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Abstract

Can we capture the explosive nature of volatility skew observed in the market,
without resorting to non-Markovian models? We show that, in terms of skew, the
Heston model cannot match the market at both long and short maturities simul-
taneously. We introduce Abi Jaber (2019)’s Lifted Heston model and explain how
to price options with it using both the cosine method and standard Monte-Carlo
techniques. This allows us to back out implied volatilities and compute skew for
both models, confirming that the Lifted Heston nests the standard Heston model.
We then produce and analyze the skew for Lifted Heston models with a varying
number N of mean reverting terms, and give an empirical study into the time com-
plexity of increasing N . We observe a weak increase in convergence speed in the
cosine method for increased N , and comment on the number of factors to imple-
ment for practical use.

Keywords: Stochastic volatility; Implied volatility; Volatility Skew; Monte-Carlo;
Cosine method; Riccati equations; Complexity analysis
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Chapter 1

Introduction

When we create mathematical models, we often need to make a trade-off between
precision and tractability. A more complicated model may better capture the un-
derlying phenomena, but find that it becomes too general for many analytical tech-
niques and numerical methods to be applied to it.

One of the simpler models of stock price dynamics is that given by Black-
Scholes (BS). Notably, it yields closed-form solutions for call and put option prices.
Of all the inputs it takes, (S0, r, σ,K, t, T ), only the volatility σ is neither specified
by the contract nor known at the time of inception. Holding the other inputs con-
stant, we have a map between volatilities and vanilla option prices. It is then quite
natural to consider for each price what volatility under BS would have led to it. We
call this the implied volatility, and ranging over possible strike prices K and maturi-
ties T gives us the volatility surface.

A single slice of a volatility surface, for a fixed maturity T is often called a
volatility smile. If BS was a perfect model for market prices, we would expect
this to be a constant line for the appropriate volatility. Instead, it turns out that a
constant volatility is too simple an assumption, and BS implied higher volatilities
from market prices further from the money. For a graphical representation of this,
see figure 1.1.

The Heston model, Heston (1993), replaces Black-Schole’s constant volatility
with a stochastic variance process. The risk-neutral dynamics are given as

dSt = rStdt+ St
√
VtdBt, S0 > 0,

dVt = λ(θ − Vt)dt+ ν
√
VtdWt, V0 ≥ 0, (1.1)

where St and Vt are the stock and variance processes respectively, θ is a mean re-
version term, λ controls the rate of reversion and ν the impact of the stochastic part
of the process. Here B and W are Brownian motions with correlation ρ ∈ [−1, 1].
The volatilities implied by the Heston model match those of the market quite well
for longer maturities as seen in El Euch et al. (2018).
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Fig. 1.1: A ‘volatility smile’ showing higher volatilities for far from the money op-
tions at a fixed maturity T . Source: Investopedia.com

At shorter maturities, the degree to which Black-Scholes fits for values of S0

away from the money gets worse and worse. The Heston model, while a better
fit than BS, also struggles to capture the same volatilities as the market here. The
implied volatility skew (henceforth called skew) is defined as the absolute value

| ∂
∂k
σimplicit(k, T ) |k=0 | for k := ln(K/S0), (1.2)

where σimplicit(k, T ) is the volatility surface parameterised by the scaledK. In figure
1.2, we can see that the Heston model has a poor fit for low maturities. Abi Jaber
(2019) interprets this as the model struggling to capture the risk of large price move-
ments at short time scales.
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Fig. 1.2: Top: Market skew (red dots) and line of fit. Bottom: Skew of calibrated
Rough, Lifted and ordinary Heston models. Both skews are likely com-
puted using a central difference approximation with K at 98% and 102%

of Strike. Source: Abi Jaber (2019). For a definition of skew, see (1.2). For
an analogous graph on our results, see figure 4.8.
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We now turn to Chapter 2 to look at approaches taken in the literature to im-
prove this fit, while bearing in mind the likely trade-off with tractability. Chapter
3 will introduce the numerical methods used to price our options and recover the
implied volatilities, with special attention paid to the characteristic functions of our
two models. We then present the results of several experiments in Chapter 4, show-
ing how the Lifted Heston reproduces the standard Heston, and how the skew for
both models is affected by changes in their parameters. A rudimentary analysis of
the time complexity of the Lifted Heston with regards to the number of its factors is
contained here as well. Finally, in Chapter 5 we draw conclusions about when the
Lifted Heston model should be used, and give our thoughts on a practical choice
of N .



Chapter 2

Literature Review

There have been several attempts to improve on the Heston model’s ability to fit the
market skew at low maturities. In order to jointly model short and long timescales,
Cont and Tankov (2003), Gatheral (2011) add jumps to the dynamics. Bergomi
(2005), Fouque and Lorig (2011) try to achieve the same by stacking additional
random factors. Both of these approaches suffer from the curse of dimensional-
ity1, slowing down calibration as more parameters are introduced. While these
improve on the precision of the Heston model, their tractability leaves room for
improvement. The Variance-Gamma model, Madan et al. (1998), avoids the curse
of dimensionality, using a three parameter generalisation of Brownian motion to
drive its variance process. The VG process is a Brownian motion that is evaluated
at a random time change given by a gamma process. In contrast to Brownian mo-
tion, it has finite variation and has no continuous martingale component.

More recently, rough volatility models have been used to fit the implied volatil-
ity surface with great precision, as in Bayer et al. (2016), El Euch et al. (2018) and
Gatheral et al. (2018). The variance process in these models only uses a single one-
dimensional Brownian motion. Few parameters are needed, and therefore the curse
of dimensionality is avoided. Unfortunately, rough volatility models are neither
semimartingale nor Markovian. Specifically, the variance process is not Markovian
and the stock price is not a semimartingale. For H 6= 0.5, the variance process has
infinite quadratic variation, which is why it is not a semimartingale (El Euch and
Rosenbaum (2019)). This is a problem, as the fundamental theorem of asset pricing
requires stock prices to be semimartingales in order to have an arbitrage-free sys-
tem. Additionaly, the non-Markovianity re-introduces the curse of dimensionality
as we need to remember the entire history of the process, which only grows as time

1 The curse of dimensionality refers to the phenomena that arise when working with high dimen-
sional spaces, due to the volume of the space scaling exponentialy with each added dimension. In
our context each parameter that we have to calibrate for a model is an additional dimension in the
space of possible solutions. Adding too many parameters increases the volume of this space to the
point where finding an optimal solution quickly becomes intractable.
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goes on. This essentially results in an infinite dimensional problem, making models
of this type cumbersome to work with.

