amplitude in Eq. (4.2.38) finally becomes

|Jg(1, 2)|2 = g4s

[
C2
F

22

2∏
i=1

(pq)

(psi)(siq)
+
CACF

2

(pq)

(s1s2)

Tr(/p/s1/q/s2)

24
∏
i(psi)(siq)

]
. (4.2.51)

In order to do the summation over all the possible helicity configurations, we are required

to compute the NHMV amplitudes for the case of two gluon emission. However, we will

show that the contribution from the NMHV amplitudes are too small and therefore the

radiative process is dominated by the MHV amplitudes.
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NMHV amplitudes

The summation over the helicities for the case of two gluon emission requires the com-

putation of the NkMHV amplitudes at the first order (k = 1). In particular, in the case

where we have to worry about the helicities of the 4 gluons, two of the gluons have to have

a negative helicity in order to form an NMHV amplitude. As we have seen in the previous

computation, flipping the helicity of two gluons is equivalent to flipping the labels. For

instance, going from (−,−,+,+) to (−,+,−,+) we swap k and 1 in the expression of

scattering amplitude. As a result, we are only required to compute one configuration of

helicity for the NMHV amplitude. That is said, let us show that the contribution from

the NMHV amplitude can be neglected as it was previously claimed.

Let us first choose the following configuration of helicity H3 = (−,−,+,+). At this

point, we have only seen to compute MHV amplitudes. Thanks to the BCFW on-shell

recursion relation, we can reduce the computation of NMHV amplitudes into the compu-

tation of two MHV-amplitudes. In the BCFW on-shell recursion formalism, the shifted

momentum can be choosen arbitrarily. However, with a good choice of helicity and shift

we can reduce enormously the number of diagrams that we have to compute. One can

notice that choosing the momentum l and s1 to be the reference line, only two diagrams

contribute to the expression of the NMHV amplitude. The equation for the [l, 1〉-shift can

be written as follows,

|l] −→ |l̂] = |l] + z|1], |1〉 −→ |1̂〉 = |1〉 − z|l〉. (4.2.52)

Recall that in the [l, 1〉-shift, the spinors |l〉 and |1] remain unchanged.

l−

p−

1+

q+

2+k− =

k−

p−

+

l̂−

q+

P̂12

D1

−

1̂+

2+

l̂−

k−

+
+

P̂kl

D2

−

2+

q+

1̂+

p−

Figure 4.4: BCFW diagrammatic representation of the NMHV amplitude for the two

gluon emission. The helicity is chosen to be (−,−,+,+) with the [l, 1〉-shift. Notice that

the two internal lines P̂kl and P̂12 are both on-shell. The two diagrams D1 and D2 are

related by symmetry.

Let us first focus on the first diagram D1 in the Fig. 4.4. One can notice that both the
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two subdiagrams are MHV. By taking into account the contribution from the internal line

P̂12, we can therefore write down the expression of the amplitude for the first diagram

D1 =
[pP̂12][qP̂12]

3

[pk][kl̂][l̂P̂12][P̂12q][qp]

1

〈12〉[12]

[1̂2]4

[P̂121̂][1̂2][2P̂12]
. (4.2.53)

As we can see, the amplitude shown above still depends on the shifted momenta. In or-

der to get a physical scattering amplitude, we have to get rid of these shifted momenta.

Fortunately, the shifted momenta in Eq. (4.2.53) are only in terms of the square brack-

ets. By taking into account the momentum conservation and using the shift equation in

Eq.(4.2.52) we can easily get rid of |P̂12] and |1̂] (as shown in the Eq.(4.2.54). The detailed

calculations are shown in Appendix D.1.

|P̂12] =
〈l1〉
〈l2〉
|1] + |2], |l̂] = |l] +

〈12〉
〈l2〉
|2]. (4.2.54)

With these two equations, we can now get rid of the shifted momenta in Eq. (4.2.53).

After rearranging terms and doing some fair amount of simplifications, we get the final

expression of the first diagram that contributes to the total NMHV amplitudes

D1 =
1

sl12

〈l|1 + 2|p]〈l|1 + 2|q]2

〈l1〉〈12〉[qp][pk]〈2|l + 1|k]
, (4.2.55)

where sl12 = 〈l1〉[l1] + 〈12〉[12] + 〈2l〉[2l]. In order to evaluate the contribution from the

second diagram D2, we do not have to do the whole computation. In fact, the two diagrams

D1 and D2 are related by symmetry with all the helicities flipped. In particular, we can

notice that in contrast to the diagram D1, D2 is composed of two MHV subdiagrams.

Thus, in order to get the right expression for D2, we swap k ↔ 2, l↔ 1 and p↔ q in the

expression of D1. In addition, due to the flip of helicities, all the square brackets become

angle brackets and vice versa. Thus, the complete NMHV amplitude is expressed as

A6(H3) =
1

sl12

〈l|1 + 2|p]〈l|1 + 2|q]2

〈l1〉〈12〉[qp][pk]〈2|l + 1|k]
+

1

skl1

[1|l + k|q〉[l|l + k|p〉2

[1l][lk]〈pq〉〈q2〉[k|1 + l|2〉
. (4.2.56)

The above expression looks rather messy. However, one can use the little group scaling to

check that Eq. (4.2.56) is indeed consistent. Recall that scaling an external leg labeled by

i with helicity hi will give rise to a weight t−2hi . One can for instance choose to scale the

gluon l with helicity (−1). With a fair amount of algebra, one can show that we indeed

end up with a factor of t2. Notice that the terms sijk are invariant under scaling of i, j and

k. Let us now consider the limit where the radiative gluons are collinear to the outgoing

quark. If we represent by x the spinor products 〈12〉, 〈1q〉, 〈2q〉, [12], [1q] and [2q], thus, we

see that the AMHV
6 amplitudes are of order of ∼ 1/x2 while the ANMHV

6 are of the order
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of ∼ 1/x. In the limit where x → 0, the NHMV amplitudes are small compared to the

MHV ones and therefore can be neglected. This tells us that in the soft-collinear limit,

the radiative process is dominated by the MHV amplitudes.

The final expression of the emission current for the case of two gluon emission is then

given by Eq.(4.2.51). We can now write down the expression of the momentum distribution

for emitting two radiative gluons. Notice that we can factorize out the Poisson term in

Eq. (4.2.51), so that the momentum distribution now writes as

dN (2)
g =

1

2!

(
1 +

CA
CF

Tr(/p/s1/q/s2)

4(pq)(s1s2)

) ∏
i=1,2

dN (1)
g (i). (4.2.57)

This expression shows that the emission of multiple radiative gluons (in the present

case n = 2 radiative gluons) cannot be taken to be independent. In fact, a gluon can

emerge from a gluon line as cartooned in Fig. 4.5. Requiring the gauge field of QCD

to commute is equivalent to take the limit where the Casimir factor CA tends to zero.

Therefore, when taking the limit CA → 0 we should recover the QED result. Intuitively,

this limit makes sense because (i) CA is the Casimir factor in the adjoint representation

of SU(N) and since the theory of QED does not have an adjoint representation it is then

natural to take CA = 0 (ii) in the standard computation of quark-gluon amplitudes, the

factor CA appears when a gluon is emitted from another gluon line. As we can notice, if

we take the limit CA tends to zero in Eq. (4.2.51) the correction term from non-Abelian

behavior vanishes and only remains the term which has been resumed in QED.

−−−−−−−→ +

Figure 4.5: Independent emission of the two radiative gluons versus the case where the

two radiative gluons can interact.

4.2.3 Three radiative gluon emission

The previous section showed that the non-Abelian nature of QCD affects the way two ra-

diative gluons are emitted from a quark line. The evaluation of the momentum distribution

for higher number of Bremsstrahlung gluons is important not only for the understanding

of the radiative energy loss formalism in QGP but also for the study of the many body
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problems in QCD. In this section, we aim to compute the probability distribution for

emitting three radiative gluons (see Fig. 4.6). The amplitude for the process is given by

the following expression

A7({pi, hi, ai}) = g5s
∑
P5

(T akT alT a1T a2T a3)A7(p, k, l, 1, 2, 3, q). (4.2.58)

By taking a similar approach as in Section 4.2.2, we compute separately the MHV and

the NkMHV (k = 1, 2) amplitudes. Again, using the BCFW on-shell recursion relations

to compute the NkMHV amplitudes, we show that the NkMHV amplitudes are dominated

by the MHV ones and therefore can be neglected.

p
q

l

k

s1

s2s3

Figure 4.6: MHV diagrammatic representation of the three gluon emission in the qggq̄-

process. The soft radiative gluons s1, s2 and s3 (s1, s2, s3 ∼ 0) are assumed to be collinear

to the high energetic quark passing through the QGP medium.

MHV amplitudes

For the MHV calculation, let us consider the case where all the gluons have positive

helicities except the gluon labeled by k and let us denote such configuration by H4. With

this choice of helicity, the correspondent MHV amplitude is given by

A7(H4) = g5s
〈pk〉3〈qk〉
〈qp〉

∑
P5

(T akT alT a1T a2T a3)

〈pk〉〈kl〉〈l1〉〈12〉〈23〉〈3q〉
, (4.2.59)

where the summation is performed over the permutation of the five gluons. One can notice

that the expansion of this summation will give rise to 120 terms. Expanding directly this

summation and taking the square of the given result will be a complete mess. As it

was shown in the previous calculation (for n = 1, 2), one can always express all partial

amplitudes in Eq. (4.2.59) in terms of the partial amplitudes of the parent process A4(k, l)

and A4(l, k). In addition, one can always rearrange the color terms in such a way that

we can factorize out the color terms of the hard gluons. As a result, we can write the
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amplitude for H4 as A7(H4) = A7(parent) + A7(extra). In the collinear limit region we

are interested in, A7(parent) dominates over A7(extra), thus the amplitude now becomes

A7(H4) ≈ A4(−,+)× J (3)
g (1, 2, 3), (4.2.60)

where the three gluon current is given by Eq.(4.2.61). The details about these calculations

can be found in the Appendix D.2. The emission current is given by

J (3)
g (1, 2, 3) = g3s〈pq〉

∑
P ′3

(T a1T a2T a3)

〈p1〉〈12〉〈23〉〈3q〉
. (4.2.61)

The main task is now to compute the square of this expression and trace over the colors.

As it was proved during the calculation of the emission current for the two gluon case, the

computations become much easier when using the color factors as a basis. In addition, in

order to simplify the notation let us denote Tr(T i · · ·Tm) = Tr(i . . .m). Thus, we get

|J̄ (3)
g (1, 2, 3)|2 = Cs(1, 2, 3)Ks(1, 2, 3) + Ca(1, 2, 3)Ka(1, 2, 3) + C1(1, 2, 3)K1(1, 2, 3)+

C2(1, 2, 3)K2(1, 2, 3) + C3(1, 2, 3)K3(1, 2, 3) + C4(1, 2, 3)K4(1, 2, 3). (4.2.62)

In the above expression, C∗ is a function that contains the color factors of the radiative

gluons while K∗ contains the information on the kinematics. We shall emphasize that

each K∗ in Eq. (4.2.62) has 6 terms due to the sum over the permutation P ′2. Thus, the

emission current |J̄ (3)
3 (1, 2, 3)|2 has in total 36 terms. The color factors in Eq. (4.2.62) are

given by the following traces

Cs(1, 2, 3) = Tr(123321), Ca(1, 2, 3) = Tr(123123), C1(1, 2, 3) = Tr(123231),

C2(1, 2, 3) = Tr(123312), C3(1, 2, 3) = Tr(123213), C4(1, 2, 3) = Tr(123132),

which after evaluation gives the following result

Cs(1, 2, 3) = CAC
3
F , Ca(1, 2, 3) = CAC

3
F + 2C3

ACF − 3C2
AC

2
F , (4.2.63)

C1/2(1, 2, 3) = CAC
3
F − C2

AC
2
F , C3/4(1, 2, 3) = CAC

3
F + C3

ACF − 2C2
AC

2
F . (4.2.64)

Notice that all the color factors contain the expression CAC
3
F and by combining the associ-

ated kinematic terms we recover the QED term for the emission of three radiative gluons.

