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SYNOPSIS 

Particle fracture is the elementary process that governs comminution. In industrial machines 

particle breakage occurs mainly through three mechanisms: impact, abrasion and attrition. Of these 

mechanisms, impact breakage is known to be the most basic form of particle size reduction. 

Comminution devices are highly inefficient, as the energy used for particle breakage relative to that 

consumed by the equipment is low and reported to be between 1-2 %. As such, understanding the 

fundamentals of particle fracture is crucial for the development of energy efficient particle size 

reduction methods. Research done towards investigating particle fracture under impact loading has 

led to the development of several devices which include the twin pendulum device, drop weight 

tester, Split Hopkinson Pressure Bar, Rotary Breakage Tester and the Short Impact Load Cell.  

In this study the Short Impact Load Cell (SILC) was used to conduct bed breakage experiments on 

partially confined particles. Breakage tests using this device were conducted by vertically releasing 

a steel ball of known mass onto a bed of particles from a known height. The bed rested on a steel 

rod which was fitted with strain gauges to measure the particle response to impact loading. Tests 

were conducted on two ores, blue stone and UG2, to investigate the effect of three variables: steel 

ball mass, drop height and bed depth on the breakage behaviour of particles. The effect of each 

variable was investigated by evaluating the peak forces obtained, the particle fracture energy and 

the degree of particle breakage attained.  

For both ores it was found that the peak force increased linearly with increasing steel ball mass and 

drop height, and it was found that the drop height had a greater effect on the peak force than the 

steel ball mass. The maximum peak forces were obtained at one layer of particles and increasing 

the bed depth generally led to a reduction in the peak force. An exponential relationship was found 

between the peak force and bed depth, where the peak force decreased with increasing bed depth. 

It was found that the blue stone particles did not break at the range of input energies used in this 

work, therefore no fracture energy results were reported for blue stone. The fracture energy values 

for UG2 were low, where the maximum energy used for particle fracture was 2.7 % of the input 

energy. There was no direct correlation between the fracture energy and the steel ball mass, drop 

height and bed depth; however it was found that the bed depth had a larger effect on the fracture 

energy compared to both the steel ball mass and drop height. The greatest amount of energy used 

for fracture was generally obtained at the largest input energies using the 357 and 510 g balls. The 

optimum drop height which resulted in the highest fracture energy was generally found to be either 

240 or 300 mm. A bed depth of five layers was found to be the optimum bed depth that allowed for 

the highest amount of energy to be utilized for breakage.  

No breakage results were obtained for blue stone due to the hardness and stiffness of the ore. For 

UG2, tests conducted at the same bed depth showed a trend in which the breakage initially 

increased greatly with increasing input energy; however at larger input energies the breakage 

obtained approached a constant value. Although the input energy was varied by changing both the 
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steel ball mass and the drop height, the results showed that the degree of breakage was more 

dependent on the steel ball mass compared to the drop height. For all tests conducted, the 

maximum breakage was obtained at one layer of particles and increasing the bed depth led to a 

decrease in the breakage obtained.  The results showed that the fracture energy and the degree of 

breakage were not directly related. It was found that there is an optimum amount of energy utilized 

for fracture that leads to the greatest breakage, where an in increase in the energy beyond the 

optimum point does not significantly affect the breakage obtained. 
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LIST OF ABBREVIATIONS AND NOMENCLATURE 

SILC: Short Impact Load Cell 

SHPB: Split Hopkinson Pressure Bar 

RBT: Rotary Breakage Tester 

UG2: Upper Group 2 

PGMs: Platinum group metals 

UCS: Ultimate compressive stress 

DEM: Discrete Element Method 

UCT: University of Cape Town 

Ecs: Specific input energy 

t10: The percentage of progeny particles passing through a screen whose aperture size is 
1

10
 of the initial mean particle size.  

t2: The percentage of progeny particles passing through a screen whose aperture size is 
1

2
 of the initial mean particle size. 

σ: Stress applied to the steel rod (N/m2) 

K: A calibration constant used to relate the measured voltage to the stress (N/Vm2) 

V: Measured voltage (V) 
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Arod: Cross sectional area of the steel rod (m2) 
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E: Young’s modulus (N/m2) 



vi 
 

vb: Steel ball velocity (m/s) 

L: Length of the rod (m) 

Vavg: Maximum average velocity obtained for a breakage test (V) 

A: Amplifier gain 

B: Bridge factor 

F: Gauge factor 



vii 
 

TABLE OF CONTENTS 

 

DECLARATION ..................................................................................................................... i 

ACKNOWLEDGEMENTS ......................................................................................................ii 

SYNOPSIS ........................................................................................................................... 3 

LIST OF ABBREVIATIONS AND NOMENCLATURE .......................................................... v 

1. INTRODUCTION ........................................................................................................... 1 

1.1. Background to the research .................................................................................... 1 

1.2. Objectives of the study ............................................................................................ 2 

1.3. Scope of the study .................................................................................................. 3 

1.4. Plan of development ............................................................................................... 3 

2. LITERATURE REVIEW ................................................................................................. 5 

2.1. Background to comminution operations .................................................................. 5 

2.2. The elementary principles of particle breakage ....................................................... 7 

2.2.1. Fracture mechanics ......................................................................................... 8 

2.2.2. Rock mechanics .............................................................................................. 9 

2.3. Standard breakage characterization procedures ................................................... 10 

2.3.1. Conventional rock and fracture mechanics measurements ............................ 10 

2.3.2. Standard grindability tests .............................................................................. 11 

2.3.3. Single particle breakage characterization tests .............................................. 12 

2.4. Impact breakage devices ...................................................................................... 13 

2.4.1. Twin pendulum device ................................................................................... 13 

2.4.2. Drop weight tester .......................................................................................... 15 

2.4.3. Split Hopkinson Pressure Bar (SHPB) ........................................................... 17 

2.4.4. Short Impact Load Cell (SILC) ....................................................................... 20 

2.4.5. Rotary breakage tester .................................................................................. 22 

2.5. Parameters obtained using the SILC .................................................................... 24 

2.5.1. Determination of parameters obtained using the SILC ................................... 25 

2.6. Studies conducted using impact load cells ............................................................ 26 

2.7. Factors affecting the breakage behaviour of particles ........................................... 28 

2.7.1. The effect of varying the input energy on the breakage of particles ................ 28 

2.7.2. The effect of particle size on the breakage behaviour of particles .................. 30 

2.7.3. Breakage behaviour of particles contained in beds ........................................ 31 

2.7.4. Breakage behaviour of particles in confined and unconfined conditions ......... 32 

2.8. Summary .............................................................................................................. 33 

2.9. Hypotheses and research questions ..................................................................... 34 

3. EXPERIMENTAL ......................................................................................................... 36 



viii 
 

3.1. Description of the apparatus ..................................................................................... 36 

3.2. Calibration of the SILC .............................................................................................. 38 

3.2.1. Calibration procedure ......................................................................................... 38 

3.2.2. Calibration results .............................................................................................. 39 

3.2.3. Determination of the calibration factor ................................................................ 41 

3.3. Sample preparation ............................................................................................... 44 

3.3.1 Ore used for breakage tests ................................................................................ 44 

3.3.2. Sample preparation for blue stone ..................................................................... 45 

3.3.3. Sample preparation for UG2............................................................................... 46 

3.3.4. Obtaining the desired bed thickness................................................................... 47 

3.4. Experimental procedure used to conduct bed breakage tests using the SILC ....... 50 

3.5. Determination of the Particle Size Distributions (PSDs) ........................................ 52 

3.6. Design of experiments .......................................................................................... 52 

3.6.1. Experiments conducted on blue stone ........................................................... 52 

3.6.2. Experiments conducted on UG2 .................................................................... 53 

4. BLUE STONE RESULTS ............................................................................................ 54 

4.1. Peak force results ................................................................................................. 54 

4.1.1. Peak force results obtained using the 510 g steel ball .................................... 54 

4.1.2. Peak force results obtained using the 357 g steel ball .................................... 56 

4.1.3. Peak force results obtained using the 261 g steel ball .................................... 58 

4.1.4. Peak force results obtained using the 110 g steel ball .................................... 60 

4.1.5. Peak force results obtained using the 66 g steel ball...................................... 62 

5. UG2 RESULTS ............................................................................................................ 63 

5.1. Peak force results ................................................................................................. 63 

5.1.1. Peak force results obtained using the 510 g ball ............................................ 63 

5.1.2. Peak force results obtained using the 357 g ball ............................................ 65 

5.1.3. Peak force results obtained using the 261 g ball ............................................ 66 

5.1.4. Peak force results obtained using the 110 g ball ............................................ 68 

5.2. Fracture energy results ......................................................................................... 69 

5.2.1. Fracture results obtained using the 510 g steel ball ....................................... 69 

5.2.2. Fracture energy results obtained using the 357 g ball .................................... 71 

5.2.3. Fracture energy results obtained using the 261 g ball .................................... 72 

5.2.4. Fracture energy results obtained using the 110 g ball .................................... 74 

5.3. Breakage results ................................................................................................... 76 

5.3.1. Justification for using the t2 breakage indicator .............................................. 76 

5.3.2. Breakage results obtained using the 510 g ball .............................................. 77 

5.3.3. Breakage results obtained using the 357 g ball .............................................. 79 



ix 
 

5.3.4. Breakage results obtained using the 261 g ball .............................................. 81 

5.3.5. Breakage results obtained using the 110 g ball .............................................. 83 

6. DISCUSSION OF THE RESULTS OBTAINED ............................................................ 87 

6.1. Discussion of the peak force results ...................................................................... 87 

6.1.1. Effect of increasing the steel ball mass .......................................................... 87 

6.1.2. Effect of increasing the drop height ................................................................ 91 

6.1.3. Effect of increasing the bed depth .................................................................. 94 

6.2. Discussion of the fracture energy results .............................................................. 97 

6.2.1. Effect of increasing the steel ball mass .......................................................... 98 

6.2.2. Effect of increasing the drop height ................................................................ 99 

6.2.3. Effect of increasing the bed depth ................................................................ 101 

6.3. Discussion of the breakage results ..................................................................... 103 

6.3.1. Explanation for the lack of breakage of blue stone particles ......................... 103 

6.3.2. Effect of increasing the input energy on the degree of breakage obtained ... 105 

6.3.3. Effect of increasing the bed depth on the degree of breakage obtained ....... 106 

6.3.4. Effect of the fracture energy on the breakage obtained ................................ 107 

7. CONCLUSIONS AND RECOMMENDATIONS .......................................................... 108 

7.1. Observations made from experimental work ....................................................... 108 

7.2. Conclusions ........................................................................................................ 109 

7.3. Recommendations for future work ...................................................................... 110 

8. REFERENCES .......................................................................................................... 112 

9. APPENDICES ........................................................................................................... 118 

9.1. Appendix A: Sample calculations ........................................................................ 119 

9.2. Appendix B: Voltage-time signals obtained for SILC calibration .......................... 124 

9.3. Appendix C: Experimental values for breakage tests on blue stone .................... 126 

9.4. Appendix D: Experimental values used for breakage tests on UG2 .................... 138 

9.5. Appendix E: Particle size distributions obtained for UG2 ..................................... 144 

 

 

LIST OF FIGURES 

Figure 2.1: Energy distribution in comminution operations (Adapted from Sadrai et al., 2006)
 ............................................................................................................................................. 6 
Figure 2.2: (a) The tensile stresses which are generated in a solid particle subjected to 
impact. (b) The crack pattern formed as a result of the stresses in the particle (Potapov & 
Campbell, 2001) .................................................................................................................... 8 
Figure 2.3: Typical stress/strain curve used in rock mechanics (Harrison & Hudson, 2000) .. 9 



x 
 

Figure 2.4: Schematic of the twin pendulum device indicating the impact and rebound 
pendulums, and the positioning of the rock specimen when a breakage test is conducted 
(Napier-Munn et al., 1996) .................................................................................................. 14 
Figure 2.5: Schematic of the drop weight testing device showing the drop weight at its initial 
drop height h0 and the particle specimen before a breakage test is conducted (Salman et al., 
2007) .................................................................................................................................. 16 
Figure 2.6: Schematic of the Split Hopkinson Pressure Bar indicating the incident and 
transmitter bars, strain gauges and sample positioning in the device (Adapted from Song & 
Chen, 2005) ........................................................................................................................ 18 
Figure 2.7: Schematic showing the main components of the SILC, namely the drop weight 
mechanism, steel ball, steel rod equipped with strain gauges, and the data acquisition board  
(Salman et al., 2007) ........................................................................................................... 20 
Figure 2.8: Image of the JK Rotary Breakage Tester indicating the main components of the 
device, namely the feeder, the vacuum unit and the particle recovery bin (Shi et al., 2009) 23 
Figure 2.9: Typical voltage-time curve indicating the measured and deconvoluted signals 
obtained using the SILC (Bourgeois & Banini, 2002) ........................................................... 25 
Figure 2.10: Typical force-time curve obtained from a breakage test conducted using the 
SILC. The figure represents parameters such as the ultimate stress and the particle fracture 
energy (Bourgeois & Banini, 2002) ...................................................................................... 26 
Figure 2.11: Force-time profiles for six breakage tests conducted on quartz particles using a 
steel ball at 1.16 m/s (Tavares & King, 1998) ...................................................................... 27 
Figure 2.12: Force-time profiles from impact of 3.2 mm spherical particles of different 
materials at a velocity of 0.31 m/s. Solid lines represent the theoretical model and dotted 
lines represent experimental data (Tavares & King, 2004) .................................................. 28 
Figure 2.13: The t10 breakage indicator as a function of the specific comminution energy 
(Morrison & Cleary, 2004) ................................................................................................... 30 
Figure 3.1: The drop weight mechanism and rod fitted with strain gauges which comprise the 
main components of the SILC. The particle sample rests on the steel rod and the ball is 
released from the drop weight mechanism at various heights (Bourgeois & Banini, 2002). . 36 
Figure 3.2: Experimental set-up showing the SILC used to conduct breakage tests and the 
computer used to view the test results ................................................................................ 37 
Figure 3.3: The five steel balls used to conduct breakage tests arranged in increasing size, 
from the smallest to the largest diameter............................................................................. 38 
Figure 3.4: Voltage vs time signal generated from a test conducted using the 510 g steel ball 
dropped from a height of 300 mm ....................................................................................... 39 
Figure 3.5: Plot of three steel-on-steel calibration tests conducted for the 510 g ball dropped 
at a height of 300 mm ......................................................................................................... 40 
Figure 3.6: The stress as a function of maximum average velocity at the four drop heights 
used for calibration .............................................................................................................. 43 
Figure 3.7: Mean DWi values for different ores (Morrell, 2015) ........................................... 45 
Figure 3.8: Blue stone ore particles used to conduct bed breakage tests ............................ 46 
Figure 3.9: UG2 particles used for bed breakage tests on the SILC .................................... 47 
Figure 3.10: Force-time profiles obtained using paper to construct cylindrical rings used to 
hold particles contained in the bed ...................................................................................... 48 
Figure 3.11: Force-time profiles obtained using stiff paper to construct cylindrical rings used 
to hold particles contained in the bed .................................................................................. 48 
Figure 3.12: Force-time profiles obtained using duct tape paper to construct cylindrical rings 
used to hold particles contained in the bed ......................................................................... 49 
Figure 3.13: The cylindrical rings used to contain particles in a bed for breakage tests, 
arranged in increasing number of layers contained in the bed ............................................. 49 



xi 
 

Figure 3.14: Typical setup of the bed of particles, steel ball and drop height for a breakage 
test on the SILC .................................................................................................................. 51 
Figure 3.15: Typical breakage test outcome obtained on the SILC at a drop height of 300 
mm using the 510 g steel ball .............................................................................................. 51 
Figure 4.1: Peak forces obtained at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 510 g ball .................. 55 
Figure 4.2: Peak forces obtained at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 357 g ball .................. 57 
Figure 4.3: Peak forces obtained at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 261 g ball .................. 59 
Figure 4.4: Peak forces obtained at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 110 g ball .................. 61 
Figure 5.1: Peak forces obtained at various drop heights, represented as a function of the 
layers contained in the bed for tests conducted using the 510 g ball ................................... 64 
Figure 5.2: Peak forces obtained at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 357 g ball .................. 65 
Figure 5.3: Peak forces obtained at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 261 g ball .................. 67 
Figure 5.4: Peak forces obtained at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 110 g ball .................. 68 
Figure 5.5: The fracture energy at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 510 g ball .................. 70 
Figure 5.6: The fracture energy at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 357 g ball .................. 71 
Figure 5.7: The fracture energy at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 261 g ball .................. 73 
Figure 5.8: The fracture energy at various drop heights, represented as a function of the 
number of layers contained in the bed for tests conducted using the 110 g ball .................. 75 
Figure 5.9: Degree of breakage obtained with increasing input energy and bed depth for 
tests conducted using the 510 g ball ................................................................................... 78 
Figure 5.10: The degree of breakage obtained with increasing fracture energy for one and 
three layers for tests conducted using the 510 g ball ........................................................... 79 
Figure 5.11: Degree of breakage obtained with increasing input energy and bed depth for 
tests conducted using the 357 g ball ................................................................................... 80 
Figure 5.12: The degree of breakage obtained with increasing fracture energy for one and 
three layers for tests conducted using the 357 g ball ........................................................... 81 
Figure 5.13: Degree of breakage obtained with increasing input energy and bed depth for 
tests conducted using the 261 g ball ................................................................................... 82 
Figure 5.14: The degree of breakage obtained with increasing fracture energy for one and 
three layers for tests conducted using the 261 g ball ........................................................... 83 
Figure 5.15: Degree of breakage obtained with increasing input energy and bed depth for 
tests conducted using the 110 g ball ................................................................................... 84 
Figure 5.16: The degree of breakage obtained with increasing fracture energy for one and 
three layers for tests conducted using the 110 g ball ........................................................... 85 
Figure 6.1: Peak force vs steel ball mass data fitted to linear and exponential trend lines for 
blue stone ........................................................................................................................... 88 
Figure 6.2: Peak force vs steel ball mass data fitted to linear and exponential trend lines for 
UG2 .................................................................................................................................... 88 
Figure 6.3: Residuals obtained for increasing steel ball mass for both blue stone and UG2 89 
Figure 6.4: Peak force as a function of the steel ball mass with increasing bed depth for tests 
conducted on blue stone ..................................................................................................... 90 



xii 
 

Figure 6.5: Peak force as a function of steel ball mass with increasing bed depth for tests 
conducted on UG2 .............................................................................................................. 90 
Figure 6.6: Peak force vs drop height data fitted to linear and exponential trend lines for blue 
stone ................................................................................................................................... 92 
Figure 6.7: Peak force vs drop height data fitted to linear and exponential trend lines for UG2
 ........................................................................................................................................... 92 
Figure 6.8: Residuals obtained for increasing drop height for both blue stone and UG2 ...... 93 
Figure 6.9: Peak force as a function of drop height with increasing bed depth for tests 
conducted on blue stone ..................................................................................................... 93 
Figure 6.10: Peak force as a function of drop height with increasing bed depth for tests 
conducted on UG2 .............................................................................................................. 94 
Figure 6.11: Peak force vs bed depth data fitted to linear and exponential trend lines for tests 
conducted on blue stone using the 510 g ball and 300 mm drop height .............................. 95 
Figure 6.12: Peak force vs bed depth data fitted to linear and exponential trend lines for tests 
conducted on UG2 using the 510 g ball and 300 mm drop height ....................................... 95 
Figure 6.13: Peak force as a function of bed depth with increasing steel ball mass for tests 
conducted on blue stone ..................................................................................................... 96 
Figure 6.14: Peak force as a function of bed depth with increasing steel ball mass for tests 
conducted on UG2 .............................................................................................................. 97 
Figure 6.15: Fracture energy as a function of increasing input energy and increasing bed 
depth for tests conducted on UG2 ....................................................................................... 98 
Figure 6.16: 3D surface plot showing the effect of increasing the steel ball mass and the bed 
depth on the fracture energy for tests conducted at a constant drop height of 300 mm ....... 99 
Figure 6.17: Fracture energy as a function of the drop height with increasing bed depth for 
tests conducted on UG2 .................................................................................................... 100 
Figure 6.18: 3D surface plot showing the effect of increasing the drop height and the bed 
depth on the fracture energy for tests conducted at a constant steel ball mass of 510 g ... 101 
Figure 6.19: The effect of increasing bed depth on the fracture energy with increasing input 
energy for tests conducted on UG2 ................................................................................... 102 
Figure 6.20: Force-time profiles obtained for breakage tests conducted on one layer of blue 
stone particles using all the steel balls .............................................................................. 104 
Figure 6.21: Force-time profiles obtained for breakage tests conducted on one layer of UG2 
particles using all the steel balls ........................................................................................ 104 
Figure 6.22: 3D surface plot showing the effect of increasing the steel ball mass versus the 
drop height on the breakage obtained ............................................................................... 106 
 

LIST OF TABLES 

Table 2.1: Relationship between UCS and the Bond Work Index (Napier-Munn et al., 1996)
 ........................................................................................................................................... 12 
Table 2.2: Elastic constants of spherical materials tested (Tavares & King, 2004) .............. 27 
Table 3.1: Properties of the SILC steel rod .......................................................................... 38 
Table 3.2: Mean particle sizes used for experimental test work conducted on the SILC ...... 45 
Table 3.3: Values of the variables which were altered in the experiments conducted on blue 
stone ................................................................................................................................... 52 
Table 3.4: Values of the variables used for experiments done on UG2 ............................... 53 
Table 4.1: Input energy values for the 510 g steel ball released from various heights ......... 54 
Table 4.2: Input energy values for the 357 g steel ball released from various heights ......... 56 
Table 4.3: Input energy values for the 261 g ball released from various heights.................. 58 
Table 4.4: Input energy values for the 110 g ball released from different heights ................ 60 



xiii 
 

Table 4.5: Input energy values for the 66 g ball released from various heights.................... 62 
Table 5.1: Particle sizes for the various tn parameters ......................................................... 77 
 

 



  Chapter 1 

1 
 

1. INTRODUCTION 

1.1. Background to the research 

Particle fracture is the fundamental process that governs comminution (Tavares & King, 1998). 

Within comminution circuits, ore particles are reduced in size through crushing and grinding 

operations. In industrial machines such as crushers and mills, particle breakage is known to 

occur through several mechanisms, namely impact, abrasion and attrition. Of the three 

mechanisms, impact breakage has been identified as the most basic form of particle size 

reduction (Schönert, 1991; Moothedath & Ahluwalia, 1992). Comminution devices are energy 

intensive and their efficiency, defined as the energy used for particle breakage relative to that 

consumed by the equipment, is low and reported to be between 1-2 % (Tromans, 2008). As 

such, understanding the principles behind particle fracture is essential for the development of 

energy efficient particle size reduction techniques.  

Comminution research is mainly based on quantifying the product size distribution which 

results from the application of energy to a particular feed size. More specifically, particle 

breakage characterization aims to relate the specific input energy to the resultant product size 

through a type of laboratory test on a given ore (Napier-Munn et al., 1996). The results 

obtained from breakage characterization tests may be used to determine the hardness or 

strength parameters of the ore, or link the level of size reduction to the applied energy. The 

outcomes of breakage characterization are useful in the specification of comminution 

equipment, circuit design, machine modelling and process optimization (Shi et al., 2009). One 

of the main challenges associated with comminution studies has been quantifying the energy 

utilization of impact breakage.   

Studies dedicated to investigating particle fracture under impact loading have led to the 

development of several devices used to conduct standard breakage characterization tests. 

These devices include the twin pendulum device, drop weight tester, Split Hopkinson Pressure 

Bar (SHPB), Rotary Breakage Tester (RBT) and the Short Impact Load Cell (SILC) (Napier-

Munn et al., 1996; Bourgeois & Banini, 2002, Shi et al., 2009).  

Of the mentioned devices, the Short Impact Load Cell is used to conduct breakage tests in 

this study. It is a drop weight device in which a steel ball of known mass falls vertically under 

gravity on an ore sample from a known height. The ore sample rests on a steel rod which is 

fitted with strain gauges to indirectly measure the response of the ore to impact loading. The 

SILC is the most suitable for this work as it can be used to conduct bed breakage experiments 

and to determine properties such as the ultimate strength and fracture energy of particles 

(Bourgeois & Banini, 2002; Tavares, 2007).  

http://www.sciencedirect.com/science/article/pii/S0892687509001204#bib11
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A considerable amount of experimental techniques and research exists that allows 

understanding of single particle response to stressing (Narayanan, 1987; Kapur et al., 1997; 

Tavares & King, 1998; Genc et al., 2004; Tavares, 2007). Comparatively, there is currently 

little research available on the bed breakage characterization of particles (Barrios et al, 2011).  

Stress can be applied to a bed of particles in either confined or unconfined conditions (Tang 

et al., 2001) In confined conditions, the movement of particles is restricted whereas in 

unconfined conditions particles are free to move and get repositioned within the bed.  Particles 

under stress in fully confined conditions have been used to investigate inter-particle breakage 

within the bed (Schonert, 1996 and Tang et al., 2001). However, the fully confined particle bed 

arrangement does not occur in comminution practice (Nguyen et al., 2002), and  researchers 

such as Oettel & Husemann (2004) and Barrios et al (2011) have investigated the application 

of stress to particles in unconfined conditions. In this work the breakage behaviour of particles 

under partial confinement is investigated; in which particles are contained in a material that 

offers some resistance to their movement but allows for repositioning of the particles within 

the bed.  

In this study two ore types are used for breakage experiments, blue stone and Upper Group 

2 (UG2) chromitite ore. Blue stone is igneous rock which is commonly used as an aggregate 

in construction. This ore is used as a base case because it is homogenous and is expected to 

yield consistent breakage results (Bbosa et al., 2006). UG2 chromitite ore forms one of three 

layers of the South African reserves of platinum group metals (PGMs) found in the Bushveld 

Complex (McLaren & De Villiers, 1982). In this work UG2 is used to investigate the breakage 

behaviour of industrial ores. Breakage tests are conducted on particles of geometric mean 

size 4.73 and 4.74 mm which form a bed of a 20 mm radius. Steel balls with diameters which 

range from 24.5 - 50.0 mm are used to conduct experiments.  

 

1.2. Objectives of the study  

The objectives of the study are to: 

 Conduct bed breakage experiments using the Short Impact Load Cell altering the three 

variables: 

o Steel ball mass 

o Drop height 

o Bed depth of particles 
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 Use SILC data to evaluate the peak forces obtained for tests conducted at each 

configuration of the three variables and compare the effect that changing each variable 

has on the peak force 

 Use data collected from experiments to calculate the particle fracture energy for each 

configuration of the three variables and compare how altering each variable affects the 

particle fracture energy 

 Use experimental data to evaluate the degree of particle breakage for each variable 

configuration and compare how changing each variable affects the breakage obtained 

 Compare the degree of breakage obtained for each configuration of the variables to 

the particle fracture energy 

 

1.3. Scope of the study 

The study focuses on the bed breakage behaviour of partially confined fine particles. Of the 

three breakage mechanisms, only impact breakage is investigated as it considered to be the 

most elementary form of particle breakage. Thus this breakage mechanism is the most 

important to understand for long term gains in comminution advancements.  

Due to the limited amount of research that currently exists on the bed breakage 

characterization of particles, investigating this area is of interest in this work. This study will 

also include extending the methodology which currently exists for characterizing the breakage 

behaviour of coarse particles to one that can be used for finer particles.  

Only two ore types are used for breakage experiments. Also, the study is limited to obtaining 

experimental data using the SILC as this device can be used to determine the parameters of 

interest to this study. The effects of only three variables: steel ball mass, drop height and bed 

depth on the breakage behaviour of particles are investigated. The steel ball mass and drop 

height are of interest as they are used to vary the input energy. Bed breakage of particles is 

investigated as it closely resembles the conditions in industrial comminution machines.   

The study investigates the effects of spherical strikers; other striker geometries such as cubes 

are not considered. Spherical strikers are used as they closely resemble the steel balls used 

for impact breakage in industrial ball mills.  

1.4. Plan of development  

Chapter 1- Introduction: 

The background to the project, as well as the objectives and scope of the study are provided 

in this chapter.  
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Chapter 2 - Literature review: 

This chapter provides a background to comminution studies, a discussion of the fundamentals 

of particle breakage, a review of various impact breakage devices and a discussion of the 

effects of various factors on the breakage behaviour of particles. The hypotheses and research 

questions are then given, based on the review of the literature.  

Chapter 3 - Experimental programme: 

This chapter presents details of the calibration done prior to conducting breakage tests on the 

SILC, the sample preparation done on the ores used, the experimental matrix and procedure 

used to conduct breakage tests, and the screening done for the determination of the particle 

size classes resulting from the breakage tests conducted.  

Chapter 4 - Blue stone results: 

In this chapter the peak force results obtained for tests conducted on blue stone are presented.  

Chapter 5 - UG2 results: 

The peak force, particle fracture energy and breakage results obtained for tests conducted on 

UG2 are presented in this chapter.  

Chapter 6 - Discussion of the results obtained for blue stone and UG2 

The blue stone peak force results presented in Chapter 4 are discussed, along with the peak 

force, particle fracture energy and breakage results presented for UG2 in Chapter 5 

Chapter 7 - Conclusions and Recommendations: 

In this chapter the conclusions made from the work done in this study are provided, along with 

recommendations for future work.  
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2. LITERATURE REVIEW 

Overview 

This chapter is a review of the literature that pertains to this study. A brief background to 

comminution operations is given, followed by the principles which govern particle breakage. 

Techniques and devices used for particle breakage characterization are reviewed and the 

effects of various factors on particle breakage are discussed. The hypotheses and research 

questions, which are based on the review of the literature done, are given at the end of the 

chapter.  