El Euch et al. (2018) combine the tractability of the Heston model with the pre-
cision of rough volatility models to create what they call the Rough Heston model.
This is described by the risk-neutral dynamics

dSt = St
√
VtdBt, S0 > 0,

Vt = V0 +
1

Γ(H + 1/2)
×
∫ t

0
(t− s)H−1/2(λ(θ − Vs)ds+ ν

√
VsdWs),

where Γ is the Gamma function, andH is a measure of the regularity of the paths of
V . Note that in the case ofH = 1/2, the model recovers the standard Heston model.
We set rates to zero for convenience here, which will eliminate the drift term in the
Heston (1.1). The Rough Heston may be more tractable than other rough volatility
models, but it is still non-Markovian and non-semimartingale. This makes it slow
to calibrate and unsuitable for simulation using standard techniques.

Abi Jaber (2019) describes the Lifted Heston model, which aims to keep as
much of the precision of the Rough Heston as possible, while improving tractabil-
ity by keeping the model semimartingale and Markovian. The variance process is
a weighted sum of N factors, driven by the same one-dimensional Brownian mo-
tion, but mean reverting at different speeds. This is thought to capture the effects
of different time-scales, allowing better fit to the market skew without sacrificing
too much tractability. For a fixedN , the risk-neutral dynamics of anN factor Lifted
Heston model are given by

dSt = St
√
VtdBt, S0 > 0,

Vt = g0(t) +
N∑
i=1

ciU
i
t ,

dU it = (−xiU it − λVt)dt+ ν
√
VtdWt,

U i0 = 0, i = 1, . . . , N, (2.1)

with parameters the function g0, constants λ, ν ∈ R+, ci, xi ≥ 0 and B = ρW +√
1− ρ2W⊥ a Brownian motion with correlation p to W . Here (W,W⊥) can be

thought of as a two dimensional Brownian motion on a fixed filtered probability
space (Ω,F ,F := (Ft)t≥0,Q) with ρ ∈ [−1, 1]. While more general forms of g0 can
be used, we will stick to the form

g0(t) = V0 + λθ

N∑
i=1

ci

∫ t

0
e−xi(t−s)ds. (2.2)
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We see that in the case N = 1, c = 1, x = 0 then the model boils down to the
classical Heston. Abi Jaber and El Euch (2019) show that in the limit N → ∞, the
Lifted Heston converges to the Rough Heston. This allows an interpretation of the
Rough Heston as a superposition of mean reverting terms at infinitely many time
scales, which could explain why it fits so well even in the short side of the volatility
surface. While the Lifted Heston adds 2N parameters for the xi and ci, it is possible
to parameterise these in such a way as to only require two additional parameters
rather than 2N . These are the Hurst index H , which controls the roughness of the
variance process, and a parameter rN which can be picked in such a way as to pro-
vide convergence to the Rough Heston in the limit N → ∞. The parameterisation
is as follows:

α = H + 1/2,

ci =
(r1−α
N − 1)r

(α−1)(1+N/2)
N

Γ(α)Γ(2− α)
r

(1−α)i
N ,

xi =
(1− α)(r2−α

N − 1)

(2− α)(r1−α
N − 1)

r
i−1−N/2
N . (2.3)

The Lifted Heston calibrates around twenty times faster than the Rough Heston
(Abi Jaber (2019)), and its Markovian, semimartingale nature allow it to be used
straightforwardly for simulation. This gives a qualitative advantage that the Rough
Heston does not enjoy, the ability to use Monte Carlo methods to price exotic op-
tions.



Chapter 3

Numerical Methods

We are comparing the Lifted Heston to the standard Heston along two dimensions.
We want to know how accurate each model is, and how much computation time
this accuracy requires. To measure time, it is simple enough to time how long each
algorithm takes to run. With regards to accuracy, recall the definitions of implied
volatility and implied volatility skew (1.2). We will compare qualitatively how well
each model captures the explosion of this skew as maturities become short.

To calculate the skew, we need to be able to compute implied volatilities. In
order to do this, we need to be able to price a vanilla option under our models. We
choose to use call options in all that follows, but the same analysis could be done
using put options instead.

3.1 Cosine Method

We primarily use the cosine method of Fang and Oosterlee (2008) to price our op-
tions. It has the advantage of being able to price for sets of strikesK very efficiently,
as it splits the price into a model specific component and an option specific compo-
nent, with only the latter varying with K. In the case of a call, this component can
be calculated analytically. This makes it almost free to price additional calls, as long
as only the strikeK is varying. It is worth noting that while the cos method in Fang
and Oosterlee (2008) works with distributions in terms of log(ST /K), we will work
with log(ST ) for convenience. This amounts to scaling by a constant and does not
complicate the method in any way. We present our extrapolation on a summary of
the method from McWalter (2019b) below.