Therefore, the expression of the emission current squared in Eq. (4.2.62) simplifies as

|J̄ (3)
g (1, 2, 3)|2 = CAC

3
F J

(3)
QED(1, 2, 3) +

(
2C3

ACF − 3C2
AC

2
F

)
Ka(1, 2, 3)

− C2
AC

2
F

∑
i={1,2}

Ki(1, 2, 3) +
(
C3
ACF − C2

AC
2
F

) ∑
i={3,4}

Ki(1, 2, 3). (4.2.65)
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We are now left with the computation of the expression of kinematics in Eq. (4.2.65). Let

us first start by computing the kinematic with an asymmetric configuration,

Ka(1, 2, 3) =
∑
P ′3

〈pq〉
〈p1〉〈12〉〈23〉〈3q〉

[pq]

[p3][32][21][1q]
, (4.2.66)

=
(pq)

2

∑
P ′3

1

(s1s2)(s2s3)

1

〈p1q3p]
. (4.2.67)

From the first to the second line, we used the Lorentz invariant product and the shorthand

notation to represent the product of angle and square spinors. Notice that the factor

1/((s1s2)(s2s3)) is invariant under interchange of 1 and 3. On the other hand, we know

that 〈p1q3p]∗ and 〈p3q1p] are complex conjugate of each other. Thus, we can write Ks

entirely in terms of traces and scalar products

Ka(1, 2, 3) =
(pq)

4

∑
P ′3

1

(s1s2)(s2s3)

Tr(/p/s1/q/s3)

24(ps1)(s1q)(ps3)(s3q)
. (4.2.68)

While looking at this expression we can see that we have an extra factor of 1/2, this is

because swapping i and j in Tr(/p/si/q/sj) will give the same result.

Let us now move to the computation of K1(1, 2, 3) +K2(1, 2, 3),∑
i={1,2}

Ki(1, 2, 3) =
∑
P ′3

〈pq〉
〈p1〉〈12〉〈23〉〈3q〉

[pq]

[p1][13][32][2q]
+ (4.2.69)

∑
P ′3

〈pq〉
〈p1〉〈12〉〈23〉〈3q〉

[pq]

[p2][21][13][3q]
. (4.2.70)

By rewriting the expression in terms of the Lorentz invariant products and using our

shorthand notation, we can show that this expression can be written as∑
i={1,2}

Ki(1, 2, 3) = −(pq)

2

∑
P2

∑
P ′3

1

(ps1)(s2s3)

1

〈q213q]
. (4.2.71)

Applying the same argument as above and by noticing that (s2s3) is invariant under

interchange of 2 and 3, and that 〈r213r]∗ = 〈r312r], we get∑
i={1,2}

Ki(1, 2, 3) = −(pq)

4

∑
P2

∑
P ′3

1

(ps2)(s2s3)

Tr(/q/s2/s1/s3)

24(qs2)(s2s1)(qs3)(s3s1)
. (4.2.72)

Here, P2(p, q) permutes the label p and q. We are now left with the computation of the

last kinematic term in Eq. (4.2.44), which is given by the following expression∑
i={3,4}

Ki(1, 2, 3) =
∑
P ′3

〈pq〉
〈p1〉〈12〉〈23〉〈3q〉

[pq]

[p3][31][12][2q]
+ (4.2.73)

∑
P ′3

〈pq〉
〈p1〉〈12〉〈23〉〈3q〉

[pq]

[p2][23][31][1q]
. (4.2.74)
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With some simplifications, one can straightforwardly show that the above expression can

now be expressed as follows

∑
i={3,4}

Ki(1, 2, 3) = (pq)
∑
P ′3

1

(s1s2)

(
1

〈p3q231p]
− 1

〈p13q23p]

)
. (4.2.75)

The above expression is slightly different from any other expressions we have encountered.

In order to simplify this relation, let us first write down the explicit form of 〈p3q231p] and

the complex conjugate of 〈p13q23p].

〈p3q231p] = 〈p3〉[3q]〈q2〉[23]〈31〉[1p],

〈p13q23p]∗ = [p1]〈13〉[3q]〈q2〉[23]〈3p〉.
(4.2.76)

From these expressions, we can conclude that 〈p3q231p] and (−〈p13q23p]) are complex

conjugate of each other. Thus, we get

∑
i={3,4}

Ki(1, 2, 3) = (pq)
∑
P ′3

1

(s1s2)

Tr(/p/s1/s3/q/s2/s3)

64(ps1)(ps3)(s1s3)(s2s3)(s2q)(s3q)
. (4.2.77)

Recall that the term in the denominator comes from expanding |〈p3q231p]|2. One can

remark in this expression that the kinematic is function of a trace of six components,

in contrast to the previous results. Combining all these results, we can write down the

explicit expression of the three-emission current in Eq. (4.2.65) as

|J̄ (3)
g (1, 2, 3)|2 =

Cs
23

3∏
i=1

(pq)

(psi)(siq)
+
Ca
4

∑
P ′3

(pq)

(s1s2)(s2s3)

Tr(/p/s1/q/s3)

24(ps1)(s1q)(ps3)(s3q)
+

C1/2
4

∑
P2

∑
P ′3

(pq)

(ps2)(s2s3)

Tr(/q/s2/s1/s3)

24(qs2)(s2s1)(qs3)(s3s1)
+
C3/4
s

∑
P ′3

Tr(/p/s1/s3/q/s2/s3)

64(ps1)(p1s3)(s2q)(s3q)
.

(4.2.78)

The permutation invariant quantity s is given by the product (s1s2)(s1s3)(s2s3). Recall

that the above result represents the emission current squared for our particular MHV

helicity configuration. In addition, for the case of the three-gluon emission we have to

compute the NkMHV amplitudes for k=1,2. In th next section, we compute the N2MHV

amplitudes. We see that the NMHV and the N2MHV amplitudes are related by symmetry.

N2MHV amplitudes

This section aims to compute the N2MHV amplitudes for the case of three radiative gluon

emission. In our particular process, N2MHV refers to the class of amplitudes with four



4.2. Soft-collinear gluon radiation off a massless quark 59

negative helicity particles (1 quark and 3 gluons), one positive helicity gluons and one

positive helicity antiquark (see Fig. 4.7). Let us denote such configuration of helicity as

H5 = (−,−,−,+,+). Recall that in this notation, the helicity of the quark and the

antiquark are not taken into account. For the specific case of a 7-point amplitude, the

NMHV amplitudes are related to the N2MHV by interchange of labels. To see that, let

us consider an NMHV amplitude with three negative helicity particles (say one quark and

two gluons) and four positive helicity gluons (say one antiquark and three gluons). The

latter is related to the above N2MHV amplitude with all the square brackets becoming

angle brackets and interchange of gluons. That is to say, computing an NMHV amplitude

is equivalent to computing an N2MHV amplitude.

As illustrated in the previous sections, the most efficient way to compute amplitudes

beyond MHV is to use the BCFW on-shell recursion relations. Indeed, the BCFW formal-

ism allows us to construct amplitudes recursively from fewer number of extra-legs. This is

very useful for the computation of the N2MHV amplitude since we have already computed

both the MHV and the NMHV amplitudes for 6 external state particles.

1−
l−

p−

2+

q+

3+k− =

k− 1̂−

p− q+

+

l−

D1

P̂23

−

2̂+

3+

1̂−

l−

+
+

P̂l1

D2

−
3+

p−

q+

2̂+

k−

Figure 4.7: Diagrammatic representation of the BCFW recursion for the computation of

N2MHV amplitude with [1, 2〉-shift. The two hard gluons and one soft gluon have negative

helicity, where the remaining soft gluons have positive helicity.

Let us choose the gluons labeled by 1 and 2 to be our reference line. This is equivalent

to consider a [1, 2〉-shift. Using the BCFW on-shell formalism, one can show that only

two diagrams contribute to the full N2MHV amplitude as shown in Fig. 4.7. The shift

equations are shown in Eq. (4.2.79). Recall that these are the only shift transformations

that we can have and all the remaining momentum remain unshifted.

|1̂] = |1] + z|2], and |2̂〉 = |2〉 − z|1〉. (4.2.79)

One can see in Fig.4.7 that the first diagram D1 is composed of two MHV subdiagrams.

On the other hand, the second diagram D2 is composed of one MHV and one MHV subdi-



4.2. Soft-collinear gluon radiation off a massless quark 60

agrams. Let us first evaluate the first diagram in the Fig. 4.7. Both the two subdiagrams

of D1 are anti-MHV and written in its mathematical form, we get the following expression

D1 =
[qP̂23]

3[pP̂23]

[pk][kl][l1̂][1̂P̂23][P̂23q]

1

〈12〉[12]

[2̂3]4

[P̂232̂][2̂3][3P̂23]
. (4.2.80)

With the on-shell condition of P̂23, the momentum conservation and the shift equation we

can express the shifted momenta in terms of the normal spinor vectors (Eq. 4.2.81). The

details of this computation is found in the Appendix D.2.

|1̂] = |1] +
〈23〉
〈13〉
|2], |P̂23〉 = |3〉, and |P̂23] =

〈12〉
〈13〉
|2] + |3]. (4.2.81)

Combining all these results, putting them back into the expression of D1, recalling that

|2̂] = |2], rearranging the terms and performing some simplification we get the final ex-

pression of the first diagram in the N2MHV amplitude:

D1 =
1

s123

〈1|2 + 3|q]2〈1|2 + 3|p]
〈12〉〈23〉[pk][kl]〈3|1 + 2|l]

. (4.2.82)

On the other hand, the diagram D2 is composed of one MHV subdiagram (left) and

one NMHV subdiagram (right). Rewriting the MHV part and the internal line in terms

of their mathematical expressions, this can be interpreted as

D2 =
〈l1̂〉4

〈l1̂〉〈1̂P̂l1〉〈P̂l1l〉
1

〈l1〉[l1]
×
( P̂− ŝ+2
k− s+3

p− q+

)
, (4.2.83)

=
〈l1̂〉4

〈l1̂〉〈1̂P̂l1〉〈P̂l1l〉
1

〈l1〉[l1]
×M. (4.2.84)

Here, the NMHV diagram is represented by M. Using the expression that we derived for

the computation of two radiative gluon emission, the NMHV part is given by the following

expression

M =
1

ŝ12P

〈P̂l1|2̂ + 3|q]2〈P̂l1|2̂ + 3|p]
〈P̂l12̂〉〈2̂3〉[qp][pk]〈3|P̂l1 + 2̂|k]

+
1

ŝk2P

[2̂|k + P̂l1|p〉2[2̂|k + P̂l1|q〉
[kP̂l1][P̂l12̂]〈pq〉〈q3〉[k|P̂l1 + 2̂|3〉

.

(4.2.85)

Similarly to the previous calculations, the shifted momentum can be suppressed using

the on-shell condition of P̂l1, the momentum conservation and the shift equations. As a

consequence, we have the following expressions

|1̂] = |3]− [l1]

[l2]
|2], |2̂〉 = |4〉+

[l1]

[l4]
|3〉, |P̂l1〉 = |l〉+

[12]

[l2]
|1〉, and |P̂l1] = |l]. (4.2.86)
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Putting back these expression in Eq. (4.2.84) and simplifying terms, the final expression

for the N2MHV amplitude is given by

D2 =

(
S1l2[l2]

〈3|l + 1|2][lk] + 〈3|1 + 2|l][k2]

){
[l2]
(
sl12 − 〈3|l + 1|2][3q]

)2
sl12[l2] + 〈3|1 + 2|l][23] + 〈3|l + 1|2][2l]

×

sl12[2p]− 〈3|l + 1|2][3p]

sl12[qp][pk][l|1 + 2|3〉
+

1

[kl]〈pq〉〈q3〉

(
[2|k + l + 1|p〉

)2
[2|k + l + 1|q〉

sl12[l2] + 〈k|1 + 2|l][2k] + 〈k|l + 1|2][kl]

}
,

(4.2.87)

where S1l2 = [l2]/([l1][12]). Indeed, this is because Eq. (4.2.84) simplifies as D2 = S1l2×M.