2.1. Background to comminution operations 

In comminution processes ore size is reduced in order to increase the likelihood of mineral 

liberation in subsequent stages of processing (Towler & Sinnott, 2013). Particle size reduction 

occurs through three mechanisms which depend on the magnitude of the applied stress and 

characteristics of the ore (Potapov & Campbell, 2001). In industrial comminution devices the 

main mechanisms which result in particle breakage have been identified as:  

 Impact: Particle breakage occurs through impacting the ore with a rigid object, causing 

the ore particles to fracture. This mechanism of particle breakage occurs mainly through 

two modes:  In the first mode, the ore is placed on a rigid anvil and is impacted by a 

rigid object, compressing the ore and leading to breakage. In the second case, the ore 

is launched at a rigid target, resulting in breakage (Austin, 2002). 

 Attrition: Occurs when smaller particles become finer due to being grinded against 

larger particles.  

 Abrasion: Occurs as a result of similar sized particles grinding against each other, 

resulting in more rounded particles. Abrasion occurs when the applied stresses are not 

large enough to break the particle, thus it remains intact but undergoes gradual wearing 

of its surface (Hogg, 1999).   

In minerals processing, comminution occurs in a sequence of crushing and grinding 

operations. Crushing is used for initial reduction of ore size and is followed by grinding to 

obtain smaller particle sizes required for mineral beneficiation. Crushing is attained by 

compression or impact of the ore against rigid surfaces in a controlled motion path (Gupta & 

Suri, 1993). The various crushers available include jaw, cone, gyratory, roll and impact 

crushers (Darling, 2011). Grinding is accomplished through abrasion and impact of the ore by 

free the motion of grinding media such as balls, rods or pebbles (Kumar, 2011). 
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The crushing and grinding operations in comminution are estimated to consume 

approximately 3-4 % of the total electrical energy expended worldwide (Pokrajcic, 2008). 

Additionally, comminution processes are estimated to account for 40% of the total energy used 

and 30-50 % of the total costs in minerals processing operations (Radziszewski, 2000).  

Industrial comminution processes are inefficient in their use of energy as considerably more 

energy is consumed by the equipment than is used for particle breakage (Tavares & King, 

1998). The inefficiency of comminution devices is due to large amounts of the input energy 

being dissipated as heat instead of being used for particle breakage. It is estimated that 

grinding operations are between 1-2 % efficient and crushing efficiencies range from 3-4 %. 

Overall, comminution operations are approximately 1-2 % efficient (Sadrai et al., 2006).  

Figure 2.1 shows an indication of how energy is typically distributed in comminution processes, 

and shows that approximately 99 % of the input energy is lost and is not used for particle 

breakage.  

 

Figure 2.1: Energy distribution in comminution operations (Adapted from Sadrai et al., 2006)  

From Figure 2.1 it can be seen that approximately 85 % of the input energy is lost as heat 

generated within the ore, 12 % is dissipated through the equipment as electromechanical 

losses, 2 % is lost as noise and kinetic energy and only about 1 % of the total input energy is 

utilized for particle breakage.  

The comminution of particles by impact loading is one of the elementary mechanisms of size 

reduction in media mills (Kapur et al., 1997). As such, many researchers have studied the 

breakage of particles under impact for greater understanding of this mode of fracture in order 

Energy 
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to improve the energy efficiency of comminution operations (King & Bourgeois, 1993; 

Narayanan & Whiten, 1988; Pauw & Maré, 1988; Tavares & King, 2004).  

Technologies have evolved over the years in an effort to reduce power requirements and 

production costs. Crushers and grinding devices have increased in size and newer 

comminution circuits are replacing classic crushing/rod mill/ball mill operations with 

crushing/semi-autogenous grinding (SAG)/ball milling to enable the processing of larger 

tonnage rates (Darling, 2011). In some instances, plants have installed high pressure grinding 

rolls (HPGR)/ball mill circuits because they require less energy per ton of ore processed 

(Runge et al., 2013). 

 

2.2. The elementary principles of particle breakage 

Particle fracture may be defined as the breaking of a particle into two or more pieces due to 

the initiation and propagation of cracks caused by the application of stress to the solid (Broek, 

1986). The fracture of particles is influenced by factors such as the particle shape and size, 

material properties such as the elasticity of the particle, the homogeneity and flaws of the 

particle, and the type of stress applied (Bernotat & Schönert, 1988).  Stress can be applied to 

a particle in one of three different modes:  

 Compressive: The applied load acts to reduce the length of the material.  

 Tensile: The applied load acts to elongate the material.  

 Shear: Opposing forces act along parallel lines of action on the material. 

Particles which contain a greater number of flaws are more susceptible to breakage because 

it is easier for cracks to spread within them, resulting in breakage of the solid. When a particle 

fractures, the number and size of progeny particles formed depends on the size and position 

of the cracks within the initial particle before it is broken (Brown & Jones, 1996). 

Potapov & Campbell (2001) investigated the breakage pattern observed in a solid particle 

subjected to impact. A simulation snapshot of the tensile stresses which result in breakage of 

the particle is shown in Figure 2.2 (a). Figure 2.2 (b) shows the resulting crack pattern which 

begins to develop the instant impact occurs.  
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Figure 2.2: (a) The tensile stresses which are generated in a solid particle subjected to impact. (b) The crack 
pattern formed as a result of the stresses in the particle (Potapov & Campbell, 2001) 

The length and direction of each line shown in Figure 2.2 (a) indicates the magnitude and 

direction of the stresses generated in the particle when impact occurs. The breakage pattern 

shown in Figure 2.2 (b) indicates that impact forces result in the formation of a fan-like pattern 

of cracks which extend from the contact point to the far edges of the particle.  

Erdogan (2000) states that studying the fracture of particles is highly complex, as broadly 

diverse factors such as the microscopic and macroscopic phenomena and the solid geometry 

have to be considered. Due to the complicated nature of particle fracture, there is currently no 

single theory which covers all the aspects pertaining to it. Particle fracture under impact is 

investigated from one of two different viewpoints: microscopic (fracture mechanics) or 

macroscopic (rock mechanics).  

 

2.2.1. Fracture mechanics 

Continuum damage mechanics (CDM) is a branch of fracture mechanics which is concerned 

with representation of damage in materials that is suitable for making engineering predictions 

about the initiation and propagation of cracks resulting in fracture (Chaboche, 1988). In CDM 

the effect of damage on the stress-strain behaviour of materials is investigated. Damage can 

be defined as any change which impairs the microstructural properties of a material and hence 

decreases its strength and ultimately results in component failure (Kachanov, 1986). The work 

done in CDM uses mechanical variables such as stiffness and crack density to represent the 

influence of damage on the remaining life of the material (Krajcinovic & Mastilovic, 1995).  

Common types of material damage include (Anderson, 2005): 
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 Creep: Occurs in metals and alloys as a result of exposure to stress at high 

temperatures. 

 Fatigue: Gradual deterioration of a material due to the initiation and enlargement 

of cracks when it is subjected to loading.  

 Fracture: The breaking of a material due to the nucleation and growth of cracks 

when it is subjected to loading.  

 

2.2.2. Rock mechanics 

The fundamentals of the rock mechanics field consist of solid mechanics subject matters: 

stress, strain, elasticity, plastic deformation and elastic wave propagation (Jaeger et al., 2009). 

A stress/strain curve, shown in Figure 2.3, is used to define the response of a material under 

loading. Stress is defined as ratio of the applied force to the cross sectional area of the material 

and strain is defined as extension per unit length (Courtney, 2005). 

 

Figure 2.3: Typical stress/strain curve used in rock mechanics (Harrison & Hudson, 2000)   

Region AB in Figure 2.3 indicates the elastic region of the material. In this region the material 

undergoes elastic deformation with increasing stress, where it is capable of sustaining stress 

without deforming permanently. Hooke’s Law, which states that strain is proportional to stress, 

is obeyed in the elastic region with Young’s modulus being the constant of proportionality 

(Young & Budynas, 2002). As the stress is increased in region BC the maximum stress that 

can be applied to the material without producing permanent deformation is reached at point 

A 

B 

C 

D 
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C, which is referred to as the elastic limit.  The material starts to undergo plastic deformation 

after point C and as the stress is further increased, the critical strength value at point D is 

reached. The stress at this point is referred to as the Ultimate Compressive Stress (UCS), and 

is defined as the maximum stress a material can undergo before complete failure (Harrison & 

Hudson, 2000).  

Other than Young’s modulus of elasticity and UCS, another commonly quoted value relating 

to the compressional properties of rock is Poisson’s ratio. This is determined as the ratio of 

the lateral strain to the longitudinal strain on the rock material (Napier-Munn et al., 1996).  

 

2.3. Standard breakage characterization procedures 

The size and energy consumption of comminution machines is dependent on feed rate and 

desired product size as well as the hardness of the ore. Various laboratory characterization 

procedures have been developed for investigating how materials break in comminution 

machines and the results have been used to design these industrial devices. Breakage 

characterization techniques can be classified into three different classes (Napier-Munn, et al., 

1996): 

 Conventional rock and fracture mechanics measurements 

 Standard grindability tests 

 Single particle characterization tests  

Each of these is discussed in the sections that follow.  

 

2.3.1. Conventional rock and fracture mechanics measurements 

As mentioned in Section 2.2, rock exhibits macro and micro response under an applied load.  

Macro measures of response: 

 Compressive loading: UCS, Young’s modulus and Poisson’s ratio are the properties 

used to describe the rock’s response to an applied load (Section 2.2). Young’s 

modulus and Poisson’s ratio can be used to determine a material’s stiffness, defined 

as the extent to which it resists deformation in response to an applied load (Pharr et 

al., 1992).   

 Tensile loading: The tensile strength of a rock controls its breakage, hence 

understanding this mode of failure is important in comminution research. The 

measurement of tensile strength is determined through an indirect measure known as 

the Brazilian test which relies on the diametral compression of a rock disk. In this test, 
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the centre of the disk is put into tension and a crack initiates at the centre and 

propagates outwards (Rocco et al., 1999).  

 

Micro fracture mechanisms: 

The mechanism by which rock responds to an applied load and hence the macroscale 

mechanical properties it has are controlled by its microscale features (Landis, 1999). Fracture 

toughness, defined as the rock resistance to crack propagation, is an intrinsic material property 

which indicates how rock behaves under loading (Napier-Munn, et al., 1996). Fracture 

toughness has been identified as a useful parameter in comminution studies as it can be 

correlated with cone crusher performance (Brown & Reddish, 1997).  

 

2.3.2. Standard grindability tests 

It is necessary to determine the energy requirements of a comminution process in order to 

size crushing and grinding devices and to specify motor sizes for the equipment. Impact 

breakage research is used to relate the power draw of comminution devices to the energy 

transferred to the ore to obtain breakage. An example of a method used to do this is the 

determination of the standard ore hardness characterization parameter known as the Bond 

work index; with hardness defined as an ore’s resistance to break under loading.   

 

The Bond work index is defined as the power required to reduce a material from an infinite 

size to 80% by mass of the original material passing through a screen of size matching the 

desired product size. According to the method published by Fred Bond in 1952, the work input 

is proportional to the feed and product size of an ore through a material specific constant called 

its work index (Lynch & Rowland, 2005).  

 

The work index can be related to the feed and product size by the relationship in Equation 2.1 

(Bond, 1952): 

𝑊 = 10𝑊𝑖 (
1

√𝑃80
−  

1

√𝐹80
)                Equation 2.1 

Where: 

W: Work input (kWh/t) 

Wi: Bond work index (kWh/t) 

P80: Size at which 80% of the product passes (µm) 

F80: Size at which 80% of the feed passes (µm) 
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Grinding power for rod and ball mills determined using work indices from Bond grindability 

tests has been found to correlate well with the relationship shown in Equation 2.1, which can 

be corrected to calculate indices under other conditions. Equation 2.1 is also useful for the 

calculation of an ‘operating work index’ which is used for feed ore type comparison and 

assessing crushing and grinding performance (Napier-Munn et al., 1996; Ozkahraman, 2005).  

 

As a basic measure of rock hardness, the Bond work index has been found to be broadly 

related to the UCS (Section 2.2.2). Table 2.1 shows the ore hardness relationship between 

the two parameters. 

 

Table 2.1: Relationship between UCS and the Bond Work Index (Napier-Munn et al., 1996) 

Parameter Soft Medium Hard Very hard 

UCS (MPa) 50 - 100 100 - 150 150 - 250 >250 

Bond work index (kWh/t) 7 - 9 9 - 14 14 - 20 >20 

 

Breakage models which incorporate ore hardness represent a relationship between the input 

energy and the progeny particle size. The standard t10-Ecs function proposed by the Julius 

Kruttschnitt Mineral Research Centre (JKMRC) at the University of Queensland in Australia 

has been used in breakage modelling (Shi & Kojovic, 2007):  

 

𝑡10 = 𝐴(1 −  𝑒−𝑏.𝐸𝑐𝑠)                         Equation 2.2 

Where: 

t10: A progeny particle fineness indicator defined as the percentage of progeny particles 

passing through a screen whose aperture size is a tenth of the initial mean particle 

size.  

Ecs: Specific comminution energy (kWh/t) 

A & b: Impact breakage parameters of the ore 

 

The hardness of an ore affects its breakage characteristics (Wills, 2011). Axb values are 

commonly used as an indicator of ore hardness. A lower Axb value indicates that the ore has 

a higher resistance to breakage and a greater Axb value is an indication of a ‘softer’ ore which 

fractures more easily.  

2.3.3. Single particle breakage characterization tests 

Single particle impact breakage testing is a valuable tool for characterizing ore hardness and 

determining ore parameters that are applied in breakage modelling and simulation in 
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comminution research (Napier-Munn et al., 1996). Ore characterization tests are useful for 

measuring the ore-specific energy/size-reduction behaviour. Several devices have been 

developed for the controlled breakage of single particles under impact loading in order to 

determine comminution parameters. These devices include the twin pendulum device, drop 

weight tester, Split Hopkinson Pressure Bar, Rotary Breakage Tester, and the Short Impact 

Load Cell. The devices are discussed in the following section. 

 

2.4. Impact breakage devices 

Comminution of particles by impact is the main mechanism of size reduction in industrial 

devices, where particle fracture occurs as a result of falling media. Thus, the breakage of 

particles subjected to impact has been investigated as a means to gain better understanding 

of this breakage mechanism (Kapur et al., 1997).  

2.4.1. Twin pendulum device 

The twin pendulum device was the first single particle breakage testing instrument to be 

developed at the JKMRC. The single particle breakage results obtained using twin pendulum 

tests can be used to determine the energy used by the particle for breakage and the resultant 

product size distribution (Napier-Munn et al., 1996).  

The device consists of two pendulums, namely the impact and rebound pendulums, which are 

suspended on a firm frame as shown in the schematic in Figure 2.4.  
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Figure 2.4: Schematic of the twin pendulum device indicating the impact and rebound pendulums, and the 
positioning of the rock specimen when a breakage test is conducted (Napier-Munn et al., 1996) 

When a breakage test is conducted, a particle of known mass is attached to the rebound 

pendulum and the impact pendulum is drawn back to a known height and released to collide 

with and break the particle. After impact, the rebound pendulum swings and passes through 

a laser beam and the time taken to complete oscillations is measured and recorded on a 

computer to determine the period (Weedon & Wilson, 2000).  

After a breakage test, the energy transmitted to the rebound pendulum is determined using 

Equation 2.3 (Napier-Munn, et al., 1996): 

𝐸𝑡 = 𝑀𝑟(𝐿 − 𝐿 cos 𝜃)                Equation 2.3 

Where: 

Et: Energy transmitted to the rebound pendulum (J) 

Mr: Rebound pendulum mass (kg) 

L: Length of the pendulum (m) 

𝛉:  Angle of displacement of the rebound pendulum from its equilibrium position (rad) 

The residual energy (Er) of the impact pendulum is computed by determining its velocity after 

impact with the rebound pendulum. The energy used by the particle for breakage can be 

determined from an energy balance during collision of the input pendulum with the particle 

attached to the rebound pendulum using Equation 2.4 (Napier-Munn, et al., 1996): 
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Ec =  Ei − Et − Er                    Equation 2.4 

Where: 

Ec: Energy used by the particle for breakage (J)  

Ei: Input energy (J) 

Et: Energy transmitted to the rebound pendulum upon impact (J) 

Er: Residual energy of the impact pendulum after impact (J) 

The specific comminution energy Ecs (kWh/t) which is defined as the energy used for particle 

breakage per unit mass can be determined by using the Ec values obtained using Equation 

2.4.  

The use of the twin pendulum device is advantageous because it is a simple tool to use to 

determine the fraction of the input energy that is used by the particle for breakage through 

measurement of the residual energy of the pendulums.  However, disadvantages associated 

with using twin pendulum testing are that carrying out a breakage test is time consuming and 

it can only be used in restricted energy and particle size ranges (Salman et al, 2007). 

Additionally, secondary motion of the rebound pendulum can result in imprecise calculation of 

the energy used by the particle for breakage.  

Due to the limitations associated with twin pendulum devices, drop weight tests are more 

commonly used for conducting breakage tests. Drop weight tests are discussed in the 

following section. 

 

2.4.2. Drop weight tester 

The drop weight tester was developed at the JKMRC as a replacement of the Twin pendulum 

device for particle breakage characterization tests (Napier-Munn et al., 1996). The drop weight 

device is built on a steel frame which is mounted onto a concrete block and it is comprised of 

a steel drop weight which is mounted on two guide rails and typically enclosed in perspex. An 

electromagnetic system, or a system of pulleys and strings, is used to raise the steel weight 

to the desired drop height. A pneumatic switch is used to release the weight which falls onto 

a particle placed onto an anvil. The input energy is altered by varying the drop height and the 

mass of the drop weight used (Genc et al., 2004). A schematic of the drop weight tester is 

shown in Figure 2.5.  
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Figure 2.5: Schematic of the drop weight testing device showing the drop weight at its initial drop height h0 and 
the particle specimen before a breakage test is conducted (Salman et al., 2007) 

When a breakage test is conducted using the drop weight tester, it is assumed that the 

potential energy of the drop weight before release is converted to its kinetic energy when it 

impacts the particle sample. Sample preparation involves screening particles to narrow size 

ranges, from which the mean mass (m̅) of particles to be broken is computed.  

The required drop height depends on the specific input energy for each breakage tests and is 

calculated using Equation 2.5 (Napier-Munn, et al., 1996): 

hi  =  
m̅ Ecs

0.0272Md
                   Equation 2.5 

Where: 

Hi: Required drop height from which drop weight is released (cm) 

𝐦̅ : Mean mass of particles to be broken (kg) 

Ecs: Specific input energy (kWh/t) 

Md: Mass of the drop weight (kg) 
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An additional 10 cm is usually added to the calculated drop height to allow for the fact that the 

drop weight rests at some height above the anvil because of the crushed particle after a 

breakage test is conducted. The height added to the calculated drop height ensures that the 

final specific comminution energy (energy available to cause fracture per mass present, Ecs) 

obtained is correct.  

The offset in height (hf) can be measured for each breakage test and is used to compute the 

actual input energy according to Equation 2.6:  

𝑬𝒊𝒔 =  
𝟎.𝟎𝟐𝟕𝟐 𝑴𝒅 (𝒉𝒊−𝒉𝒇)

𝒎̅
                    Equation 2.6 

One of the advantages associated with using drop weight testing devices is that a wider input 

energy range is generated in comparison to that generated by pendulum devices (Napier-

Munn et al., 1996). Also, drop weight tests are helpful in the investigation of the relationship 

between input energy and the product size distribution. Additionally, they are useful for the 

validation of breakage models (Salman et al, 2007).  

One of the shortcomings of using drop weight devices is that they do not allow direct 

measurement of the actual energy used by a particle for breakage (Tavares, 1999).  Another 

limitation of the device is that it is only suitable for conducting breakage tests on brittle ores 

which do not undergo much plastic deformation before they break. The device cannot be used 

to reliably characterize the breakage of ores which experience a substantial amount of plastic 

deformation such as those with high clay content. Also, the size of particles which can be 

tested using the drop weight testing device is limited to smaller particles; results of larger 

particles have to be extrapolated from those of the smaller sizes tested (JKTech, n.d.). 

 

2.4.3. Split Hopkinson Pressure Bar (SHPB) 

The Hopkinson bar technique was originally devised by John Hopkinson in 1872 to perform 

stress wave experiments on iron wires. In 1914 his son, Bertram Hopkinson, developed the 

pressure bar technique to determine the pressure produced by explosives (Gama et al., 2004). 

In 1949, H Kolsky made use of the pressure bar technique for the determination of the dynamic 

compression stress-strain data for various materials (Ramesh & Narasimhan, 1996).  

To date there have been many modifications made of the original SHPB or Kolsky Bar, 

however the various devices essentially operate in a similar manner (Gray & Blumenthal, 

2000). The SHPB technique has been used by many researchers to determine dynamic 

compression properties of solid materials at high strain rates. The SHPB is useful for 

determining the failure properties of ductile materials such as metals (Frew et al., 2001).  
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A conventional SHPB device consists of striker, incident and transmission bars. A sample of 

the material whose compression properties are being investigated is placed between the 

incident and transmission bars. The striker bar is launched at the incident bar using a 

launching mechanism (such as a gas gun, coiled spring or rail gun), causing the transmission 

of an elastic compression wave from the incident bar to the sample upon impact. An elastic 

tensile wave is reflected into the incident bar and an elastic compression wave is transmitted 

into the transmission bar when the impedance of the sample is less than that of the bars. The 

incident and transmission bars are equipped with strain gauges which measure the strain and 

the generated data can be used to determine the response of the sample upon impact (Song 

and Chen, 2005).  A schematic of a conventional SHPB is shown in Figure 2.6. 

 

Figure 2.6: Schematic of the Split Hopkinson Pressure Bar indicating the incident and transmitter bars, strain 
gauges and sample positioning in the device (Adapted from Song & Chen, 2005) 

As long as the pressures in the bars remain within their elastic limits, the force vs time histories 

recorded from the impact can be used to determine fracture properties of the specimen. 

The stress on the particle sample is evaluated according to Equation 2.7 (Kolsky, 1949): 

𝜎𝑠 (𝑡) = 𝐸
𝐴0

𝐴
𝜀𝑇(𝑡)                   Equation 2.7 

Where: 

σs (t): Stress applied to the particle sample (N/m2) 

E: Elastic modulus of the bar (N/m2) 

A0: Cross-sectional area of the bar (m2) 

A: Cross sectional area of the sample (m2) 

εT (t): Transmitted strain history (-) 
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At equilibrium, the strain rate of the sample can be found using Equation 2.8 (Al-Mousawi et 

al., 1997; Song & Chen, 2005): 

∂𝜖𝑠(𝑡)

∂t
=  

𝐶0

𝐿
 [𝜀𝑖(𝑡) − 𝜀𝑅(𝑡) − 𝜀𝑡(𝑡) ]                          Equation 2.8 

Where: 

𝛛𝜺𝒔(𝒕)

𝛛𝐭
:  Sample strain rate (s-1) 

C0: Elastic wave speed of the bar material (m/s) 

L: Sample thickness prior to impact (m) 

εi (t): Incident  strain history (-) 

εR (t): Reflected bar strain history (-) 

εt (t): Transmitted strain history (-) 

Equation 2.8 can be integrated to determine the strain on the specimen as given by Equation 

2.9: 

𝜀𝑠(𝑡) =  
𝐶0

𝐿
∫ [𝜀𝑖(𝑡) − 𝜀𝑅(𝑡) − 𝜀𝑡(𝑡)]

𝑡

0
𝑑𝑡                                  Equation 2.9 

The integration of force-time profiles from the incident and transmitter bars allows for the 

calculation of the strain energy. The lost strain energy can be subtracted from the input energy 

to determine the actual amount of energy used for breakage as shown in Equation 2.10 

(Napier-Munn et al, 1996):  

𝐸𝑏𝑟𝑒𝑎𝑘𝑎𝑔𝑒 = 𝐸𝑖𝑛𝑝𝑢𝑡 − (𝐸
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑  

+  𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑)         Equation 2.10 

The advantages of using the SHPB are that the interactions which applied loads have on the 

material specimen as well as the energies associated with impact can be determined (Dai et 

al, 2010; Bbosa et al, 2006) .  

The limitations associated with the SHPB are that conducting breakage tests is time 

consuming and multi-particle experiments cannot be conducted using the device. Also, tests 

can only be conducted on a narrow particle size range. Additionally, using the SHPB for 

breakage experiments leads to a large variability in the fracture behaviour observed for 

geological materials (Salman et al, 2007). 
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2.4.4. Short Impact Load Cell (SILC)  

The SILC is a hybrid of the traditional drop weight tester and the Split Hopkinson Pressure 

Bar. The original device was developed at the University of Utah by Reiner Weichert 

(Bourgeois & Banini, 2002). In the SILC, a steel ball of known mass falls under gravity from a 

fixed height onto an ore sample. The device consists of a pneumatic drop weight mechanism 

which acts as a gripper to hold the ball in place before release, and a steel rod on which the 

particle sample rests. The steel rod is fitted with strain gauges which measure the load 

response (Tavares & King, 2004). A schematic showing the major components of the SILC 

setup is shown in Figure 2.7.  

 

Figure 2.7: Schematic showing the main components of the SILC, namely the drop weight mechanism, steel ball, 
steel rod equipped with strain gauges, and the data acquisition board  (Salman et al., 2007) 

 

When a breakage test is conducted, the motion of the falling steel ball passing through a laser 

beam triggers a digital oscilloscope to start recording the test. When the steel ball impacts the 

ore sample, the resulting compressive wave travels down the rod and causes a change in 

resistance as it passes through the strain gauges. This results in a voltage change across the 

Wheatstone bridge, which is recorded as a function of time on the oscilloscope.  The voltage-

time data recorded on the oscilloscope can be displayed on a computer screen and used to 

determine the Force-time history of the breakage test (Tavares & King, 2004).   

The stress applied to the steel rod is determined as: 
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𝜎 = 𝐾𝑉                  Equation 2.11 

Where: 

σ: Stress applied to the steel rod (N/m2) 

K: A calibration constant used to relate the measured voltage to the stress (N/Vm2) 

V: Measured voltage (V) 

 

The force applied to the particle sample is determined using the applied stress as follows: 

F =  σArod              Equation 2.12 

Where: 

F: Force applied to the particle sample (N) 

σ: Stress applied to the steel rod (N/m2) 

Arod: Cross sectional area of the steel rod (m2) 

To evaluate the strain energy on the rod, the work done in discrete time steps is accumulated 

to give the squared integral of the wave as shown in Equation 2.13. By conservation of energy, 

the fracture energy (strain energy absorbed by the particle up to the point of failure) is assumed 

to be equal to the strain energy on the rod when the breakage event occurs (Bbosa, 2007).  

Estrain =  ∑ (
(

σ(tn+1)+σ(tn)

2
)

2
(tn+1− tn)(Arod)

Cρ
)

tfinal
t0                  Equation 2.13 

Where: 

t0: Initial contact time between falling ball and SILC steel rod (s) 

tfinal:  Time at which particle fracture occurs (s) 

σ: Stress applied to the rod (N/m2) 

tn+1: Final time recorded for each time step (s) 

tn: Initial time recorded for each time step (s) 

Arod: Surface area of the rod (m2) 

C: Pulse speed through the rod (m/s) 

ρ: Density of the rod (kg/m3) 
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The main limitation associated with conventional drop weight devices is that they do not 

provide information which can be used to determine the fraction of input energy utilized for 

breakage. This limitation is overcome in the SILC and additionally, this device can be used to 

conduct bed breakage experiments (Tavares & King, 2004). One of the drawbacks associated 

with using the SILC is that it can only be used at low input energies (Bourgeois & Banini, 

2002).  

Because the SILC can be used for bed breakage experiments, and to evaluate the particle 

fracture energy, it has been selected as the most appropriate impact breakage device to use 

in this work. The various breakage parameters which can be determined from experimental 

data obtained using the SILC are discussed in the following section.  

 

2.4.5. Rotary breakage tester  

The JKMRC designed and developed the Rotary Breakage Tester (RBT) for the purposes of 

conducting rapid particle breakage characterization tests. Controlled kinetic energy is used to 

characterize particle breakage in the device.  The first commercial RBT was installed at the 

Anglo Research labs in South Africa in 2007. Since then, more RBT devices have been 

installed in Australia and North America. (Shi et al, 2009). 

In the RBT a rotor-anvil system is used to break particles through impact. Particles are loaded 

into the device through a feeder and they gain kinetic energy as they are spun around in the 

rotor. They are then ejected and impacted against anvils, resulting in breakage. The crushed 

ore particles are recovered by a vacuum system and collected in a removable bin (Wang et 

al., 2011). An image showing the JKRBT and its main components is given in Figure 2.8.  
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Figure 2.8: Image of the JK Rotary Breakage Tester indicating the main components of the device, namely the 
feeder, the vacuum unit and the particle recovery bin (Shi et al., 2009) 

The specific energy of each impact in the JKRBT is computed as the kinetic energy per particle 

mass (Shi et al, 2009): 

Ecs =
𝐸𝑘

𝑚
=  

0.5 𝑥 𝑚 𝑥 𝑣𝑖
2

𝑚
0.5vi

2                  Equation 2.14 

Where: 

Ecs: Specific energy - energy per unit mass (J) 

Ek: Kinetic energy (J) 

m: Mass (kg) 

vi: Impact velocity (m/s) 

Equation 2.14 shows that the specific energy is only dependent on the impact velocity and is 

not affected by the particle mass, unlike in the Drop Weight Testing device.  