Assume that we have a vanilla option with maturity T and strike K and some
constant risk-free interest rate r. If we then let sT = log(ST ), we can consider
the payoff distribution v(sT ) and the density of the log stock price qsT . It is now
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possible to write the price at t = 0 as the discounted expectation

V = e−rT
∫ ∞
−∞

v(s)qsT (s)ds

≈ e−rT
∫ b

a
v(s)qsT (s)ds, (3.1)

for a suitable choice of range [a, b].
We often do not know the distribution qsT , but do know the characteristic func-

tion. We will use cosine expansions to move between the two. On the interval [a, b],
we can expand as

qsT (s) =
∞∑
k=0

′Ak cos

(
kπ
s− a
b− a

)
,

where the primed summation denotes that the first term is scaled by a half. The
Fourier-cosine coefficients Ak for k ∈ N are then given by

Ak =
2

b− a

∫ b

a
qsT (s) cos

(
kπ
s− a
b− a

)
ds, (3.2)

we can then express the cosine as the real part of a complex exponent

=
2

b− a

∫ b

a
qsT (s)Re{eikπ

s−a
b−a }ds,

and seperating s allows us to simplify the integral as

=
2

b− a

∫ b

a
qsT (s)Re{ei

kπ
b−a se−ikπ

a
b−a }ds

=
2

b− a
Re
{(∫ b

a
qsT (s)ei

kπ
b−a sds

)
e−ikπ

a
b−a

}
,

which for a good choice of a and b will approximate the characteristic function

≈ 2

b− a
Re
{(∫ ∞

−∞
qsT (s)ei

kπ
b−a sds

)
e−ikπ

a
b−a

}
=

2

b− a
Re
{
φsT

(
kπ

b− a

)
e−ikπ

a
b−a

}
. (3.3)

This lets us move from working with the distribution qsT which we may not know,
to the characteristic φsT which we often do know. We can now write the price of
the option (3.1) as

V ≈ e−rT
∫ b

a
v(s)

∞∑
k=0

′Ak cos

(
kπ
s− a
b− a

)
ds

= e−rT
∞∑
k=0

′Ak

∫ b

a
v(s) cos

(
kπ
s− a
b− a

)
ds.
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It is now useful to define

vk =
2

b− a

∫ b

a
v(s) cos

(
kπ
s− a
b− a

)
ds, (3.4)

for k ∈ N. Expanding Ak using (3.3), we have the cosine formula

V ≈ e−rT
Ncos−1∑
k=0

′Re
{
φsT (

kπ

b− a
)e−ikπ

a
b−a

}
vn, (3.5)

where we have concatenated the sum after Ncos terms. It is critical to ensure that
sufficiently many terms are used when applying this method. In our own experi-
ments, we keep track of the furthest term that changes the price by more than one
one-hundredth. If this number is close to Ncos, it is prudent to increase the number
of terms used in the expansion.

We can now see how the cosine method conveniently splits the problem of pric-
ing into two separate parts. There is the option specific component vk given by (3.4)
and the process specific component inside the brackets in (3.5), the latter of which
is mainly a characteristic function evaluation. We now go into detail for the option
component of a call, and the process components for the Heston and Lifted Heston.

3.1.1 Call Payoff Component

Let sT = log(ST ) and the payoff of our call option be v(sT ). Then we have

v(sT ) = (ST −K)+

= (esT −K)+,

and so (3.4) becomes

vk =
2

b− a

∫ b

a
(esT −K)+ cos

(
kπ
s− a
b− a

)
ds,

which since the payoff is zero if sT < logK

=
2

b− a

∫ b

logK
(esT −K) cos

(
kπ
s− a
b− a

)
ds. (3.6)

Note that a good choice of a should be far less than logK as we want to approximate
the range [−∞,∞]. Originally we chose the bounds following the definitions in
terms of cumulants suggested in Fang and Oosterlee (2008). However, this resulted
in the cos method diverging, even when greatly increasing the number of terms in
the cosine series (N=10000 vs N=300 used in later results). Through trial and error
we arrived at a heuristic that seemed stable for this model. Our rule of thumb is to
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use a range [log(S0/h), log(S0h)] for some constant h ∈ R and starting stock price
S0. In our experiments we use h = 100, which corresponds to the stock being able
to increase or decrease a hundredfold. Larger values of hwill allow a more accurate
price at a higher time-cost1, however, we did not notice much change in the price
even for h as large as 100000.

It is now useful to introduce cosine series for g(s) = es and g(s) = 1 on a
subrange2 [c, d] of [a, b] in order to simplify (3.6). First, letting g(s) = es, we have
cosine coefficients of

χk(c, d) =

∫ d

c
es cos

(
kπ
s− a
b− a

)
ds,

and for g(s) = 1 we have cosine coeffiecients of

ψk(c, d) =

∫ d

c
cos

(
kπ
s− a
b− a

)
ds.

These have analytical solutions given by

χk(c, d) =

[
1 +

(
kπ

b− a

)2
]−1{

cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a

[
sin

(
kπ
d− a
b− a

)
ed − sin

(
kπ
c− a
b− a

)
ec
]}

,

and

ψk(c, d) =

d− c n = 0

b−a
kπ

[
sin
(
kπ d−ab−a

)
− sin

(
kπ c−ab−a

)]
n > 0

.

These expressions can be implemented straightforwardly in code and allow us to
simplify (3.6) to the analytic expression

vk =
2

b− a
[χk(log(K), b)−Kψk(log(K), b)] ,

for k ∈ N.
1 Often this is because more terms are needed for the cosine series to converge for a larger range,

which in turn requires more activations of the characteristic function.
2 To keep in line with (3.2), you can think of these functions as being g(s) = b−a

2
esIc≤s≤d and

g(s) = b−a
2

Ic≤s≤d in order to have χ and ψ as their cosine coefficients over [a, b], but this is a tech-
nicality that needlessly complicates the analysis — the integrals in question will solve in the same
way.
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3.1.2 Heston Characteristic

As part of his seminal paper, Heston (1993) provides a characteristic function for the
Heston model. In our computations, we instead use the numerically robust speci-
fication given by Albrecher et al. (2007). For consistency with our implementation,
we use the notation given by McWalter (2019a) when presenting this specification.

Again, let sT = log(ST ) be the log stock price under the risk-neutral measure.
Recall from (1.1) that a Heston model is parameterised by (V0, r, ν, λ, θ, ρ) under the
risk-neutral measure. Then the characteristic function φsT (u) = E

[
eiusT |Ft

]
can be

represented as

φsT (u) = exp (C +DVt + iu log(St)) ,

where

C = rT iu+ θλ

(
Tx− −

1

a
log

(
1− ge−Td

1− g

))
,

D =
1− e−Td

1− ge−Td
x−,

with

a =
ν2

2
, b = λ− ρνiµ, c = −µ

2 + iµ

2
, d =

√
b2 − 4ac,

x± =
b± d

2a
and g =

x−
x+

.