Combining the two diagrams, we get the total expression for the NkMHV (k = 1, 2)

amplitudes. Using similar approach as for the study of the gluon emission, let us study

the behavior of the NkMHV amplitudes under the soft and collinear limit. In the limit

where the radiative gluons are soft and collinear to the outgoing quark, the following

spinor products tend to zero: 〈12〉, 〈23〉, 〈13〉, [12], [23], [13], 〈iq〉 and [iq] (for i = 1, 2, 3). If

we represent by x these spinor products, thus, one can check that the AMHV
7 amplitudes

are of the order ∼ 1/x3 while the ANMHV
7 amplitudes are of order ∼ 1/x. Thus, for x→ 0,

the NkMHV amplitudes are negligible compared to the MHV amplitudes. Therefore, at

leading-order, the process is dominated by the MHV helicity configuration.

Adding the appropriate normalization–which means dividing the color of the emission

current by CA– we can write down the final expression of the total emission current squared

for the three-gluon case from Eq. (4.2.78). Written in a more compact form–in terms of

traces and square-angle brackets– we have the following expression

|J̄ (3)
g (1, 2, 3)|2 =

C3
F

23

3∏
i=1

(pq)

(psi)(siq)
+
(
2C2

ACF − 3CAC
2
F

)∑
P ′3

(pq)

4(s1s2)(s2s3)

Tr(/p/s1/q/s3)

|〈ps1qs3]|2
+

(
C2
ACF − 2CAC

2
F

)∑
P ′3

(pq)

(s1s2)

Tr(/p/s1/s3/q/s2/s3)

|〈p3q231p]|2
+ CAC

2
F

∑
P2,P

′
3

(pq)

4(ps1)(s2s3)

Tr(/q/s2/s1/s3)

|〈q213q]|2
.

(4.2.88)

The above expression represent the total emission current squared for the case of three

gluon emission from which one can compute the multiplicity distribution. One can notice

that Eq.(4.2.88) exhibits soft and collinear divergences. The soft divergences appear when

the momentum of the radiative gluons tend to zero, namely si → 0 (where i runs from 1 to

3). On the other hand, the collinear divergences occur when the radiative gluons and the

outgoing quarks are collinear. In terms of the scalar products, the later can be expressed

as (sisj) → 0 and (siq) → 0 where i, j = 1, 2, 3. A quick check of the result shows that
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if we require the theory to be Abelian, namely taking CA → 0, we can directly see from

Eq. Eq. (4.2.88) that the correction/non-Abelian terms vanish and we are only left with

the Poisson term. This quick check demonstrates that our result is consistent. However,

in order to quantify qualitatively the contribution from the non-Abelian terms, we have

to study the behavior of Eq. (4.2.88) under the strong angular limit.

4.3 Summary

In this Chapter, we focused on the study of the in-medium induced radiation. In particular,

we analyzed the case for up to three radiative gluon emission. We started by re-deriving

the multiplicity distribution for emitting n number of Bremsstrahlung photons using the

MHV techniques. We then moved to the computation of the emission current (for the

case of one, two and three gluon emission) which holds the information on the radiative

process. In particular, for the case of multiple gluon emission (two and three emission), we

found that some correction terms have to be added to the standard Poisson result. These

correction terms reflect the non-Abelian nature of the strong force that is responsible for

the interaction of gluons. In the next section, we evaluate these correction terms and

compare the results to the standard Poisson approximation.



Chapter 5

Radiative Emission

Phenomenology

In the previous section, we analytically computed the expression of the momentum distri-

bution for emitting multiple radiative gluons (up to three) beyond the usual Poisson ap-

proximation. We showed that radiative gluon emission cannot be treated as independent.

At the leading-order calculation, we derived the analytic expression of the correction/non-

Abelian terms. In this section, we are going to numerically evaluate the results derived in

Chapter 4 and show how to tame the soft and collinear divergences exhibited by the MHV

results. We first start the chapter by introducing our parametrization of the kinematics.

Then, we study the energy spectrum for emitting radiative gluons as a function of the

fractional energy carried on by the gluons. Then, the strong angular ordering will be then

investigated afterwards to see if our results are consistent. At the end the chapter, we

analyze the convoluted probability density as a function of the total fractional energy ε.

5.1 Parametrization of the kinematics and approximations

Recall that throughout our analytic calculations, we used the approximation that the soft

gluons (si ∼ 0) are emitted with a very small angles (θi ∼ 0) with respect to the outgoing

quark, and the incoming quark is significantly deflected by the scattering with a hard

gluon coming from the medium such that direction of the outgoing quark is perpendicular

to the direction of the primordial quark, so we have ~p · ~q = 0.

Let us define the z axis to be the spatial direction of the primordial quark and

(x, z) to be the plane spanned by the spatial momenta of the incoming and the outgoing

63
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quark. Therefore, in Minkowski space, using the notation (p0, pz, px, py), the kinematics

are parametrized as follows

p = (E,E, 0, 0), (5.1.1)

q = ((1−
3∑
i=1

xi)E, 0, (1−
3∑
i=1

xi)E, 0), (5.1.2)

si = (xiE, si⊥ cosφi,
√

(xiE)2 − s2i⊥ , si⊥ sinφi). (5.1.3)

In the above expression, xi = ωi/E is the fraction of energy carried out by the i-th radiative

gluon with a transverse momentum si⊥ . Notice that these momenta satisfy the on-shell

condition p2 = s2i = q2 = 0. In addition, we consider the following approximation for our

radiative energy loss model

• Eikonal trajectory : the energy of the initial quark is considered to be larger than the

transverse momentum of the radiative gluons (E � si⊥).

• Small angle/collinear emission: the energy of an emitted gluon ωi = xiE is suffi-

ciently high compared to its transverse momentum (ωi � si⊥).

• Soft approximation: the energy of the leading quark is much higher than the energy

of the radiative gluons (E � ωi).

The expression of the momentum distributions are functions of dot products. Using the

above parametrization, the dot products of the momenta can now be straightforwardly

evaluated. In particular, (pq) ≈ E2 and (psi) ≈ xiE. In order to compute the scalar

product (siq) and (s1s2), one has to Taylor expand the term
√

(xiE)2 − s2i⊥ to obtain

√
(xiE)2 − s2i⊥ = xiE

(
1−

s2i⊥
2(xiE)2

)
+O

(
s4i⊥

(xiE)4

)
. (5.1.4)

Thus, we have

(siq) = xi(1−
3∑
i=1

xi)E
2 − xi(1−

3∑
i=1

xi)E

(
1−

s2i⊥
2(xiE)2

)
≈
s2i⊥
2xi

, (5.1.5)

and

(sisj) =
s2i⊥xj

2xi
+
s2j⊥xi

2xj
−

s2i⊥s
2
j⊥

4xixjE2
− si⊥sj⊥ cos ∆φi,j (5.1.6)

≈
s2i⊥xj

2xi
+
s2j⊥xi

2xj
− si⊥sj⊥ cos ∆φi,j , (5.1.7)
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where ∆φij = (φi − φj) is the difference in angle between the two radiative gluons on the

(z, y)-plane. On the other hand, from Eq. (5.1.3) we have

siz = si⊥ cosφi, (5.1.8)

siy = si⊥ sinφi, (5.1.9)

six =
√
s2i − s2i⊥ ≈ si. (5.1.10)

Therefore, by computing the Jacobian one can straightforwardly find that the measure

d3si = dsixdsiydsiz is given by d3si = si⊥dωidsi⊥dφi or 2d3si = Edxids
2
i⊥
dφi. We are

going to use these results to compute the energy spectrum as a function of the fractional

energy x =
∑3

i=1 xi which involves an integration over the Lorentz Invariant Phase Space

or in short LIPS.

5.2 One gluon emission case

Let us first focus on the case of the single gluon emission. Using our parametrization, the

expression of the multiplicity distribution is given by the following

dN
(1)
g

dx
=

αs
(2π)2

CF
x

∫
dφ1

∫
ds21⊥

1

s21⊥
(5.2.11)

=
αs
2π

CF
x

log

(
s21⊥max
s21⊥min

)
, (5.2.12)

where the fractional energy x varies from xmin to 1. In our numerical evaluation, the

minimal value of s1⊥ is taken to be the mass of a pion (mπ ∼ 0.1 GeV) while the maximum

value is taken to be the minimum of xE and (1−x)E. We can therefore define a function

ρ(1)(x) which represents the energy spectrum for a single radiated gluon

ρ(1)(x) =
dN

(1)
g

dx
=
αs
2π

CF
x

log

(
min(x2E2, (1− x)2E2)

m2
π

)
. (5.2.13)

In order to enhance the fact that the fraction of energy carried out by the radiative gluon

is greater than a value xmin–which is defined by the energy of the primordial quark–let us

define a new function ρ̃(1)(x),

ρ̃(1)(x) = ρ(1)(x)Θ(1− x)Θ(x− xmin). (5.2.14)

We see in Fig. 5.1 the comparison of the energy spectrum of a single radiated gluon for

different values of fraction of energy xmin and energy E of the primordial quark. Since
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our analytic expression formally diverges for x = 0, we allow x to have have as minimal

values xmin. Notice that the values of αs and xmin are defined by the energy E of the

initial quark. One can notice that an increase of x with a decrease of E implies a decrease

of the spectra and therefore a decrease of the number of radiated gluon 〈Ng〉.

xmin=0.001, αs=0.1, E=100 GeV

xmin=0.01, αs=0.2, E=10 GeV

xmin=0.1, αs=0.3, E=1 GeV

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4
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x

ρ˜
(1
) (
x
)

Figure 5.1: Energy spectrum for a single radiated gluon using Eq. (5.2.12) for different

values of xmin, αs and energy E which are represented by the different colors. As the

energy of the initial quark increases, the probability of emitting a single radiated gluon

decreases.

5.3 Two gluon emission case

Let us now move to the phenomenological study of the case of two gluon emission. For

the two gluon case, we found that the MHV expression differs from the Poisson by a

correction term which is a consequence of the non-Abelian nature of QCD. In this section,

we quantitatively compare the MHV and Poisson results for the case of two gluon emission,

again for different values of energy.

The energy spectrum of the Poisson result can be straightforwardly computed via

two methods. The first method consists of directly integrating Eq. (4.2.51) using the

parametrization in Section 5.1. After evaluating the scalar products and simplifying, we

have the following result

dN
(2)
g

dx
=
(αs

2π

)2
CF

∫ ( 2∏
i=1

dxidsi⊥

)
δ(x− x1 − x2)

1

x1x2

1

s21⊥s
2
2⊥

. (5.3.15)

The above expression can be numerically challenging to evaluate. An alternative way to

compute the two gluon Poisson case is to start from Eq.(5.2.14). Therefore, the expression



5.3. Two gluon emission case 67

of the energy spectrum can be expressed as follows

ρ̃(2)(x) =
1

2

∫
dy ρ̃(1)(x)ρ̃(1)(x− y). (5.3.16)

Both in Eq. (5.3.15) and Eq. (5.3.16), x = x1 + x2 denotes the total fraction of energy

carried out by both the first and the second radiative gluon. Similarly to the case of the

single gluon emission, the value of x is constrained within xmin and 1. This implies that y

has to be integrated from xmin to (x− xmin) in Eq. (5.3.16). The evolution of the energy

spectrum as a function of the fractional energy x for the Poisson case is shown in Fig. 5.2.

On the other hand, the numerical computation of the energy spectrum for the two gluon

MHV result is much more complicated not only due to the multidimensional integration

but also due to some divergences. Indeed, the soft divergence occurs when x→ 0 while the

collinear divergence occurs when (s1s2) = 0. Since we do not consider the case in which

the first and the second gluon are collinear to be a radiation, we would like the scalar

product (s1s2) to be greater than m2
π where as mentioned before mπ is the mass of a pion.