The impact velocity is determined from the tangential and radial components, vt and vr, of the 

particle velocity as shown in Equation 2.15: 

𝒗𝒊 =  √𝒗𝒕
𝟐 + 𝒗𝒓

𝟐                      Equation 2.15 
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If the tangential and radial components of the particle velocity are equal, the impact velocity 

can be expressed as:  

𝑣𝑖(𝑡ℎ𝑒𝑜𝑟𝑦)= √2 𝑣𝑡
                Equation 2.16 

Due to frictional losses, the impact velocity of a particle is smaller than that given by Equation 

2.16. Therefore, a constant is used to account for the efficiency of a given design in transferring 

the kinetic energy from the rotor to the particle: 

𝐶 =  
𝑉𝑖(𝑎𝑐𝑡𝑢𝑎𝑙)

𝑉𝑖(𝑡ℎ𝑒𝑜𝑟𝑦)
            Equation 2.17 

The specific energy is then determined as (Shi et al, 2009)::  

𝐸𝑐𝑠 =  
0.5 𝑥 [𝐶 𝑥 √2𝑥 (

2 𝑥 𝜋 𝑥𝑁 𝑥 𝑟

60
)]

2

3600
 = 3.046 x 10-6C2N2r2             Equation 2.18 

Where: 

R: Rotor radius (m) 

N: Rotor speed (rpm) 

C: Machine design constant that governs the maximum possible velocity at a given rotor 

speed and operational conditions (-) 

The RBT yields statistically similar breakage parameter results to the conventional drop weight 

testing device (Kojovic et al, 2010). However, the RBT has several advantages over the drop 

weight tester: it has improved precision in the input energy, better repeatability and a wider 

size range of particles can be tested (Shi et al, 2009). Also, conducting breakage tests on the 

RBT requires less time to complete in comparison to conducting tests on the drop weight tester 

or twin pendulum device (Larbi-Bram, 2009).   

The main limitation associated with the JKRBT is that the percentage of the input energy used 

by particles for breakage cannot be quantified (Kojovic et al, 2010).  

 

2.5. Parameters obtained using the SILC 

The breakage related parameters that can be determined using the SILC include (Tavares & 

King, 1998; Bourgeois & Banini, 2002): 

 The ultimate stress of a particle: The force at which fracture occurs in a particle   

 A measure of material stiffness:  The modulus of elasticity, which is an indication of 

material stiffness, relates the relative strain a material undergoes when under a 
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specified stress. It is not possible to directly determine the material stiffness from 

conducting experiments using a SILC as the state of stress is not measured. However, 

a parameter referred to as the ‘particle stiffness’ (Tavares, 1998) can be determined 

from the force-displacement measurement of the SILC. For spherical particles, the 

particle stiffness has been found to be a relatable estimate of the material stiffness. 

The particle stiffness is a measure that allows for qualitative comparison of the 

elasticity of particles with similar shape factors 

 The particle fracture energy: The minimum energy required to fracture a particle 

 

Details of how these parameters are determined from SILC breakage test data are given in 

this section.  

2.5.1. Determination of parameters obtained using the SILC 

A typical voltage-time curve generated from a breakage test conducted using the SILC is 

shown in Figure 2.9.  

 

Figure 2.9: Typical voltage-time curve indicating the measured and deconvoluted signals obtained using the SILC 
(Bourgeois & Banini, 2002) 

Figure 2.9 shows a measured signal curve in black and the deconvoluted signal in grey. The 

measured signal obtained from the breakage test has noise due to amplification circuitry or 

the SILC itself and can be corrected to give the deconvoluted signal. The maximum peak 

(shown by the dotted line) indicates the point of first fracture of the particles. 

In order to determine particle breakage parameters, the voltage-time curve is translated into 

a force-time curve by making use of Equations 2.10 and 2.11. Figure 2.10 is an example of a 

typical force-time curve resulting from manipulation of the voltage-time signal obtained using 
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the SILC. The first peak indicates the point of first fracture of the particle and the second peak 

is due to subsequent fracture of the particle.  

 

 

Figure 2.10: Typical force-time curve obtained from a breakage test conducted using the SILC. The figure 
represents parameters such as the ultimate stress and the particle fracture energy (Bourgeois & Banini, 2002) 

The following parameters are represented by Figure 2.10:   

1. The ultimate stress: This corresponds to the value of the maximum force at the point 

of first fracture and has been indicated by the dotted line labelled as ‘1’ in Figure 2.10.  
2. The particle fracture energy: The energy absorbed by the particles until the instant of 

fracture. This is determined from the time the breakage event is initially recorded to 

the point indicated by the line labelled as ‘2’ in Figure 2.10.   

 

2.6. Studies conducted using impact load cells 

Vervoorn & Austin (1990) used an impact load cell to measure the maximum force obtained 

on particles subjected to impact. The results showed that there was a variation in the maximum 

force recorded even for a fixed striker mass and velocity. The researchers ascribed this to the 

different orientations of particles when tests were conducted which resulted in variances in the 

force-time profiles obtained.  

Tavares & King (1998) used an ultra-fast load cell to investigate the fracture of single particles 

subject to impact with a steel ball. Quartz particles of size 1 - 1.18 mm were impacted using a 

0.0283 kg steel ball at a velocity of 1.16 m/s. The Force-time results obtained for six single 

1 

2 
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particle breakage experiments are presented in Figure 2.11, where the arrows show the points 

of first fracture.  

 

 

Figure 2.11: Force-time profiles for six breakage tests conducted on quartz particles using a steel ball at 1.16 m/s 
(Tavares & King, 1998) 

The results showed that there was great variability in the mechanical response of the particles 

and the researchers attributed this to the individual grain and flaw structure in each particle.  

 

In a different study, Tavares & King (2004) used a modified impact load cell to conduct 

experiments for the comparison of experimental data to a model that combines Hertzian 

contact theory and the theory of wave propagation in rods. The experiments conducted to 

investigate the accuracy of the device included measuring sample deformations due to impact. 

Individual spheres of known elastic constants and diameters were subjected to impact and the 

force-time history was recorded. The elastic constants of the different materials used are 

shown in Table 2.2. 

Table 2.2: Elastic constants of spherical materials tested (Tavares & King, 2004) 

Type of material 

Modulus of elasticity (GPa) Stiffness (GPa) 

Tungsten 345 374 

Stainless steel 206 220 

Soda-lime glass 70 73 
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The Force-time profiles resulting from experiments conducted on the spherical particles at the 

same impact velocity of 0.31 m/s are shown in Figure 2.12. The results showed excellent 

agreement between experimental data and the theoretical model. This illustrated that the 

device was accurate and the experimental procedures and calculations used were 

reproducible. The findings also showed that tungsten, which had the highest modulus of 

elasticity and stiffness had the highest force to fracture and shortest contact time. The lowest 

force to fracture and longest contact time were obtained for soda-lime glass which had the 

lowest elastic constants.  

 

 

Figure 2.12: Force-time profiles from impact of 3.2 mm spherical particles of different materials at a velocity of 
0.31 m/s. Solid lines represent the theoretical model and dotted lines represent experimental data (Tavares & 

King, 2004) 

 

2.7. Factors affecting the breakage behaviour of particles  

The factors which affect particle breakage include the energy available to cause breakage, 

particle size and shape, the hardness of the ore, and the conditions (single particle or bed 

breakage and confined or unconfined conditions) in which particles are broken (Sikong et 

al.,1990; Schonert, 1991;  Tavares & King, 1998;  Stamboliadis, 2002; Nguyen et al., 2002). 

The factors relevant to this work are discussed in the sections that follow.  

 

2.7.1. The effect of varying the input energy on the breakage of particles 

From the conservation of energy, the input energy onto a particle sample when a breakage 

test is conducted is assumed to be equal to the potential energy of the steel ball before it is 
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released. The input energy is dependent on the mass of the ball and the drop height used and 

is given by (Salman et al, 2007): 

Einput = msbgh0                                 Equation 2.19 

Where: 

Einput:     Energy input onto the bed of particles (J)  

msb:     Mass of the steel ball (kg)    

g:     Acceleration due to gravity (m/s2) 

h0:     Initial height of the steel ball before it is released (m) 

In order to determine the effect of input energy on the breakage behaviour of an ore, Morrison 

& Cleary (2004) investigated the relationship between the specific input energy (energy 

available to cause fracture per mass present, Ecs) and the degree of breakage obtained.  

The degree of breakage is used to measure the breakage obtained when a test is conducted. 

Breakage indicators are used to quantify the degree of breakage and are defined as: 

tn: Percentage of the material passing through a screen whose aperture size is 𝟏

𝒏
 of the 

original geometric mean particle size, where n can be any integer value (Napier-Munn 

et al, 1996).  

Typical breakage indicators include t75, t50, t10, t4 and t2; where t2 is the percentage of the 

material passing through a screen whose aperture size is 𝟏

𝟐
 of the original geometric mean 

particle size and t4 is the percentage of the material passing through a screen whose aperture 

size is 𝟏
𝟒
 of the original geometric mean particle size, etc. The t10 breakage indicator is the most 

commonly used to characterize the degree of breakage in comminution studies (Napier-Munn 

et al, 1996).  

An example of the relationship between the specific input energy (Ecs) and the degree of 

breakage obtained by Morrison & Cleary (2004) is shown in Figure 2.13. 
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Figure 2.13: The t10 breakage indicator as a function of the specific comminution energy (Morrison & Cleary, 
2004) 

Figure 2.13 shows that the degree of breakage obtained (t10) for a particle sample increases 

with an increase in the specific input energy (Ecs) at low Ecs values. However, as the Ecs values 

continue to increase, the degree of breakage of the particles reaches a constant value. This 

illustrates that there is a maximum degree of breakage that can be obtained regardless of the 

subsequent increase in input energy.   

Research done by Stamboliadis (2002) and Shi & Kojovic (2007) also showed synonymous 

findings to those made by Morrison & Cleary (2004). 

 

2.7.2. The effect of particle size on the breakage behaviour of particles 

Sikong et al. (1990) conducted an investigation in which the relationship between the particle 

strength, defined as the maximum stress that a particle can undergo before permanent 

deformation, and size was studied for brittle particles. In a similar study, Schonert (1991) 

compared the particle strength with increasing particle size for nine different materials. From 

the results obtained by Sikong et al. (1990) and Schonert (1991), it was observed that the 

particle strength increases with a decrease in the particle size. This means that there is a 

greater resistance for particles to break with a decrease in size. This trend is observed 

because smaller particles contain fewer flaws than larger ones; hence, a higher stress is 

required to meet the fracture criterion of finer particles in comparison to coarse particles 

Schonert (1991). 
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Tavares & King (1998) investigated the deformation and fracture of single particles when 

subjected to impact. The effects of particle size, shape and material composition on the 

fracture characteristics of brittle materials were studied. The researchers used an Ultra-Fast 

Load Cell (UFLC) to carry out their experiments. The UFLC is a larger type of Impact Load 

Cell which is used to investigate the deformation and fracture of particles under impact loading 

and is operated similarly to the SILC.  

The procedure followed by Tavares & King (1998) allowed them to determine the particle 

fracture energy, particle strength and particle stiffness (a measure of how much the particle 

deforms due to the stress applied by a load). The results obtained in the study confirmed that 

the particle stiffness is a material property is independent of the size of the particle. The 

investigation also showed that the particle strength and fracture energy increase with a 

decrease in particle size, making it more difficult to break finer particles in comparison to 

coarse ones. This result is the same as that obtained by Sikong et al. (1990) and Schonert 

(1991) who noted that the resistance for particles to fracture becomes greater as the particles 

become smaller in size.  

 

2.7.3. Breakage behaviour of particles contained in beds 

Fundamental research done in comminution studies is mainly based on three cases: the 

breakage of single particles, one-layer particles and particles contained in beds. In crushers, 

which are mostly used for the comminution of coarse materials, the particles are mainly 

stressed as single or one-layer particles (Nikolov, 2004). The interaction between particles 

stressed in such conditions is negligible. In mills used to grind finer particles, materials are 

mainly stressed as particle beds between grinding media and inter-particle interference cannot 

be ignored. In the application of stress to beds of particles it is useful to consider the particle 

arrangement and confinement on the breakage behaviour of particles (Nguyen et al., 2002).  

There are significant differences between the stressing of single particles and that of particles 

contained in a bed. Schonert (1996) and Gutsche & Fuerstenau (1999) state that better size 

reduction is obtained when stress is applied to a single particle in comparison to that obtained 

in the stressing of a particle bed. The researchers explain that when stress is applied to a bed, 

a fraction of the input energy is used to rearrange the particles within the bed, which reduces 

the amount of energy available for particle breakage. This illustrates that breaking a single 

particle leads to greater energy utilization in comparison to breaking particles contained in a 

bed.  
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Another notable difference is with regards to the amount of energy received by the particles. 

In single particle stressing the amount of input energy is known. However, when stress is 

applied to a particle bed it is difficult to accurately determine the fraction of the stressing energy 

that is received by particles in different parts of the bed Barrios et al. (2011).  

According to Khanal et al. (2007), an increase in the depth of the bed leads to a reduction in 

the energy utilized for breakage. This is because a higher fraction of the input energy is used 

for particle repositioning with an increase in the bed depth; therefore less energy is available 

to be absorbed by the bed for breakage. The researchers also state that an increase in the 

bed depth increases the stiffness of the bed. This leads to a reduction in the degree of 

brokenness obtained when the particle bed is subjected to a compressive force.  

Work done by Barrios et al. (2011) on bed breakage behaviour under impact has shown that 

particles undergo the greatest amount of breakage when they are contained in a single layer 

at the bottom of the bed. It has been suggested that this occurs because the stress on the 

particles in the upper layers of the bed are too low or are applied for a short time, resulting in 

little or no breakage. Particles only experience adequate stress to cause significant breakage 

when they reach the bottom layer of the bed. 

  

2.7.4. Breakage behaviour of particles in confined and unconfined conditions 

A bed of particles can be stressed in confined or unconfined conditions. Confinement refers 

to any surfaces which affect the lateral movement of particles when stress is applied to the 

bed. Wall friction affects the stress distribution in the bed; particles in contact with the confining 

surface are stressed differently to internal ones. The non-uniform stress distribution leads to 

a complex stress field in the bed (Schönert, 1996).  

In confined conditions, typically those found in devices such as high pressure grinding rolls, 

the movement of particles contained in the bed is restricted. Therefore, most of the particles 

undergo stressing when an impact force is applied as very few particles escape from the bed. 

Fully confined particle beds, defined as ideal particle beds, have been widely used to 

investigate inter-particle breakage within the bed (Tang et al., 2001). An ideal particle bed is 

characterized as possessing: a homogeneous structure, homogeneous compaction, a known 

volume or mass of the stressed particles and negligible wall effects in respect to the overall 

size reduction effect (Nguyen et al., 2002).  

In fine grinding devices such as roller, tumbling and vibration mills, some of the particles 

stressed between the grinding media can escape and be re-positioned within the bed. In these 

devices particles are stressed in unconfined conditions, in which no lateral restriction of 
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particles occurs. Unconfined conditions are useful for investigating the breakage behaviour of 

particles stressed in a similar manner to that occurring in industrial grinding machines.  

In work done by Barrios et al. (2013) very thin sheets of paper were used to prevent the 

particles from falling off the bed. It was assumed that the thin paper did not offer significant 

resistance to the movement of particles when impacted; hence the bed could be classified as 

unconfined. Because material is not constrained within unconfined beds, a part of it gets 

ejected when stresses are applied to the bed (Schonert, 1991).  

 

2.8. Summary 

Comminution operations are energy intensive, accounting for approximately 3-4 % of global 

electricity demand (Pokrajcic, 2008) and are only 1-2 % efficient (Sadrai et al., 2006). In 

industrial comminution devices particle breakage is known to occur through various 

mechanisms but impact breakage has been found to be the most elementary form of particle 

size reduction (Schönert, 1991). As a result, comminution research has been dedicated to 

understanding the fundamentals of particle fracture under impact loading in an effort to 

develop energy efficient particle size reduction techniques.  

Laboratory characterization tests such as single particle impact breakage testing are a useful 

tool for determining the breakage behaviour of materials in comminution machines. Ore 

characterization tests such as the twin pendulum and drop weight tests are used to measure 

ore-specific energy/size reduction behaviour and determine comminution parameters that are 

applied in breakage modelling and simulation. Other techniques and devices which have been 

developed to characterize particle breakage include the Split Hopkinson Pressure Bar, Rotary 

Breakage Tester and the Short Impact Load Cell (SILC) which is used in this work. The SILC, 

which is a combination of the drop weight device and the Split Hopkinson Pressure Bar can 

be used to determine parameters such as the ultimate stress of particles and the particle 

fracture energy (Bourgeois & Banini, 2002; Tavares & King, 2004). Additionally, this device 

can be used to conduct bed breakage experiments.  

Factors responsible for particle breakage include the input energy, particle size, ore hardness, 

and the confinement conditions in which stressing occurs. Stamboliadis (2002), Morrison & 

Cleary (2004), and Shi & Kojovic (2007) found that at low values of the specific comminution 

energy the degree of breakage increases with increasing specific comminution energy. 

However as the specific comminution energy continues to increase, the degree of breakage 

approaches a constant value. This indicates that the degree of breakage obtained reaches a 

maximum beyond which it will not increase regardless of an increase in input energy.  
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The work done by Sikong et al. (1990), Schonert (1991) and Tavares & King (1998) illustrated 

that smaller, fine particles have a greater resistance to break in comparison to larger, coarser 

particles. In research done by Khanal et al. (2007) and Barrios et al. (2011) pertaining to the 

breakage behaviour of particles contained in beds it was found that increasing the number of 

particle layers contained in the bed results in a reduction in the degree of breakage obtained 

when the particle bed is subjected to a compressive force. 

Although particles stressed in fully confined conditions are useful for investigation of inter-

particle breakage within the bed, the fully confined particle bed arrangement does not occur 

in comminution practice (Nguyen et al., 2002). Consequently, researchers such as Oettel & 

Husemann (2004) and Barrios et al (2011) have investigated the stressing of particles in 

unconfined conditions. In work done by Barrios et al. (2013) paper was used to hold the 

particles in the bed as it was said that it offered negligible resistance and the bed could be 

classified as unconfined.  

The findings made in the literature will be relevant in addressing the key issues in this research 

work. The SILC will be used to conduct bed breakage experiments to determine the ultimate 

stress of particles, the particle fracture energy and the degree of breakage obtained. The trend 

observed by Stamboliadis (2002), Morrison & Cleary (2004), and Shi & Kojovic (2007) 

pertaining to the relationship between the degree of breakage obtained with increasing specific 

comminution energy will be compared to the findings made in this work.  This work also 

involves extending coarse particle breakage characterization to the breakage characterization 

of finer particles. Therefore understanding the effect of particle size as described by Sikong et 

al. (1990), Schonert (1991), Tavares & King (1998) and Tavares & King (2004) on breakage 

behaviour is of importance. The findings made by Khanal et al. (2007) and Barrios et al. (2011) 

relating the degree of breakage obtained to the bed depth will be compared to the findings 

made in this work. Additionally, in this work the breakage behaviour of particles under partial 

confinement is investigated. The bed is contained in a material that offers more resistance 

than the paper used by Barrios et al. (2013), but also allows for movement and repositioning 

of the particles within the bed unlike in fully confined conditions.  

 

2.9. Hypotheses and research questions 

The following hypotheses have been formulated: 

1. The fraction of input energy used for particle fracture is reliant on the three variables 

investigated in this work: steel ball mass, drop height and bed depth. Although the 

fracture energy changes with the three variables, the greatest variation occurs with 

bed depth. The thickness and arrangement of particles within the bed greatly influence 
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the amount of energy utilized for breakage, where an increase in bed depth results in 

a decrease in the energy used for particle fracture.  

2. For an increase in input energy resulting from increasing either steel ball mass or drop 

height, a larger relative increase in the degree of particle breakage obtained is caused 

by increasing ball mass rather than drop height. Of the two variables, an increase in 

ball mass leads to an increase in contact surface area for balls of the same material 

density. This leads to an increase in contact surface area, exposing more particles to 

impact and resulting in higher breakage.  

 

On the basis of the postulated hypotheses and the objectives of the study, breakage 

experiments will be conducted to answer the following key questions: 

 What is the effect of altering the three variables: steel ball mass, drop height and bed 

depth on the peak force obtained? 

 What is the effect of changing the three variables on the fraction of input energy used 

for particle fracture?  

 What effect does changing the three variables have on the degree of particle breakage 

obtained? 

 What is the relationship between the fracture energy and the degree of breakage 

obtained?  

 



  Chapter 3 

36 
 

3. EXPERIMENTAL 

Overview 

This chapter provides details of the experimental work done for the purposes of addressing 

the research questions. A description of the apparatus used for experiments is given, followed 

by the procedure followed for SILC calibration.  The sample preparation and experimental 

methods used to conduct breakage experiments are then given. The design of the 

experiments used to obtain breakage data is included at the end of this section. 

3.1. Description of the apparatus 

As mentioned in Section 2.4.5, the SILC consists of a steel rod on which the bed of particles 

sits, and a pneumatic drop weight mechanism used to release the steel ball when a breakage 

test is conducted. The rod is fitted with strain gauges to measure the load response due to the 

steel ball dropped from a known height. The voltage-time data saved from the test can be 

displayed on a computer screen and used to determine the Force-time history of the breakage 

test.  

A schematic indicating the main components of the SILC is shown in Figure 3.1.  

 
Figure 3.1: The drop weight mechanism and rod fitted with strain gauges which comprise the main components 
of the SILC. The particle sample rests on the steel rod and the ball is released from the drop weight mechanism 

at various heights (Bourgeois & Banini, 2002). 
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The SILC and computer experimental set-up used for this work are shown in the image in 

Figure 3.2. The experimental work was conducted at the Centre for Minerals Research (CMR) 

laboratories at the University of Cape Town.  

Figure 3.2: Experimental set-up showing the SILC used to conduct breakage tests and the computer used to view 
the test results 

Kyowa strain gages of type KFG-5-120-C1-11L1M2R and resistance 120.4 ± 0.4 Ω 

(manufacturer’s specifications) are fitted onto the steel rod used in the SILC. A proprietary 

amplifier circuit was designed and built by the Chemical Engineering electronics workshop, 

which passed the signal from the strain gauges through a low pass filter to reduce the noise 

and amplify the signal with an adjustable gain. A capture card was used to capture the signal 

onto a computer. The computer’s data acquisition software was a GUI built in National 

Instruments DAQ for which one could adjust the capture frequency.  The properties of the 

SILC steel rod are given in Table 3.1.  
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Table 3.1: Properties of the SILC steel rod  

Length (m) 1.50 

Diameter (mm) 20 

Density (kg/m3) 7815 

Young's modulus (N/m2) 2.11E+11 

Five steel balls of varying mass and size were used. Their respective masses and diameters 

are shown in Figure 3.3.  

 

Figure 3.3: The five steel balls used to conduct breakage tests arranged in increasing size, from the smallest to 
the largest diameter 

 

3.2. Calibration of the SILC 

The largest steel ball weighing 510 g was used for SILC calibration, where it was dropped 

directly onto the rod to obtain steel-on-steel velocity-time profiles. Four drop heights were used 

for calibration tests: 120, 180, 240 and 300 mm and three tests were conducted at each drop 

height for repeatability. Data generated from the steel-on-steel tests was used to calculate a 

calibration factor (See Section 3.2.3.) 

 

3.2.1. Calibration procedure 

The calibration procedure used in this work is as follows: 

1. Adjust the pneumatic drop-weight mechanism so that it can accommodate the 510 g 

steel ball which will be used for steel-on-steel impact tests 

2. Use the height adjustment system on the SILC to obtain a drop height of 300 mm 

65.9 g
110 g

261 g 357 g 510 g 

28.1 mm24.5 mm 

g

37.9 mm 44.2 mm 50.0 mm 
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3. Run a calibration test, releasing the steel ball directly onto the rod and saving the steel-

on-steel impact results generated from the test 

4. Repeat steps 1-3 three times, ensuring to save the generated breakage test data each 

time 

5. Repeat steps 3-4, using drop heights of 240, 180 and 120 mm  

6. Calculate a calibration constant (See Section 3.2.3) 

3.2.2. Calibration results 

The output obtained when a calibration test is conducted is in the form of a voltage vs time 

curve. The voltage is shown as Amplitude and the time is shown as Sample number. A typical 

voltage vs time signal obtained for steel-on-steel impact is shown in Figure 3.4. The voltage 

scale is in Volts x 104. The sample number can be converted to units of time by using the 

sample rate as follows:  

𝑇𝑖𝑚𝑒 =  
𝑆𝑎𝑚𝑝𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

𝑆𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒
           Equation 3.1 

 

In work done by Bourgeois & Banini (2002) a 2.5 MHz sample rate was used and Tavares & 

King (2004) used a sample rate of 2 MHz for experiments. Before experiments were 

conducted, new strain gauges were fitted onto the SILC used in this work to improve the 

sample rate from the low value of 4000 Hz. The sample rate of 3 MHz was selected as the 

most suitable as it is in line with that used by other researchers.  

 

 

Figure 3.4: Voltage vs time signal generated from a test conducted using the 510 g steel ball dropped from a 
height of 300 mm 

1 

3 
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Figure 3.4 shows that there is a time delay, labelled as ‘1’, before impact occurs. This is 

because test data is recorded from the instant the falling ball passes the laser beam, and 

impact only occurs after several microseconds have elapsed. The impact event is shown by 

the pulse labelled as ‘2’. The signal wave decays with time because it naturally disperses due 

to radial inertia as it travels through the rod. Because the strain gauges are situated closer to 

the anvil, the initial pulse ‘2’ travels through the rod where it is partially absorbed at the base 

of the rod. The remainder of the pulse is reflected back up the rod as the pulse labelled as ‘3’. 

Thereafter, there is a shorter duration between pulse ‘3’ and ‘4’ because pulse ‘3’ travels 

through a shorter distance up the rod before returning down as pulse ‘4’. This contributes to 

the attenuation in the oscillations which is observed. 

Figure 3.5 shows the voltage vs time signals of the three steel-on-steel tests done for 

calibration using the largest ball weighing 510 g released from the 300 mm drop height. The 

calibration voltage-time signals obtained at the 120, 180 and 240 mm drop heights are shown 

in Appendix B.  

 

Figure 3.5: Plot of three steel-on-steel calibration tests conducted for the 510 g ball dropped at a height of 300 
mm 

Figure 3.5 shows that the voltage-time signals were consistent which indicates that the 

calibration tests were repeatable.  
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3.2.3. Determination of the calibration factor 

In this section the steps followed to determine the calibration factor used to relate the voltage-

time data to the stress transmitted through the SILC steel rod are given.  

To determine the ball velocity, vb, the falling ball is assumed to be in free fall and the collision 

of the ball with the particle sample is assumed to be perfectly elastic. Therefore, the potential 

energy of the ball before release is assumed to be equal to its kinetic energy just before impact 

as shown in Equation 3.2:  

mgh0  =  
1

2
mvball

2                   Equation 3.2 

Where: 

m: Mass of the steel ball (kg) 

g:  Acceleration due to gravity (m/s2) 

h0:  Initial height of the steel ball before it released (m) 

vball: Velocity of the steel ball just before impact (m/s) 

The velocity of the rod upon impact is found by elastic contact theory and is given as (Bbosa, 

2007): 

𝑣𝑟𝑜𝑑 = 𝑣𝑏𝑎𝑙𝑙 (
𝐴𝑏𝑎𝑙𝑙

𝐴𝑏𝑎𝑙𝑙+ 𝐴𝑟𝑜𝑑
)             Equation 3.3 

Where: 

vrod: Rod velocity (m/s) 

vball: Ball velocity (m/s) 

Aball: Effective area of the ball (m2) 

Arod: Cross-sectional area of the rod (m2) 

Note: The effective area of impact of a steel ball with a steel surface is approximated as 10 % 

of the ball’s cross sectional area.  

One dimensional stress wave theory is used to evaluate the stress applied to the steel rod. 

This is given by Wang (2011) as: 

σ = Cvrodρ                  Equation 3.4 

Where: 
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σ: Stress applied to the steel rod (N/m2) 

C: Pulse speed (m/s) 

vrod: Rod velocity (m/s) 

ρ: Steel rod density (kg/m3)  

 

The pulse speed through the rod, C,  is determined from the relationship shown in Equation 

3.5: 

C =
2𝐿

𝑝𝑢𝑙𝑠𝑒 𝑡𝑖𝑚𝑒
              Equation 3.5 

Where: 

L: Length of the rod (m) 

From the calibration test, the average maximum voltage can be determined by finding the 

mean value when the voltage signal is at its peak.  

 

The calibration factor is given as a ratio of the stress per unit voltage and is determined using 

Equation 3.6: 

𝐾 =  
𝜎

𝑉𝑎𝑣𝑔
            Equation 3.6 

Where: 

K: Calibration factor (Pa/V) 

σ: Stress applied to the steel rod (Pa) 

Vavg: Maximum average velocity obtained for a breakage test (V) 

For each calibration involving a different height it was assumed that all the energy evolved 

from the falling ball was transferred to the rod upon impact. To verify the constistency of the 

calibration constants calculated at each of the four heights, Equation 3.6 was manipulated into 

the linear function σ = KVavg which was plotted using the experimental values as shown in 

Figure 3.6.  
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Figure 3.6: The stress as a function of maximum average velocity at the four drop heights used for calibration 

The experimental calibration constant, which was found to have a value of 37.6 MPa/V, was 

determined as the gradient of the linear equation shown in Figure 3.6. The R-squared value 

of 0.993 obtained was close to unity indicating that the SILC data was a very close fit to the 

linear regression line.  