Here we are still assuming that r = 0. This simplifies our equations by remov-
ing the first term of C.

One of the appeals of the Heston model is that its characteristic function can
be calculated analytically. This makes pricing routines like the cosine method very
fast, as their computation time is usually dominated by the time taken to evaluate
the characteristic function in each term.

3.1.3 Lifted Heston Characteristic

For the Lifted Heston, we turn again to Abi Jaber (2019). He provides the Fourier-
Laplace transform L(u) = E [eusT |Ft], which can be used to compute the charac-
teristic function simply by making the substitution φsT (u) = L(iu). We now un-
wrap this specification. Recall from (2.1) that a Lifted Heston model with N mean-
reverting factors for some fixed N ∈ N is parameterised by (V0, ν, λ, θ, ρ) and either
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(rN , H)3 or (xi, ci), i = 1, . . . , N . The transform L is given by

E[exp (u log(ST )|Ft) = exp

(
φ(t, T ) + u log(St) +

N∑
i=1

ciψ
i(T − t)U it

)
,

where ψi from i = 1, . . . , N is the solution to an N -dimensional system of Riccati
equations with dynamics:

(ψi(s))′ = −xiψi(s) + F (u,

N∑
j=1

cjψ
j(s)), (3.7)

ψi(0) = 0, i = 1, . . . , N.

The solutions to these equations are then used to compute φ(t, T ). We will explain
how we compute these at the end of the section. Given our Riccati solution, we
then need to introduce two non-linear functions F and g0 given by

F (u, z) =
1

2
(u2 − u) + (ρνu− λ)z +

ν2

2
z2, (3.8)

g0(t) = V0 + λθ
N∑
i=1

ci

∫ t

0
e−xi(t−s)ds

= V0 + λθ

N∑
i=1

ci
xi

(1− e−xit), (3.9)

for xi 6= 0. Note that when xi = 0, such as for the case N = 1, c = 1, x = 0 that
reproduces the Heston, the integral reduces to

∫ t
0 1ds = t. In this special case we

have

g0(t) = V0 + λθt.

The first input into (3.8) is always the point we are evaluating the characteristic
function at, and the second is a weighted sum of the Riccati components. Note
that this uses the same weights ci present in the dynamics (2.1) of the Lifted Hes-
ton. Abi Jaber (2019) shows that the function g0(t) (3.9) can be used to fit an initial
volatility structure when calibrating, and while more general formulations are pos-
sible, this version is sufficient for our purposes. This is the same g0 that appears in
the dynamics (2.1). We can now define φ(t, T ) as

φ(t, T ) =

∫ T−t

0
F (u,

N∑
j=1

cjψ
j)g0(T − s)ds.

Notably, for t = 0 we have that each mean reverting factor U i = 0 and so

L(u) = E[exp(u log(ST )|F0) = exp

(
φ(0, T ) + u log(S0)

)
3 see (2.3)
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Simplifying φ(t, T )

It is possible to simplify φ(t, T ) further in general, such that it does not involve F .
We start by breaking g0(t) into a constant and a function of t.

g0(t) = V0 + λθ
N∑
i=1

ci(1− e−xit)
xi

= (V0 + λθ
N∑
i=1

ci
xi

)− λθ
N∑
i=1

cie
−xit

xi

= A+B

N∑
i=1

cie
−xit

xi

Now we manipulate the Ricatti equations:

(ψi)′ = −xiψi + F (u,
N∑
i=1

ciψ
i),

can be arranged with an integrating factor as

d

dt

(
ψi(t)e−xi(T−t)

)
= e−xi(T−t)F (u,

N∑
i=1

ciψ
i),

or

F (u,
N∑
i=1

ciψ
i) = exi(T−t)

d

dt

(
ψi(t)e−xi(T−t)

)
, (3.10)

for every i ∈ {1, . . . , N}. So now

φ(t, T ) =

∫ T−t

0
F (u,

N∑
i=1

ciψ
i(s))g0(T − s)ds

= A

∫ T−t

0
F (u,

N∑
i=1

ciψ
i(s))ds+B

N∑
i=1

ci
∫ T−t

0 F (u,
∑N

i=1 ciψ
i(s))e−xi(T−s)

xi
ds.

(3.11)

Using (3.10) and the fundamental theorem of calculus we get the second term of
(3.11) to simplify to

B

N∑
i=1

ciψ
i(T − t)e−xit

xi
.
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Using (3.10) and integration by parts, the first term of (3.11) becomes

A

∫ T−t

0
F (u,

N∑
i=1

ciψ
i(s))ds =

(
V0 + λθ

N∑
i=1

ci
xi

)∫ T−t

0
F (u,

N∑
i=1

ciψ
i(s))ds

=

(
N∑
i=1

V0

N
+ λθ

ci
xi

)∫ T−t

0
F (u,

N∑
i=1

ciψ
i(s))ds

=
N∑
i=1

(
V0

N
+ λθ

ci
xi

)∫ T−t

0
exi(T−t)

d

dt

(
ψi(t)e−xi(T−t)

)
ds

=
N∑
i=1

(
V0

N
+ λθ

ci
xi

)(
ψi(T − t) +

∫ T−t

0
xiψ

i(s)ds

)
.

Putting these results back into (3.11), we get

φ(t, T ) =
N∑
i=1

(
V0

N
+ λθ

ci
xi

)(
ψi(T − t) +

∫ T−t

0
xiψ

i(s)ds

)
− λθciψ

i(T − t)e−xit

xi

= λθ
N∑
i=1

ci
xi

[(
1 +

xiV0

ciλθN

)(
ψi(T − t) +

∫ T−t

0
xiψ

i(s)ds

)
− ψi(T − t)e−xit

]
.

Numerical Riccati

We make use of Abi Jaber (2019) Appendix A.3 for an explicit-implicit discretisation
scheme of (3.7). This works by initializing all N components to zero, and then
evolving over a discrete number of evenly spaced time-steps according to

ψ̂itk+1
=

1

1 + xi∆t

ψ̂itk + ∆F

u, N∑
j=1

cjψ̂
i
tk

 , i = 1, . . . , N.