This requirement sets a restriction on the minimal value that ∆φ1,2 can take. Thus, the

angle ∆φ1,2 has to be greater than a (∆φ1,2)min which is a function of mπ. It follows from

Eq. (5.1.7) that requiring (s1s2) ≥ m2
π we can derive the expression of (∆φ1,2)min which

is given by

(∆φ1,2)min =
1

s1⊥s2⊥

(
x1s

2
2⊥

2x2
+
x2s

2
1⊥

2x1
−m2

π

)
. (5.3.17)

By the virtue of our parametrization of the kinematics, we can develop the trace term in

Eq. (4.2.51) and simplify further the expression,

|J̄ (2)
g (1, 2)|2 = g4s

C2
F

4

2∏
i=1

(pq)

(psi)(siq)
+ g4s

CACF
4

(pq)

(s1s2)

 ∑
P2(1,2)

1

(ps1)(s2q)
− (pq)(s1s2)∏

i(psi)(siq)


= g4s

C2
F

4CA

2∏
i=1

(pq)

(psi)(siq)
+ g4s

CACF
4

(pq)

(s1s2)

∑
P2(1,2)

1

(ps1)(s2q)
. (5.3.18)

From the first to the second line, we expanded the term in parentheses, combined the

Poisson terms and finally simplified the color terms. We can now numerically integrate

the above expression in order to get the energy spectrum. Eq. (5.3.18) can be decomposed

into the sum of two functions: a function dN
(2)
g/1 which exhibits the Poisson behavior and

a function dN
(2)
g/2 which contains the remaining terms. Using the expression of the scalar

products in Section 5.1, it is straightforward to show that the first term is given by the
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following expression

dN
(2)
g/1 =

α2
s

(2π)4
CF
CA

∫ ( 2∏
i=1

dxids
2
i⊥
dφi

)
1

x1x2

1

s21⊥s
2
2⊥

. (5.3.19)

On the other hand, the second term for the MHV result is given by

dN
(2)
g/1 =

α2
s

(2π)4
CACF

∫ ( 2∏
i=1

dxids
2
i⊥
dφi

)
1

x1x2

(
x21
s1⊥

+
x22
s2⊥

)
× δ(x− x1 − x2)

(x21s
2
2⊥

+ x22s
2
1⊥

)− 2x1x2s1⊥s2⊥ cos(φ1 − φ2)
. (5.3.20)

These integrations are both performed by integrating over x2 first, then integrated over x1

from xmin to (x−xmin). One ends up with a function which only depends on the fraction

of energy x. The results are numerically computed using our definition of the Casimir

factors CA = 3 and CF = 8/3. The lower bound of si⊥ is mπ while the upper bound is

taken to be the minimum of (xiE, (1−xi)E). Combining the results from Eq. (5.3.19) and

Eq. (5.3.20), we can have the total energy spectrum for the two gluon emission case.

Dashed: Poisson, Solid: MHV
xmin=0.001, αs=0.1, E=100 GeV

xmin=0.01, αs=0.2, E=10 GeV
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Figure 5.2: Energy spectrum for two gluon emission for different values of xmin, αs and

E. The dashed lines represent the Poisson Approximation and the solid lines represent

the MHV result expressed by Eq. (5.3.19) and Eq. (5.3.20). The black, blue and red lines

correspond respectively to E = 100 GeV (with xmin = 0.001, αs = 0.1), E = 10 GeV (with

xmin = 0.01, αs = 0.2) and E = 1 GeV (with xmin = 0.1, αs = 0.3). In the calculation,

mπ is taken to be 0.1 GeV/c2.

Fig. 5.2 shows the energy spectrum for different values of xmin, coupling constant αs,

and energy E. One can notice that there is a significant difference between the usual

Poisson approximation (represented by the dashed lines) and the new MHV result (rep-

resented by the solid lines). Indeed, the probability of emitting two radiative gluons from
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the MHV result is larger compared to the Poisson result. In addition, one can notice that

the energy spectrum does not converges to zero as the total fractional energy increases,

namely approaching x = 1. This is due to the small x approximation from which we

managed to simplify some expressions of the scalar products.

In order to check that our results are consistent, we will study in Section 5.5 the MHV

behavior under the strong angular ordering limit. When the radiative gluons are strongly

ordered (θ1 � θ2 � · · · � θn), the MHV result should converge to the Poisson result.

5.4 Three gluon emission case

Compared to the one and two gluon case, the numerical evaluation of the three-gluon case

is tedious and complicated. This is mainly due to multidimensional integration that we

have to perform over all the allowed phase space. On the one hand, integrating directly

the Poisson term is numerically heavy. However, the energy spectrum for the Poisson

result can be computed in a very simple way following Eq. (5.2.14) and Eq. (5.3.16),

ρ̃(3)(x) =
1

3

∫
dy ρ̃(1)(x)ρ̃(2)(x− y). (5.4.21)

Therein, y has to be integrated from xmin to (x− xmin) where x = (x1 + x2 + x3) is total

fraction of energy carried on by the three gluons. On the other hand, in order to simplify

the computation of the full MHV energy spectrum, let us decompose the expression of the

emission current (represented by Eq. 4.2.88) into four terms. The first term is the Poisson

term which can be computed from the above equation while the three remaining terms

represent the non-Abelian correction.

It has already been shown that the scalar product of two radiative gluons is given by

the following expression

(sisj) ≈
1

2

(
xjs

2
i⊥

xi
+
xis

2
j⊥

xj

)
− si⊥sj⊥ cos ∆φi,j . (5.4.22)

Let us define an expression which is invariant under scaling of si → wsi and sj → vsj

Ski,j =
(sisj)

(sisk)(sksj)
. (5.4.23)

Thus, using our parametrization of kinematics and with a fair amount of algebra the
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correction terms are expressed as follows

K(3)
g/1 = g6sC1

∑
P3

1

2(s1s2)(s2s3)

(
1

s21⊥
+

1

s23⊥

)
−
S21,3

s21⊥s
2
3⊥

, (5.4.24)

K(3)
g/2 = g6sC2

∑
P3

1

(s1s2)

(
2x2

x1s22⊥s
2
3⊥

− x22
x1x3

1

s22⊥(s2s3)
+
x2
x1

S31,2
s22⊥
− x2x3
x21(s1s3)

s21⊥
s22⊥s

2
3⊥

)
,

(5.4.25)

and finally the last expression is given by

K(3)
g/3 = g6sC3

∑
P3

1

x1(s2s3)

(
x2

s22⊥(s1s3)
+

x3
s23⊥(s1s2)

− S12,3
x2x3
s22⊥s

2
3⊥

)

+ g6sC3
∑
P3

1

2s21⊥(s2s3)

(
1

x2(s1s3)
+

1

x3(s1s2)
− S12,3

x1
x2x3

)
. (5.4.26)

In these expression, Ci denotes the appropriate color factors which are respectively given

by C1 = (2C2
ACF − 3CAC

2
F )/4 and C2 = 2C3 = (CAC

2
F )/4. Combining these expressions

with the Poisson term, the total momentum distribution can be written as

dN
(3)
MHV

dx
=
dN

(3)
g/P

dx
+
dN

(3)
g/1

dx
+
dN

(3)
g/2

dx
+
dN

(3)
g/3

dx
, (5.4.27)

where each term in the expression above is given by

dN
(3)
g/1

dx
=

α3
s

3!(2π)6
C1
∫ ( 3∏

i=1

dxids
2
i⊥
dφi

)
δ(x−

∑
i xi)

x1x2x3∑
P3

1

2(s1s2)(s2s3)

(
1

s21⊥
+

1

s23⊥

)
−
S21,3

s21⊥s
2
3⊥

, (5.4.28)

dN
(3)
g/2

dx
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α3
s

3!(2π)6
C2
∫ ( 3∏

i=1

dxids
2
i⊥
dφi

)
δ(x−

∑
i xi)

x1x2x3

∑
P3

1

(s1s2)
×

(
2x2

x1s22⊥s
2
3⊥

− x22
x1x3

1

s22⊥(s2s3)
+
x2
x1

S31,2
s22⊥
− x2x3
x21(s1s3)

s21⊥
s22⊥s

2
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)
, (5.4.29)

and

dN
(3)
g/3

dx
=

α3
s

3!(2π)6
C3
8

∫ ( 3∏
i=1

dxids
2
i⊥
dφi

)
δ(x−

∑
i xi)

x1x2x3

∑
P3

1

x1(s2s3)

{
x2

s22⊥(s1s3)
+

x3
s23⊥(s1s2)

− S12,3
x2x3
s22⊥s
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}
+

1

2

∑
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1

s21⊥(s2s3)

{
1

x2(s1s3)
+

1

x3(s1s2)
− S12,3

x1
x2x3

}
.

(5.4.30)

With all these expressions, we can plot the energy spectrum for the three-gluon MHV

case. Fig. 5.3 shows the energy spectrum for different values of xmin, coupling constant
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αs, and energy E. Again, the MHV results are represented by the solid lines while the

Poisson results are represented by the dashed lines. We see that the MHV results exhibit

larger energy loss compared to the Poisson results. On the other hand, Fig. 5.4 shows

the different energy spectrum for n = 1, 2, 3 using the two different methods (MHV and

Poisson) for a quark jet with an initial energy E = 100 GeV. One can notice that as the

number of emitted gluons increases, the energy spectrum decreases.

Dashed: Poisson, Solid: MHV
xmin=0.001, αs=0.1, E=100 GeV

xmin=0.01, αs=0.2, E=10 GeV

xmin=0.1, αs=0.3, E=1 GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

ρ
(̃3
) (
x
)

Figure 5.3: Energy spectrum for three gluon emission for different values of x, αs and

E. The dashed lines represent the Poisson Approximation and the solid lines represent

the MHV result expressed by Eq. (5.4.27). The black, blue and red lines correspond

respectively to E = 100 GeV (with xmin = 0.001, αs = 0.1), E = 10 Gev (with xmin =

0.01, αs = 0.2) and E = 1 GeV (with xmin = 0.1, αs = 0.3). In the calculation, mπ is

taken to be 0.1 GeV/c2.

5.5 Strong angular ordering

In the previous section, we studied the energy spectrum for emitting multiple radiative

gluons by taking into account the contribution from the non-Abelian behavior of QCD.

In order to check the consistency of our result, one can study the behavior of the MHV

expressions in the strong angular ordering limit. When the emitted gluons are strongly or-

dered, interference between radiative gluons becomes negligible and the distribution tends

to converge to the Poisson. Consider the case for the two gluon emission, we can study

the ratio between the MHV and Poisson using Eq. (4.2.57). Thus, we have f (2)({p, q, si})
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Figure 5.4: Comparison of the energy spectrum for emitting n = 1, 2 and 3 radiative gluons

for an initial quark of energy E = 100 GeV, xmin = 0.001 and αs = 0.1. The different

colors represent the number n of emitted radiative gluon. The solid lines represent the

MHV results while the dashed lines represent the usual Poisson result for uncorrelated

emission. The solid blue line correspond to the MHV results for three gluon emission

represented by Eq.(5.4.27). In the calculation, the mass of the pion is taken to be mπ = 0.1

GeV/c2.

which is given by

dN
(2)
MHV

dN
(2)
P

=
CA
CF

∑
P2(1,2)

(ps1)(s2q)

(pq)(s1s2)
+ CN , (5.5.31)

where CN = (CF −CA)/CF = 1/(1−N2). Using our parametrization and introducing θi

which is defined to be the angle between the outgoing quark q and the radiative gluon i,

Eq. (5.5.31) can be rewritten as

f (2)({θi, φi}) = CN +
CA
CF

∑
P2(1,2)

f̃ (2)(1, 2), (5.5.32)

with

f̃ (2)(1, 2) =
(1− cos θ1)(1− sin θ2 cosφ2)

(1− cos θ1 cos θ2 − sin θ1 sin θ2 cos ∆φ1,2)
.

By virtue of these equations, one can plot the ratio f (2) as a function of the angle θ2 of the

second radiative gluon. Fig. 5.5 shows the ratio function for different values of ∆φ1,2. By

fixing the value of θ1 and φ1, we see that as θ2 >> θ2 the MHV results converge into the

Poisson. The function converges quickly as the value of ∆φ1,2 gets bigger. In particular,

one can notice that for ∆φ1,2 = π/2 the MHV behaves exactly like the Poisson.
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Figure 5.5: Ratio between the MHV momentum distribution and the Poisson given by

Eq. (5.5.31) and Eq. (5.5.32). The values of the angles θ1 and φ1 are fixed and taken to be

respectively 0.05 rad and 0 rad. The solid lines represent the ratio function f (2)({θi, φi})

for different values of ∆φ1,2. The red dashed line (horizontal line) represents the case

where the MHV results is exactly similar to the Poisson. As the difference in angles

between gets bigger, the MHV result converges into the Poisson.