The calculated calibration constant was compared to a theoretical one given by Equation 3.7 

(Bbosa, 2007): 

𝐾𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =  
4𝐸

𝐴𝐵𝑣𝐹
              Equation 3.7 

Where: 

E: Young’s modulus of the rod 

A: Amplifier gain 

B: Bridge factor 

V: Bridge excitation voltage 

F: Gauge factor 

The theoretical calibration constant was found to be 40.4 MPa/V, signifying a 6.9 % deviation 

between the theoretical and experimentally determined values. The calculations done to 

evaluate both calibration constants are given in Appendix A.  
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3.3. Sample preparation 

3.3.1 Ore used for breakage tests 

The breakage tests conducted in the proposed study are done on two different ore types: Blue 

stone and UG2 ore. These two ore types have been discussed further in the sections that 

follow.  

Blue stone 

Blue stone is igneous, dark bluish-grey coloured rock which has a consistent grain structure 

(Bbosa, 2007). This material is easy to process due to its homogeneity which makes it suitable 

for use as an aggregate in construction. Crushed blue stone can be used as a road base, 

concrete and asphalt pavement aggregate, and as filter stone in drain fields.  

Upper Group 2 (UG2) chromitite ore 

South African reserves of platinum group metals (PGMs) are found in the Bushveld Complex 

which consists of three layers, namely the Merensky Reef, Platreef and the UG2 chromitite 

layer (Schouwstra et al., 2000). These three layers each have their own distinctive associated 

mineralogy (McLaren & De Villiers, 1982). UG2 ore consists mainly of chromitite (60-90%), 

orthopyroxene, and plagioclase. It also consists of small amounts of talc, chlorite, and 

phlogopite, as well as smaller amounts of base-metal and other sulphides and platinum-group 

minerals. The base metals contained in the ore are predominantly pentlandite, chalcopyrite, 

pyrrhotite and pyrite. UG2 grades vary from 3-8 g/t PGM but the Cr2O3 content of the ore 

presents major challenges in processing (Cramer, 2001). 

The elastic properties of the two ores differ as blue stone has a modulus of elasticity of 78 

GPa at ambient temperature and pressure and that of UG2 is approximately 50 GPa (Schultz, 

1995; Singh et al., 2005).  

Figure 3.7 shows the ore hardness of different commodities. The parameter used as an 

indicator of the ore’s resistance to break is the Drop Weight Index (DWi) which is expressed 

as in kWh/t. Lower DWi values indicate softer ores and higher values are an indication of hard 

ores.  
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Figure 3.7: Mean DWi values for different ores (Morrell, 2015) 

From Figure 3.7 it is seen that basalt has a DWi value of approximately 9.5 kWh and PGMs 

have a lower DWi of approximately 6.7 kWh. From this it can be inferred that, although both 

ores can be classified as hard ores, blue stone is harder than UG2.  

For both ores used to conduct experimental work, particles of similar mean geometric size 

were used.  A summary of the particle sizes used for each ore is given in Table 3.2.  

Table 3.2: Mean particle sizes used for experimental test work conducted on the SILC 

Ore Particle size range (mm) Mean geometric size (mm) 

Blue stone -5.6 + 4 4.73 

UG2 -6.7 + 3.35 4.74 

These particle sizes were considered adequate based on the size of the SILC, where large 

sizes were not suitable for the attainment of a bed of particles as the steel rod only has a 

diameter of 20 mm. Using these particle sizes, a bed could be obtained as between five and 

six particles could sit on the rod surface.  

 

3.3.2. Sample preparation for blue stone 

Agitated sieves in series were used to obtain three size classes of the ore which had already 

been crushed to sizes < 10 mm. The size classes were identified as - 4mm, - 5.6 + 4 mm and 

+6.5 mm. For this work, blue stone particles of size - 5.6 + 4 mm were used to conduct 

UG2 is a PGM 
ore 

Blue stone is a 
form of basalt 
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breakage tests because it was presumed that particles smaller than this size would result in 

little or no breakage due to the hardness of the ore. The particles used were irregularly shaped 

and angular as shown in Figure 3.8. The South African one rand coin was used as an 

indication of the size of the particles.  

 

Figure 3.8: Blue stone ore particles used to conduct bed breakage tests 

 

3.3.3. Sample preparation for UG2 

The 250 kg ore sample, received from the Bathopele mine in Rustenburg South Africa, was 

initially screened to remove the particles smaller than 3.35 mm as these were smaller than the 

size range required in this work. Particles in the size range -32 + 13.2 mm were reduced in 

size using the cone crusher in the UCT Centre for Minerals Research labs. Rocks larger than 

32 mm were reduced in size using the jaw crusher in the UCT Geological Sciences 

department. The crushed particles were all blended and then screened to remove particles of 

sizes + 6.7 and -3.35 mm as they were not in the particle size range that would allow for a 

similar geometric mean size as that of the blue stone particles used. The size range of UG2 

particles used for experiments was – 6.7 + 3.35 mm. The particles which were in the desired 

size range were proportioned into 10 kg batches using a riffle splitter.  The samples were then 

further proportioned into 1 kg amounts using a rotary splitter, where each 1 kg batch was 

considered to be representative of the ore received from Bathopele mine. The UG2 particles 

used for experiments are shown in Figure 3.9. Similarly to Figure 3.8, the one rand coin was 

used as an indication of the size of the particles.  
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Figure 3.9: UG2 particles used for bed breakage tests on the SILC 

 

3.3.4. Obtaining the desired bed thickness 

The effect of altering the particle bed thickness was investigated by varying the number of 

particle layers contained in each bed, ranging from one to nine layers. Each bed of particles 

was contained in a cylindrical ring designed to accommodate the desired number of particle 

layers. In order to test for the most suitable material to use for construction of the cylindrical 

rings, breakage tests were conducted in which paper, stiff paper and duct tape were used to 

make the rings. Using each ring, three breakage tests at identical conditions (510 g steel ball, 

300 mm drop height and 3 layers contained in the bed) were conducted. The force-time 

profiles obtained for the different materials are shown in Figure 3.10 to Figure 3.12. These 

were compared to determine the best material to use for test work.  
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Figure 3.10: Force-time profiles obtained using paper to construct cylindrical rings used to hold particles 
contained in the bed 

 

 

Figure 3.11: Force-time profiles obtained using stiff paper to construct cylindrical rings used to hold particles 

contained in the bed 
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Figure 3.12: Force-time profiles obtained using duct tape paper to construct cylindrical rings used to hold 
particles contained in the bed 

From comparison of Figure 3.10 to Figure 3.12, duct tape was selected to be the most suitable 

material to use for the construction of the cylindrical rings used to hold particles contained in 

the bed. This is because it yielded the most consistent Force-time results in comparison to 

paper and stiff paper.  

The five cylindrical rings of varying height that were constructed using duct tape to hold 1, 3, 

5, 7 and 9 layers of particles for test work are shown in Figure 3.13.  

 

Figure 3.13: The cylindrical rings used to contain particles in a bed for breakage tests, arranged in increasing 
number of layers contained in the bed 

For blue stone, tests were conducted using 1, 3, 5, 7 and 9 layers contained in the bed and 

tests conducted on UG2 only contained 1 to 7 layers. The cylindrical rings remained intact 

upon impact when breakage tests were conducted.  
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3.4. Experimental procedure used to conduct bed breakage tests using the SILC 

The standard procedure outlined in the SILC Data Acquisition Module-Operation and Design 

(De Beers, 2002) was adapted to conduct breakage tests:  

1. Adjust the pneumatic drop-weight mechanism so that it can accommodate the steel 

ball which will be used for the breakage test. 

2. Obtain the desired drop height by using the height adjustment system on the SILC. 

3. Place particles of the desired bed depth in a hollow cylindrical ring, constructed of duct 

tape, on the SILC steel rod. The ring is used to ensure that the particles are a partially 

confined.  

4. Release the steel ball onto the bed of particles to break the ore sample upon impact. 

The impact breakage event is recorded and can be viewed on a computer in the form 

of a voltage-time signal.  

5. After the test has been conducted, collect and weigh the broken sample. The broken 

sample is used to determine the particle size distributions resulting from the breakage 

test. 

 

Figure 3.14 (a) is indicates a typical setup used to conduct a breakage test. The partially 

confined particles sit on the SILC steel rod. The ruler on the height adjustment system is used 

to achieve the desired drop height and the steel ball is kept in place using the pneumatic drop 

weight mechanism. Figure 3.14 (b) is a close up image of the particles resting on the steel 

rod.  
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Figure 3.14: Typical setup of the bed of particles, steel ball and drop height for a breakage test on the SILC 

Figure 3.15 shows the outcome of a typical breakage test conducted using the SILC, where 

the pulse indicates when the breakage event occurred. Note: The sample number on the x-

axis can be converted to units of time by using Equation 3.1 (Section 3.2.2). The Amplitude 

on the y-axis represents Voltage (in Volts x 10-4).  

 

 

Figure 3.15: Typical breakage test outcome obtained on the SILC at a drop height of 300 mm using the 510 g 
steel ball 
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From Figure 3.15 it is seen that there was a large amount of noise in the raw signals obtained 

from tests. For calculations, the raw Voltage-time data was converted to Force-time signals 

and a moving average of 100 data points was used on Microsoft Excel to clean up the signals. 

It was found that this methodology deconvoluted the electrical noise from the strain gauges 

while maintaining the integrity of the signal. 

 

3.5. Determination of the Particle Size Distributions (PSDs)  

Particle size distributions were used to evaluate the extent to which the particle sample was 

broken when breakage tests were conducted. Sieves of different aperture sizes were used in 

series and the mass of ore retained on each sieve was recorded and used to determine the 

PSD.  

For blue stone, sieves of aperture sizes 8, 5.6, 4, 2.8 and 2 mm were used on an agitated 

shaker to screen the samples after breakage tests were conducted. For UG2, sieves of 

aperture sizes of 8, 5.6, 4, 2.8, 2 and 1.4 mm were used.  

 

3.6. Design of experiments 

In the experiments, the effect of varying the steel ball mass, drop height and bed depth on the 

degree of breakage was investigated. Each of the three variables was considered at different 

values: a range of low, intermediate and high values. This was done for each of the two ores 

on which breakage tests were conducted. 

 

3.6.1. Experiments conducted on blue stone 

The steel ball mass, drop height and number of layers contained in the bed were each varied 

between five values which are shown in Table 3.3.  

Table 3.3: Values of the variables which were altered in the experiments conducted on blue stone 

Number of particle layers Drop height (mm) Steel ball mass (g) 

1 60 66 

3 120 110 

5 180 261 

7 240 357 

9 300 510 
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The number of different possible variable configurations was determined using Equation 3.8:  

𝑁 =  𝑁𝑃𝐿  ×  𝑁𝐷𝑃  × 𝑁𝑆𝐵𝑀                           Equation 3.8 

Where  

N:  Number of possible variable configurations 

NPL:  Number of particle layers  

NDP:  Number of drop heights 

NSBM:  Number of steel ball masses 

From using Equation 3.8, it was found that 125 different variable configurations were required 

to test the three variables at five different levels. Reproducibility of the experiments was tested 

by conducting three tests at each variable configuration.   

 

3.6.2. Experiments conducted on UG2 

For UG2, no breakage tests were conducted using the 66 g ball and 60 mm drop height. Also, 

no tests containing 9 layers of particles in the bed were conducted (See Section 5.1). The 

steel ball mass, drop height and number of layers contained in the bed were each varied 

between four values which are shown in Table 3.4. 

Table 3.4: Values of the variables used for experiments done on UG2 

Number of particle layers Drop height (mm) Steel ball mass (g) 

1 120 110 

3 180 261 

5 240 357 

7 300 510 

 

From using Equation 3.8, it was found that 64 different variable configurations were required 

to test the three variables at four different levels. Similarly to the tests conducted on blue stone, 

reproducibility of the experiments done on UG2 was tested by conducting three tests at each 

variable configuration.   
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4. BLUE STONE RESULTS 

Overview 

This chapter presents the experimental results for breakage tests conducted on blue stone.  

Screening of the progeny particles resulting from breakage tests showed that at all input 

energies, negligible breakage was obtained as all the particles remained in the same starting 

size range of -5.6 + 4 mm. Therefore, only peak force results are reported and no fracture 

energy or breakage results are presented for this ore.  

 

4.1. Peak force results 

Breakage tests were conducted at twenty-five input energies, by varying the steel ball mass 

and drop height on the Short Impact Load Cell between the values shown in Table 3.3 (Section 

3.6.1). Tests were conducted on one, three, five, seven and nine layers. All tests were 

conducted in triplicate so the standard error was representative. 

The peak force results are presented for each steel ball mass, with increasing drop height and 

bed depth. Sample calculations showing the method used to determine the peak forces are 

given in Appendix A.  

 

4.1.1. Peak force results obtained using the 510 g steel ball 

The input energy values used for breakage tests are shown in Table 4.1. The input energies 

were calculated using Equation 2.14 from the assumption that energy is conserved, therefore 

the input energy onto the particles is equal to the potential energy of the steel ball before it is 

released (Section 2.6.1). 

Table 4.1: Input energy values for the 510 g steel ball released from various heights 

Drop height (mm) Input energy (J) 

60 0.30 

120 0.60 

180 0.90 

240 1.20 

300 1.50 

 

The peak force results for the steel ball dropped from the five different heights are shown in 

Figure 4.1. For the 60, 180, 240 and 300 mm heights the maximum peak forces were obtained 
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at one layer of particles. At one, three, five and seven layers the highest peak forces were 

obtained at the greatest drop height; however at the largest bed depth the peak force at 240 

mm was 11 % greater than that at 300 mm.  

 

Figure 4.1: Peak forces obtained at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 510 g ball 

At the lowest height of 60 mm, the peak force decreased by 8 % when the bed depth was 

increased from one to three layers. There was a greater reduction, of 60 %, in the peak force 

with an increment in the bed depth from three to five layers. Increasing the bed depth from 

five to seven and nine layers resulted in statistically similar peak forces being obtained.  

For tests conducted at the 120 mm drop height, statistically similar peak force results were 

obtained at bed depths of one and three layers. Similar findings to those observed at 60 mm 

were made when the bed depth was increased from three to nine layers. The peak force 

decreased by 67 % when the number of layers was increased from three to five and statistically 

identical peak forces were obtained with an increment in the bed depth from five to seven and 

nine layers.  

For the 180 mm drop height the greatest peak force was obtained at one layer and it decreased 

by 56 % with an increase in bed depth to three layers. This result differed from that obtained 

for the 120 mm drop height, where statistically similar peak forces were attained at the two 

lowest bed depths. Also, in different findings to those made at the two lowest drop heights, at 

180 mm the peak force obtained at five layers was 20 % greater than that obtained at three 

layers. Statistically equal peak forces were obtained at seven and nine layers, which were the 

lowest for all bed depths at this input energy.  
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At a drop height of 240 mm the peak force followed a continuous decreasing trend with an 

increase in layers from one to seven. In different findings to those made at the lower drop 

heights, there was an increment of 17 % in the peak force when the bed depth was increased 

from seven to nine layers.  

For tests conducted at the 300 mm drop height the largest peak force was obtained at one 

layer and it continuously decreased for all layers. This result differed from that obtained at the 

lower drop heights, as none of the other results showed a continuously decreasing trend with 

increasing bed depth.  

For the tests conducted, the greatest peak forces were generally attained at the 300 mm drop 

height and the lowest were found at 60 mm. Statistically identical peak forces were obtained 

at the adjacent drop heights of 180 and 240 mm for one and seven layers. Several tests 

showed a result in which the peak forces found at lower drop heights were greater than those 

at larger heights for the same bed depth. At three layers, the peak force at 120 mm was greater 

than both those at 180 and 240 mm. At five layers the peak force at 180 mm was greater than 

that at 240 mm and was statistically similar to that at 300 mm.  

 

4.1.2. Peak force results obtained using the 357 g steel ball  

The input energy values for the ball released from each drop height are given in Table 4.2.  

Table 4.2: Input energy values for the 357 g steel ball released from various heights 

Drop height (mm) Input energy (J) 

60 0.21 

120 0.42 

180 0.63 

240 0.84 

300 1.05 

 

Figure 4.2 shows the peak force results obtained. Similar to the findings made for the 510 g 

ball, the highest peak forces were found at one layer for all the input energies. At all bed depths 

the greatest peak forces were attained at the two largest input energies.  Comparison of the 

results shown in Figure 4.2 and Figure 4.1 shows that the peak forces at all bed depths were 

greater for the 510 g ball than they were for the 357 g ball.  
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Figure 4.2: Peak forces obtained at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 357 g ball 

At a drop height of 60 mm, statistically equal peak forces were obtained at one and three 

layers. This finding is similar to that made for the 510 g ball at this drop height. When the 

number of layers was increased from three to five the peak force decreased by 51 %. The 

peak forces obtained at five, seven and nine layers were statistically similar, and were also 

the lowest which is synonymous with the trends observed from tests conducted using the 510 

g ball.  

For breakage tests conducted at the 120 mm drop height, the peak force decreased 

continuously with an increase in layers from one to five. The peak force obtained at seven 

layers was 20 % greater than that at five layers. Statistically, the peak force obtained at a bed 

depth of nine layers was identical to that at seven layers. 

At the 180 mm drop height statistically similar peak forces were found at one and three layers. 

A 10 % reduction in peak force was obtained when the bed depth was increased from three 

to five layers. Statistically, the peak forces at five, seven and nine layers were the same. This 

result is similar with that obtained at the 60 mm drop height, where statistically equal results 

were also found at the three largest bed depths.  

For the 240 mm drop height the greatest peak force was obtained at one layer and it decreased 

by 49 % when the number of layers was increased from one to three. The peak forces obtained 

at three and five layers were statistically identical and there was a 12 % reduction in peak 

force when the bed depth was increased from five to seven layers. The results obtained at 

seven and nine layers were statistically equal, which is a similar finding to that made at the 60 

and 180 mm drop heights.  
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At a drop height of 300 mm the peak force at three layers was slightly greater than that 

obtained at one layer. There was a decrease of 60 % in the peak force when the bed depth 

was increased from three to five layers. Statistically, the results obtained at five and seven 

layers were equal and the peak force at nine layers was slightly lower (by 12 %) than these.  

For the tests conducted, the lowest peak forces were generally found at the 60 mm drop height 

at all bed depths. Statistically similar peak forces were obtained at the adjacent drop heights 

of 240 and 300 mm at one, seven and nine layers. Some tests showed a result in which the 

peak force found at a lower drop height was greater than at a larger height for the same bed 

depth. At 120 mm the peak force was larger than at 180 mm for one layer, and at 240 mm it 

was greater than at 300 mm for five layers. 

 

4.1.3. Peak force results obtained using the 261 g steel ball  

Table 4.3 shows the input energy values used to conduct tests. 

Table 4.3: Input energy values for the 261 g ball released from various heights 

Drop height (mm) Input energy (J) 

60 0.15 

120 0.31 

180 0.46 

240 0.61 

300 0.77 

 

The peak force results are shown in Figure 4.3. At the four lowest bed depths the highest peak 

forces were obtained at the largest drop height which is a similar finding to that made for the 

510 and 357 g balls. At a bed depth of nine layers the greatest peak force was attained at 180 

mm, where this value was slightly larger than that at 300 mm. The peak forces obtained at 

180 and 240 mm were statistically similar at the four lowest bed depths; however at a bed 

depth of nine layers the peak force at 180 mm was 27 % greater than that at 240 mm. 

Comparison of the results shown in Figure 4.3 and Figure 4.2 shows that the peak forces 

obtained using the 261 g and 357 g balls were similar.   
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Figure 4.3: Peak forces obtained at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 261 g ball 

At the 60 mm drop height the peak forces at one and three layers were almost identical. This 

result is similar to the findings made for the 510 g and 357 g balls at this drop height. Increasing 

the bed depth from three to five layers resulted in a 41 % decrease in the peak force. When 

the bed depth was increased from five to seven layers the peak force decreased by 54 %, and 

it remained approximately the same when the depth of the bed was increased to nine layers. 

The findings made, where similar peak forces were obtained at bed depths of seven and nine 

layers, are similar to those made for the 510 g and 357 g balls at the 60 mm drop height.  

At the 120 mm drop height a continuous decreasing trend in peak force was observed when 

the bed depth was increased from one to five layers. The peak force obtained at nine layers 

was similar to that at five layers; however at seven layers it was found to be 21 % greater than 

that at five layers. 

For breakage tests conducted at the 180 mm drop height it was found that the peak force 

continuously decreased with increasing bed depth from one to five layers. The 39 % decrease 

in peak force observed when the number of layers was increased from one to three was larger 

than the 25 % reduction obtained when the bed depth was increased from three to five layers.  

At seven and nine layers statistically similar peak forces were obtained, which is a 

synonymous result to that found at the 60 mm drop height. 

At the 240 mm drop height a similar trend to that observed at 120 mm was found. The peak 

force decreased continuously when the number of particle layers was increased from one to 

five. However, increasing the number of layers from five to seven resulted in an 18 % increase 

in peak force. The lowest peak force, 35 % lower than that at seven layers, was obtained at a 

bed depth of nine layers.  
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The results obtained at the 300 mm drop height were unlike any of the findings made at the 

lower drop heights, as the peak force at three layers was found to be greater than at one layer. 

When the bed depth was increased from three to five layers a 63 % reduction in peak force 

was obtained. The peak force at seven layers was slightly greater than that at five layers and 

there was a reduction of 34 % when the number of layers was increased from seven to nine.  

For all the tests conducted, the greatest peak forces were generally obtained at the 300 mm 

drop height. Statistically equal peak forces were obtained at the adjacent drop heights of 180 

and 240 mm at the four lowest bed depths. For some tests the peak force at a lower drop 

height was greater than at a larger height for the same bed depth. The peak force at 60 mm 

was greater than at 120 mm for a bed depth of three layers, and at nine layers the peak force 

at 180 mm was larger than at 240 mm and was statistically similar to that at 300 mm.  

 

4.1.4. Peak force results obtained using the 110 g steel ball 

Table 4.4 shows the input energy values used for breakage tests.  

Table 4.4: Input energy values for the 110 g ball released from different heights 

Drop height (mm) Input energy (J) 

60 0.07 

120 0.13 

180 0.19 

240 0.26 

300 0.32 

 

The peak force results are shown in Figure 4.4. For the four largest drop heights, the greatest 

peak forces were obtained at one layer of particles; however at the lowest drop height the 

peak force at three layers was slightly greater than that at one layer. The peak forces at the 

largest input energy were not consistently greater than those at lower input energies for all the 

bed depths, which is seen in the results obtained at one, three and nine layers.  At one layer 

the peak force at 180 mm was greater than that at 300 mm. At a bed depth of three layers the 

peak forces at the 120 and 300 mm drop heights were statistically equal, and nine layers the 

results obtained for the 240 and 300 mm drop heights were statistically similar. Comparison 

of these results with those obtained for the larger steel balls showed that the peak forces 

obtained using the 110 g ball were the lowest.  
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Figure 4.4: Peak forces obtained at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 110 g ball 

At the 60 mm drop height a similar trend to that observed for the larger steel balls was found 

with increasing layers from one to five, where statistically identical peak forces were obtained 

at one and three layers and the peak force decreased, by 32 %, when the bed depth was 

increased from three to five layers. The peak force obtained at a bed depth of seven layers 

was statistically similar to that at five layers; however it decreased by 29 % when the number 

of layers was increased to nine.   

At the 120 mm drop height the peak force decreased continuously with increasing number of 

layers from one to seven. Statistically, equal peak forces were obtained at seven and nine 

layers, where these were the lowest attained for this input energy. The similar peak force 

results obtained at the two largest bed depths were synonymous with the findings made at 

this drop height using the 510 and 357 g balls.  

For breakage tests conducted at the 180 mm drop height the highest peak force was obtained 

at one layer and it decreased by 77 % when the number of layers was increased to three. The 

peak force increased slightly with increasing bed depth from three to five layers. Statistically 

similar peak forces were obtained at bed depths of five, seven and nine layers.  

Similar to the 120 and 180 drop heights, the highest peak force at 240 mm was also obtained 

at one layer. It decreased by 57 % when the number of layers was increased to three; however 

it increased by 31 % when the layers were increased from three to five. Increasing the bed 

depth from five to seven layers resulted in a 28 % reduction in peak force; however the peak 

force increased by 20 % when the number of layers was increased from seven to nine.  
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For the 300 mm drop height the maximum peak force was obtained at one layer and it 

decreased by 43 % when the number of layers was increased to three. Statistically similar 

results were obtained at bed depths of three and five layers. The peak force decreased by 23 

% when the number of layers was increased to seven and the result at nine layers was 

statistically the same as that at seven layers.  

For the tests conducted, statistically similar peak forces were obtained at five and seven layers 

for the 240 and 300 mm drop heights. For some tests the peak forces at smaller drop heights 

were greater than at larger heights. For one layer, the peak force at 180 mm was larger than 

at 300 mm. For three layers the peak force at 120 mm was greater than both those obtained 

at 180 and 240 mm and was statistically similar to that at 300 mm. 

  

4.1.5. Peak force results obtained using the 66 g steel ball 

The input energy values used for tests are shown in Table 4.5.  

Table 4.5: Input energy values for the 66 g ball released from various heights 

Drop height (mm) Input energy (J) 

60 0.04 

120 0.08 

180 0.12 

240 0.16 

300 0.20 

The input energy values obtained using this ball were very low. As a result, the voltage-time 

signals, which are used to determine the Force-time results, were indistinguishable from the 

noise generated by the SILC. The peak force results for tests conducted at 66 g could therefore 

not be determined and all data generated using this steel ball could not be used for results 

analysis.  
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5. UG2 RESULTS 

Overview 

The experimental results obtained for breakage tests conducted at the different input energies 

used are presented in this chapter. The results are given in three sections: Section 5.1 

presents the peak force results, the fracture energy results are given in Section 5.2 and 

Section 5.3 presents the breakage results obtained.  

The experimental matrix for tests was determined based on the observations made for tests 

conducted on blue stone. The drop heights and steel ball masses used are given in Table 3.4 

(Section 3.6.2). The number of layers contained in the bed was varied from one to seven 

because the blue stone results revealed that the peak force was not significantly affected by 

the presence of a ninth layer. Additionally, no breakage tests were conducted at the 60 mm 

drop height because this input energy had resulted in very low peak forces for blue stone, and 

it was expected that the same results would be obtained for UG2. Furthermore, breakage tests 

were not conducted using the 66 g steel ball because it had not yielded any useful results for 

blue stone. Similar to the blue stone experiments, tests were done in triplicate in order to 

determine the experimental error associated with each test. 

 

5.1. Peak force results 

The peak force results are shown for each steel ball mass, with increasing drop height and 

bed depth.  

5.1.1. Peak force results obtained using the 510 g ball 

The input energy values used for breakage tests are given in Table 4.1 (Section 4.1.1). 

The peak force results are shown in Figure 5.1. For all input energies, the maximum peak 

force was obtained at one layer of particles. At one layer the greatest peak force was found at 

the largest input energy; however at bed depths of three, five and seven layers the peak forces 

obtained at the two largest input energies were statistically identical. For the two lowest input 

energies, statistically similar peak force results were obtained at bed depths of one, three and 

seven layers. Comparison of the results shown in Figure 5.1 with those for blue stone 

presented in Figure 4.1 shows that the peak forces obtained for blue stone were higher than 

those obtained for UG2 at the same input energies.  
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Figure 5.1: Peak forces obtained at various drop heights, represented as a function of the layers contained in the 
bed for tests conducted using the 510 g ball 

At the 120 mm drop height the peak force decreased, by 46 %, with increasing bed depth from 

one to five layers. Statistically equal peak force results were obtained at five and seven layers, 

which were the lowest obtained at this drop height.  

For tests conducted at 180 mm the peak force decreased by 27 % when the number of layers 

was increased from one to three. Statistically, the peak force obtained at five layers was similar 

to that at three layers; however it decreased by 35 % when the bed depth was increased to 

seven layers.  

At the 240 mm drop height, the peak force decreased continuously with an increase in the 

number of layers from one to seven. The decrease in peak force was greater at lower bed 

depths of one and three layers than it was with increasing number of layers at the largest bed 

depths.  

A similar trend to that observed at the 120 mm drop height was found at 300 mm, where the 

peak force decreased continuously with an increase in the number of layers from one to five. 

For this drop height it was also observed that increasing the number of layers at the lowest 

bed depths of one and three layers led to a larger reduction, of 40 %, in the peak force than 

that obtained (31 %) when the number of layers was increased from three to five. Statistically 

similar peak force results were obtained at bed depths of five and seven layers.  

From all the tests conducted it was found that the peak force increased continuously with 

increasing drop height at one layer. Discrepancies from this observation were made at larger 

bed depths. Results where statistically similar peak forces were obtained at adjacent drop 
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heights were found for tests conducted at 120 and 180 mm at three layers, and at 240 and 

300 mm for the three largest bed depths.   

 

5.1.2. Peak force results obtained using the 357 g ball 

The input energies used to conduct breakage tests are shown in Table 4.2 (Section 4.1.2).  

The peak force results are shown in Figure 5.2. Comparison of these results with those 

obtained for the largest ball showed that the peak forces found using the 357 g ball were lower. 

In similar findings to those made for the 510 g ball, the maximum peak forces were obtained 

at one layer of particles for all input energies. At each bed depth, the greatest peak forces 

were found at the largest drop height. Comparison of the results shown in Figure 5.2 with the 

blue stone results presented in Figure 4.2 showed that the blue stone peak forces were higher 

than those obtained for UG2 at the same input energies. This observation is synonymous with 

the findings made for the largest steel ball. 

 

Figure 5.2: Peak forces obtained at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 357 g ball 

At the 120 mm drop height the results obtained across the bed depths did not follow a specific 

trend. The largest peak force was obtained at one layer and it decreased by 53 % when the 

number of layers was increased to three. There was a 29 % increase in peak force when the 

bed depth was increased from three to five layers and a 20 % reduction when the number of 

layers was increased from five to seven.  