We use 1000 time-steps in all of our experiments instead of the 300 used in Abi Jaber
(2019). This was necessary in order to have enough accuracy for the skew of the
Heston embedded in the Lifted Heston (N = 1, x = 0, c = 1) to agree with that
of a standard Heston (See figure (4.2)). Unfortunately, we have to solve this set
of N Riccati equations every time we evaluate the characteristic function, as their
dynamics are dependent on the point u being evaluated.

3.2 Monte Carlo

We are unable to use standard Monte-Carlo techniques to simulate the variance
process of a Rough Heston model. One of the main reasons for this is that the
variance process is non-Markovian (El Euch and Rosenbaum (2019)).
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In contrast to this, the Lifted Heston is a Markovian and semimartingale model.
Specifically, that is to say that the variance process is itself Markovian, and the stock
price is a semimartingale. Using this fact, Abi Jaber (2019) has adapted standard
Euler-Maruyama schemes to simulate the variance process at each time step, and
use this updated variance to simulate the stock price for that time point.

Let (V0, ν, λ, θ, ρ, rN , H) be the parameters of the Lifted Heston model in ques-
tion and fix N ∈ N for the number of mean-reverting factors. Also let

Σ =

[
1 ρ

ρ 1

]
.

We then use following algorithm:

• Choose some suitable large n ∈ N and number of time-steps m.

• Initialize S = S0, V = V0 and U i = 0 for i = 1, . . . , N .

• For each time-step tj for j = 1, . . . ,m:

– Let Z be a sample from a Normal distribution with covariance Σ, with
elements Z1 and Z2.

– Update S from the previous variance as

Stj = Stj−1e
(r− 1

2
V +
tj−1

)∆t+
√
V +
tj−1

∆tZ1 .

– Update the vector of mean-reverting factors U as
Utj = 1

xi
.(Utj−1−λVtj−1)∆t+ν

√
V +
tj−1

∆tZ2 where . denotes element-wise
operation.

– Update the variance process as
Vtj = g0(tj) +

∑N
i=1 ciU

i
tj

• Calculate and store the final discounted payoff of the option from ST .

• Average the above over the n simulations.

The main drawback of using Monte-Carlo methods is that we cannot simulate
a range of strikes K cheaply like with the cosine method. This makes it a lot slower
to compute an implied volatility surface. It is useful, however, when we want to
price more exotic options for which we cannot so easily compute the vk from (3.4).



Chapter 4

Results

We now move on to some numerical experiments. First we test the assertion that
the Lifted Heston accurately reproduces the standard Heston under the parameter-
isation N = 1, x1 = 0, c1 = 1. Then we explore the effects of changing the various
parameters of the standard Heston on its skew and show that it cannot satisfacto-
rily recover the explosive nature of the Rough Heston at low maturity. We then
show how the skew of the Lifted Heston changes with increased number of mean-
reverting factors, and analyze a cross section of implied volatilities at maturities of
one week and one year. We proceed to show the effects of the Lifted Heston’s pa-
rameters for a particular N . We then finish our results on the cosine method with
a simple empirical attempt to understand the time complexity as N increases and
better understand the trade-off with accuracy. Finally, a Monte-Carlo simulation of
price is shown for completion.

4.1 Embedded Heston

Here we compare a Lifted Heston with a single mean-reverting term, with x1 = 0

and c1 = 1, to the standard Heston that it theoretically agrees with. Here our
parameter set is given by

S0 V0 θ λ ν ρ Ncos

100 0.02 0.02 0.3 0.3 -0.7 300

and additionally our log-money strikes k = log(K/S0) come from the Matlab com-
mand \linspace(-1.2,0.2,80).



4.1 Embedded Heston 20

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Log-moneyness ln(K/S
0
)

0

10

20

30

40

50

60

70

C
a

ll 
p

ri
c
e

Comparison of Heston and (N=1,H=0.5) Lifted Heston

Heston

Lifted Heston

Fig. 4.1: Call prices for Heston and Heston-reproducing Lifted
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Fig. 4.2: Implied volatilities for Heston and Heston-reproducing Lifted

From figures 4.1 and 4.2 we can see that both prices and implied volatilities are
essentially the same. The maximum error in 4.2 is 0.0057, and it seems that the
Lifted Heston is accurately reproducing the standard Heston.
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It is worth taking a moment here to reflect on the nature of this reproduction. It
is only in the case that both N = 1 and the parameters x1 and c1 are chosen to be 0
and 1 that we attain the Heston. In this case, from (2.2) we have

g0(t) = V0 + λθt,

which makes the variance process

Vt = g0(t) + U1.

Written in dynamics notation this is

dVt = dg0(t) + dU1

= λθdt+ (−0U1 − λVt)dt+ ν
√
VtdWt

= λ(θ − Vt)dt+ ν
√
VtdWt,

which matches the dynamics of the standard Heston (1.1). Now in our experi-
ments we follows Abi Jaber (2019) in using the (H, rN ) parameterisation of (xi, ci)

with rN = 1 + 10N−0.9 in order to have one extra parameter instead of 2N extra
parameters. The main consequence of this here, is that x1 6= 0 and c1 will likely not
equal one. This changes the above analysis. We now have

g0(t) = V0 + λθ
c1

x1
(1− e−x1t),

which makes the variance process

Vt = g0(t) + c1U1.