A similar approach can be taken to study the three gluon MHV case in the strong

angular ordering limit. The ratio is now given by f (3)({θi, φi}) where i runs from 1 to

3. For the numerical calculation, we fixed θ1 = 0.05 rad and φ1 = 0 rad. Fig. 5.6 hows

the variation of f (3) as a function of the angle θ3 of the third gluon. We see that when

θ1 << θ2 << θ3 and φ2 6= φ3, the gluons seem uncorrelated and the results tend to the

Poisson. This can be clearly seen for φ3 = π/2 where the MHV results, represented by

the dashed lines, behave more like a Poisson. The peaks at θ3 ∼ 0.05 and θ3 ∼ 0.25

indicates the interference between the third and the first gluon and/or the third and the

second gluon. The large peak at θ3 ∼ 0.25 for the green solid curve is due to the fact that

φ1 ≈ φ2.

5.6 Probability density

In addition, one can compute the probability density of the total fractional energy loss

ε =
∑

i ωi/E for a quark jet with an initial energy E. For the emission of up to three

radiated gluons, the total probability distribution is given by P 1+2+3(ε) =
∑3

n=0 pn(ε),
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Figure 5.6: Ratio between the MHV momentum distribution and the Poisson for the case

of three radiated gluons. We fixed θ1 = 0.05 rad and φ1 = 0 rad. The different lines

represent the ratio f (3)({θi, φi}). The solid lines represent the ratio for φ3 = π/6 while the

dashed lines represent the ration for φ3 = π/2. Similarly, the red dashed line represents

the case where the MHV result is exactly similar to the Poisson, which is the case where

the angles are strongly ordered. The peaks show the region where θ3 ≈ θ1 and/or θ3 ≈ θ2.

where for the Poisson case each probability is given by

p0(ε) = e−〈Ng〉δ(ε), (5.6.33)

p1(ε) = e−〈Ng〉ρ̃(1)(ε), (5.6.34)

p2(ε) =
1

2

∫
dx ρ̃(1)(x)p1(x− ε), (5.6.35)

p3(ε) =
1

3

∫
dx ρ̃(1)(x)p2(x− ε). (5.6.36)

In the above expressions, the mean number of radiated gluons is defined to be 〈Ng〉 =∫
dxρ̃(1)(x). On the other hand, for the MHV case, p2 and p3 are given by

p2(ε) = e−〈Ng〉dN
(2)
MHV

dε
, (5.6.37)

p3(ε) = e−〈Ng〉dN
(3)
MHV

dε
. (5.6.38)

Fig. 5.7 shows the numerical evaluation of the total probability for a quark jet with an

energy E = 100 GeV. In addition, the first, second, and third order probability are indi-

vidually shown. It is noticed that the MHV results exhibit larger probability for emitting

radiative gluons compared to the Poisson. The results indicate that both P1+2+3(ε) and

pn(ε) increase dramatically from ε = 0.001 up to a scale ε ∼ mπ/E before decreasing
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quickly. For ε > 0.2, it appears that the curves do not change much and remain ap-

proximately constant, especially for the case of three gluon emission. In addition, one

can notice that after some value of ε, the Poisson results for one, two, and three gluon

emission look the same while the difference is significant for the MHV results. Given

the fact that αs are the same for all the curves, the enhancement might be due to the

extra emission possibilities allowed by the non-Abelian coupling of gluons to themselves.

From these results, one can also compute the mean fractional energy 〈ε〉 which is given

by 〈ε〉P/M =
∫ 1
xmin

dε εP (ε)P/M. The numerical evaluation of the mean fractional of energy

loss gives 〈ε〉P = 0.201 and 〈ε〉M = 0.272 for the Poisson and MHV result respectively.
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Figure 5.7: Probability density of total fractional energy given by ε =
∑

i ωi/E for a

quark jet with an initial energy E = 100 GeV up to a third order. We restricted ε to

belong in the interval [0, 1]. The solid lines represent the probability density for the MHV

case where the dashed lines represent the probability density for the usual Poisson. The

red lines (both solid and dashed) represent the total probability density at third order

(respectively for MHV and Poisson). The individual probability are shown in different

colors. The probability for no radiation p0(ε) (for the case n = 0) is not shown above.

5.7 Summary

In this chapter we wanted to numerically evaluate the MHV results computed in Chapter

4. We started by parameterizing the kinematics taking into account the soft and collinear

approximation. The first section was focused on the study of the energy spectrum for

emitting radiative gluons. The results were compared to the Poisson results in order to
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understand the non-Abelian effect. In particular, for multiple gluon emission (See Fig. 5.2

and Fig. 5.4) the probability for emitting two and three gluons from the MHV approach

is significantly larger compared to the standard Poisson results. We then analyzed the

strong angular ordering, in which we found that as expected our results converge to the

Poisson. This demonstrates that when the radiative gluons are strongly ordered, their

interactions become negligible and the theory becomes Abelian. At the of the chapter,

we studied the convoluted probability density. Again, the results indicated that exhibit

larger probability.



Chapter 6

Conclusions and discussions

Cross sections are one of the most fundamental observables in modern high energy par-

ticle physics. They lie directly in the intersection between theoretical predictions and

experimental data. From the experimental point of view, cross sections represent the ob-

jects that can be tested using collider experiments (such as LHC and RHIC). From the

theoretical point of view, computing scattering amplitudes efficiently is absolutely crucial

in order to get results to a precision matching that from modern experiments. In high

energy heavy-ion collisions–in which multi-jet processes often occur–scattering amplitudes

likely play a vital role in the understanding of the formation and the dynamics of the

quark-gluon plasma.

In this thesis we focused on the computation of scattering amplitudes within the multi-

jet QCD framework. In particular, we studied the radiative energy loss phenomena by

computing multiple radiative gluon emission (for up to three-gluon emission). We pre-

sented computations which represent progress in the comprehension of multiple induced

radiative emission in QGP using MHV techniques. We demonstrated that the MHV tech-

niques can be potentially applied to the study of the hot QCD matter formed during an

ultrarelativistic heavy-ion collisions. One of the chief outputs from this thesis was the

quantitative assessment of the non-Abelian contribution to the multiplicity distribution

as shown in Chapter 4 and Chapter 5.

The MHV formalism was introduced in Chapter 2. We showed that the MHV tech-

niques exploit the power of the spinor helicity formalism. In addition, we showed in

Section 2.1 that spinor variables are very simple mathematical objects. They reveal the

simple structure and the hidden symmetry of the scattering amplitudes. As an illustra-

tion, we used the spinor helicity formalism to compute the four-point pure gluon process,

77
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2g → 2g. It was shown that while expressed in terms of the spinor variables, computation

of two-to-two processes in QCD become trivial. Further simplification can be made by

stripping off the color factors. We demonstrated in Section 2.2 that the color-kinematic

decomposition provides a good description of the color-kinematic degrees of freedom. It

turns out that the resultant color-stripped partial amplitudes are much easier to compute

than computing directly the full amplitude. In Section 2.4, we studied the gauge invariant

partial amplitudes in a complex plane by defining complex spinors. This complexification

of momenta allowed us to construct a recursion relation. We devoted a particular look

at the BCFW on-shell recursion relation–which as opposed the CSW (Cachazo-Svrcek-

Witten) expansion only shift two of the external legs. The BCFW recursion relation was

an important tool and has been used several times throughout this thesis to compute

higher order scattering amplitudes.

The first section of Chapter 3 reviewed the computation of the full cross section of

the parent process–which was the building block of the study of the in-medium radiative

energy loss. In order to perform such computation, we used all the mathematical tools

introduced in Chapter 2. In section 3.2, we constructed via induction the general formula

for any higher order scattering amplitudes with a presence of a fermion line. Eq. (3.4.45)

and Eq. (3.4.46) represent the general formula for the MHV and MHV respectively for a

physical process which involves n arbitrary number of gluons and a pair of quark-antiquark.

With these expressions, one can write down the expression of any NkMHV amplitude by

relying on the BCFW on-shell recursion.

After gaining insights from the computation of the parent process and the general-

ization formula, we then moved to the main core of the thesis, which is the study of

radiative energy loss phenomena. We started by reviewing photon Bremsstrahlung emis-

sion in the theory of electrodynamics. The change in momentum and the emission of the

Bremsstrahlung photons are induced by a tickling photon. We managed to show with the

Eq. (4.1.11) that for the MHV helicity configuration, the total emission current is given by

the independent current of each emitted photon. One can square Eq. (4.1.11) and write

down the expression of the multiplicity distribution

dN (n)
γ ({si}) =

n∏
i=1

d3si
(2π)32ωi

|J (n)
γ (i)|2 =

1

n!

n∏
i=1

dN (1)
γ ({si}). (6.0.1)

Eq.(6.0.1) shows that for the MHV helicity configuration the distribution follows the Pois-

son distribution–meaning that the emission of each Bremsstrahlung photon is independent.
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For the case of multiple radiative gluon emission, however, things can get extremely com-

plicated. The presence of the generator matrices T a–which represent the color charges

in QCD–makes the computation cumbersome. In order to simplify the computations, we

applied the soft-collinear approximation. We assumed that the radiative gluons are soft

(si ∼ 0) and emitted with a very small angle (θi ∼ 0) with respect to the outgoing quark.

In addition, the incoming particles are assumed to scatter by a large angle (π/2). We first

found that for the single gluon emission case, our result is comparable to the expression

derived by Gunion and Bertsch in [70]. Then, in Section 4.2.2, we computed the two gluon

emission off a massless quark. There, we computed the next-to-leading correction term to

the Poisson distribution. The second term in Eq. (4.2.51) represents the correction term,

which also reflects the non-Abelian behavior of the strong force. The ratio between the

MHV result and the Poisson result
(
dN

(2)
g /(dN

(1)
g (1)dN

(1)
g (2))

)
for the two gluon case is

represented by Eq. (4.2.57). If we require the theory to be Abelian, this ratio should be

1. We found that the ratio is exactly 1 when CA → 0. Thus, the correlation term holds

the information on how the two emitted gluons interact with each other. Similarly, we

derived the three-gluon emission current using the soft and collinear approximation. Eq.

(4.2.88) represents the emission current for the three gluon case from which we can com-

pute the multiplicity distribution. Again, in order to check that our result is consistent,

if we require CA → 0 Eq. (4.2.88) tends to the standard Poisson result. Notice that our

MHV expressions–both for the two and three gluon case–exhibit two types of divergences:

(i) soft divergences when the momentum of the radiative gluons tend to zero (si → 0),

and (ii) collinear divergences which appear when the radiative gluons and/or the outgoing

quark are collinear ((sisj) ∼ 0, (siq) ∼ 0).

In Chapter 5, we investigated the phenomenological implications of our results. We

first started by parameterizing our kinematic in Section 5.1. We also adopted the soft

and collinear approximation, which are consistent with the radiative energy loss picture

in QGP. We began by studying the energy spectrum for emitting radiative gluons and

compared the results for MHV and Poisson. The plot of the energy spectrum as a function

of the fractional energy x carried by the single radiated gluon for different values of energy

E of the initial quark jet is shown in Fig. 5.1. We made a similar plot of the energy

spectrum for the two gluon emission case. In order to tame the collinear divergences, we

required the scalar product (sisj) of two radiative gluons to be greater than the mass of

a pion, (sisj) ≥ m2
π. As a result, this requirement imposes a constraint on the azimuthal
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difference ∆φ–which has to be greater than a (∆φ)min defined by Eq. (5.3.17). Fig.