Similar observations to those made for the 120 mm drop height were found at 180 mm. The 

peak force decreased by 16 % when the number of layers was increased from one to three. 
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Increasing the bed depth from three to five layers resulted in a 10 % increase in peak force; 

however it decreased by 25 % when the bed depth was increased from five to seven layers.  

For the 240 mm drop height the peak force decreased by 48 % with an increment in number 

of layers from one to three. The peak forces at five and seven layers were statistically similar 

to that at three layers.  

At 300 mm the peak force decreased continuously with increasing number of layers from one 

to seven. The reduction in peak force was greater at lower bed depths than it was at larger 

bed depths: there was a 28 % decrease in peak force when the number of layers was 

increased from one to three and a 14 % reduction when the bed depth was increased from 

five to seven layers. This finding is synonymous with that made at 240 and 300 mm using the 

largest steel ball.  

From the tests conducted, it was found that the peak force increased continuously with 

increasing drop height at bed depths of five and seven layers. Statistically identical peak forces 

were obtained at the adjacent drop heights of 180 and 240 mm at three layers.  

 

5.1.3. Peak force results obtained using the 261 g ball 

The input energies used for breakage tests are shown in Table 4.3 (Section 4.1.3).  

Figure 5.3 shows the peak force results obtained. Comparison of these results with those 

obtained for the 357 g ball showed that the peak forces found using the 261 g ball were slightly 

lower.  In different findings to those made for tests conducted using the 510 and 357 g balls, 

it was found that for the input energies used, the peak forces obtained at one layer were not 

consistently greater than those at the larger bed depths.   

At one layer the highest peak force was found at the largest input energy; however at bed 

depths of three, five and seven layers the peak forces obtained at the two largest input 

energies were statistically equal. This result is similar to that obtained for tests conducted 

using the 510 g ball.  

Comparison of the results in Figure 5.3 to those obtained for blue stone presented in Figure 

4.3 showed that the peak forces obtained for blue stone were greater than those for UG2. This 

result is similar to that found for the 510 g and 357 g balls. 
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Figure 5.3: Peak forces obtained at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 261 g ball 

At the 120 mm drop height the peak forces obtained at one and three layers were statistically 

similar. When the bed depth was increased from three to five layers there was a 34 % 

reduction in peak force; however the peak force at seven layers was 23 % greater than that at 

five layers.  

At the 180 mm drop height the peak force at three layers was 17 % greater than that at one 

layer. It decreased by 49 % with increasing number of layers from three to seven.  

For breakage test conducted at the 240 mm drop height the peak forces obtained at one and 

three layers were statistically identical. This result is the same as that obtained at 120 mm. 

The peak force decreased slightly when the bed depth was increased from three to five layers 

and identical peak forces were obtained at bed depths of five and seven layers.  

At 300 mm the peak force decreased continuously with increasing number of layers from one 

to five. Increasing the number of layers from one to three layers led to a larger reduction, of 

57 %, in the peak force than that obtained (20 %) when the number of layers was increased 

from three to five. This finding is the same as that made for tests conducted at this drop height 

using the largest steel ball. Statistically, the peak forces obtained at bed depths of five and 

seven layers at this drop height were equal.  

For all the tests conducted, statistically identical results were obtained for the adjacent heights 

of 120 and 180 mm at one layer, and 240 and 300 mm at the three largest bed depths. One 

test showed a result where the peak force obtained at a smaller drop height was greater than 

that at a larger height for the same bed depth. This finding was made at a bed depth of seven 

layers where the peak force at 120 mm was greater than at 180 mm.  

0

300

600

900

1200

1500

1800

2100

1 3 5 7

P
ea

k 
fo

rc
e 

(N
)

Number of layers contained in the bed

120 mm

180 mm

240 mm

300 mm



  Chapter 5 

68 
 

5.1.4. Peak force results obtained using the 110 g ball 

The input energies used for breakage tests are shown in Table 4.4 (Section 4.1.4).  

The peak force results are shown in Figure 5.4. Comparison of these results with those 

obtained for the larger balls showed that the peak forces found using the 110 g ball were the 

lowest. At all bed depths, the greatest peak forces were obtained at the two largest input 

energies. Similar findings to those made for tests conducted using the 510 and 261 g balls 

were made where at one layer the highest peak force was found at the largest input energy; 

however statistically similar results were obtained at the two largest input energies at bed 

depths of three, five and seven layers. 

Comparison of the results shown in Figure 5.4 to those for blue stone presented in Figure 4.4 

showed that the peak forces obtained for blue stone were higher than those for UG2 for all 

input energies. This result is synonymous with that obtained for tests conducted using the 

larger steel balls.  

 

Figure 5.4: Peak forces obtained at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 110 g ball 

At the 120 mm drop height, different findings to those made for tests conducted using the 

larger steel balls were made as the peak forces at three and five layers were both greater than 

at one layer. The results obtained at these two bed depths were statistically equal and the 

peak force decreased when the bed depth was increased from five to seven layers.  

For the 180 mm drop height the peak force decreased by 60 % when the number of layers 

was increased from one to three. However, the peak force obtained at five layers was 61 % 

greater than that at three layers. There was a 27 % reduction in peak force when the depth of 

the bed was increased from five to seven layers.  
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At the 240 mm drop height the results at one, three and five layers were statistically similar. 

The peak force decreased by 17 % when the bed depth was increased from five to seven 

layers.   

At 300 mm the peak force decreased by 38 % when the number of layers was increased from 

one to three. Statistically similar peak force results were obtained at bed depths of three and 

five layers. The lowest peak force at this input energy, which was 20 % lower than that at five 

layers, was obtained at seven layers.  

For all the tests conducted, a result in which the peak force increased continuously with 

increasing drop height was found at one layer. This result was not obtained at the larger bed 

depths. Statistically similar peak forces were found at the adjacent drop heights of 240 and 

300 mm for the three largest bed depths. A result in which the peak force at a smaller drop 

height was greater than at a larger height for the same bed depth was found for one test: at a 

bed depth of three layers where the peak force at 120 mm was larger than that at 180 mm.  

 

5.2. Fracture energy results  

The fracture energy results are presented in this section. These results are shown as a 

percentage of the input energy used to cause failure in the specimen for increasing ball mass, 

drop height and bed depth.   

5.2.1. Fracture results obtained using the 510 g steel ball 

The fracture energy results are shown in Figure 5.5. Relative to the input energy, the energy 

utilized for particle fracture was low, with the maximum values ranging between 1.8 and 2.5 

%. For all bed depths the maximum fracture energy was obtained at the two largest drop 

heights. The fracture energy values for these drop heights at one, three and seven layers were 

statistically identical.  
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Figure 5.5: The fracture energy at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 510 g ball 

At the 120 mm drop height the fraction of input energy used for particle fracture was low and 

below 1 % at all bed depths. Statistically similar values were obtained at one and three layers. 

Increasing the number of layers from three to five resulted in a decrease from 0.7 to 0.2 % in 

the amount of energy used for fracture, where this value was the lowest obtained at this drop 

height.  The fracture energy increased slightly to 0.6 % of the input energy when the bed depth 

was increased from five to seven layers.  

At the 180 mm drop height a low fracture energy value of 0.6 % of the input energy was 

obtained at one layer. Statistically identical fracture energy results were obtained at all the 

other bed depths.  

For tests conducted at the 240 mm drop height it was found that the energy used for fracture 

decreased slightly from 1.0 to 0.8 % when the number of layers was increased from one to 

three. The small difference of 0.2 % in the results obtained at these bed depths is negligible 

and suggests that these values were the same. The result at five layers was statistically similar 

to that at one layer and there was an increase to 1.8 % energy used for fracture when the bed 

depth was increased from five to seven layers.  

At 300 mm no specific trend in the results was observed. The energy used for fracture 

decreased from 1.1 to 0.8 % with an increase in the number of layers from one to three; 

however it increased to 2.5 % with increasing bed depth from three to five layers. The fraction 

of energy utilized for fracture decreased to 1.8 % when the bed depth was increased from five 

to seven layers. 
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For all the tests conducted, a result in which statistically similar % input energy used for 

fracture values were obtained at adjacent drop heights was found for tests conducted at 120 

and 180 mm for one and seven layers, and 240 and 300 mm for one, three and seven layers.  

Comparison of the peak forces shown in Figure 5.1 and the % energy used for particle fracture 

presented in Figure 5.5 showed that the maximum peak forces were obtained at one layer 

when a low fraction of the input energy was utilized for particle fracture.  Likewise, the highest 

amount of energy was used for fracture at the largest bed depths of five and seven layers 

when the peak forces were low.  

5.2.2. Fracture energy results obtained using the 357 g ball 

Figure 5.6 shows the fracture energy results. Similar to the results obtained for the 510 g ball, 

the fraction of input energy used for particle fracture was low, with the maximum values 

ranging between 2.0 and 2.7 %.  

The highest % energy used for fracture was obtained at the largest input energy for all bed 

depths, with the maximum value obtained at a bed depth of seven layers. At the lowest bed 

depths, one and three layers, there was only a marginal difference in the amount of energy 

used for fracture at 240 and 300 mm. The difference in the results obtained at these two drop 

heights became more distinct at the largest bed depths of five and seven layers, where higher 

fracture energy values were obtained at 300 mm. 

 

 

Figure 5.6: The fracture energy at various drop heights, represented as a function of the number of layers 

contained in the bed for tests conducted using the 357 g ball 
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For the 120 mm drop height the fracture energy values were low and were all below 1.5 %. 

The fracture energy decreased slightly from 0.7 to 0.4 % with an increment in number of layers 

from one to three, where the small difference of 0.3 % in the results obtained at these bed 

depths suggests that these values were inherently the same. The amount of energy used for 

fracture increased to 0.95 % when the bed depth was increased from three to five layers. 

Increasing the number of layers from five to seven led to a reduction to 0.4 % in the energy 

utilized for fracture.  

At 180 mm statistically similar fracture energy values were obtained at one and three layers. 

There was a marginal increase from 0.6 to 0.7 % energy used for fracture with increasing bed 

depth from three to five layers. The slight difference of 0.1 % in these results is negligible and 

it can be said that these values were the same. The fracture energy results obtained at five 

and seven layers were statistically equal.  

At 240 mm the % fracture energy decreased slightly from 1.1 to 0.6 % when the bed depth 

was increased from one to three and increased to 1.2 % when the number of layers was 

increased from three to five. Statistically identical fracture energy results were obtained at five 

and seven layers.  

For tests conducted at 300 mm the % energy used for fracture decreased slightly from 1.4 to 

0.9 % when the number of layers was increased from one to three. Increasing the bed depth 

from three to seven layers led to an increase to 2.7 % energy used for fracture, where this 

was the maximum value attained at this drop height. 

Comparison of the peak forces shown in Figure 5.2 and the fracture energy results in Figure 

5.6 showed that the maximum peak forces were obtained at one layer when low energies were 

used for particle fracture. The greatest fraction of energy was used for breakage at five and 

seven layers when the peak forces were low. 

   

5.2.3. Fracture energy results obtained using the 261 g ball 

The fracture energy results are shown in Figure 5.7. Similar to the results obtained for the 510 

g and 357 g steel balls, the fracture energy values for this ball were also low, with the maximum 

values ranging between 1.4 and 1.7 %.  

At the largest bed depths of five and seven layers, the highest fracture energy values were 

obtained at the two largest drop heights. However, this result was not observed at one and 

three layers. At these bed depths the difference in the % energy used for fracture at the four 

drop heights was marginal.  
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Figure 5.7: The fracture energy at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 261 g ball 

At the 120 mm drop height the maximum energy used for fracture of 1 % was obtained at one 

layer. This value decreased to 0.3 % with increasing bed depth from one to five layers.  When 

the number of layers was increased from five to seven, the fracture energy increased 

marginally to 0.5 %. The negligible increase in the results at the two largest bed depths 

suggests that these values were the same.  

For the 180 mm drop height the fracture energy results obtained at one and three layers were 

statistically equal. A reduction from 0.6 to 0.3 % energy used for fracture was obtained when 

the number of layers was increased from three to five. The fracture energy increased slightly 

to 0.6 % when the bed depth was increased from five to seven layers.  From the small 

difference of 0.3 % energy used for fracture at the two largest bed depths it can be said that 

these values were in essence the same.  

At 240 mm, statistically identical fracture energy values were obtained at one, three and five 

layers. The % energy used for fracture increased from 0.7 to 1.7 % when the bed depth was 

increased from five to seven layers, where the highest % energy used for fracture at this drop 

height was obtained at the largest bed depth. 

At the 300 mm drop height the % fracture energy decreased from 1.0 to 0.6 % when the bed 

depth was increased from one to three layers. An increase to 1.4 % energy used for fracture 

was obtained when the number of layers was increased from three to five. Increasing the bed 

depth from five to seven layers resulted in a minor decrease to 1.1 % energy used for fracture. 

The small difference of 0.3 % in the results obtained at five and seven layers suggests that 

these values were inherently the same. 
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Statistically similar fracture energy values were generally obtained at the adjacent drop heights 

of 120 and 180 mm. A finding in which the result obtained at a smaller drop height was greater 

than at a larger height was obtained at seven layers, where the fracture energy at 240 mm 

was greater than at 300 mm.  

In comparison of the peak forces shown in Figure 5.3 and % energy used for fracture in Figure 

5.7, observations similar to those found for the 510 g and 357 g balls were made. The 

maximum values of energy used for fracture were obtained at five and seven layers when the 

peak forces were low. 

   

5.2.4. Fracture energy results obtained using the 110 g ball 

 

Figure 5.8 shows the fracture energy results. Comparison of these results to those obtained 

using the larger steel balls showed that these values were the lowest, with the highest values 

ranging between 0.7 and 0.8 %.  

The two highest values of % energy used for fracture, which were found at 240 and 300 mm, 

were obtained at the largest bed depths of five and seven layers. This result is similar to that 

obtained for the same drop heights using the 510 g and 261 g balls. In different findings to the 

results obtained at five and seven layers, at one and three layers the maximum energy used 

for fracture was obtained at the 180 mm drop height. 
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Figure 5.8: The fracture energy at various drop heights, represented as a function of the number of layers 
contained in the bed for tests conducted using the 110 g ball 

At the 120 mm drop height, statistically equal results were obtained at all bed depths and the 

% energy used for fracture was the lowest, with the maximum being 0.15 %.  

At the 180 mm drop height, a similar trend to that observed for some tests conducted using 

the 510 g and 357 g balls was found. The % energy used for fracture decreased from 0.45 to 

0.2 % when the bed depth was increased from one to five layers. Increasing the number of 

layers from five to seven resulted in a slight increase to 0.3 % energy used for fracture. The 

marginal difference of 0.1 % in the fracture energy results obtained at five and seven layers 

suggests that these values were the same.  

For the 240 mm drop height, statistically identical fracture energy results were obtained at one, 

three and five layers. When the bed depth was increased from five to seven layers, the % 

energy used for fracture increased from 0.2 to 0.8 %, resulting in the highest value obtained 

at this drop height.  

At 300 mm the fracture energy values were the lowest at one and three layers, and there was 

an increase from 0.15 to 0.7 % energy used for particle fracture with increasing bed depth 

from three to five layers. This value decreased to 0.3 % when the bed depth was increased 

from five to seven layers. This result is consistent with that found for the 510 g and 261 g balls 

at this drop height, where the maximum energy utilized for breakage was also obtained at five 

layers. 

For all the tests conducted, statistically equal fracture energy values were obtained at the 

adjacent drop heights of 240 and 300 mm at one and three layers. A finding in which the % 

energy used for fracture at smaller drop heights was greater than at larger heights was made 
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for some tests. At one and three layers the 5 energy used for fracture at 180 mm was greater 

than at 240 and 300 mm, and at a bed depth of seven layers the fracture energy at 240 mm 

was larger than at 300 mm.  

In comparison of the peak forces shown in Figure 5.4 and the fracture energy values presented 

in  

Figure 5.8, it was found that the highest fracture energy values were not obtained at the 

greatest peak forces. This finding is synonymous with that found for the larger balls.  

  

5.3. Breakage results  

The breakage results obtained using the different input energies are presented in this section. 

These results are shown as t2 (percentage passing defined in Section 2.6.1) for increasing 

input energy and bed depth. Sample calculations showing the method used to determine the 

degree of breakage are given in Appendix A.  

The relationship between the amount of energy used for particle fracture and the degree of 

breakage obtained is also presented in this chapter.  

 

5.3.1. Justification for using the t2 breakage indicator  

As mentioned in Section 2.6.1, the degree of breakage obtained when breakage tests are 

conducted can be quantified using various breakage indicators such as t2, t4, t10, t50 and t75.  

To select the most suitable breakage indicator, the particle sizes corresponding to the different 

tn parameters were calculated using UG2 particle size of -6.7 + 3.35 mm (Section 2.6.1). These 
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values were then compared with the particle size distributions resulting from breakage tests 

in order to determine which indicator was the most appropriate to use. The different particle 

sizes calculated for the various indicators are shown in Table 5.1.  

Table 5.1: Particle sizes for the various tn parameters 

Breakage indicator tn Particle size (mm) 

t2 2.37 

t4 1.18 

t10 0.47 

t50 0.09 

t75 0.06 

Due to the low input energies used, it was not possible to obtain the particle sizes for the t75, 

t50 and t10 indicators. Therefore, these indicators were not considered. The particle size 

corresponding to the t4 indicator was found to be smaller than the screen with the smallest 

aperture (1.4 mm) used to determine the resultant particle size distributions. As a result, this 

indicator could not be used and the t2 indicator was found to be the most suitable to quantify 

breakage.  

 

5.3.2. Breakage results obtained using the 510 g ball 

The breakage results, given as t2 (% passing) are shown in Figure 5.9.  For all input energies 

the greatest degree of breakage was obtained at one layer of particles, and the maximum 

breakage (27 % passing) was found at the highest input energy. Figure 5.5 in Section 5.2.1 

showed that the highest fraction of input energy was used to cause particle fracture at the 

largest bed depths of five and seven layers; however Figure 5.9 shows that the lowest 

breakage was attained at these bed depths. 
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Figure 5.9: Degree of breakage obtained with increasing input energy and bed depth for tests conducted using 
the 510 g ball 

For tests conducted on one layer of particles, the least breakage of 8.6 % passing was 

obtained at the smallest input energy. Increasing the input energy from 1.7 x 10-7 to 2.5 x 10-

7 kWh resulted in the largest increment, to 20 % passing, in the breakage attained at this bed 

depth. A smaller increase to 24 % passing was obtained with increasing input energy from 2.5 

x 10-7 to 3.3 x 10-7 kWh, and increasing the input energy to the largest value of 4.2 x 10-7 kWh 

resulted in a slight increase to 27 % passing in the breakage obtained.  

Similar findings to those at one layer were made at a bed depth of three layers, where the 

greatest increase in the breakage (1.6 to 5.3 % passing) was obtained when the input energy 

was increased from 1.7 x 10-7 to 2.5 x 10-7 kWh. The breakage obtained at an input energy of 

3.3 x 10-7 kWh was statistically identical to that at 2.5 x 10-7 kWh. For this bed depth the 

greatest breakage of 10 % passing was obtained at the largest input energy.  

At bed depths of five and seven layers minimal breakage was obtained for all input energies, 

as the breakage results obtained were low and below 2.5 % passing. 

For all input energies, the largest decrease in breakage was obtained when the number of 

layers was increased from one to three. At the lowest input energy of 1.7 x 10-7 kWh a 

negligible amount of breakage occurred at three, five and seven layers as the breakage results 

were all below 1 %. At the three largest input energies, increasing the number of layers from 

three to five led to a smaller reduction in the breakage obtained than that observed with 

increasing bed depth from one to three layers. There was a marginal difference in the 

breakage attained when the number of layers was increased from five to seven.  
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Figure 5.10 shows the relationship between the breakage obtained and the fracture energy. 

The relationship between the two parameters is only shown for one and three layers because 

the t2 (% passing) values for bed depths of five and seven layers were too low.  

 

Figure 5.10: The degree of breakage obtained with increasing fracture energy for one and three layers for tests 
conducted using the 510 g ball 

For one layer the lowest breakage of 8.6 % passing was obtained at the lowest fracture energy 

of 0.01 x 10-7 kWh. A slight increase to 0.018 x 10-7 kWh fracture energy resulted in a larger 

increase in the breakage from 8.6 to 20.2 % passing. A further increase in the fracture energy 

to the highest value of 0.043 x 10-7 kWh resulted in a slight increase from 20.2 to 26.9 % 

passing in the breakage obtained. For three layers the lowest breakage of 1.6 % passing was 

also obtained at the lowest fracture energy of 0.01 x 10-7 kWh. A small increase in the fracture 

energy to 0.014 x 10-7 kWh resulted in a slight increase from 1.6 to 5.3 % passing in the 

breakage obtained. A further increase in the fracture energy to the highest value of 0.03 x     

10-7 kWh led to a slight increase from 5.3 to 9.9 % passing in the breakage attained.  

5.3.3. Breakage results obtained using the 357 g ball 

The breakage results are shown in Figure 5.11. For all input energies, the highest breakage 

was obtained at one layer it showed a decreasing trend with increasing number of layers. The 

maximum breakage of 31.7 % passing occurred at the second largest input energy of 2.3 x 

10-7 kWh. This result is different from that obtained for the 510 g ball, where the maximum 

breakage was obtained at the largest input energy. Comparison of the results in Figure 5.11 

to the fracture energy results presented in Figure 5.6 showed that the lowest breakage, found 

at bed depths of five and seven layers, was obtained at the highest fracture energies. This 

result is synonymous to that obtained for the 510 g ball.  
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Figure 5.11: Degree of breakage obtained with increasing input energy and bed depth for tests conducted using 
the 357 g ball 

For one layer of particles the breakage was lowest (7.2 % passing) at the smallest input energy 

of 1.2 x 10-7 kWh. Increasing the input energy to 1.8 x 10-7 kWh resulted in an increase to 17.3 

% passing in the breakage obtained. The largest increase in breakage, from 17.3 to 31.7 % 

passing, was obtained with increasing input energy from 1.8 x 10-7 to 2.3 x 10-7 kWh. At the 

largest input energy the degree of breakage decreased to 25 % passing.  

At a bed depth of three layers there was a marginal difference in the results obtained at the 

two lowest input energies, where the breakage values were low and below 2.6 % passing. 

Increasing the input energy from 1.8 x 10-7 kWh to 2.3 x 10-7 kWh resulted in an increase, from 

2.0 to 7.8 % passing, in the breakage obtained. The breakage increased slightly, to 9.9 % 

passing, when the input energy was increased to 2.9 x 10-7 kWh.  

Similar to the results obtained for the 510 g ball, minimal breakage occurred at five and seven 

layers for all input energies, where the t2 values obtained were below 3 % passing. 

For all input energies the largest reduction in the breakage was obtained with an increase in 

number of layers from one to three. At the two lowest input energies, increasing the bed depth 

from three to seven layers resulted in negligible changes to the results obtained, where the 

breakage was low and below 2 % passing. At the two largest input energies, increasing the 

bed depth from three to five layers resulted in a smaller reduction in the breakage compared 

to that obtained with an increase in layers from one to three. For both input energies, 

increasing the bed depth from five to seven layers resulted in a marginal difference in the 

breakage obtained.   
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Figure 5.12 shows the relationship between the particle fracture energy and the breakage 

obtained for bed depths of one and three layers. Similar to the results obtained using the 510 

g ball, the t2 (% passing) values attained at five and seven layers were too low and have 

therefore not been shown in the figure.  

 

Figure 5.12: The degree of breakage obtained with increasing fracture energy for one and three layers for tests 
conducted using the 357 g ball 

For one layer the lowest breakage of 7.2 % passing was obtained at the lowest fracture energy 

of 0.008 x 10-7 kWh. An increase in the fracture energy to 0.024 x 10-7 kWh resulted in a large 

increase in the breakage from 7.2 to 32 % passing, where this was the highest breakage 

obtained. An increase in the fracture energy to 0.037 x 10-7 kWh led to a reduction from 32 to 

25 % passing in the breakage obtained. For a bed depth of three layers the lowest breakage 

was obtained at the two lowest fracture energy values of 0.006 and 0.008 x 10-7 kWh. A slight 

increase in the fracture energy from 0.008 to 0.014 x 10-7 kWh resulted in a more significant 

increase in the breakage obtained from 1.9 to 7.8 % passing. A further increase in the fracture 

energy from 0.014 to 0.022 x 10-7 kWh did not significantly change the breakage as only a 

small increase from 7.8 to 9.9 % passing was obtained.  

5.3.4. Breakage results obtained using the 261 g ball 

The breakage results are shown in Figure 5.13.  Although the results for one layer had the 

greatest variability, it is clear that the breakage obtained was the highest for all the input 

energies used. In similar findings to those made for the 510 g and 357 g balls, it was observed 

that the breakage decreased with increasing number of layers from one to seven.  

Comparison of the results in Figure 5.13 with the fracture energy results in Figure 5.7 showed 

that the least breakage was obtained at bed depths of five and seven layers when the fracture 
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energy was the greatest. This finding is synonymous with that made for tests conducted using 

the larger balls.  

 

Figure 5.13: Degree of breakage obtained with increasing input energy and bed depth for tests conducted using 
the 261 g ball 

For one layer of particles the least breakage, 8.6 % passing, was obtained at the lowest input 

energy of 0.85 x 10-7 kWh. Increasing the input energy to 1.3 x 10-7 kWh resulted in a breakage 

increase to 13.3 % passing. The results attained at the three largest input energies were 

statistically similar.  

Compared to the results at one layer, for the bed depth of three layers the breakage obtained 

at all input energies was low, below 5 % passing. The least breakage of 2 % passing was 

found at the lowest input energy and it increased slightly to 3.8 % passing with an increase in 

input energy to 1.3 x 10-7 kWh. Statistically equal breakage results were obtained at the three 

largest input energies. 

Increasing the bed depth from three to five layers resulted in low (maximum 1% passing) 

breakage being obtained for all the input energies. A negligible amount of breakage occurred 

with increasing number of layers from five to seven. This result is synonymous with that found 

for both the 510 g and 357 g balls. 

The same trend observed for the 510 and 357 g balls, where the largest reduction in breakage 

was obtained with an increase in bed depth from one to three for all input energies, was found. 

An increase in bed depth from three to five layers resulted in a smaller reduction in the 

breakage obtained. At the two lowest input energies no breakage occurred at both five and 

seven layers.  At the two largest input energies, there was a marginal difference in the 
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breakage obtained at five and seven layers, therefore these values were considered to be the 

same.  

The relationship between the breakage obtained and the fracture energy is shown in Figure 

5.14. This relationship is only shown for one and three layers as the breakage values obtained 

at five and seven layers were too low.  

 

Figure 5.14: The degree of breakage obtained with increasing fracture energy for one and three layers for tests 
conducted using the 261 g ball 

For both one and three layers the lowest breakage was obtained at the lowest fracture 

energies. This result is synonymous with that found for tests conducted using the larger steel 

balls. For one layer, a very small increase in the fracture energy from the lowest value of 0.007 

to 0.008 x 10-7 kWh resulted in a larger increase from 8.6 to 13.3 % passing in the breakage 

obtained. A further increase in the fracture energy from 0.008 x 10-7 kWh to the highest value 

of 0.023 x 10-7 kWh did not change the breakage as statistically identical t2 (% passing) values 

were attained.  For three layers a similar trend to that observed for tests conducted on one 

layer of particles was found. The largest increase in breakage from 2.0 to 3.8 % passing was 

obtained with an increase in fracture energy from the lowest value of 0.003 x 10-7 kWh to the 

second lowest value of 0.008 x 10-7 kWh. A further increase, to the highest value of 0.011 x 

10-7 kWh, in the fracture energy did not result in changes to the breakage as statistically equal 

t2 (% passing) values were obtained.  

5.3.5. Breakage results obtained using the 110 g ball 

The breakage results are shown in Figure 5.15. For all input energies the maximum breakage 

was obtained at one layer, which is the same result found for the larger balls. Also in similar 

findings to those made for the larger balls, it was observed that the breakage obtained 
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decreased with increasing number of layers contained in the bed. Comparison of the results 

shown in Figure 5.15 to the fracture energy results in 

 

Figure 5.8 showed that the lowest breakage was obtained at the largest bed depths when the 

fracture energy was the highest. This is the same finding made for all the larger balls.  

 

Figure 5.15: Degree of breakage obtained with increasing input energy and bed depth for tests conducted using 
the 110 g ball 

Note: At the lowest input energy of 0.36 x 10-7 kWh no breakage was obtained for all the bed 

depths.  

For tests conducted on one layer of particles, breakage of 10.5 % passing was obtained at 

0.53 x 10-7 kWh. Breakage results which were statistically identical to this value were attained 

at the two largest input energies.  
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At three layers the breakage results were low, and were all below 3.5 % passing. A breakage 

result of 1.3 % passing was obtained at 0.53 x 10-7 kWh which was statistically equal to that 

found at 0.72 x 10-7 kWh. The maximum breakage of 3 % passing was obtained at the highest 

input energy of 0.9 x 10-7 kWh.  

At bed depths of five and seven layers a negligible amount of breakage was obtained for all 

input energies. This result is synonymous with that found for the 510 g, 357 g and 261 g balls. 

In similar findings to those made for the larger steel balls, it was found that the greatest 

reduction in breakage was obtained with increasing number of layers from one to three. 

Increasing the bed depth from three to five layers led to a smaller decrease in breakage. There 

was a minimal difference in the breakage obtained at five and seven layers, therefore these 

values were considered to be the same.  

Figure 5.16 shows the relationship between the fracture energy and the breakage obtained 

for one and three layers. Similar to tests conducted using the larger steel balls, the breakage 

values attained at bed depths of five and seen layers were too low; hence they have not been 

shown in the figure.  