This time the dynamics are

dVt = dg0(t) + c1dU1

= λθc1e
−x1tdt+ c1(−x1U1 − λVt)dt+ ν

√
VtdWt

= c1λ(θe−x1t − Vt)dt− c1x1U1dt+ ν
√
VtdWt,

It is not clear that this should correspond to any particular Heston model. While
we could define a new mean reversion rate λ′ = c1λ, the new long term level θ′ =

θe−x1t would have to be time-dependent. Even if we do make this extension, it is
not obvious how to reconcile the presence of the extra drift term −c1x1U1dt. It is
for this reason that we require x1 = 0 when reproducing the Heston. Since this is
incompatible with our (H, rN ) parameterisation, we do not include a Heston base
case when plotting the skew of Lifted Heston models in our experiments, as it is
not clear what would be a fair and natural comparison.
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4.2 Skew - Heston

We have claimed that the Heston model cannot reproduce the explosion of skew
seen in the short maturity end of the market. Here we will plot the skew for a
Heston as figure 4.3 and show how changing parameters affects that plot. Our
parameters are as before, but with Ncos = 1000. Our maturities are the range Ti =

i/52, i = 1, . . . , 52, ranging in weeks from one week to a year. In general we notice
an increase in the number of cos method terms needed, the shorter the maturity is.
Since the Heston is so fast, we have stuck to 1000 throughout. It would be possible
to accurately price at most of the maturities with 300 terms.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Maturity (in years)

0.17

0.175

0.18

0.185

0.19

0.195

0.2

s
k
e

w

ATM skew by central differences (K=98/102)

Heston

Fig. 4.3: Implied skew for a standard Heston model

Notice how the skew peeks at around T = 0.4, and overall only differs by at
most .025 over the first year. It is this kind of complete lack of short maturity ex-
plosion that leads us to investigate rougher models. Let us now see if varying any
of the parameters can give us the explosive behavior we want.

4.2.1 Effects of θ

Here we vary θ. We plot five skew curves as figure 4.4, using the set

θ ∈ {0.002, 0.0067, 0.02, 0.06, 0.2},

and plotting the skew for each value.
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Fig. 4.4: Implied skew for Heston varying θ

We can see θ having an effect on the convexity of the skew curve. For the largest
value the skew curve appears convex, becoming more and more concave as θ de-
creases. While a high θ could achieve the increasing skew we want as maturity
decreases, it still seems to gentle compared with the market skew curve found in
Abi Jaber (2019).

4.2.2 Effects of λ

In similar fashion, we plot five skew curves as figure 4.5 using

λ ∈ {0.03, 0.1, 0.3, 0.9, 3}.
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Fig. 4.5: Implied skew for Heston varying λ

The effect here seems similar, if slightly more pronounced. We can see that λ = 3

has a smaller skew at T = 1 than the highest θ plot did, but qualitatively the plots
seem very similar.

4.2.3 Effects of ν

We repeat the treatment for

ν ∈ {0.03, 0.1, 0.3, 0.9, 3},

as figure 4.6 This plot is the reason we chose a value of Ncos = 1000. This is neces-
sary for the prices to converge with high ν for the 1 week maturity.
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Fig. 4.6: Implied skew for Heston varying ν

Here we actually recover quite explosive skew in the lower maturities. This is
somewhat expected, as we are heavily increasing the volatility of variance to 3,
which is an unreasonably high amount. Unfortunately this higher volatility has an
adverse effect on our fit for later maturities — they are still affected by the increased
volatility and so the skew is pulled higher than it ought to be for later maturities.
This is perhaps the weakness of the standard Heston, in adapting to one part of the
maturity curve it must make sacrifices elsewhere.

4.2.4 Effects of ρ

Finally we try varying rho in figure 4.7. We pick the values

ρ ∈ {0,−0.4,−0.7,−0.8,−1, }

as our candidates. We are constrained to the range [−1, 1] as these are correlations.
Furthermore, since stock prices and volatilities have been observed to be negatively
correlated, Bouchaud et al. (2001), we restrict ourselves to ρ ≤ 0.
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Fig. 4.7: Implied skew for Heston varying ρ

The overall level of skew seems to be controlled by ρ. A zero correlation re-
sults in the highest skew, with increasingly negative correlation bringing the skew
further and further down in a level manner.

4.3 Skew - Varying N

None of our Heston parameters gave us a satisfactory short-maturity explosive
behavior, without being intrinsically tied drawbacks elsewhere along the curve.
We now turn to the Lifted Heston model, and plot its skew for varying values ofN .
Throughout this we use a Hurst index of 0.1, and our parameter rN is calculated
as rN = 1 + 10N−0.9, following the example of Abi Jaber (2019). Since the Lifted
Heston takes between 10 to 1000 times longer than the standard Heston, depending
on N , we limit ourselves to the smaller time set given by

T ∈ {3/365, 4/365, 5/365, 6/365, 1/52, 2/52, 3/52, 1/12, 2/12, 3/12, 6/12, 9/12, 1}.

We let Ncos range from 1000 to 300 as appropriate. The exact numbers used are

{1000, 1000, 1000, 1000, 1000, 1000, 1000, 600, 600, 300, 300, 300, 300},

corresponding to the maturities above.
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Fig. 4.8: Implied skew for Lifted Heston with varying N

We see in figure 4.8 that as N increases, the slope of the skew at low maturi-
ties rapidly increases, while for longer maturities it remains relatively flat. This
matches the qualitative behavior we were hoping to see. For all but the early matu-
rities, skew is decreasing with N . It appears to be decreasing less and less despite
effectively doubling N . This may be a sign that it is converging to a Rough Heston
model. We would suggest, however, that it is prudent to first pick a value of N
and then to calibrate to the market. If the explosive qualities are insufficient and a
largerN is required, we would advise recalibrating to the market to avoid this level
decrease. We will now look at two specific cross-sections of the implied volatility
surface.
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4.3.1 Cross Sections

Maturity 1 Week

First we look at the 1 week cross section of figure 4.9. We can see that further out
of the money, the implied volatility increases with N . Slightly in the money, it is
difficult to see, but the order is roughly reversed. This results in the slope at the
money becoming steeper as N increases, which agrees with what we see in figure
4.8 at the short end, with the skew increasing at the 1 week point with N .
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Fig. 4.9: Maturity 1 week implied volatility surface

Maturity 1 Year

At a maturity of 1 year on the other hand, see figure 4.10, the inverse relation-
ship holds. Further out of the money, the implied volatility decreases with N , and
slightly in the money it increases. This results in a slope that becomes more gentle
asN increases which in turn leads to the decreasing skew we see at the 1 year mark
in figure 4.8.
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Fig. 4.10: Maturity 1 year implied volatility surface

4.4 N=20 Parameter Effects

We now fix N = 20 and repeat the procedure used in section 4.2 to see how chang-
ing model parameters affects the skew for the Lifted Heston. The maturities used
here are the same as before. We use 1000 cosine terms for the variation of ν and ρ,
and 600 for the rest.