5.2 shows the comparison between the energy spectrum computed from the MHV and

Poisson results. As expected, both results decrease as the value of the fraction of energy x

increases and the energy E decreases. We see that there is a significant difference between

the two results. Interestingly, the MHV results seem to exhibit larger energy spectrum

compared to the Poisson result. The same analysis was performed for the three-gluon

case. In particular, we computed the energy spectrum for the three-gluon emission case

for an initial quark jet with energy E = 100 GeV and compared the results to the results

from one and two gluon emission. The MHV and the Poisson results are both shown in

Fig. 5.4. The fact that the results do not converge to zero as the value of x approaches 1

is due to the small x approximation. Indeed, due to the soft and collinear approximations,

the MHV results does not capture the large-x behavior. In Section 5.5, we studied the

two and three gluon emission MHV results under the strong angular limit. Fig. 5.5 and

Fig. 5.6 clearly shows that the MHV results converge into the Poisson distribution as

the radiative gluons become strongly ordered. A more physical quantity that one may

study is the convoluted probability density as a function of the total fractional energy

ε =
∑

i ωi/E. The results of such an analysis is plotted in Fig. 5.7. The figure shows that

both the total and the individual probability densities are larger for the MHV results.

Some comments are, however, in order: (i) for higher accuracy, the subleading terms in

the soft-collinear approximation need to be taken into account. In addition, the NkMHV

results also need to be evaluated carefully for better precision and understanding of the

fully complete radiative processes in QCD. (ii) In spite of the collinear assumption, wide

angle emissions are important. Generally speaking, the soft and collinear approximations

are made for the sake of analytic simplicity, but they are not inherently required. The

consequences of the collinear approximation for the GLV energy loss model have been

quantified in [71]. It was found that the GLV formalism requires a far more careful

treatment of wide angle radiation in order to reduce the systematic uncertainty in the

calculation; this is true for other energy loss models such as AMY and ASW [71]. (iii)

The MHV calculations presented here do not capture explicitly the exchanged momentum

between the propagating parton (here considered to be a quark) and the highly energetic

gluon coming from the medium. (iv) The results presented in this thesis do not take into

account the Landau-Paumeranchuk-Migdal (LPM) effect which describe the mean free

path of the partons between each scattering with the medium [72].
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Trying to improve the current work by taking into account the above comments would

be a reasonable extension as a future work. More ambitiously, it would be interesting to in-

clude masses in the calculations. Including mass in the description of the MHV techniques

now seems feasible. In fact, further generalization of the spinor helicity formalism includes

massive particles [44–46]. In addition, the on-shell techniques introduced in this thesis are

restricted to their applications to tree-level amplitudes. However, significant development

has been done toward the formulation of MHV techniques to include loops [73–79]. The

exploration of these techniques might lead to important insights into a better understand-

ing of multiple radiative processes in QCD and therefore shed light on the radiative energy

loss phenomena in QGP.



Appendix A

Spinor Helicity Formalism

A.1 Conventions for 4D Spinor Helicity Formalism

For our conventions, let us consider a mostly minus metric gµν = (+,−,−,−). The

four-momentum vector is given by pµ = (p0, pi)i=1,2,3 so that the contraction of two four-

momentum vectors is given by

pµp
µ = p20 − ~p2. (A.1.1)

In terms of the spinor representation, the Pauli matrices are given by

(σµ)aḃ = (1, σi)aḃ, and (σ̄µ)ȧb = (1,−σi)ȧb, (A.1.2)

where the σi are given by

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (A.1.3)

Spinor indices are raised and lower using the tensor

εab = εȧḃ =

 0 1

−1 0

 = −εab = −εȧḃ. (A.1.4)

For instance, we have

ξa = εabξb, ξ̃ȧ = εȧḃξ̃ḃ, where (ξa)
∗ = ξ̃ȧ. (A.1.5)

In addition, the antisymmetric tensors satisfy εabε
bc = δ ca . Moreover, the spinor represen-

tation of the Pauli matrices also satisfy

(σµ)aȧ = εabεȧḃ(σ̄
µ)ḃb (A.1.6)

(σ̄µ)ȧa = εabεȧḃ(σµ)bḃ (A.1.7)

(σ̄µ)ȧa(σ̄ν)ḃbgµν = 2εȧḃεab. (A.1.8)
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A.2 Spinor variables

In the spinor representation, the momentum of a particle can be expressed as follows

paȧ = λaλ̃ȧ. (A.2.9)

We can raise and lower the indice of the left and right handed spinor λa and λ̃ȧ using the

antisymmetric tensors εab and εȧḃ as

λa = εabλ
b and λ̃ȧ = εȧḃλ̃

ḃ. (A.2.10)

Thus, in addition, we also have

pȧa = εabεȧḃpbḃ = pµ(σ̄µ)ȧa. (A.2.11)

One can also construct the expression of the slashed momentum /p as

/p = pµγ
µ =

 0 paȧ

pȧa 0

 with γµ =

 0 (σµ)aȧ

(σ̄µ)ȧa 0

 . (A.2.12)

The relation between the solutions of the massless Dirac equation u±(p) = v∓(p) and the

helicity spinors λa and λ̃ȧ are given below

u+(p) = v−(p) =

λa
0

 ≡ |p〉, u−(p) = v+(p) =

 0

λ̃ȧ

 ≡ |p]
ū+(p) = v̄+(p) =

(
0 λ̃ȧ

)
≡ [p|, ū−(p) = v̄+(p) =

(
λa 0

)
≡ 〈p|.

From these expressions, we can write

paȧ ≡ |p〉[p|, and pȧa ≡ |p]〈p|, (A.2.13)

and the closed product of the square and angle brackets are given by

〈pi|pj〉 ≡ 〈ij〉 = λai (λj)a and [pi|pj ] ≡ [ij] = (λ̃i)ȧ(λ̃j)
ȧ. (A.2.14)



Appendix B

Spinor Identities

B.1 Momentum Conservation

Let us now see how the momentum conservation can be written in terms of the spinor

variables. For n momenta, considering all the momentum to be incoming (or outgoing),

the momentum conservation in the spinor representation writes as

n∑
j=1

(pj)aȧ = 0⇐⇒
n∑
j=1

|j〉[j| = 0 (B.1.1)

We can add to this expression two momenta pi and pj different from pi to get

n∑
j=1

〈ij〉[jk] = 0. (B.1.2)

Indeed, if i = j = k, then the spinor products are trivially zero.

B.2 Fierz rearrangement

Here, let us now prove the Fierz rearrangement. We have

[i|γµ|j〉[k|γµ|l〉 = (λ̃i)ȧ(λj)a(λ̃k)ḃ(λl)b(σ̄
µ)ȧa(σ̄ν)ḃbgµν (B.2.3)

= 2εȧḃεab(λ̃i)ȧ(λj)a(λ̃k)ḃ(λl)b (B.2.4)

= 2〈jl〉[ki]. (B.2.5)

On the first line, we expanded the matrix products on the left-hand side and translated the

variables into the left and right-handed spinors λ. Form the first to the second line, we used

the Eq. (A.1.8). Finally, from the second to the third line we contracted the correspondent

indices and translated the final expression into the square and angle brackets notation.
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B.3 Schouten identity

The Schouten identity states that:

〈ij〉〈kl〉+ 〈ki〉〈jl〉+ 〈kj〉〈li〉 = 0 (B.3.6)

We know that three vectors in 2-dimensional vector space cannot be linearly independent.

Therefore, if we have three two-component vectors |i〉, |j〉 and |k〉, we can write one of

them (say |k〉) as a linear combination if the two others

|k〉 = a|i〉+ b|j〉, (for some a and b). (B.3.7)

To find the value of a and b, one can multiply the above expression either by 〈i| or 〈j|.

Thus, we find

a =
〈jk〉
〈ji〉

and b =
〈ik〉
〈ij〉

. (B.3.8)

Using these results in the expression B.3.7, we have the following result

|k〉 − 〈jk〉
〈ji〉
|i〉 − 〈ik〉

〈ij〉
|j〉 = 0⇐⇒ 〈ij〉|k〉 − 〈jk〉|i〉 − 〈ik〉|j〉 = 0. (B.3.9)

The Schouten identity is often written with a fourth vector 〈l|,

〈ij〉〈lk〉+ 〈jk〉〈il〉+ 〈ik〉〈jl〉 = 0. (B.3.10)

With the same computations, the Schouten identity also applies for square brackets

[ij][lk] + [jk][il] + [ik][jl] = 0. (B.3.11)

B.4 From spinors to Dirac Traces

Consider two momenta (pi)aȧ = λaλ̃ȧ and (pj)aȧ = µaµ̃ȧ. If we take the sum of 〈iji] and

its complex conjugate [iji〉, we have the following expression

〈iji] + [iji〉 = 〈ij〉[ji] + [ij]〈ji〉 (B.4.12)

Translated into the original lambda spinors, we have the following

〈iji] + [iji〉 = −λaλ̃ȧµ̃ȧµa − λ̃ȧλaµaµ̃ȧ (B.4.13)

One can straightforwardly check that Eq. (A.2.12) is equivalent to taking the trace of the

sum of /pi and /pj as 〈iji] + [iji〉 = −Tr(/pi/pj). One can alsp take similar approach to show

that we have the following

〈ijkli] + [ijkli〉 = Tr(/pi/pj/pk/pl). (B.4.14)



Appendix C

Color Structures

C.1 Definition and normalization

The theory of chromodynamics is defined by the non-Abelian gauge invariance SU(3).

For the sake of generality, let us generalize it to SU(N). Throughout the calculations, the

generator matrices are normalized such that:

Tr(T aT b) = δab, and [T a, T b] = if̃abcT c, (C.1.1)

where the structure constant is defined as f̃abc =
√

2fabc. The structure constant can be

expressed in terms of traces as follows

if̃abc = Tr(T aT bT c)− Tr(T aT cT b). (C.1.2)

The Fierz identity is defined as:

(T a)ij(T
a)kl = δilδkj −

1

N
δijδkl. (C.1.3)

C.2 Color computation

In this section, we compute the color factors for the QCD process, qg → qg, in Chapter 3.

In matrix notation, the color factors for the pure-matrix squared and the crossed terms

are respectively given by

Cs(k, l) = Tr(T akT alT alT ak) = (T ak)ij(T
ak)jk(T

al)kl(T
al)li, (C.2.4)

Ca(k, l) = Tr(T akT alT akT al) = (T ak)ij(T
ak)kl(T

al)jk(T
al)li. (C.2.5)
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Using the relation given in Eq. (C.1.3) and taking into account the property of the

Kronecker delta, for instance δii = N , the symmetric configuration is given by

Cs(k, l) =

(
δikδjj −

1

N
δijδjk

)(
δkiδll −

1

N
δklδli

)
(C.2.6)

= δikδki

(
N2 − 1

N

)2

(C.2.7)

= N

(
N2 − 1

N

)2

. (C.2.8)

By taking similar approach, the antisymmetric color is given by

Ca(k, l) = (T al)jk(T
al)li

[
δilδjk −

1

N
δijδkl

]
(C.2.9)

= −
(
N2 − 1

N

)
. (C.2.10)

Let us define the following factors,

CA = N and CF =
N2 − 1

N
. (C.2.11)

With these definitions, we can write down the final expression of the color factors as

Cs(k, l) = Tr(T akT alT alT ak) = CAC
2
F (C.2.12)

Ca(k, l) = Tr(T akT alT akT al) = −CF . (C.2.13)

C.3 Decomposition of product of T a

The non-Abelian nature of the SU(N) group makes the calculation of scattering ampli-

tudes complicated. However, as a way of simplifying computations, one can written the

product of the generator matrices T a as a function of commutator. For instance,

T a1T akT al = T akT alT a1 + [T a1 , T akT al ] (C.3.14)

T akT a1T al = T akT alT a1 + T ak [T a1 , T al ]. (C.3.15)

The other configurations can be derived from the above expressions by interchange of k

and l. One can perform similar calculations to simplify the color factors for the two gluon

case. The idea is to separate the color factors of the hard scattering so that one can
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separate the contribution from the radiative process. So, we have:

T a1T akT alT a2 = T akT alT a2T a1 + [T a1 , T akT al ]T a2 (C.3.16)

T a1T akT a2T al = T akT alT a2T a1 + T a1 [T ak , T a2 ]T al (C.3.17)

T akT a1T alT a2 = T akT alT a2T a1 + T ak [T a1 , T al ]T a2 (C.3.18)

T a1T a2T akT al = T akT alT a1T a2 + [T a1T a2 , T akT al ] (C.3.19)

T akT a1T a2T al = T akT alT a2T a1 + T ak [T a1T a2 , T al ] (C.3.20)

Similarly, the remaining configurations can be derived from the above equations by inter-

change of k and l plus interchange of 1 and 2. Finally, similar decompositions can be done

for the case of three gluon emission where we have in this case five gluons.