 

Figure 5.16: The degree of breakage obtained with increasing fracture energy for one and three layers for tests 
conducted using the 110 g ball 

For both one and three layers no breakage was obtained at the lowest fracture energy values. 

For one layer, an increase in the fracture energy from the lowest value of 0.0004 to 0.0011 x 

10-7 kWh resulted in the largest increase from 0 to 10.5 % passing in the breakage obtained. 

An increase in the fracture energy from 0.0011 x 10-7 kWh to the highest value of 0.0024 x 10-

7 kWh did not result in changes to the breakage, as statistically similar t2 (% passing) values 

were obtained. For a bed depth of three layers an increase in the fracture energy from the 

0

5

10

15

20

25

30

35

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

t 2
(%

 p
as

si
n

g)

Fracture energy (x 10-7 kWh)

1 layer

3 layers



  Chapter 5 

86 
 

lowest value of 0.0004 x 10-7 kWh to a value of 0.0011 x 10-7 kWh led to an increase in 

breakage from 0 to 3.1 % passing, where this value was the highest breakage obtained. A 

further increase in the fracture energy from 0.0011 to 0.0020 x 10-7 kWh resulted in a slight 

decrease in breakage from 3.1 to 1.3 % passing.  
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6. DISCUSSION OF THE RESULTS OBTAINED  

Overview 

The blue stone results presented in Chapter 4 and those for UG2 presented in Chapter 5 are 

discussed in this chapter. The discussion of the results is divided into three sections: The peak 

force results are discussed in Section 6.1, the fracture energy results are discussed in Section 

6.2 and the discussion of the breakage results is done in Section 6.3. 

 

6.1. Discussion of the peak force results  

In this section the effect of varying the three variables: steel ball mass, drop height and bed 

depth of particles on the peak forces obtained is discussed. The linear and exponential fits 

shown in this section were plotted between the steel ball mass, drop height and bed depth 

data points used for experiments. No extrapolation was done for values outside of this range 

as these would have to be determined through experimental work for an accurate reflection.  

 

6.1.1. Effect of increasing the steel ball mass  

From theory, the impact force on a particle sample increases with increasing input energy as 

a result of an increase in the impact velocity (Salman et al., 1995; Thornton et al., 1999; Mishra 

& Thornton, 2001). In Section 2.7.1 it was shown that the input energy is directly related to the 

steel ball mass, therefore it was expected that the peak force would increase with increasing 

steel ball mass from 110 to 510 g.  

In order to determine the most suitable trend line for the data relating the peak force to the 

steel ball mass, two trend lines (linear and exponential) were fit to the data and their goodness 

of fit was compared. The R-squared (R2) parameter, whose values range from 0 to 1, was 

used as an indicator of the goodness of fit, where values closer to 1 were an indication of a 

better fit to the data than those further from 1.  

The linear trend line is in the form y = mx + c; where: 

y: Peak force (N) 

m: Slope of the trend line (N/g) 

x: Steel ball mass (g) 

The exponential trend line is in the form y = mekx; where: 

y: Peak force (N) 

x: Steel ball mass (g) 
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m: Model parameter (constant) 

k: Growth/decay rate (g-1)  

The two trend lines which were compared were fit to the data obtained for tests conducted on 

one layer of particles at the largest drop height of 300 mm for both blue stone and UG2. For 

each ore, the two trend lines, their respective R2 values and equations are shown in Figure 

6.1 and Figure 6.2.  

 

Figure 6.1: Peak force vs steel ball mass data fitted to linear and exponential trend lines for blue stone 

 

 
Figure 6.2: Peak force vs steel ball mass data fitted to linear and exponential trend lines for UG2 
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The R2 values of 0.964 and 0.972 obtained for the linear and exponential trend lines shown in 

Figure 6.1 are both close to unity indicating that both trend lines were a good fit to the blue 

stone data. Similarly, the R2 values of 0.921 and 0.832 obtained for the linear and exponential 

trend lines shown in Figure 6.2 are also both close to one. However, since the difference in R2 

values is more pronounced that that shown in Figure 6.1 it can be said that the linear trend 

line was a better fit to the UG2 data compared to the exponential trend line.  

The residuals of the data presented in Figure 6.1 and Figure 6.2 were plotted against 

increasing steel ball mass in order to assess the linearity of the relationship presented by the 

data. For each ore, the residuals obtained for tests conducted on one layer of particles were 

plotted against the steel ball mass and are shown in Figure 6.3.  

 

Figure 6.3: Residuals obtained for increasing steel ball mass for both blue stone and UG2 

The data plotted in Figure 6.3 shows a random pattern of residuals around the x-axis for both 

ores which indicates that the data is a good fit for a linear model. Therefore, the peak force 

was said to increase linearly with increasing steel ball mass for both blue stone and UG2.  

Figure 6.4 shows the effect of increasing steel ball mass on the peak forces obtained at a 

constant drop height of 300 mm for tests conducted on blue stone. The data is presented with 

increasing bed depth for one, five and nine layers. Figure 6.5 shows the effect of increasing 

steel ball mass on the peak forces obtained at a constant drop height of 300 mm for tests 

conducted on UG2. The data is presented for increasing bed depth for one, three and seven 

layers.  

From the results presented in Section 4.1, Section 5.1, Figure 6.4 and Figure 6.5 it is seen 

that the peak force showed an increasing trend with increasing ball mass for both ores.  
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Figure 6.4: Peak force as a function of the steel ball mass with increasing bed depth for tests conducted on blue 
stone 

 

 

Figure 6.5: Peak force as a function of steel ball mass with increasing bed depth for tests conducted on UG2 

The R2 values shown in Figure 6.4 and Figure 6.5 for each bed depth were close to unity, 

indicating that the experimental data was a close fit to the linear regression lines. The R2 value 

of 0.964 obtained for tests conducted on one layer of blue stone particles (Figure 6.4) indicates 

that 96.4 % of the variation in peak force is predicted by the steel ball mass. Likewise, the R2 

values of 0.866 and 0.997 obtained for five and nine layers indicate that, respectively, 86.6 % 

and 99.7 % of the variation in peak force is dependent on the steel ball mass.  
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Similarly, the R2 values of 0.921, 0.909 and 0.942 obtained for tests conducted at one, three 

and seven layers of UG2 particles (Figure 6.5) indicate that, respectively, 92.1, 90.9 and 94.2 

% of the variation in peak force is predicted by the steel ball mass.  

From the regression line equations given in Figure 6.4 and Figure 6.5 it is seen that the 

regression line for one layer of particles had the largest slope and the steepness of the 

regression lines decreased with increasing bed depth. This indicates that for each steel ball, 

a bed depth of one layer had the greatest impact on the peak force and increasing the bed 

depth resulted in a reduced effect on the peak force obtained.   

Comparison of the peak forces obtained for blue stone (Section 4.1) with those for UG2 

(Section 5.1) showed that the peak force results for blue stone were generally higher than 

those for UG2 for tests conducted using the same steel ball mass. The dissimilarity in peak 

forces obtained for the two ores is due to the differences in elastic constants and hardness of 

each ore (Section 2.6 and Section 3.3.1). 

 

6.1.2. Effect of increasing the drop height  

In Section 6.1.1 it was mentioned that the impact force increases with increasing input energy 

as a result of an increase in the impact velocity (Salman et al., 1995; Thornton et al., 1999; 

Mishra & Thornton, 2001). In Section 2.7.1 it was shown that the input energy is directly related 

to the drop height, therefore the expected outcome was an increase in peak force with 

increasing drop height from 60 to 300 mm. 

A similar procedure to that followed to determine the most suitable trend line relating the peak 

force and steel ball mass (Section 6.1.1) was followed to determine the most suitable trend 

line for the data relating the peak force to the drop height. Linear and exponential trend lines 

were fit to the data and their respective goodness of fit was compared.  

The linear and exponential trend lines which were compared were fit to the data obtained for 

tests conducted on one layer of particles using the largest steel ball mass of 510 g for both 

blue stone and UG2. Figure 6.6 and Figure 6.7 show the two different trend lines, their 

respective R2 values and equations for each ore.  
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Figure 6.6: Peak force vs drop height data fitted to linear and exponential trend lines for blue stone 

 

 

Figure 6.7: Peak force vs drop height data fitted to linear and exponential trend lines for UG2 

The R2 values of 0.869 and 0.855 shown in Figure 6.6 and 0.964 and 0.979 shown in Figure 

6.7 are all close to 1 which indicates that both the linear and exponential trend lines were a 

good fit to the peak force vs drop height data obtained for both blue stone and UG2.  

The residuals of the data presented in Figure 6.6 and Figure 6.7 were plotted against 

increasing drop height in order to evaluate the linearity of the relationship presented by the 

data. For each ore, the residuals obtained for tests conducted on one layer of particles were 

plotted against the drop height and are shown in Figure 6.8.  

Linear fit:
y = 6.9488x + 663.77

R² = 0.8696

Exponential fit:
y = 897.3e0.0039x

R² = 0.8548

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

P
ea

k 
fo

rc
e 

(N
)

Drop height (mm)

Linear fit:
y = 6.9186x + 0.6086

R² = 0.9644

Exponental fit:
y = 499.61e0.0048x

R² = 0.9789

0

500

1000

1500

2000

2500

3000

50 100 150 200 250 300

P
ea

k 
fo

rc
e 

(N
)

Drop height (mm)



  Chapter 6 

93 
 

 

Figure 6.8: Residuals obtained for increasing drop height for both blue stone and UG2 

From Figure 6.8 it is seen that the plotted data shows a random pattern of residuals around 

the x-axis for both ores. This is an indication that the data is a good fit for a linear model; hence 

the peak force and drop height have been described as linearly related.  

Figure 6.9 shows the effect of increasing drop height on the peak forces obtained at a constant 

steel ball mass of 510 g for tests conducted on blue stone. Plots are presented with increasing 

bed depth for one, five and nine layers. Figure 6.10 shows the effect of increasing drop height 

on the peak forces obtained at a constant steel ball mass of 510 g for tests conducted on UG2. 

The data is plotted for increasing bed depth for one, three and seven layers.  

 
Figure 6.9: Peak force as a function of drop height with increasing bed depth for tests conducted on blue stone 
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Figure 6.10: Peak force as a function of drop height with increasing bed depth for tests conducted on UG2 

Figure 6.9 and Figure 6.10 show that the steepest regression lines were obtained when tests 

were conducted on one layer of particles and the slope of the regression lines decreased with 

increasing bed depth. This indicates that for each drop height, a bed depth of one layer had 
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of each ore (Section 2.6 and Section 3.3.1).  
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Linear and exponential trend lines were fitted to the data and were compared in order to 

determine the most suitable trend line relating the peak force to the bed depth. The two 

different trend lines were fitted to the data obtained for tests conducted using the largest steel 

ball mass of 510 g and the highest drop height of 300 mm for both blue stone and UG2. For 

each ore, the two trend lines, their respective R2 values and equations are shown in Figure 

6.11 and Figure 6.12.  

 

Figure 6.11: Peak force vs bed depth data fitted to linear and exponential trend lines for tests conducted on blue 
stone using the 510 g ball and 300 mm drop height 

 

 

Figure 6.12: Peak force vs bed depth data fitted to linear and exponential trend lines for tests conducted on UG2 
using the 510 g ball and 300 mm drop height 
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Figure 6.11 and Figure 6.12 show that show that the peak force decreases with an increase 

in the number of layers contained in the bed. The linear and exponential fits were used to 

highlight the trends for interpolation, rather than for extrapolation. This is because 

extrapolation for the peak force at zero layers would have not have yielded any meaningful 

breakage data for the study. At larger bed depths, the trend suggested by the exponential fit 

shows that the peak force follows an asymptotic decrease towards zero. This result is 

expected but have to would be verified through experiments rather than by extrapolation of 

the plots shown in Figure 6.11 and Figure 6.12. 

From both figures it is seen that the R2 values obtained for both the linear and exponential 

trend lines were close to 1. However, for both ores the R2 values obtained for the exponential 

trend lines were much close to unity than those for the linear trend lines. This indicates that 

although the linear trend lines were a good fit to the data, the exponential trend lines were a 

better fit. Therefore, the peak force and bed depth have been described as having an 

exponential relationship. 

Figure 6.13 and Figure 6.14 show the effect of increasing the bed depth on the peak forces 

obtained for tests conducted on blue stone and UG2. The results are presented for increasing 

steel ball mass for 110, 357 and 510 g at a constant drop height of 300 mm.  

 

  

Figure 6.13: Peak force as a function of bed depth with increasing steel ball mass for tests conducted on blue 
stone 
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Figure 6.14: Peak force as a function of bed depth with increasing steel ball mass for tests conducted on UG2 
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bed (Vervoorn & Austin, 1990; Tavares & King, 1998). 
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6.2.1. Effect of increasing the steel ball mass  

From the UG2 results shown in Section 5.2 it was seen that the energy used for particle 

fracture for all the steel balls was low and below 3 %. Schonert (1996) and Gutsche & 

Fuerstenau (1999) proposed that when stress is applied to a bed of particles, a fraction of the 

input energy is used to rearrange the particles within the bed, resulting in less energy being 

available to cause breakage (Section 2.7.3). This is a contributing factor to the low values of 

energy used to cause fracture for all the steel balls. 

Figure 6.15 shows the effect of increasing the steel ball mass on the fracture energy at a 

constant drop height of 300 mm. The results are presented for increasing number of layers 

contained in the bed.  

 

 
Figure 6.15: Fracture energy as a function of increasing input energy and increasing bed depth for tests 

conducted on UG2 

From Figure 6.15 it is seen that for the different bed depths the results did not show the same 

trend and there was no direct correlation between the % energy utilized for fracture and the 

steel ball mass. This result was unexpected as it was anticipated that an increase in the ball 

mass would result in a greater amount of energy used for particle fracture due to an increasing 

surface area of impact. This finding suggests that there is a more complex relationship at play, 

which is worth investigating in future work.   

The greatest amount of energy used for fracture was generally obtained at the largest input 

energies of 2.9 x 10-7 and 4.2 x 10-7 kWh using the 357 and 510 g balls respectively. For some 
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that can be used for particle fracture regardless of an increase in the magnitude of the input 

energy. 

From Figure 6.15 it is seen that the fracture energy generally increased with increasing steel 

ball mass from 110 - 357 g and increasing bed depth from 3 – 5 layers. A three-dimensional 

(3D) surface plot was used to compare the effect of the steel ball mass and bed depth on the 

fracture energy in the ranges in which increasing these variables resulted in an increase in the 

fracture energy. The surface plot made is presented in Figure 6.16. 

 

 

Figure 6.16: 3D surface plot showing the effect of increasing the steel ball mass and the bed depth on the 
fracture energy for tests conducted at a constant drop height of 300 mm 

From Figure 6.16 it is seen that the plot showed a larger slope for an increase in the number 

of layers contained in the bed compared to an increase in the steel ball mass. This indicates 

that for the range of these two variables considered, the fracture energy was more reliant on 

the number of layers contained in the bed compared to the magnitude of the input energy.  

 

6.2.2. Effect of increasing the drop height  

Figure 6.17 shows the effect of increasing drop height on the energy available for particle 

fracture at a constant steel ball mass of 510 g. The results are presented for increasing bed 

depth.  
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Figure 6.17: Fracture energy as a function of the drop height with increasing bed depth for tests conducted on 
UG2 

Figure 6.17 shows that for the different bed depths, the fracture energy was not directly related 

to the drop height. It was typically found that the fracture energy obtained at a drop height of 

240 mm was greater than or equal to that obtained at 300 mm. As mentioned in Section 6.2.1, 

this indicates that the greatest amount of energy that can be utilized for particle fracture can 

be attained without using the highest input energy. 

From Figure 6.17 it is seen that the fracture energy generally increased with increasing drop 

height from 180 – 240 mm and increasing bed depth from 3 – 5 layers.  A three-dimensional 

(3D) surface plot was used to compare the effect of the drop height and bed depth on the 

fracture energy in the ranges in which increasing these variables resulted in an increase in the 

fracture energy. The surface plot made is presented in Figure 6.18  
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Figure 6.18: 3D surface plot showing the effect of increasing the drop height and the bed depth on the fracture 
energy for tests conducted at a constant steel ball mass of 510 g 

 

From Figure 6.18 it is seen that for both ores, the plots showed a larger slope for increasing 

the number of layers in comparison to increasing the drop height. This confirms the findings 

stated in Section 6.2.1, that for the range of these variables considered, the particle fracture 

energy was more dependent on the bed depth than the input energy. 

 

6.2.3. Effect of increasing the bed depth  

Khanal et al. (2007) proposed that for bed breakage, a greater fraction of the input energy is 

used to reposition particles within the bed as more particles are added, resulting in less energy 

being used to cause fracture (Section 2.7.3). 

From the UG2 results presented in Section 5.2 it was found that the results obtained did not 

show the exact findings made by Khanal et al. (2007). This is because none of the tests 

conducted consistently showed the expected trend which was a continuous decrease in the 

fracture energy with increasing bed depth for the same input energies.  

Figure 6.19 shows the effect of increasing bed depth on the fracture energy at a constant drop 

height of 300 mm for tests conducted on UG2. The results are presented for increasing steel 

ball mass from 110 to 510 g.  
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Figure 6.19: The effect of increasing bed depth on the fracture energy with increasing input energy for tests 
conducted on UG2 

From Figure 6.19 it is seen that the fraction of input energy used for breakage and the bed 

depth were not directly related. The % energy utilized for particle breakage decreased when 

the number of layers was increased from one to three. However, an increase in the fracture 

energy was observed when the bed depth was increased from three to five layers, where the 

maximum fracture energy was typically obtained at this bed depth. This suggests that five 

layers was the optimum bed depth that allowed for the highest amount of energy to be used 

for particle fracture. It is postulated that at lower bed depths the number of layers in the bed 

was too low to absorb a large amount of energy to use for particle fracture; hence a great 

fraction of the input energy was transmitted through the bed and was lost to the surroundings.  

At five layers the increased thickness of the bed allowed for a greater fraction of the input 

energy to be used for breakage instead of being lost to the surroundings.  

Increasing the bed depth from five layers generally resulted in a reduction in the energy used 

for fracture. The decrease in the fracture energy can be attributed to a higher fraction of the 

input energy being used to rearrange the increased number of particles within the bed, 

resulting in less energy being available to cause particle fracture (Khanal et al., 2007).  

In work done by Barrios et al. (2013), breakage tests were conducted on four different 

materials of varying hardness: copper ore, quartz, granulite and limestone, where copper ore 

was the hardest and limestone the softest material tested. For the harder materials: copper 

ore, quartz and granulite it was found that the breakage obtained remained constant or 

reduced when the number of layers contained in the bed was increased. This was due to the 

loss of kinetic energy as a result of the transfer of momentum of the falling ball to the particles 

that were projected away during impact. This in turn caused less energy available to be used 
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for breakage of the particles with an increase in the number of layers in the bed. However, for 

the softest material, limestone, it was found that the breakage increased with an increase in 

the number of layers. This was a result of the stressing energies involved between the falling 

ball and the ejected particles which were high enough to cause breakage as a result of the 

low particle strengths. The results found in this work are consistent with those found by Barrios 

et al. (2013) for copper ore, quartz and granulite, where the energy available for breakage 

decreased with an increase in the bed depth for the hard UG2 ore.  

 

6.3. Discussion of the breakage results  

In this section the breakage results are discussed. The lack of breakage of blue stone particles 

is discussed in Section 6.3.1. The effect of increasing the input energy on the breakage of 

UG2 particles is discussed in Section 6.3.2. The discussion of the effect which varying the bed 

depth had on the breakage attained is given in Section 6.3.3 and the effect of the fracture 

energy on the breakage obtained is presented in Section 6.3.4.  

 

6.3.1. Explanation for the lack of breakage of blue stone particles 

From the blue stone and UG2 results presented in Section 4 and Section 5, it was seen that 

no breakage of blue stone particles occurred; however there was breakage of UG2 particles.  

Figure 6.20 and Figure 6.21 show the Force-time profiles obtained for breakage tests 

conducted using all the steel balls on one layer of blue stone and UG2 particles.  
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Figure 6.20: Force-time profiles obtained for breakage tests conducted on one layer of blue stone particles using 
all the steel balls 

 

 

Figure 6.21: Force-time profiles obtained for breakage tests conducted on one layer of UG2 particles using all the 
steel balls 

From the work done by Tavares & King (2004) it was found that materials with a higher 

modulus of elasticity and stiffness had the shortest impact duration (time taken from the 

beginning to the end of impact). From Figure 6.20 and Figure 6.21 it is seen that for blue stone 

particles the rise time (time taken to reach the peak force) was shorter and the Force-time 

peaks tapered off quickly after the peak force was reached. The impact duration was shorter 

for tests conducted on the stiffer blue stone particles than for tests done on UG2. This finding 

is in line with that made by Tavares & King (2004). The broader Force-time profiles obtained 

for UG2 indicate that the force propagated through the particles for a longer time. As a result, 
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the UG2 particles had more energy available for breakage, whereas the blue stone particles 

had less energy and did not break.   

The peak forces obtained for blue stone were larger than those for UG2, which suggests that 

the UG2 particles yielded at lower fracture forces. The breakage of UG2 at lower fracture 

forces was expected, as UG2 is a softer ore than blue stone (Section 3.3.1). At the input 

energies used, blue stone particles did not break due to the ore’s hardness. Higher input 

energies could not be used to investigate the breakage of blue stone particles as the SILC 

used for experiments only allowed for a maximum ball mass and drop height of 510 g and 300 

mm respectively.   

  

6.3.2. Effect of increasing the input energy on the degree of breakage obtained  

Stamboliadis (2002), Morrison & Cleary (2004) and Shi & Kojovic (2007) found that the 

breakage obtained initially increases with increasing specific input energy; however, as the 

specific input energy is increased further, the breakage reaches a constant value (Section 

2.7.1). Based on the findings made by the researchers, a similar result was expected for the 

tests conducted in this work. 

The UG2 results presented in Section 5.3 showed that the breakage results obtained for the 

tests were low, and were all below 35 % passing. This can be attributed to the low values of 

input energies used, where the maximum input energy was 4.2 x 10-7 kWh.  

Tests conducted at the same bed depth generally showed the trend observed by Stamboliadis 

(2002), Morrison & Cleary (2004) and Shi & Kojovic (2007). It was found that the breakage 

initially increased greatly with increasing input energy; however at larger input energies the 

breakage obtained plateaued towards a constant value. For all tests, the least breakage was 

found at the lowest input energies as expected.  From all the tests conducted, the maximum 

breakage of 31.7 % passing was obtained at one layer of particles using the 357 g ball and 

240 mm drop height. This finding illustrates that it is possible to obtain a greater amount of 

breakage at lower input energies, as the maximum breakage was not obtained at the largest 

input energy.  

A 3D surface plot, shown in Figure 6.22, was used to compare the effect of increasing the 

input energy by varying the steel ball mass compared to the drop height on the breakage 

obtained.  
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Figure 6.22: 3D surface plot showing the effect of increasing the steel ball mass versus the drop height on the 
breakage obtained 

Figure 6.22 shows that the slope for an increase in the steel ball mass was larger than that for 

an increase in the drop height. This illustrates that for the range of these two variables used, 

the steel ball mass had a greater effect on the breakage obtained compared to the drop height. 

6.3.3. Effect of increasing the bed depth on the degree of breakage obtained  

From studies conducted by Schonert (1996) and Barrios et al. (2013) it was found that there 

was a decrease in the breakage obtained with increasing bed depth due to a reducing amount 

of energy per unit mass being available to cause breakage.  

The results presented in Section 5.3 showed that the highest degree of breakage was attained 

at one layer and it decreased with increasing bed depth. These results were in line with the 

findings made by Schonert (1996) and Barrios et al. (2013). A negligible amount of breakage 

was obtained at the largest bed depths of five and seven layers which can be attributed to the 

low input energies used. 

For several tests it was found that the fracture energy was the highest at five and seven layers; 

however the least breakage was obtained at these bed depths. This finding suggests that at 

the largest bed depths a higher fraction of the input energy was required to cause particle 

fracture due to the increased thickness of the bed.  



  Chapter 6 

107 
 

6.3.4. Effect of the fracture energy on the breakage obtained 

From the results presented in Section 5.3 it was observed that the breakage obtained and the 

fracture energy were not directly related.  For each bed depth, the general trend was a large 

increase in the breakage attained with a small increase in the fracture energy at lower fracture 

energy values.  A further increase in the fracture energy led to a negligible change in the 

breakage values obtained. This finding indicates that there is an optimum amount of energy 

required that leads to the greatest breakage, where an in increase in the energy beyond the 

optimum point does not significantly affect the breakage obtained.  
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7. CONCLUSIONS AND RECOMMENDATIONS 

Overview 

This chapter provides the conclusions made from the work done in this study, along with 

recommendations for future work.  

 

7.1. Observations made from experimental work 

The study was aimed at investigating the effect of three variables: steel ball mass, drop height 

and bed depth on the breakage behaviour of particles in partially confined conditions. This 

was done by conducting bed breakage tests on blue stone and UG2 and investigating the 

effect of the three variables on the peak forces obtained, the fracture energy and the degree 

of particle breakage attained. The relationship between the fracture energy and degree of 

breakage was also evaluated.  

It was found that the peak forces for blue stone were larger because it is harder and has a 

larger stiffness compared to UG2. For both ores it was found that the peak force increased 

linearly with increasing steel ball mass and drop height. The drop height was found to have a 

greater effect on the peak force obtained compared to the steel ball mass. For each steel ball 

and drop height, one layer of particles had the greatest impact on the peak force and 

increasing the bed depth resulted in a reduced effect on the peak forces obtained. An 

exponential relationship was found between the peak force and bed depth, where the peak 

force decreased with increasing bed depth.  

It was found that the blue stone particles did not break at the range of input energies used in 

this work, therefore no fracture energy results were reported for blue stone. The fracture 

energy values for UG2 were low, where for all tests conducted the maximum energy used for 

particle fracture was 2.7 % of the input energy. It was found that the greatest amount of energy 

used for fracture was generally obtained at the largest input energies using the 357 and 510 

g balls. In some cases it was found that the fracture energy obtained using the 357 ball was 

greater than or equal to that obtained using the 510 g ball, suggesting that there is a maximum 

amount of energy that can be used for particle fracture regardless of an increase in the 

magnitude of the input energy. 

It was found that the optimum drop height which resulted in the highest fracture energy was 

generally either 240 or 300 mm. The fracture energy obtained at 240 mm was generally equal 

to or greater than that obtained at the maximum drop height of 300 mm, also indicating that 
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the greatest amount of energy that can be utilized for particle fracture can be attained without 

using the highest input energy 

The experimental results showed that the fracture energy and the bed depth were not directly 

related. A bed depth of five layers was found to be the optimum bed depth that allowed for the 

highest fraction of input energy to be utilized for fracture. Increasing the bed depth from five 

layers generally resulted in a reduction in the fracture energy. It was found that the bed depth 

had a larger effect on the fracture energy compared to both the steel ball mass and drop 

height.  

For the tests conducted, the degree of breakage was quantified using the t2 parameter. At the 

range of input energies used to conduct breakage tests, no breakage results were obtained 

for blue stone due to the hardness and stiffness of the ore. For UG2, tests conducted at the 

same bed depth showed a trend in which the breakage initially increased greatly with 

increasing input energy; however at larger input energies the breakage obtained approached 

a constant value. Although the input energy was varied by changing both the steel ball mass 

and the drop height, the results showed that the degree of breakage was more dependent on 

the steel ball mass compared to the drop height.  For all tests conducted, the maximum 

breakage was obtained at one layer of particles and increasing the bed depth led to a decrease 

in the breakage obtained.  The results showed that the fracture energy and the degree of 

breakage were not directly related. It was found that there is an optimum amount of energy 

utilized for particle fracture that leads to the greatest breakage, where an in increase in the 

energy beyond the optimum point does not significantly affect the breakage obtained.  

 

7.2. Conclusions 

Based on the objectives and hypotheses of the study, the following conclusions were made: 

 The peak force is linearly related to the steel ball mass and drop height (and therefore 

the input energy) where increasing each of these variables resulted in an increase in 

the peak force. An exponential relationship was found between the peak force and bed 

depth, where the peak force decreased with increasing bed depth.  

 

 There is no direct correlation between the fracture energy and the steel ball mass and 

drop height (and therefore the input energy). There is also no direct correlation 

between the fracture energy and the particle bed depth. The greatest amount of energy 

utilized for breakage was generally obtained at the largest input energies using the 357 

and 510 g balls. The optimum drop height which resulted in the highest amount of 
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energy used for breakage was generally found to be either 240 or 300 mm. A bed 

depth of five layers was found to be the optimum bed depth that allowed for the highest 

amount of energy to be used for breakage. 

 
 The degree of breakage initially increases with increasing input energy (dependent on 

the steel ball mass and the drop height) however at larger input energies the breakage 

obtained approached a constant value. The maximum breakage was obtained at one 

layer of particles and increasing the bed depth led to a decrease in the breakage 

obtained. 

 

 The degree of breakage obtained is not directly related to the fracture energy. It was 

found that there was an optimum amount of energy used for particle fracture that led 

to the greatest breakage, where an in increase in the energy beyond the optimum point 

did not significantly affect the breakage obtained.  

 

This work was done to test the two hypotheses presented in Section 2.9. The first hypothesis 

put forward was found to be true as it was shown that the bed depth has a greater effect on 

the proportion of input energy used for fracture compared to both the steel ball mass and drop 

height. This indicates that the energy used for fracture is more dependent on the thickness of 

the bed compared to the input energy.  