4.4.1 Effects of θ

First we vary θ. We plot five skew curves as figure 4.11, using the set

θ ∈ {0.002, 0.0067, 0.02, 0.06, 0.2},

and plotting the skew for each value.
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Fig. 4.11: Implied skew for Lifted Heston varying θ

The effect here is quite different to the Heston. Unlike figure 4.4, we see that in-
creasing θ decreases skew across the board, without really affecting convexity.

4.4.2 Effects of λ

Again, we plot five skew curves as figure 4.12 using

λ ∈ {0.03, 0.1, 0.3, 0.9, 3}.
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Fig. 4.12: Implied skew for Lifted Heston varying λ

The effect here is pretty much identical, just more pronounced. This matches the
relation between θ and λ seen in the standard Heston in figures 4.4 and 4.5. Once
more, the difference can mainly be seen at longer maturities.

4.4.3 Effects of ν

As before, we repeat the treatment for

ν ∈ {0.03, 0.1, 0.3, 0.9},

as figure 4.13 This time we only plot four curves. The reason for this is that with
ν = 3, or even 2, we end up with diverging prices from the cosine method. This is
likely due to our choice of range [a, b] = [S0/100, 100S0] being to small to capture
almost all the possible outcomes for the stock price under such a high volatility
parameter.
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Fig. 4.13: Implied skew for Lifted Heston varying ν

Like the Heston case, see figure 4.6, increasing ν pulls up the slope of the curve at
all maturities. Unlike the standard Heston, we can see the that the short-maturity
explosion is preserved in the shape of the curve, even at low volatilities of variance.

4.4.4 Effects of ρ

We now go back to varying rho in figure 4.14. Again we use

ρ ∈ {0,−0.4,−0.7,−0.8,−1, }

as our values.
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Fig. 4.14: Implied skew for Lifted Heston varying ρ

We see the same decrease in skew as ρ decreases as we do for the Heston (figure 4.7),
but this time the effect is greater at short maturities, becoming fairly minimal by
the time we reach T of one year. Again, when the Brownian motions are perfectly
negatively correlated, we see the skew collapse to zero.

4.4.5 Effects of H

For the Lifted Heston, we have one additional parameter. The Hurst index, H ∈
[0, 1

2 ], is supposed to control the roughness of the variance process, with and H

of zero being very rough and an H of half being as rough as Brownian motion.
As such, we expect the explosive effect to be magnified for lower H , while being
diminished for H close to 1

2 (which would be used in the standard Heston case).
We use values of

H ∈ {0, 0.05, 0.1, 0.2, 0.4, }

and plot the resulting curves in figure 4.15
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Fig. 4.15: Implied skew for Lifted Heston varying H

We see that for short maturities, the slope of skew increases asH gets closer to zero.
Meanwhile, skew at later maturities remains fairly unchanged. This is exactly the
behavior that theory leads us to expect, and we can see how we lose the short-
maturity explosion as H grows to large.

4.5 Time Complexity

We have seen that the Lifted Heston effectively captures the short-maturity skew
explosion commonly seen in the market. We now turn to the question of how much
time this takes. To do this, we will fix maturity as T = 1 and time how long it takes
to price the same set of 80 strikes used in the first experiment. In all cases we use 300
cosine terms. This will be repeated for N ranging from 10 to 200 in intervals of 10.
The whole experiment will be repeated for 10 runs, and the times averaged. This is
to minimize the effects of background processes on the timing, and to compensate
for the bias where earlier runs are slower as the program is loaded into faster levels
of memory cache.
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Fig. 4.16: Average time for Lifted Heston of varying N

The average times are plotted in figure 4.16. Additionally, we fit a polynomial
to these times using Matlab’s \polyfit command. The lowest degree polynomial
to offer a reasonable fit is a low-coefficient quadratic, and this is plotted with a
plus and minus 5 constant. This seems to bound the times quite well, and we can
conclude that at least empirically times appear to scale as O(N2).

This seems reasonable. When we increase N , we increase the dimension of the
Riccati equations that have to be solved in every characteristic function evaluation,
and many parts of the characteristic function and dynamics involve terms that sum
N components. A proper theoretical analysis of the time complexity, unfortunately,
is out of the scope of this minor dissertation.

One more result worth mentioning here, however, is that the number of cosine
terms needed to converge seems to decrease as we increase N . We plot this in
figure 4.17, where by last significant term we mean the last term that changed the
price by more than one one-hundredth. In all cases, all 300 terms where used.
This should partially offset the cost of using a higher N . It does appear, however,
that even accounting for the more rapid convergence, the cost of high N quickly
becomes prohibitive. This is magnified by considering that we are interested in
high N when we are more focused on what is happening at low maturities, and it
is at these same low maturities that we tend to need more cosine terms in order to
converge anyway.
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Fig. 4.17: Last term to change price by more than 1 cent.

4.6 Monte Carlo

For completeness, we include a plot of Monte-Carlo prices for a Lifted Heston
model. We let N = 20 and the other parameters are the same as throughout the
dissertation. We use sample sizes of 1000 to 50000 in steps of 1000. We plot the
resulting prices in figure 4.18.
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Fig. 4.18: Monte-Carlo pricing with Lifted Heston

We see that the prices stay within the 3 standard deviation error bounds, and con-
verge towards a final price. While Monte-Carlo methods can give accurate prices
with a high enough sample size, and come with the benefit of knowing how wide
your error bounds are,they are a lot slower than batch methods like the cosine
method, even if we are only evaluating a single strike.



Chapter 5

Conclusion

We began by reviewing the flaws of the existing Heston and Rough Heston mod-
els. The Heston was numerically fast and mathematically simpler, but unable to
replicate the explosive skew 1 observed in the market at short maturities without
heavily increasing volatility of variance — a trade-off that greatly mis-priced later
maturity options. The Rough Heston was able to capture this explosion without
sacrificing later maturities, but was numerically slow and mathematically complex
due to its fractional Brownian motion.