T akT a1T alT a2T a3 = T akT alT a1T a2T a3 + T ak [T a1 , T al ]T a2T a3 (C.3.21)

T akT a1T a2T alT a3 = T akT alT a1T a2T a3 + T ak [T a1T a2 , T al ]T a3 (C.3.22)

T akT a1T a2T a3T al = T akT alT a1T a2T a3 + T ak [T a1T a2T a3 , T al ] (C.3.23)

T a1T akT alT a2T a3 = T akT alT a1T a2T a3 + [T a1 , T akT al ]T a2T a3 (C.3.24)

T a1T a2T a3T akT al = T akT alT a1T a2T a3 + [T a1T a2T a3 , T akT al ] (C.3.25)

T a1T a2T akT alT a3 = T akT alT a1T a2T a3 + [T a1T a2 , T akT al ]T a3 (C.3.26)

T a1T a2T akT a3T al = T akT alT a1T a2T a3 + [T a1T a2 , T akT al ]T a3 + T a1T a2T ak [T a3 , T al ]

T a1T akT a2T alT a3 = T akT alT a1T a2T a3 + T a1T ak [T a2 , T al ]T a3 + [T a1 , T akT al ]T a2T a3

T a1T akT a2T a3T al = T akT alT a1T a2T a3 + T a1T ak [T a2T a3 , T al ] + [T a1 , T akT al ]T a2T a3 .



Appendix D

MHV/NkMHV Amplitude

Calculations

D.1 Two gluon emission

MHV amplitudes

From the general formula represented by the Eq. (3.4.45), the MHV helicity configuration

for the two gluon case is given by

A6(H1) = g4s
〈pk〉3〈qk〉
〈qp〉

∑
P4

(T akT alT a1T a2)

〈pk〉〈kl〉〈l1〉〈12〉〈2q〉
. (D.1.1)

The above amplitude can be factorized such that we can recover the expression of the

partial amplitudes for the parent process. This can be done using the above decomposition

of the product of T a’s and by breaking the sum over the permutation so we can write Eq.

(D.1.1) as follows

A6(H1) = A6(parent) +A6(extra), (D.1.2)

where each amplitude written above is given by

A6(parent) = g4s(T
akT al)A4(k, l)

{
(T a1T a2)

(
〈l2〉
〈l1〉〈12〉

〈lq〉
〈l2〉〈2q〉

+
〈k2〉
〈k1〉〈12〉

〈kl〉
〈k2〉〈2l〉

+
〈kl〉
〈k1〉〈1l〉

〈lq〉
〈l2〉〈2q〉

+
〈pk〉
〈p1〉〈1k〉

〈lq〉
〈l2〉〈2q〉

+
〈pk〉
〈p1〉〈1k〉

〈kl〉
〈k2〉〈2l〉

+
〈pk〉
〈p1〉〈1k〉

〈1k〉
〈12〉〈2k〉

)
+ (1↔ 2)

}
+ (k ↔ l),

(D.1.3)
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and for the extra-term

A6(extra) = g4sA4(k, l)

{
T ak [T a1T a2 , T al ]

〈k2〉
〈k1〉〈12〉

〈kl〉
〈k2〉〈2l〉

+ T ak [T a1 , T al ]T a2
〈kl〉
〈k1〉〈1l〉

〈lq〉
〈l2〉〈2q〉

+ [T a1 , T akT al ]T a2
〈pk〉
〈p1〉〈1k〉

〈lq〉
〈l2〉〈2q〉

+ T a1 [T ak , T a2 ]T al
〈pk〉
〈p1〉〈1k〉

〈kl〉
〈k2〉〈2l〉

+ [T a1T a2 , T akT al ]

〈pk〉
〈p1〉〈1k〉

〈1k〉
〈12〉〈2k〉

+ (1←→ 2)

}
+ (k ←→ l). (D.1.4)

The partial amplitudes A4(k, l) and A4(l, k) are expressed as

A4(k, l) =
〈pk〉3〈qk〉

〈pk〉〈kl〉〈lq〉〈qp〉
and A4(l, k) =

〈pk〉3〈qk〉
〈pl〉〈lk〉〈kq〉〈qp〉

. (D.1.5)

The amplitude which is explicitly expressed in terms of the born amplitude in Eq. (D.1.3)

can be further simplified using the Schouten identity. With a fair amount of algebra, one

can arrive at the following result

A6(parent) = g4s(T
akT al)A4(k, l)

{
(T a1T a2)

〈pq〉
〈p1〉〈12〉〈2q〉

+ (1↔ 2)

}
+ (k ↔ l) (D.1.6)

We notice that the terms inside the braces are independent of k and l. Thus, the above

equation can be written nicely as

A6(parent) = g4s

∑
P2

(T akT al)A4(k, l)


∑
P ′2

(T a1T a2)
〈pq〉

〈p1〉〈12〉〈2q〉

 . (D.1.7)

Rewriting the above equation, we have

A6(parent) = A4(parent)J (2)
g (1, 2), J (2)

g (1, 2) = g2s〈pq〉
∑
P ′2

(T a1T a2)

〈p1〉〈12〉〈2q〉
. (D.1.8)

One can clearly see by comparing Eq. (D.1.8) and Eq. (D.1.4) that for the case where the

two radiative gluons are collinear with respect to the outgoing quark–equivalent to say

that the cross products 〈12〉, 〈1q〉 and 〈2q〉 vanish–the full amplitude in Eq. (D.1.2) is dom-

inated by A4(parent). Putting back the helicity sign, the two MHV helicity configurations

represented by H1 and H2 are given by

A6(H1) ≈ A4(−,+)× J (2)
g (1, 2), (D.1.9)

A6(H2) ≈ A4(+,−)× J (2)
g (1, 2). (D.1.10)

When summing over the possible MHV helicity configuration, we only have to consider

H1 and H2 and by symmetry interchange the labels in order to derive the final answer

shown in Eq. (4.2.38).
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NMHV/BCFW Calculations

Here, we are going to compute the NMHV amplitude for the case of the two gluon emission

and which is diagrammatically represented in Fig. 4.4. The mathematical expression is

given by Eq. (4.2.53). The on-shell condition tells us that

P̂ 2
12 = 〈1̂2〉[12] = 0⇐⇒ 〈1̂2〉 = 0. (D.1.11)

This implies that the spinors |1̂〉 and |2〉 are proportional so we can write |1̂〉 = |2〉. Using

the shift equations (4.2.52), we can find the value of the complex parameter z

〈1̂2〉 = 〈12〉 − z〈l2〉 = 0 =⇒ z =
〈12〉
〈l2〉

, (D.1.12)

so the shift-equations now become:

|l̂] = |l] +
〈12〉
〈l2〉
|1], and |1̂〉 = |1〉 − z|l〉. (D.1.13)

In addition, we can derive the value of the factor x from

|1̂〉 = |1〉 − 〈12〉
〈l2〉
|l〉 = x|2〉 =⇒ x =

〈l1〉
〈l2〉

. (D.1.14)

Finally, the internal momentum P̂12 = p̂1 + p2. In terms of spinor representation, this

expression can rewritten as

P̂12 = |1̂〉[1|+ |2〉 = |2〉
(
〈l1〉
〈l2〉

[1|+ [2|
)

(D.1.15)

Thus, |P̂12〉 = |2〉, and |P̂12] =

(
〈l1〉
〈l2〉
|1] + |2]

)
. (D.1.16)

D.2 Three gluon emission

MHV amplitudes

In this section, we are going show that the MHV amplitude for the emission of three gluons

are given by Eq. (4.2.60) and Eq. (4.2.61). From the general formula, the full amplitude

can written as

A7(H4) = g5s
〈pk〉3〈qk〉
〈qp〉

∑
P5

(T akT alT a1T a2T a3)

〈pk〉〈kl〉〈l1〉〈12〉〈23〉〈3q〉
, (D.2.17)

for the helicity configuration H4. Similarly to what we have done for the case of two gluon

emission, we can factorize some terms in order to isolate the expression of the partial

amplitude of the parent process so we can have

A7(H4) = A7(parent) +A7(extra). (D.2.18)
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First, in order to simplify notation, let us define the following quantity:

Ski,j =
〈ij〉
〈ik〉〈jk〉

. (D.2.19)

Thus, the amplitude A7(parent) which can be explicitly expressed in terms of the partial

amplitude of the parent process writes as

A7(parent) = g5s(T
akT al)A4(k, l)

{
(T a1T a2T a3)

(
S1p,kS2k,lS3l,q + S1k,lS21,lS3l,q + S1k,lS2l,qS32,q+

S1p,kS2l,qS32,q + S1p,kS2k,lS32,l + S1p,kS21,kS3l,q + S1p,kS21,kS3k,l + S1l,qS21,qS32,q+

S1k,lS21,lS32,q + S1p,kS21,kS32,k
)

+ perm(1, 2, 3)

}
+ (k ←→ l). (D.2.20)

The above expression can be written in a more compact and simple form. Indeed, we have

A7(parent) = g5s(T
akT al)A4(k, l)Jk,l(1, 2, 3) + g5s(T

alT ak)A4(l, k)Jl,k(1, 2, 3), (D.2.21)

where the partial amplitudes A4 are defined as in Eq. (D.1.5) and the J are color-

dependent partial amplitudes. One can, fortunately, simplify further the expression of J

by pairing up terms using the Schouten identity. For instance, we have

S1p,kS2k,lS3l,q + S1p,kS2k,lS32,l = S1p,kS2k,l
(
S32,l + S3l,q

)
= S1p,kS2k,lS32,q. (D.2.22)

By doing repeatedly such procedure, one will end up with

Jk,l(1, 2, 3) =
∑
P ′3

(T a1T a2T a3)S1p,qS21,qS32,q (D.2.23)

=
∑
P ′3

(T a1T a2T a3)
〈pq〉
〈p1〉〈1q〉

〈1q〉
〈12〉〈2q〉

〈2q〉
〈22〉〈2q〉

(D.2.24)

= 〈pq〉
∑
P ′3

(T a1T a2T a3)

〈p1〉〈12〉〈23〉〈3q〉
. (D.2.25)

One can straightforwardly check that the computation of Jl,k(1, 2, 3) gives exactly the

same result. So, finally, one can write the amplitude A4(parent) as

A7(parent) = g3s〈pq〉A4(parent)
∑
P ′3

(T a1T a2T a3)

〈p1〉〈12〉〈23〉〈3q〉
. (D.2.26)

On the other hand, according to the color decomposition in Section C.3 of the Appendix
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C, the extra-terms is given by the following expression

A7(extra) = g5s(T
akT al)A4(k, l)

{
(T ak [T a1 , T al ]T a2T a3)S1p,kS2k,lS3l,q + (T ak [T a1T a2 , T al ]T a3)

S1k,lS21,lS3l,q + (T ak [T a1T a2T a3 , T al ])S1k,lS2l,qS32,q + ([T a1 , T akT al ]T a2T a3)S1p,kS2l,qS32,q+

(T a1T ak [T a2 , T al ]T a3 + [T a1 , T akT al ]T a2T a3)S1p,kS2k,lS32,l + (T a1T ak [T a2T a3 , T al ]+

[T a1 , T akT al ]T a2T a3)S1p,kS21,kS3l,q + S1p,kS21,kS3k,l + ([T a1T a2 , T akT al ]T a3)S1l,qS21,qS32,q+

([T a1T a2 , T akT al ]T a3 + T a1T a2T ak [T a3 , T al ])S1k,lS21,lS32,q + ([T a1T a2T a3 , T akT al ])S1p,kS21,kS32,k
}

(D.2.27)

one can expand this relation and found that, similarly to the case of two gluon emission,

this expression is dominated by the MHV results for the case where the spinor products

〈12〉, 〈13〉, 〈23〉 and 〈iq〉 (for i = 1, 2, 3) are zero. Thus, the full amplitude is given by the

MHV helicity configurations.