The second hypothesis put forward was also proven to be true as it was shown that although 

the input energy is dependent on both the steel ball mass and the drop height, the steel ball 

mass has a greater effect on the breakage obtained compared to the drop height. This is 

because the steel ball affects the contact surface area for balls of the same material density, 

where increasing the ball mass exposes more particles to impact, resulting in higher breakage. 

 

7.3. Recommendations for future work 

Several limitations prevented some investigations from being carried out. Firstly, it was not 

possible to quantify the amount of force that was transmitted through each layer in the bed 

and the breakage that occurred in each respective layer. Also, the maximum input energy 

used for tests was found at a ball mass of 510 g and 300 mm as the Short Impact Load Cell 

did not allow for ball masses and drop heights larger than these to be used. As a result of the 

low input energies used, the blue stone particles did not break due to the ore’s hardness. 

In light of the findings made in the study, the following recommendations for further studies 

are made:  
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 Numerical methods such as Discrete Element Method (DEM) simulations should be 

employed to quantify the distribution of the applied force across the bed of particles. 

The Discrete Element Method is a technique used to model the behaviour of discrete 

interacting bodies (Agrawala et al., 1997). Discrete element simulations have been 

used by a number of researchers to get an in-depth understanding of the breakage 

behaviour of particles (Cleary, 1998; Mishra, 2003; Khanal et al, 2004; Antonyuk et al., 

2006) 

 

 DEM simulations should be used to evaluate the amount of breakage which occurs in 

each layer of particles contained in the bed 

 
 For a more rigorous SILC calibration procedure, a more detailed methodology such as 

removing the instrumented bar and calibrating it on a different test bed can be used 

 

 Due to the low input energies that the Short Impact Load Cell allows for, an ore softer 

than blue stone (such as another platinum bearing ore) should be used to conduct 

tests in order to obtain breakage results 

 
 A full energy balance of the system should be determined for better accuracy in 

isolating the energy used for fracture from that lost to other forms such as friction, 

kinetic energy and the energy lost by the rebound velocity of the ball  

 

 To further investigate the breakage behaviour of various ores, future work should 

consider the effect of ore type, hardness and toughness 

 
 A larger impact load cell that can accommodate larger beds should be used for 

experiments to compare the results obtained in this work to those attained with larger 

particle beds 

 

 



  Chapter 8 

112 
 

8. REFERENCES 

Agrawala, S., Rajamani, R., Songfack, P. & Mishra, B. 1997. Mechanics of media motion in 
tumbling mills with 3D discrete element method. Minerals Engineering. 10(2):215-227. 

Al-Mousawi, M., Reid, S. & Deans, W. 1997. The use of the split Hopkinson pressure bar 
techniques in high strain rate materials testing. Proceedings of the Institution of 
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 211(4):273-
292. 

Anderson, T.L. 2005. Fracture mechanics: fundamentals and applications. CRC press. 

Antonyuk, S., Khanal, M., Tomas, J., Heinrich, S. & Mörl, L. 2006. Impact breakage of 
spherical granules: experimental study and DEM simulation. Chemical Engineering and 
Processing: Process Intensification. 45(10):838-856. 

Austin, L.G. 2002. A treatment of impact breakage of particles. Powder 
Technology. 126(1):85-90. 

Barrios, G.K., de Carvalho, R.M. & Tavares, L.M. 2011. Modeling breakage of monodispersed 
particles in unconfined beds. Minerals Engineering. 24(3):308-318. 

Barrios, G.K., de Carvalho, R.M. & Tavares, L.M. 2013. Breakage of Particles by Impact in 
Unconfined Beds with Multiple Layers. Proceedings of the 13th European Symposium on 
Comminution & Classification. 9-12 September 2013, Braunschweig, Germany. 

Bbosa, L., Powell, M. & Cloete, T. 2006. An investigation of impact breakage of rocks using 
the split Hopkinson pressure bar. Journal of the South African Institute of Mining and 
Metallurgy. 106(4):291-296. 

Bbosa, L.S. 2007. Measurement of impact breakage properties of ore particles using a series 
of devices. MSc thesis. University of Cape Town. 

Bernotat, S. & Schönert, K. 1988. Size reduction. Ullmann's Encyclopedia of Industrial 
Chemistry. 

Bond, F.C. 1952. The third theory of comminution. AIME Transactions. 193: 484-494. 

Bourgeois, F. & Banini, G. 2002. A portable load cell for in-situ ore impact breakage 
testing. International Journal of Mineral Processing. 65(1):31-54. 

Broek, D. 1986. Elementary engineering fracture mechanics. Springer. 

Brown, G., Miles, N. & Jones, T. 1996. A fractal description of the progeny of single impact 
single particle breakage. Minerals Engineering. 9(7):715-726. 

Brown, G. & Reddish, D. 1997. Experimental relations between rock fracture toughness and 
density. International Journal of Rock Mechanics and Mining Sciences. 34(1):153-155. 

Chaboche, J. 1988. Continuum damage mechanics: Part II—Damage growth, crack initiation, 
and crack growth. Journal of Applied Mechanics. 55(1):65-72. 



  Chapter 8 

113 
 

Cleary, P.W. 1998. Predicting charge motion, power draw, segregation and wear in ball mills 
using discrete element methods. Minerals Engineering. 11(11):1061-1080. 

Courtney, T.H. 2005. Mechanical behavior of materials. Waveland Press. 

Cramer, L.A. 2001. The extractive metallurgy of South Africa’s platinum ores. Jom. 53(10):14-
18. 

Dai, F., Huang, S., Xia, K. & Tan, Z. 2010. Some fundamental issues in dynamic compression 
and tension tests of rocks using split Hopkinson pressure bar. Rock Mechanics and Rock 
Engineering. 43(6):657-666. 

Darling, P. 2011. SME mining engineering handbook. SME. 

Erdogan, F. 2000. Fracture mechanics. International journal of solids and structures. 37(1-
2):171-183.  

Frew, D., Forrestal, M.J. & Chen, W. 2001. A split Hopkinson pressure bar technique to 
determine compressive stress-strain data for rock materials. Experimental 
Mechanics. 41(1):40-46. 

Fuerstenau, D. & Abouzeid, A. 2002. The energy efficiency of ball milling in 
comminution. International Journal of Mineral Processing. 67(1):161-185. 

Fuerstenau, D., Lutch, J. & De, A. 1999. The effect of ball size on the energy efficiency of 
hybrid high-pressure roll mill/ball mill grinding. Powder Technology. 105(1):199-204. 

Gama, B.A., Lopatnikov, S.L. & Gillespie, J.W. 2004. Hopkinson bar experimental technique: 
a critical review. Applied Mechanics Reviews. 57(4):223-250. 

Genc, O., Ergon, L. & Benzer, H. 2004. Single particle impact breakage characterization of 
materials by drop weight testing. Fizykochemiczne Problemy 
Mineralurgii/Physicochemical Problems of Mineral Processing. (38):241-255. 

Gray III, G. & Blumenthal, W.R. 2000. Split-Hopkinson pressure bar testing of soft 
materials. ASM Handbook. 8:488-496. 

Gupta, C.K. & Suri, A. 1993. Extractive metallurgy of niobium. CRC press. 

Gutsche, O. & Fuerstenau, D. 1999. Fracture kinetics of particle bed comminution—
ramifications for fines production and mill optimization. Powder Technology. 105(1):113-
118. 

Harrison, J.P. & Hudson, J.A. 2000. Engineering rock mechanics-an introduction to the 
principles. Elsevier. 

Hogg, R. 1999. Breakage mechanisms and mill performance in ultrafine grinding. Powder 
Technology. 105(1):135-140. 

Jaeger, J.C., Cook, N.G. & Zimmerman, R. 2009. Fundamentals of rock mechanics. John 
Wiley & Sons. 

 



  Chapter 8 

114 
 

JKTech. n.d. Laboratory Services: JK Drop weight test. Machine manual. Available: 

http://www.jktech.com.au/sites/default/files/brochures/LabServices_DWTest_Indetail.pdf 
[2015, April 30]  

Johnson, K. L. 1987. Contact Mechanics. Cambridge University Press. 

Kachanov, L. 1986. Introduction to continuum damage mechanics. Springer. 

Kapur, P., Pande, D. & Fuerstenau, D. 1997. Analysis of single-particle breakage by impact 
grinding. International Journal of Mineral Processing. 49(3):223-236. 

Kawatra, S.K. 2006. Advances in comminution. SME. 

Khanal, M., Schubert, W. & Tomas, J. 2004. Ball impact and crack propagation–simulations 
of particle compound material. Granular Matter. 5(4):177-184. 

Khanal, M., Schubert, W. & Tomas, J. 2007. Discrete element method simulation of bed 
comminution. Minerals Engineering. 20(2):179-187. 

King, R.P. & Bourgeois, F. 1993. Measurement of fracture energy during single-particle 
fracture. Minerals Engineering. 6(4):353-367. 

Kojovic, T., Shi, F.N., Larbi-Bram, S. & Manlapig, E. 2010. Validation of the JKMRC rotary 
breakage tester (JKRBT) ore breakage characterisation device. International Mineral 
Processing Congress 2010. Australasian Institute of Mining and Metallurgy. 901. 

Kolsky, H., 1949. An investigation of the mechanical properties of materials at very high rates 
of loading. Proceedings of the Physical Society. Section B, 62(11): 676. 

Krajcinovic, D. & Mastilovic, S. 1995. Some fundamental issues of damage 
mechanics. Mechanics of Materials. 21(3):217-230. 

Landis, E.N. 1999. Micro–macro fracture relationships and acoustic emissions in 
concrete. Construction and Building Materials. 13(1):65-72. 

Larbi-Bram, S. 2009. A Study of Ore Breakage Characterization for AG/SAG Mill Modelling. 
PhD thesis. University of Queensland.  

Lynch, A.J. & Rowland, C.A. 2005. The history of grinding. SME. 

McLaren, C.H. & De Villiers, J.P. 1982. The platinum-group chemistry and mineralogy of the 
UG-2 chromitite layer of the Bushveld Complex. Economic Geology. 77(6):1348-1366. 

Mishra, B. 2003. A review of computer simulation of tumbling mills by the discrete element 
method: part I—contact mechanics. International Journal of Mineral 
Processing. 71(1):73-93. 

Mishra, B. & Rajamani, R.K. 1992. The discrete element method for the simulation of ball 
mills. Applied Mathematical Modelling. 16(11):598-604. 

Mishra, B. & Thornton, C. 2001. Impact breakage of particle agglomerates. International 
Journal of Mineral Processing. 61(4):225-239. 



  Chapter 8 

115 
 

Moothedath, S.K. & Ahluwalia, S. 1992. Mechanism of action of grinding aids in 
comminution. Powder Technology. 71(3):229-237. 

Morrell, S. 2015. Global trends in ore hardness. Proceedings of the 6th International 
Conference on Semi-Autogenous and High Pressure Grinding Technology. 20–24 
September 2015, Vancouver, British Columbia, Canada.    

Morrison, R. & Cleary, P. 2004. Using DEM to model ore breakage within a pilot scale SAG 
mill. Minerals Engineering. 17(11):1117-1124. 

Napier-Munn, T.J., Morrell, S., Morrison, R.D. & Kojovic, T. 1996. Mineral comminution 
circuits: their operation and optimisation. Julius Kruttschnitt Mineral Research Centre, 
University of Queensland. 

Narayanan, S. 1987. Modelling the performance of industrial ball mills using single particle 
breakage data. International Journal of Mineral Processing. 20(3):211-228. 

Narayanan, S. & Whiten, W. 1988. Determination of comminution characteristics from single-
particle breakage tests and its application to ball-mill scale-up. Transactions of the 
Institution of Mining and Metallurgy Section c-Mineral Processing and Extractive 
Metallurgy. 97:C115-C124. 

Nguyen, A., Husemann, K. & Oettel, W. 2002. Comminution behaviour of an unconfined 
particle bed. Minerals Engineering. 15(1):65-74. 

Nikolov, S. 2004. Modelling and simulation of particle breakage in impact 
crushers. International Journal of Mineral Processing. 74:S219-S225. 

Oettel, W. & Husemann, K. 2004. The effect of a grinding aid on comminution of fine limestone 
particle beds with single compressive load. International Journal of Mineral 
Processing. 74:S239-S248. 

Ozkahraman, H. 2005. A meaningful expression between bond work index, grindability index 
and friability value. Minerals Engineering. 18(10):1057-1059. 

Pauw, O. & Maré, M. 1988. The determination of optimum impact-breakage routes for an 
ore. Powder Technology. 54(1):3-13. 

Pharr, G., Oliver, W. & Brotzen, F. 1992. On the generality of the relationship among contact 
stiffness, contact area, and elastic modulus during indentation. Journal of Materials 
Research. 7(03):613-617. 

Potapov, A.V. & Campbell, C.S. 2001. Parametric dependence of particle breakage 
mechanisms. Powder Technology. 120(3):164-174. 

Prokajcic, Z. 2008. Energy efficient comminution circuits-A modified grinding strategy and the 
selection of a target product size. Proceedings of the 2nd annual Centre for Sustainable 
Resource Processing conference 18-19 November 2008. Brisbane, Queensland.  

Radziszewski, P. 2000. Developing an experimental procedure for charge media wear 
prediction. Minerals Engineering. 13(8):949-961. 



  Chapter 8 

116 
 

Ramesh, K. & Narasimhan, S. 1996. Finite deformations and the dynamic measurement of 
radial strains in compression Kolsky bar experiments. International Journal of Solids and 
Structures. 33(25):3723-3738. 

Rocco, C., Guinea, G., Planas, J. & Elices, M. 1999. Size effect and boundary conditions in 
the Brazilian test: theoretical analysis. Materials and Structures. 32(6):437-444. 

Runge, K., Tabosa, E. & Jankovic, A. 2013. Particle Size Distribution Effects that Should be 
Considered when Performing Flotation Geometallurgical Testing. GeoMet 2013: The 
Second AusIMM International Geometallurgy Conference. The Australasian Institute of 
Mining and Metallurgy (AusIMM). 335. 

Sadrai, S., Meech, J., Ghomshei, M., Sassani, F. & Tromans, D. 2006. Influence of impact 
velocity on fragmentation and the energy efficiency of comminution. International Journal 
of Impact Engineering. 33(1):723-734. 

Salman, A., Gorham, D. & Verba, A. 1995. A study of solid particle failure under normal and 
oblique impact. Wear. 186:92-98. 

Salman, A.D., Ghadiri, M. & Hounslow, M. 2007. Particle breakage. Elsevier. 

Schönert, K. 1991. Advances in comminution fundamentals and impacts on 
technology. Aufbereitungs-Technik. 32(9):487-494. 

Schönert, K. 1996. The influence of particle bed configurations and confinements on particle 
breakage. International Journal of Mineral Processing. 44:1-16. 

Schouwstra, R., Kinloch, E. & Lee, C. 2000. A short geological review of the Bushveld 
Complex. Platinum Metals Review. 44(1):33-39. 

Schultz, R. 1995. Limits on strength and deformation properties of jointed basaltic rock 
masses. Rock Mechanics and Rock Engineering. 28(1):1-15. 

Shi, F. & Kojovic, T. 2007. Validation of a model for impact breakage incorporating particle 
size effect. International Journal of Mineral Processing. 82(3):156-163. 

Shi, F., Kojovic, T., Larbi-Bram, S. & Manlapig, E. 2009. Development of a rapid particle 
breakage characterisation device–The JKRBT. Minerals Engineering. 22(7):602-612. 

Sikong, L., Hashimoto, H. & Yashima, S. 1990. Breakage behavior of fine particles of brittle 
minerals and coals. Powder Technology. 61(1):51-57. 

SILC Data Acquisition Module- Operation and Design. 2002. Machine manual. 409: 6-14. 

Published by De Beers. 

Singh, N., Urcan, H., Naidoo, K., Ryder, J., Watson, B., Milev, A. & Roberts, M. 2005. The 
influence of pillars on the Merensky Reef horizon on stoping operations on the underlying 
UG2 Reef horizon. Journal-South African Institute of Mining and Metallurgy. 105(6):427 

Song, B. & Chen, W. 2005. Split Hopkinson pressure bar techniques for characterizing soft 
materials. Latin American Journal of Solids and Structures. 2(2):113-152. 



  Chapter 8 

117 
 

Stamboliadis, E.T. 2002. A contribution to the relationship of energy and particle size in the 
comminution of brittle particulate materials. Minerals Engineering. 15(10):707-713. 

Tang, C., Xu, X., Kou, S., Lindqvist, P. & Liu, H. 2001. Numerical investigation of particle 
breakage as applied to mechanical crushing—Part I: Single-particle 
breakage. International Journal of Rock Mechanics and Mining Sciences. 38(8):1147-
1162. 

Tavares, L. 1999. Energy absorbed in breakage of single particles in drop weight 
testing. Minerals Engineering. 12(1):43-50. 

Tavares, L. & King, R. 1998. Single-particle fracture under impact loading. International 
Journal of Mineral Processing. 54(1):1-28. 

Tavares, L. & King, R. 2004. Measurement of the load–deformation response from impact-
breakage of particles. International Journal of Mineral Processing. 74:S267-S277. 

Tavares, L.M. 2007. Breakage of single particles: quasi-static. Handbook of Powder 
Technology. 12:3-68. 

Thornton, C., Ciomocos, M. & Adams, M. 1999. Numerical simulations of agglomerate impact 
breakage. Powder Technology. 105(1):74-82. 

Towler, G.P. & Sinnott, R.K. 2013. Chemical engineering design: principles, practice, and 
economics of plant and process design. Elsevier. 

Tromans, D. 2008. Mineral comminution: energy efficiency considerations. Minerals 
Engineering. 21(8):613-620. 

Vervoorn, P. & Austin, L. 1990. The analysis of repeated breakage events as an equivalent 
rate process. Powder Technology. 63(2):141-147 

Wang, E., Shi, F. & Manlapig, E. 2011. Pre-weakening of mineral ores by high voltage 
pulses. Minerals Engineering. 24(5):455-462. 

Wang, L. 2011. Foundations of stress waves. Elsevier. 

Weedon, D. & Wilson, F. 2000. Modelling iron ore degradation using a twin pendulum 
breakage device. International Journal of Mineral Processing. 59(3):195-213. 

Wills, B.A. 2011. Wills' mineral processing technology: an introduction to the practical aspects 
of ore treatment and mineral recovery. Butterworth-Heinemann. 

Young, W.C. & Budynas, R.G. 2002. Roark's formulas for stress and strain. McGraw-Hill New 
York. 

 

 

.



 

118 
 

9. APPENDICES 

 

10.1 Appendix A: Sample calculations 

 

10.2 Appendix B: Voltage-time signals obtained for SILC calibration 

 

10.3 Appendix C: Experimental values used to conduct breakage tests on blue stone 

 

10.4 Appendix D: Experimental values used to conduct bed breakage tests on UG2 

 

10.5 Appendix E: Particle size distributions obtained for tests conducted on UG2 

 

 

 
 



 

119 
 

9.1. Appendix A: Sample calculations 

 

9.1.1. Determination of the experimental and theoretical calibration factors 

 

A. Calculation of the experimental calibration factor 

Sample calculations are based on the largest steel ball of 510 g released from the greatest 

height of 300 mm. 

Values used to calculate the experimental calibration factor 

Steel ball mass (g) 510 

Drop height (mm) 300 

Ball diameter (mm) 50.0 

Rod diameter (mm) 20.0 

Acceleration due to gravity (m/s2) 9.81 

Rod density (kg/m3) 7820 

Rod length (m) 1.50 

 

The velocity of the steel ball is determined from conservation of mechanical energy: 

mgh0  =  
1

2
mvb

2                    

Where: 

m: Mass of the steel ball (kg) 

g:  Acceleration due to gravity (m/s2) 

h0:  Initial height of the steel ball before it released (m) 

vb: Velocity of the steel ball just before impact (m/s) 

Therefore, vball = √2gh = 2.43 m/s 

The velocity of the rod upon impact is found by elastic contact theory and is given by:  

𝑣𝑟𝑜𝑑 = 𝑣𝑏𝑎𝑙𝑙 (
𝐴𝑏𝑎𝑙𝑙

𝐴𝑏𝑎𝑙𝑙+ 𝐴𝑟𝑜𝑑
)  

Where: 

Vrod: Rod velocity (m/s) 

Vb: Ball velocity (m/s) 

Aball: Effective area of the ball (m2)  

Arod: Cross-sectional area of the rod (m2) 
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Note: Aball is calculated as 10% of the ball’s surface area.  

Aball = 10 % ×  
π×ball diameter2

4
 = 0.0002 m2 

Arod = π × rod diameter2

4
  = 0.0003 m2 

Then vrod = 0.93 m/s 

One dimensional stress wave theory is used to evaluate the stress applied to the steel rod:  

σ = Cvrodρ 

Where: 

σ: Stress applied to the steel rod (N/m2) 

C: Pulse speed (m/s) 

Vrod: Rod velocity (m/s) 

ρ: Steel rod density (kg/m3) 

The pulse speed through the rod, C,  is determined as: 

C = 2×𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑜𝑑

𝑝𝑢𝑙𝑠𝑒 𝑡𝑖𝑚𝑒
  

C = 2 𝑥 1.5

317𝜇𝑠
 = 9464 m/s 

Then σ = 9464 m/s x 0.93 m/s x 7814.5 kg/m3 

 = 69.0 MPa 

The calibration factor is given as a ratio of the stress per unit voltage and is determined as: 

K = σ

Vavg
 = 69.0

1.8
  

Therefore experimental calibration factor K = 38.2 MPa/V 

Note: An average value of the calibration factors determined at the four drop heights was used 

for calculations. The calibration constants found for the 120, 180 and 240 mm drop heights 

are shown in the table below.  

Calibration constants obtained at the 120, 180 and 240 mm drop heights 

Drop height (mm) Calibration constant 

120 36.94 

180 36.93 

240 37.58 
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B. Calculation of the theoretical calibration factor 

Values of the parameters used to calculate the theoretical calibration factor 

Parameter Value 

Young’s modulus 2.11 x 1011 

Amplifier gain 1000 

Bridge factor 2.0 

Bridge excitation voltage  5.0 

Gauge factor 2.0 

 

The theoretical calibration constant is given by:  

𝐾𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =  
4𝐸

𝐴𝐵𝑣𝐹
               

Where: 

E: Young’s modulus of the rod 

A: Amplifier gain 

B: Bridge factor 

V: Bridge excitation voltage  

F: Gauge factor 

Therefore theoretical calibration factor Ktheoretical = 40.4 MPa/V 

 

9.1.2. Determination of the peak force obtained for a breakage test 

For a breakage test, the stress applied to the steel rod corresponding to each voltage recorded 

during the breakage event is determined as: 

σ = KV 

Where: 

σ: Stress applied to the steel rod (N/m2) 

K: Calibration constant used to relate the measured voltage to the stress (N/Vm2) 

V: Measured voltage (V) 

 

The force applied to the bed of particles for each voltage recorded is determined using the 

stress as follows: 
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F =  σArod               

Where: 

F: Force applied to the particle sample (N) 

σ: Stress applied to the steel rod (N/m2) 

Arod: Cross sectional area of the steel rod (m2) 

 

The peak force is determined as the maximum force obtained from the breakage event. A 

force-time curve obtained using the 510 g ball released from a height of 300 mm onto one 

layer of blue stone particles is shown in the figure below. The peak force of approximately 

2300 N is indicated by the dotted line.   

 

Peak force obtained for breakage test conducted on one layer of blue stone particles at the greatest input energy 

 

9.1.3. Determination of the energy particle fracture energy for a breakage test 

To evaluate the strain energy on the rod, the work done in discrete time steps is accumulated 

to give the squared integral of the wave. By conservation of energy, the fracture energy (strain 

energy absorbed by the particle up to the point of failure) is assumed to be equal to the strain 

energy on the rod when the breakage event occurs. The strain energy transferred to the rod 

is calculation as:  
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Estrain =  ∑ (
(

σ(tn+1)+σ(tn)

2
)

2
(tn+1− tn)(Arod)

Cρ
)

tfinal
t0                 

Where: 

t0: Initial contact time between falling ball and SILC steel rod (s) 

tfinal:  Time at which particle fracture occurs (s) 

σ: Stress applied to the rod (N/m2) 

tn+1: Final time recorded for each time step (s) 

tn: Initial time recorded for each time step (s) 

Arod: Surface area of the rod (m2) 

C: Pulse speed through the rod (m/s) 

ρ: Density of the rod (kg/m3) 

The particle fracture energy is determined from accumulating the strain energy in discrete time 

steps from the instant when the breakage event is initially recorded to the instant of particle 

fracture.  

 

9.1.4. Determination of the degree of breakage obtained for tests conducted on 

UG2 

The particle size distributions obtained from screening the sample collected when a breakage 

test was conducted were used to determine the t2 breakage indicator which was used to 

quantify the degree of breakage obtained.  

t2-size = 1

2
√6.7 x 3.35  mm 

t2-size = 2.37 mm  

To determine the t2 % passing, given as the percentage of the material passing through a 

screen of aperture size 2.37 mm, interpolation between the screen sizes of 2 and 2.8 mm was 

done. Sample calculations are shown for the breakage test conducted on one layer of UG2 

particles using the largest input energy: 

% material passing through the 2.8 mm screen: 30.79 % 

% material passing through the 2 mm screen: 23.84 % 

% material passing 2.37 mm = 30.79 % + 2.37−2 mm

2.8−2 mm
 (23.84 % - 30.79 %) 

∴ t2 (% passing) = 27.5 % 
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9.2. Appendix B: Voltage-time signals obtained for SILC calibration 

 

 

Plot of three steel-on-steel calibration tests conducted for the 510 g ball dropped at a height of 240 mm 

 

 

Plot of three steel-on-steel calibration tests conducted for the 510 g ball dropped at a height of 180 mm 
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Plot of three steel-on-steel calibration tests conducted for the 510 g ball dropped at a height of 120 mm 

 

 

 

 

 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

25000 25500 26000 26500

V
o

lt
ag

e
 (

V
)

Time (microseconds)

Calibration Test 1

Calibration Test 2

Calibration Test 3



 

126 
 

9.3. Appendix C: Experimental values for breakage tests on blue stone 

9.3.1. Breakage tests conducted on blue stone using the 510 g ball 

Run 1 of tests conducted on blue stone using the 510 g ball 

Test number Drop height (mm) Bed depth (layers of particles) 
Sample 
mass (g) 

1 60 1 2.0 
2 60 3 5.3 
3 60 5 10.0 
4 60 7 12.6 
5 60 9 16.9 
6 120 1 1.7 
7 120 3 5.6 
8 120 5 11.9 
9 120 7 15.5 
10 120 9 18.5 
11 180 1 2.6 
12 180 3 6.2 
13 180 5 10.9 
14 180 7 15.0 
15 180 9 17.9 
16 240 1 2.1 
17 240 3 5.9 
18 240 5 12.6 
19 240 7 13.6 
20 240 9 18.0 
21 300 1 2.0 
22 300 3 6.1 
23 300 5 11.8 
24 300 7 15.0 
25 300 9 17.1 
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Repeat 1 of tests conducted on blue stone using the 510 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

1 R1 60 1 1.8 
2 R1 60 3 5.6 
3 R1 60 5 9.8 
4 R1 60 7 13.9 
5 R1 60 9 18.2 
6 R1 120 1 1.8 
7 R1 120 3 6.4 
8 R1 120 5 9.8 
9 R1 120 7 13.4 

10 R1 120 9 17.9 
11 R1 180 1 2.2 
12 R1 180 3 5.7 
13 R1 180 5 9.5 
14 R1 180 7 12.9 
15 R1 180 9 17.8 
16 R1 240 1 2.4 
17 R1 240 3 6.1 
18 R1 240 5 9.1 
19 R1 240 7 13.2 
20 R1 240 9 16.1 
21 R1 300 1 1.9 
22 R1 300 3 6.3 
23 R1 300 5 10.0 
24 R1 300 7 13.8 
25 R1 300 9 16.5 

Note: ‘R1’ refers to Repeat 1 
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Repeat 2 of breakage tests conducted on blue stone using the 510 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

1 R2 60 1 2.2 
2 R2 60 3 5.5 
3 R2 60 5 9.34 
4 R2 60 7 13.29 
5 R2 60 9 18.05 
6 R2 120 1 2.3 
7 R2 120 3 5.55 
8 R2 120 5 9.33 
9 R2 120 7 13.09 

10 R2 120 9 17.02 
11 R2 180 1 2.4 
12 R2 180 3 6.1 
13 R2 180 5 9.25 
14 R2 180 7 13.8 
15 R2 180 9 16.96 
16 R2 240 1 2.0 
17 R2 240 3 5.8 
18 R2 240 5 10.19 
19 R2 240 7 13.46 
20 R2 240 9 16.63 
21 R2 300 1 1.8 
22 R2 300 3 5.7 
23 R2 300 5 10.1 
24 R2 300 7 15.4 
25 R2 300 9 16.53 

Note: ‘R2’ refers to Repeat 2 
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9.3.2. Breakage tests conducted on blue stone using the 357 g ball 

Run 1 of tests conducted on blue stone using the 357 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

26 60 1 2.0 
27 60 3 5.4 
28 60 5 9.1 
29 60 7 13.0 
30 60 9 16.2 
31 120 1 1.8 
32 120 3 6.0 
33 120 5 9.9 
34 120 7 13.3 
35 120 9 16.7 
36 180 1 1.8 
37 180 3 5.6 
38 180 5 8.4 
39 180 7 13.7 
40 180 9 15.6 
41 240 1 2.2 
42 240 3 5.7 
43 240 5 9.9 
44 240 7 12.2 
45 240 9 16.4 
46 300 1 2.4 
47 300 3 5.7 
48 300 5 9.2 
49 300 7 13.8 
50 300 9 16.7 
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Repeat 1 of tests conducted on blue stone using the 357 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