We introduced Abi Jaber (2019)’s reduced parameterisation of his Lifted Heston
model, and showed that it was able to reconcile the standard Heston and Rough
Heston. We first confirmed that it embeds the Heston, by comparing the implied
volatilities generated by both models under the equivalent parameters. We then
plotted the effects of changing θ, λ, ν and ρ on the skew generated by the Heston,
showing that none of these are sufficient to satisfactorily reproduce the explosive
skew we desired. Inspired by this, we computed the skew for Lifted Heston models
with varying number N of mean-reverting factors. Even at a fairly small N of
20, the explosive skew was achieved for short maturities while still keeping the
skew of longer maturities relatively flat. We then explored the effects of changing
parameters in the Lifted Heston case, and compared this to the Heston. The effects
of each parameter were largely the same, with the exception of θ and λ having an
impact on the skew inversely proportional to the maturity. The explosive skew at
low maturity scaled inversely with the Hurst index as expected.

Finally we provided an empirical analysis of the time complexity of the Lifted
Heston as a function of the number of mean-reverting factors. We observed a rela-
tion of order O(N2) and so cautioned against using too many factors. A secondary
effect is observed in an inverse relationship between number of factors N and the

1 Here skew is not to be confused with the general shape of a volatility plot. It is defined as the
absolute value of the log-moneyness partial derivative of the implied volatility surface, evaluated at
the money. σskew = | ∂

∂k
σimplicit(k, T ) |k=0 | for k := ln(K/S0),
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number of terms needed by the cosine method to converge to the correct price.
This partially offset the numerical cost of using a higher N , but an N of around
20 still seemed to be the sweet spot in the trade-off between explanatory power
and numerical efficiency. Even at N = 20, the Lifted Heston was around 100 times
slower than the standard Heston, and may not have been worth this cost if dealing
primarily with options with maturities further out than a year.

While out of the scope of this minor dissertation, there are several possible ex-
tensions that could be added. To start, it would be useful to compute the skew for
the Rough Heston model, and ensure that it bounds the skew of the Lifted Heston
from above. This would also allow for more accurate comments on any convergent
behavior of the Lifted Heston. Secondly, all the analysis in this work has been done
on preselected parameter sets. It would be instructive to perform the same analysis
in terms of models calibrated to actual market data, specifically that from a South
African context. This could then be compared to the work of Abi Jaber (2019), cal-
ibrated to the S&P index, to see whether the model fairs differently in the local
market. Finally, while we have looked at using standard Monte-Carlo methods to
price vanilla options under the Lifted Heston model, we have not found evidence
in the literature of applying these to more exotic options. While it is quite possible
that these methods would behave as they do for simpler models, it would still be
worth the exercise in testing this.



Bibliography

Abi Jaber, E. (2019). Lifting the Heston model, Quantitative Finance 19(12): 1995–
2013.
URL: https://doi.org/10.1080/14697688.2019.1615113

Abi Jaber, E. and El Euch, O. (2019). Multifactor approximation of rough volatility
models, SIAM Journal on Financial Mathematics 10(2): 309–349.

Albrecher, H., Mayer, P., Schoutens, W. and Tistaert, J. (2007). The little Heston trap,
Wilmott 2007(1): 83–92.

Bayer, C., Friz, P. and Gatheral, J. (2016). Pricing under rough volatility, Quantitative
Finance 16(6): 887–904.

Bergomi, L. (2005). Smile dynamics II, Risk 18: 67–73.

Bouchaud, J.-P., Matacz, A. and Potters, M. (2001). Leverage effect in financial
markets: The retarded volatility model, Phys. Rev. Lett. 87: 228701.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.87.228701

Cont, R. and Tankov, P. (2003). Financial modelling with jump processes, Vol. 2, CRC
Press, Taylor and Francis Group: Boca Raton, London, New York, Washington.

El Euch, O., Gatheral, J. and Rosenbaum, M. (2018). Roughening Heston, SSRN .
URL: https://ssrn.com/abstract=3116887 or https://dx.doi.org/10.2139/ssrn.3116887.

El Euch, O. and Rosenbaum, M. (2019). The characteristic function of rough Heston
models, Mathematical Finance 29(1): 3–38.

Fang, F. and Oosterlee, C. (2008). A novel pricing method for european options
based on Fourier-cosine series expansions., SIAM J. Sci. Comput. 31(2): 826–848.

Fouque, J.-P. and Lorig, M. J. (2011). A fast mean-reverting correction to Heston’s
stochastic volatility model, SIAM Journal on Financial Mathematics 2(1): 221–254.

Gatheral, J. (2011). The volatility surface: a practitioner’s guide, Vol. 357 (Wiley Finance
Book series), John Wiley & Sons.

Gatheral, J., Jaisson, T. and Rosenbaum, M. (2018). Volatility is rough, Quantitative
Finance 18(6): 933–949.

Heston, S. (1993). A closed-form solution for options with stochastic volatility with
applications to bond and currency options, Rev. Financ. Stud 6(2): 327–343.



BIBLIOGRAPHY 41

Madan, D. B., Carr, P. P. and Chang, E. C. (1998). The variance gamma process and
option pricing, Review of Finance 2(1): 79–105.

McWalter, T. A. (2019a). Numerical methods in finance II — characteristic function
pricing & stochastic volatility.

McWalter, T. A. (2019b). Numerical methods in finance II — the cosine method.


	Introduction
	Literature Review
	Numerical Methods
	Cosine Method
	Call Payoff Component
	Heston Characteristic
	Lifted Heston Characteristic

	Monte Carlo

	Results
	Embedded Heston
	Skew - Heston
	Effects of 
	Effects of 
	Effects of 
	Effects of 

	Skew - Varying N
	Cross Sections

	N=20 Parameter Effects
	Effects of 
	Effects of 
	Effects of 
	Effects of 
	Effects of H

	Time Complexity
	Monte Carlo

	Conclusion
	Bibliography