N2MHV/BCFW Calculations

(a) From the BCFW diagrammatic representation of the N2MHV amplitude for the case

of two gluon emission, one can remark that both the two subdiagrams D1 are MHV.

Using the general formula for the MHV amplitudes, one can write down the mathematical

expression of the first diagram D1

D(1) =
[qP̂23]

3[pP̂23]

[pk][kl][l1̂][1̂P̂23][P̂23q]

1

〈12〉[12]

[2̂3]4

[P̂232̂][2̂3][3P̂23]
. (D.2.28)

The above expression is still a function of the shifted momentum. However, we would like

to have an expression which only depends on the real spinors. In order to get rid of the

complex momentum, one can use the properties of the on-shell conditions. The on-shell

condition tells us that P̂ 2
23 = 0. This implies that

(p̂2 + p3)
2 = 〈2̂3〉[2̂3] = 0. (D.2.29)

For real valued momenta, the spinor product [2̂3] is equal to [23] and is non-zero, 〈2̂3〉

must vanish. We can use such condition to find the expression of the complex paramter z

as follows

〈2̂3〉 = 〈23〉 − z〈13〉 = 0 =⇒ z =
〈23〉
〈13〉

. (D.2.30)

Using the above equation, the shift-equations can now be written as

|1̂] = |1] +
〈23〉
〈13〉
|2], and |2̂〉 = |2〉 − 〈23〉

〈13〉
|1〉. (D.2.31)
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Furthermore, the fact that 〈2̂3〉 = 0 suggests that the two spinors |2̂〉 and |3〉 are collinear

and we have the relation |2̂〉 = x|3〉 which leads to the expression,

|2〉 − 〈23〉
〈13〉
|1〉 = x|3〉. (D.2.32)

Again we can multiply each side of this equation by any spinor we want. Note that we

would like get the simplest expression of x. If we multiply each side of the equation by

the vector 〈1| we cancel one term. Therefore, we have

〈12〉 = x〈13〉 =⇒ x =
〈12〉
〈13〉

. (D.2.33)

By virtue of the on-shell condition, the shifted momenta, we can now get rid of the shifted

momenta in the expression of the internal momentum P̂23. Indeed, in terms of the square

and angle brackets P̂23 can be written as P̂23 = |2̂〉[2̂| + |3〉[3| and by developing this

expression, we get

P̂23 = |3〉
(
〈12〉
13

[2|+ [3|
)
. (D.2.34)

Thus we have,

|P̂23〉 = |3〉 and |P̂23] =
〈12〉
〈13〉

[2|+ [3|. (D.2.35)

From the above expressions, we see that the shifted spinors can be expressed in terms of

the unshifted spinors. Now, using these expressions, let us get rid of the shifted momenta

in D1. First of all, we have

[qP̂23] = [q|
(
〈13〉
〈13〉
|2] + |3]

)
,

=
〈12〉
〈13〉

[q2] + [q3],

=
〈12〉[q2] + 〈13〉[q3]

〈35〉
. (D.2.36)

The numerator in the last line can be rewritten as (〈12〉[q2] + 〈13〉[q3]) which is also

equivalent to −(〈1|2|q] + 〈1|3|q]). Thus, it follows that

[qP̂23] = −〈1|2 + 3|q]
〈13〉

. (D.2.37)

By symmetry, we can get the expression of [pP̂23] without doing any computation,

[pP̂23] = −〈1|2 + 3|p]
〈13〉

. (D.2.38)

Doing the exact same computation as for [qP̂23], we can straightforwardly derive the

following expressions:

[l1̂] =
〈3|1 + 2|l]
〈13〉

, [P̂232̂] = [32] and [3P̂23] =
〈12〉
〈13〉

[32]. (D.2.39)
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The remaining form that we have to compute is

[1̂P̂23] =

(
[1|+ 〈23〉

〈13〉
[2|
)(
〈12〉
〈13〉
|2] + |3]

)
, (D.2.40)

=
〈12〉[12] + 〈13〉[13] + 〈23〉[23]

〈13〉
. (D.2.41)

From the first to the second line, we just expanded the equation (D.2.40) by taking into

account that [22] = 0. In a more compact form, the equation (D.2.41) becomes

[1̂P̂23] =
s123
〈13〉

, where s123 = 〈12〉[12] + 〈13〉[13] + 〈13〉[13]. (D.2.42)

Finally, after combining all these result, rearranging some terms and performing some

simplification we get the final mathematical expression of the diagram represented by D1,

given by the following expression

D1 =
1

s123

〈1|2 + 3|q]2〈1|2 + 3|p]
〈12〉〈23〉[pk][kl]〈3|1 + 2|l]

. (D.2.43)

(b) We can now move to the computation of the second diagram D2 in Fig. 4.7. The left

subdiagram of D2 is a MHV-diagram while the right subdiagram is a NMHV-diagram.

The NMHV part, that we are going to call M, is given by

M =
1

ŝ12P

〈P̂l1|2̂ + 3|q]2〈P̂l1|2̂ + 3|p]
〈P̂l12̂〉〈2̂3〉[qp][pk]〈3|P̂l1 + 2̂|k]

+
1

ŝk2P

[2̂|k + P̂l1|p〉2[2̂|k + P̂l1|q〉
[kP̂l1][P̂l12̂]〈pq〉〈q3〉[k|P̂l1 + 2̂|3〉

.

(D.2.44)

As for the previous calculations, we first need to get rid of the shifted momentum. The

on-shell condition, P̂l1 = (l + p̂1) = 〈l1〉[l1̂] = 0, implies that [l1̂] = 0 which also shows

the two spinors |l] and |1̂] are collinear. By exploiting these properties, we can derive the

expression of the complex parameter z,

[l1̂] = [l1] + z[l2] = 0 =⇒ z = − [l1]

[l2]
. (D.2.45)

We can use the above expression to re-write the shift-equations. The shifted momentum

p̂1 and p̂2 can now be expressed in terms of the real spinors

|1̂] = |1]− [l1]

[l2]
|2] and |2̂〉 = |2〉+

[l1]

[l2]
|1〉. (D.2.46)

On the other hand, the collinear restriction, |1̂] = x|l], induces that

|1]− [l1]

[l2]
|2] = x|l], (D.2.47)

and by multiplying each side of this equation by [2|, we get the value of the scalar factor

x, which is given by

[21] = x[2l] =⇒ x =
[12]

[l2]
. (D.2.48)
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Therefore, the internal momentum P̂l1 that can be written as a function of the square and

angle brackets as follows P̂l1 = |l〉[l|+ |1̂〉[1̂| now writes as

P̂l1 =

(
|l〉+

[12]

[l2]
|1〉
)

[l|, (D.2.49)

where the square and angle bracket are separately given by

|P̂l1〉 = |l〉+
[12]

[l2]
|1〉 and [P̂l1| = [l|. (D.2.50)

Let us now get rid of the terms that contain a shifted momentum in the Eq. (4.2.84).

First, using the shift-equation, one can straightforwardly show that

〈1̂P̂l1〉 = 〈1P̂l1〉 = 〈1l〉 and 〈P̂l1l〉 =
[12]

[l2]
〈1l〉, (D.2.51)

and therefore, the diagram D2 is given by

D2 = S1l2 ×M, where S1l2 =
[l2]

[l1][l2]
. (D.2.52)

The main task is now to compute the NMHV partial amplitudeM. By virtue of the com-

putation that we have done while computing the partial amplitude D1, it is straightforward

to show that

〈P̂l12̂〉 =
sl12
[l2]

, 〈2̂3〉 =
〈3|1 + 2|l]

[l2]
and [P̂l12̂] = [l2]. (D.2.53)

Let us now turn ourselves into the computation of the difficult part of computing the

partial amplitude M. Such computation involve the square-angle bracket terms. They

are given by 〈P̂l1|2 + 3|q], 〈3|P̂l1 + 2̂|k], [2̂|k + P̂l1|p〉, [2̂|k + P̂12|q〉 and [k|P̂l1 + 2̂|3〉.

• First of all, we have

〈P̂l1|2 + 3|q] = 〈P̂l12̂〉[2q] + 〈P̂l13〉[3q], (D.2.54)

with

〈P̂l13〉 = −〈3|l + 1|2]

[l2]
. (D.2.55)

Thus,

〈P̂l1|2 + 3|q] =
sl12
[l2]

[2q]− 〈3|l + 1|2]

[l2]
[3q]. (D.2.56)

• In a similar way,

〈3|P̂l1 + 2̂|k] = 〈3P̂l1〉[lk] + 〈32̂〉[2k], (D.2.57)

where we have,

〈32̂〉 = −〈3|l + 2|l]
[l2]

and 〈3P̂l1〉 = −〈P̂l13〉. (D.2.58)
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So, we can get the following expression

〈3|P̂l1 + 2̂|k] =
〈3|l + 1|2]

[l2]
[lk]− 〈3|l + 2|l]

[l2]
[2k]. (D.2.59)

• Now, it can be easily seen that the last trace term has a form

[2̂|k + P̂l1|p〉 = [2k]〈kp〉+ [2P̂l1]〈P̂l1p〉,

= [2k]〈kp〉+ [2l]

(
〈lp〉+

[12]

[l2]
〈1p〉

)
,

= [2|k|p〉+ [2|l|p〉+ [2|1|p〉, (D.2.60)

which gives as a result

[2̂|k + P̂l1|p〉 = [2|k + l + 1|p〉. (D.2.61)

And we know that the two terms [2̂|k + P̂12|p〉 and [2̂|k + P̂12|q〉 are related by

symmetry, thus

[2̂|k + P̂l1|q〉 = [2|k + l + 1|q〉. (D.2.62)

Finally, we are now left with the computation of the terms ŝ23P and ŝk2P . Recall that

generally, ŝ23P is defined as

ŝ23P = 〈2̂3〉[2̂3] + 〈3P̂l1〉[3P̂l1] + 〈2̂P̂l1〉[2̂P̂l1] (D.2.63)

which after a fair amount of calculations gives

ŝ23P = sl12 +
〈3|1 + 2|l]

[l2]
[23] +

〈3|l + 1|2]

[l2]
[2l]. (D.2.64)

By doing a similar calculation, we get as a result

ŝ14P = sl12 +
〈k|1 + 2|l]

[l2]
[2k] +

〈k|l + 1|2]

[l2]
[kl]. (D.2.65)

At this point, we have managed to cancel all the shifted momenta in the expression ofM.

Combining all the result that we have derived previously, making some simplification and

rearranging some terms we end up with the following expression

M =
1

sl12

[l2]
(
sl12[2q]− 〈3|l + 1|2][3q]

)2(
sl12[l2] + 〈3|1 + 2|l][23] + 〈3|l + 1|2][2l]

)
[l|1 + 2|3〉

×

sl12[2p]− 〈3|l + 1|2][3p]

[qp][pk]
(
〈3|l + 1|2][lk] + 〈3|1 + 2|l][k2]

) +
[l2]

[kl]〈pq〉〈q3〉
×(

[2|k + l + 1|p〉
)2

[2|k + l + 1|q〉(
sl12[l2] + 〈k|1 + 2|l][2k] + 〈k|l + 1|2][kl]

)(
〈3|l + 1|2][lk] + 〈3|1 + 2|l][k2]

) (D.2.66)
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Simplifying the above expression, combining all the results, and rearranging some terms,

we can get the final expression of the second diagram represented by D2

D2 =

(
S1l2[l2]

〈3|l + 1|2][lk] + 〈3|1 + 2|l][k2]

){
[l2]
(
sl12 − 〈3|l + 1|2][3q]

)2
sl12[l2] + 〈3|1 + 2|l][23] + 〈3|l + 1|2][2l]

sl12[2p]− 〈3|l + 1|2][3p]

sl12[qp][pk][l|1 + 2|3〉
+

1

[kl]〈pq〉〈q3〉

(
[2|k + l + 1|p〉

)2
[2|k + l + 1|q〉

sl12[l2] + 〈k|1 + 2|l][2k] + 〈k|l + 1|2][kl]

}
,

(D.2.67)
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