26 R1 60 1 1.9 
27 R1 60 3 5.8 
28 R1 60 5 8.1 
29 R1 60 7 13.6 
30 R1 60 9 15.9 
31 R1 120 1 2.2 
32 R1 120 3 5.4 
33 R1 120 5 8.4 
34 R1 120 7 12.2 
35 R1 120 9 16.8 
36 R1 180 1 2.0 
37 R1 180 3 5.5 
38 R1 180 5 8.4 
39 R1 180 7 13.2 
40 R1 180 9 16.5 
41 R1 240 1 2.3 
42 R1 240 3 5.8 
43 R1 240 5 8.5 
44 R1 240 7 13.6 
45 R1 240 9 16.0 
46 R1 300 1 2.6 
47 R1 300 3 6.1 
48 R1 300 5 9.2 
49 R1 300 7 13.3 
50 R1 300 9 16.8 

Note: ‘R1’ refers to Repeat 1 
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Repeat 2 of tests conducted on blue stone using the 357 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

26 R2 60 1 2.2 
27 R2 60 3 6.0 
28 R2 60 5 9.3 
29 R2 60 7 11.0 
30 R2 60 9 16.1 
31 R2 120 1 2.4 
32 R2 120 3 5.7 
33 R2 120 5 9.2 
34 R2 120 7 11.8 
35 R2 120 9 14.5 
36 R2 180 1 2.3 
37 R2 180 3 6.1 
38 R2 180 5 9.8 
39 R2 180 7 13.8 
40 R2 180 9 16.5 
41 R2 240 1 1.9 
42 R2 240 3 5.6 
43 R2 240 5 9.6 
44 R2 240 7 11.9 
45 R2 240 9 16.9 
46 R2 300 1 2.1 
47 R2 300 3 5.3 
48 R2 300 5 9.3 
49 R2 300 7 12.5 
50 R2 300 9 15.5 

Note: ‘R2’ refers to Repeat 2 
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9.3.3. Breakage tests conducted on blue stone using the 261 g ball 

Run 1 of tests conducted on blue stone using the 261 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

51 60 1 1.8 
52 60 3 5.6 
53 60 5 8.7 
54 60 7 12.6 
55 60 9 17.8 
56 120 1 1.9 
57 120 3 5.6 
58 120 5 9.5 
59 120 7 14.0 
60 120 9 16.7 
61 180 1 2.2 
62 180 3 6.6 
63 180 5 9.3 
64 180 7 13.7 
65 180 9 17.0 
66 240 1 2.3 
67 240 3 5.4 
68 240 5 9.3 
69 240 7 13.6 
70 240 9 17.3 
71 300 1 2.0 
72 300 3 6.0 
73 300 5 9.9 
74 300 7 13.4 
75 300 9 16.6 
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Repeat 1 of tests conducted on blue stone using the 261 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

51 R1 60 1 2.0 
52 R1 60 3 5.0 
53 R1 60 5 8.9 
54 R1 60 7 13.5 
55 R1 60 9 18.3 
56 R1 120 1 2.1 
57 R1 120 3 6.1 
58 R1 120 5 9.3 
59 R1 120 7 11.0 
60 R1 120 9 16.1 
61 R1 180 1 2.0 
62 R1 180 3 7.5 
63 R1 180 5 10.1 
64 R1 180 7 12.9 
65 R1 180 9 16.9 
66 R1 240 1 1.9 
67 R1 240 3 7.7 
68 R1 240 5 10.1 
69 R1 240 7 13.4 
70 R1 240 9 15.2 
71 R1 300 1 1.7 
72 R1 300 3 5.5 
73 R1 300 5 9.9 
74 R1 300 7 12.8 
75 R1 300 9 16.2 

Note: ‘R1’ refers to Repeat 1 
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Repeat 2 of tests conducted on blue stone using the 261 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

51 R2 60 1 2.3 
52 R2 60 3 6.1 
53 R2 60 5 9.1 
54 R2 60 7 12.9 
55 R2 60 9 17.9 
56 R2 120 1 2.3 
57 R2 120 3 6.4 
58 R2 120 5 10.0 
59 R2 120 7 13.8 
60 R2 120 9 16.5 
61 R2 180 1 1.9 
62 R2 180 3 6.0 
63 R2 180 5 9.5 
64 R2 180 7 13.3 
65 R2 180 9 17.8 
66 R2 240 1 1.9 
67 R2 240 3 6.0 
68 R2 240 5 9.4 
69 R2 240 7 13.2 
70 R2 240 9 17.0 
71 R2 300 1 2.0 
72 R2 300 3 5.7 
73 R2 300 5 10.3 
74 R2 300 7 14.2 
75 R2 300 9 17.3 

Note: ‘R2’ refers to Repeat 2 

 

 

 

 

 

 

 

 



 

135 
 

9.3.4. Breakage tests conducted on blue stone using the 110 g ball 

Run 1 of tests conducted on blue stone using the 110 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

76 60 1 1.7 
77 60 3 5.9 
78 60 5 10.1 
79 60 7 14.0 
80 60 9 16.6 
81 120 1 2.0 
82 120 3 6.2 
83 120 5 9.9 
84 120 7 13.1 
85 120 9 17.5 
86 180 1 2.2 
87 180 3 5.8 
88 180 5 9.9 
89 180 7 14.3 
90 180 9 17.4 
91 240 1 2.2 
92 240 3 6.1 
93 240 5 10.6 
94 240 7 13.6 
95 240 9 16.4 
96 300 1 2.0 
97 300 3 5.9 
98 300 5 9.9 
99 300 7 14.1 
100 300 9 18.6 
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Repeat 1 of tests conducted on blue stone using the 110 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

76 R1 60 1 2.3 
77 R1 60 3 6.2 
78 R1 60 5 9.6 
79 R1 60 7 13.3 
80 R1 60 9 17.1 
81 R1 120 1 1.9 
82 R1 120 3 5.9 
83 R1 120 5 10.2 
84 R1 120 7 14.0 
85 R1 120 9 17.8 
86 R1 180 1 2.1 
87 R1 180 3 5.7 
88 R1 180 5 8.9 
89 R1 180 7 13.5 
90 R1 180 9 16.8 
91 R1 240 1 2.0 
92 R1 240 3 5.9 
93 R1 240 5 10.9 
94 R1 240 7 14.2 
95 R1 240 9 18.2 
96 R1 300 1 2.0 
97 R1 300 3 5.8 
98 R1 300 5 9.4 
99 R1 300 7 13.8 

100 R1 300 9 17.7 

Note: ‘R1’ refers to Repeat 1 
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Repeat 2 of tests conducted on blue stone using the 110 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) Sample mass (g) 

76 R2 60 1 2.2 
77 R2 60 3 6.5 
78 R2 60 5 9.7 
79 R2 60 7 13.9 
80 R2 60 9 18.1 
81 R2 120 1 1.9 
82 R2 120 3 5.8 
83 R2 120 5 10.0 
84 R2 120 7 13.4 
85 R2 120 9 17.1 
86 R2 180 1 1.8 
87 R2 180 3 6.1 
88 R2 180 5 9.5 
89 R2 180 7 13.9 
90 R2 180 9 17.9 
91 R2 240 1 1.8 
92 R2 240 3 6.7 
93 R2 240 5 9.8 
94 R2 240 7 13.5 
95 R2 240 9 17.8 
96 R2 300 1 1.7 
97 R2 300 3 6.4 
98 R2 300 5 8.9 
99 R2 300 7 14.5 

100 R2 300 9 18.2 

Note: ‘R2’ refers to Repeat 2 
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9.4. Appendix D: Experimental values used for breakage tests on UG2 

9.4.1. Breakage tests conducted on UG2 using the 510 g ball 

Run 1 of tests conducted on UG2 using the 510 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) Sample mass (g) 

1 120 1 2.2 
2 120 3 5.7 
3 120 5 12.4 
4 120 7 13.5 
5 180 1 2.4 
6 180 3 6.5 
7 180 5 11.0 
8 180 7 15.3 
9 240 1 2.1 

10 240 3 6.6 
11 240 5 10.9 
12 240 7 16.8 
13 300 1 3.0 
14 300 3 6.9 
15 300 5 10.8 
16 300 7 14.9 

 

Repeat 1 of test conducted on UG2 using the 510 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) Sample mass (g) 

1 R1 120 1 2.4 
2 R1 120 3 12.6 
3 R1 120 5 12.6 
4 R1 120 7 17.9 
5 R1 180 1 2.6 
6 R1 180 3 7.1 
7 R1 180 5 12.1 
8 R1 180 7 18.0 
9 R1 240 1 2.5 
10 R1 240 3 7.3 
11 R1 240 5 11.4 
12 R1 240 7 12.5 
13 R1 300 1 2.7 
14 R1 300 3 7.1 
15 R1 300 5 12.3 
16 R1 300 7 16.9 

Note: ‘R1’ refers to Repeat 1 
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Repeat 2 of tests conducted on UG2 using the 510 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) Sample mass (g) 

1 R2 120 1 3.8 
2 R2 120 3 9.5 
3 R2 120 5 14.8 
4 R2 120 7 22.1 
5 R2 180 1 3.8 
6 R2 180 3 8.1 
7 R2 180 5 14.1 
8 R2 180 7 22.0 
9 R2 240 1 3.2 
10 R2 240 3 7.7 
11 R2 240 5 14.7 
12 R2 240 7 24.3 
13 R2 300 1 2.4 
14 R2 300 3 7.4 
15 R2 300 5 12.7 
16 R2 300 7 17.5 

Note: ‘R2’ refers to Repeat 2 

 

9.4.2. Breakage tests conducted on UG2 using the 357 g ball 

Run 1 of tests conducted on UG2 using the 357 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

17 120 1 2.08 
18 120 3 6.45 
19 120 5 11.15 
20 120 7 16.51 
21 180 1 2.46 
22 180 3 6.96 
23 180 5 10.72 
24 180 7 16.57 
25 240 1 2.37 
26 240 3 6.75 
27 240 5 10.43 
28 240 7 15.07 
29 300 1 2.15 
30 300 3 7.78 
31 300 5 10.36 
32 300 7 15.37 
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Repeat 1 of tests conducted on UG2 using the 357 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

17 R1 120 1 2.7 
18 R1 120 3 7.7 
19 R1 120 5 14.1 
20 R1 120 7 19.4 
21 R1 180 1 3.0 
22 R1 180 3 8.3 
23 R1 180 5 14.9 
24 R1 180 7 20.9 
25 R1 240 1 3.2 
26 R1 240 3 8.0 
27 R1 240 5 13.5 
28 R1 240 7 18.3 
29 R1 300 1 2.1 
30 R1 300 3 6.8 
31 R1 300 5 13.0 
32 R1 300 7 17.6 

Note: ‘R1’ refers to Repeat 1 

 

Repeat 2 of tests conducted on UG2 using the 357 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

17 R2 120 1 2.9 
18 R2 120 3 8.8 
19 R2 120 5 14.6 
20 R2 120 7 23.2 
21 R2 180 1 2.7 
22 R2 180 3 9.9 
23 R2 180 5 14.8 
24 R2 180 7 20.4 
25 R2 240 1 3.4 
26 R2 240 3 8.8 
27 R2 240 5 12.1 
28 R2 240 7 18.6 
29 R2 300 1 2.1 
30 R2 300 3 6.8 
31 R2 300 5 14.4 
32 R2 300 7 20.3 

Note: ‘R2’ refers to Repeat 2 
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9.4.3. Breakage tests conducted on UG2 using the 261 g ball 

Run 1 of tests conducted on UG2 using the 261 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

33 120 1 2.6 
34 120 3 7.7 
35 120 5 11.8 
36 120 7 16.9 
37 180 1 2.6 
38 180 3 6.7 
39 180 5 12.7 
40 180 7 18.3 
41 240 1 2.6 
42 240 3 8.0 
43 240 5 12.8 
44 240 7 16.5 
45 300 1 7.8 
46 300 3 7.8 
47 300 5 13.8 
48 300 7 16.0 

 

Repeat 1 of tests conducted on UG2 using the 261 g ball 

Test number 
Drop height 

(mm) 
Bed depth (layers of 

particles) 
Sample mass 

(g) 

33 R1 120 1 2.7 
34 R1 120 3 9.3 
35 R1 120 5 14.6 
36 R1 120 7 19.6 
37 R1 180 1 3.2 
38 R1 180 3 7.8 
39 R1 180 5 13.6 
40 R1 180 7 21.0 
41 R1 240 1 2.3 
42 R1 240 3 7.4 
43 R1 240 5 12.7 
44 R1 240 7 19.6 
45 R1 300 1 2.9 
46 R1 300 3 7.9 
47 R1 300 5 13.6 
48 R1 300 7 21.6 

Note: ‘R1’ refers to Repeat 1 
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Repeat 2 of tests conducted on UG2 using the 261 g ball 

Test 
number 

Drop height 
(mm) 

Bed depth (layers of 
particles) 

Sample mass 
(g) 

33 R2 120 1 3.1 
34 R2 120 3 7.8 
35 R2 120 5 14.2 
36 R2 120 7 20.3 
37 R2 180 1 2.7 
38 R2 180 3 7.4 
39 R2 180 5 14.4 
40 R2 180 7 18.6 
41 R2 240 1 2.8 
42 R2 240 3 7.8 
43 R2 240 5 11.6 
44 R2 240 7 20.9 
45 R2 300 1 2.6 
46 R2 300 3 8.1 
47 R2 300 5 14.8 
48 R2 300 7 20.5 

Note: ‘R2’ refers to Repeat 2 

 

9.4.4. Breakage tests conducted on UG2 using the 110 g ball 

Run 1 of tests conducted on UG2 using the 110 g ball 

Test 
number 

Drop height 
(mm) 

Bed depth (layers of 
particles) 

Sample mass 
(g) 

49 120 1 2.0 
50 120 3 7.1 
51 120 5 12.8 
52 120 7 17.2 
53 180 1 2.8 
54 180 3 7.2 
55 180 5 13.1 
56 180 7 16.0 
57 240 1 2.5 
58 240 3 7.1 
59 240 5 12.5 
60 240 7 17.0 
61 300 1 2.5 
62 300 3 7.9 
63 300 5 11.9 
64 300 7 19.3 
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Repeat 1 of tests conducted on UG2 using the 110 g ball 

Test 
number 

Drop height 
(mm) 

Bed depth (layers of 
particles) 

Sample mass 
(g) 

49 R1 120 1 2.3 
50 R1 120 3 6.9 
51 R1 120 5 11.6 
52 R1 120 7 17.6 
53 R1 180 1 2.2 
54 R1 180 3 8.1 
55 R1 180 5 11.6 
56 R1 180 7 17.1 
57 R1 240 1 2.1 
58 R1 240 3 7.4 
59 R1 240 5 11.9 
60 R1 240 7 16.3 
61 R1 300 1 1.9 
62 R1 300 3 6.9 
63 R1 300 5 10.3 
64 R1 300 7 15.3 

Note: ‘R1’ refers to Repeat 1 

 

Repeat 2 of tests conducted on UG2 using the 110 g ball 

Test 
number 

Drop height 
(mm) 

Bed depth (layers of 
particles) 

Sample mass 
(g) 

49 R2 120 1 1.9 
50 R2 120 3 6.5 
51 R2 120 5 12.1 
52 R2 120 7 16.9 
53 R2 180 1 1.7 
54 R2 180 3 7.6 
55 R2 180 5 12.2 
56 R2 180 7 16.6 
57 R2 240 1 2.0 
58 R2 240 3 6.7 
59 R2 240 5 11.1 
60 R2 240 7 17.4 
61 R2 300 1 2.2 
62 R2 300 3 7.5 
63 R2 300 5 9.8 
64 R2 300 7 15.9 

Note: ‘R2’ refers to Repeat 2 
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9.5. Appendix E: Particle size distributions obtained for UG2 

9.5.1. Tests conducted using the 510 g ball  

Particle size distributions for Run 1 of tests conducted on UG2 using the 510 g ball 

 

 

Particle size distributions for Repeat 1 of tests conducted on UG2 using the 510 g ball 

 

Note: ‘R1’ refers to Repeat 1 

 

Sieve size (mm) Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 12 Test 13 Test 14 Test 15 Test 16
8.0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0 1.25 5.76 2.18 0.44 2.11 1.91 6.76 0.98 1.49 5.20 8.07 0.47 1.55 4.37 6.12

4.0 1.43 3.42 5.08 9.27 1.19 3.22 7.03 6.23 0.00 3.26 3.88 6.20 1.43 3.90 4.68 6.73

2.8 0.54 0.68 1.51 1.96 0.56 0.78 1.90 2.24 0.61 1.01 1.46 2.28 0.19 0.63 0.99 1.78

2.0 0.04 0.18 0.02 0.00 0.07 0.13 0.02 0.05 0.14 0.24 0.05 0.08 0.21 0.23 0.29 0.03

1.4 0 0.05 0.03 0.01 0.05 0.02 0.04 0.04 0.09 0.29 0.08 0.02 0.13 0.18 0.06 0.07
Pan 0.16 0.11 0.01 0.08 0.08 0.22 0.07 0.02 0.32 0.35 0.21 0.15 0.59 0.45 0.37 0.15

Total mass (g) 2.17 5.69 12.41 13.50 2.39 6.48 10.97 15.34 2.14 6.64 10.88 16.80 3.02 6.94 10.76 14.88

Mass retained (g)

Sieve size (mm) Test 1 R1 Test 2 R1 Test 3 R1 Test 4 R1 Test 5 R1 Test 6 R1 Test 7 R1 Test 8 R1 Test 9 R1 Test 10 R1 Test 11 R1 Test 12 R1 Test 13 R1 Test 14 R1 Test 15 R1 Test 16 R1
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 1.14 3.64 5.24 6.82 0.51 3.02 6.78 8.88 0.00 2.10 3.50 10.38 0.78 1.03 4.64 3.85

4.0 0.95 3.92 7.17 10.29 1.15 2.92 4.52 8.52 0.91 4.06 6.38 0.92 0.44 4.30 7.28 11.95

2.8 0.21 0.18 0.05 0.75 0.34 0.72 0.62 0.42 0.61 0.48 1.25 1.07 0.66 0.99 0.17 0.98

2.0 0.02 0.06 0.00 0.00 0.09 0.11 0.07 0.09 0.47 0.23 0.09 0.00 0.14 0.23 0.06 0.05

1.4 0.00 0.00 0.07 0.00 0.13 0.08 0.01 0.00 0.19 0.12 0.04 0.00 0.16 0.15 0.07 0.02
Pan 0.10 0.10 0.04 0.03 0.35 0.29 0.06 0.04 0.36 0.35 0.15 0.13 0.49 0.41 0.12 0.08

Total mass (g) 2.42 7.90 12.57 17.89 2.57 7.14 12.06 17.95 2.54 7.34 11.41 12.50 2.67 7.11 12.34 16.93

Mass retained (g)
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Particle size distributions for Repeat 2 of tests conducted on UG2 using the 510 g ball 

 

Note: ‘R2’ refers to Repeat 2 

 

9.5.2. Tests conducted using the 357 g ball  

Particle size distributions for Run 1 of tests conducted on UG2 using the 357 g ball 

 

 

 

 

Sieve size (mm) Test 1 R2 Test 2 R2 Test 3 R2 Test 4 R2 Test 5 R2 Test 6 R2 Test 7 R2 Test 8 R2 Test 9 R2 Test 10 R2 Test 11 R2 Test 12 R2 Test 13 R2 Test 14 R2 Test 15 R2 Test 16 R2
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0.73 3.13 6.29 9.52 0.81 0.44 3.28 8.64 0.35 1.35 3.68 10.52 0.28 0.99 4.84 5.89

4.0 1.98 5.90 8.09 11.39 1.48 5.83 7.92 12.56 0.60 5.38 9.30 12.09 0.33 5.09 6.79 10.46

2.8 0.69 0.30 0.36 0.96 0.67 1.49 2.49 0.75 1.27 0.56 1.47 1.52 0.63 0.77 0.54 0.49

2.0 0.03 0.03 0.00 0.03 0.09 0.13 0.13 0.00 0.28 0.06 0.09 0.07 0.16 0.14 0.24 0.11

1.4 0.09 0.05 0.00 0.04 0.40 0.00 0.06 0.02 0.08 0.06 0.03 0.02 0.19 0.11 0.05 0.04

Pan 0.23 0.09 0.01 0.14 0.32 0.19 0.24 0.07 0.58 0.29 0.12 0.11 0.79 0.34 0.20 0.46

Total mass (g) 3.75 9.50 14.75 22.08 3.77 8.08 14.12 22.04 3.16 7.70 14.69 24.33 2.38 7.44 12.66 17.45

Mass retained (g)

Sieve size (mm) Test 17 Test 18 Test 19 Test 20 Test 21 Test 22 Test 23 Test 24 Test 25 Test 26 Test 27 Test 28 Test 29 Test 30 Test 31 Test 32
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0.45 1.25 2.90 5.21 0.87 1.81 1.83 7.07 0.00 1.66 1.54 4.09 0.69 1.54 3.52 3.53

4.0 0.97 3.61 5.23 9.18 0.33 3.38 5.88 7.32 1.00 3.82 6.76 6.87 0.34 4.01 5.00 7.58

2.8 0.38 1.37 2.73 2.09 0.74 1.04 2.81 2.05 0.47 0.61 1.94 3.72 0.53 1.89 1.38 4.08

2.0 0.12 0.08 0.06 0.02 0.13 0.30 0.06 0.00 0.13 0.20 0.05 0.19 0.19 0.10 0.16 0.02

1.4 0.02 0.04 0.04 0.00 0.12 0.07 0.05 0.09 0.17 0.09 0.04 0.04 0.10 0.04 0.06 0.06
Pan 0.14 0.10 0.19 0.01 0.27 0.36 0.09 0.04 0.60 0.37 0.10 0.16 0.30 0.20 0.24 0.10

Total mass (g) 2.08 6.45 11.15 16.51 2.46 6.96 10.72 16.57 2.37 6.75 10.43 15.07 2.15 7.78 10.36 15.37

Mass retained (g)
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Particle size distributions for Repeat 1 of tests conducted on UG2 using the 357 g ball 

 

Note: ‘R1’ refers to Repeat 1 

 

Particle size distributions for Repeat 2 of tests conducted on UG2 using the 357 g ball 

 

Note: ‘R2’ refers to Repeat 2 

 

 

Sieve size (mm) Test 17 R1 Test 18 R1 Test 19 R1 Test 20 R1 Test 21 R1 Test 22 R1 Test 23 R1 Test 24 R1 Test 25 R1 Test 26 R1 Test 27 R1 Test 28 R1 Test 29 R1 Test 30 R1 Test 31 R1 Test 32 R1
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0.00 1.20 6.90 8.01 0.38 2.65 5.06 7.50 1.33 1.16 4.32 8.68 0.00 1.36 5.44 8.76

4.0 2.52 5.94 7.22 11.05 1.23 4.23 9.40 12.98 0.64 4.72 8.10 9.54 1.08 2.97 5.33 7.79

2.8 0.12 0.41 0.00 0.16 0.84 1.20 0.22 0.41 0.23 1.32 0.91 0.00 0.68 1.75 1.74 0.78

2.0 0.05 0.05 0.00 0.09 0.11 0.09 0.13 0.00 0.17 0.37 0.03 0.04 0.07 0.20 0.24 0.05

1.4 0.00 0.03 0.00 0.01 0.03 0.03 0.00 0.00 0.14 0.09 0.07 0.00 0.07 0.17 0.00 0.07
Pan 0.01 0.07 0.01 0.03 0.41 0.11 0.10 0.05 0.69 0.33 0.08 0.03 0.16 0.39 0.20 0.12

Total mass (g) 2.70 7.70 14.13 19.35 3.00 8.31 14.91 20.94 3.20 7.99 13.51 18.29 2.06 6.84 12.95 17.57

Mass retained (g)

Sieve size (mm) Test 17 R2 Test 18 R2 Test 19 R2 Test 20 R2 Test 21 R2 Test 22 R2 Test 23 R2 Test 24 R2 Test 25 R2 Test 26 R2 Test 27 R2 Test 28 R2 Test 29 R2 Test 30 R2 Test 31 R2 Test 32 R2
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0.29 0.52 4.89 11.51 0.38 3.90 4.70 6.34 0.35 3.27 3.00 10.88 0.00 0.45 6.57 11.06

4.0 2.45 7.24 8.95 11.05 1.48 5.44 9.57 13.14 1.04 4.82 8.42 7.58 0.82 4.22 7.37 8.09

2.8 0.00 0.72 0.45 0.59 0.43 0.32 0.44 0.85 1.35 0.31 0.57 0.15 0.63 1.22 0.34 0.90

2.0 0.08 0.15 0.17 0.00 0.08 0.17 0.00 0.01 0.12 0.07 0.00 0.00 0.14 0.35 0.00 0.11

1.4 0.00 0.06 0.00 0.00 0.00 0.02 0.01 0.00 0.05 0.04 0.01 0.00 0.06 0.16 0.00 0.03

Pan 0.08 0.08 0.18 0.03 0.29 0.08 0.03 0.05 0.44 0.30 0.13 0.02 0.43 0.37 0.12 0.06

Total mass (g) 2.90 8.77 14.64 23.18 2.66 9.93 14.75 20.39 3.35 8.81 12.13 18.63 2.08 6.77 14.40 20.25

Mass retained (g)
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9.5.3. Tests conducted using the 261 g ball  

Particle size distributions for Run 1 of tests conducted on UG2 using the 261 g ball 

 

 

Particle size distributions for Repeat 1 of tests conducted on UG2 using the 261 g ball 

 

Note: ‘R1’ refers to Repeat 1 

 

 

Sieve size (mm) Test 33 Test 34 Test 35 Test 36 Test 37 Test 38 Test 39 Test 40 Test 41 Test 42 Test 43 Test 44 Test 45 Test 46 Test 47 Test 48
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0.39 3.14 5.43 8.08 0.89 2.73 3.26 8.42 0.38 3.19 6.82 7.37 1.71 1.99 5.00 4.81

4.0 1.14 3.80 5.28 7.53 1.19 3.13 8.48 9.01 1.06 3.37 4.81 8.76 0.23 3.47 7.54 9.61

2.8 0.54 0.49 1.10 1.26 0.05 0.58 0.79 0.82 0.78 1.26 0.98 0.24 0.22 1.97 0.99 1.45

2.0 0.15 0.10 0.00 0.00 0.17 0.08 0.07 0.00 0.14 0.08 0.10 0.04 0.00 0.16 0.13 0.03

1.4 0.14 0.00 0.00 0.00 0.05 0.08 0.02 0.00 0.01 0.00 0.02 0.03 0.07 0.09 0.01 0.06
Pan 0.25 0.13 0.00 0.06 0.27 0.13 0.06 0.06 0.19 0.07 0.08 0.08 0.28 0.12 0.08 0.07

Total mass (g) 2.61 7.66 11.81 16.93 2.62 6.73 12.68 18.31 2.56 7.97 12.81 16.52 2.51 7.80 13.75 16.03

Mass retained (g)

Sieve size (mm) Test 33 R1 Test 34 R1 Test 35 R1 Test 36 R1 Test 37 R1 Test 38 R1 Test 39 R1 Test 40 R1 Test 41 R1 Test 42 R1 Test 43 R1 Test 44 R1 Test 45 R1 Test 46 R1 Test 47 R1 Test 48 R1
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0.83 1.11 2.28 3.10 1.46 0.80 1.52 4.40 0.00 1.08 2.31 6.79 0.97 0.35 3.52 7.62

4.0 1.28 6.81 11.12 15.78 0.81 5.52 10.72 15.84 0.91 4.84 9.18 12.45 0.65 6.47 9.25 12.80

2.8 0.25 1.16 1.11 0.65 0.48 0.99 1.35 0.66 0.68 1.06 1.06 0.33 0.40 0.93 0.61 1.06

2.0 0.15 0.13 0.06 0.00 0.09 0.26 0.00 0.05 0.25 0.15 0.07 0.00 0.16 0.04 0.09 0.06

1.4 0.03 0.05 0.02 0.03 0.11 0.00 0.00 0.00 0.14 0.07 0.00 0.00 0.06 0.04 0.05 0.01
Pan 0.16 0.05 0.00 0.01 0.21 0.19 0.03 0.02 0.35 0.24 0.09 0.00 0.63 0.11 0.06 0.03

Total mass (g) 2.70 9.31 14.59 19.57 3.16 7.76 13.62 20.97 2.33 7.44 12.71 19.57 2.87 7.94 13.58 21.58

Mass retained (g)
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Particle size distributions for Repeat 2 of tests conducted on UG2 using the 261 g ball 

 

Note: ‘R2’ refers to Repeat 2 

 

9.5.4. Tests conducted using the 110 g ball  

Particle size distributions for Run 1 of tests conducted on UG2 using the 110 g ball 

 

 

 

 

 

Sieve size (mm) Test 33 R2 Test 34 R2 Test 35 R2 Test 36 R2 Test 37 R2 Test 38 R2 Test 39 R2 Test 40 R2 Test 41 R2 Test 42 R2 Test 43 R2 Test 44 R2 Test 45 R2 Test 46 R2 Test 47 R2 Test 48 R2
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0.36 0.00 1.83 6.99 0.25 1.56 4.94 7.82 0.00 2.57 3.34 7.85 0.34 2.79 5.94 9.26

4.0 2.27 6.30 11.41 11.95 1.76 4.76 8.78 9.87 1.55 4.16 7.10 12.04 1.08 4.37 8.36 10.49

2.8 0.18 1.43 0.98 1.23 0.52 0.75 0.53 0.94 0.58 0.92 1.09 0.92 0.80 0.50 0.36 0.67

2.0 0.12 0.00 0.00 0.05 0.02 0.12 0.09 0.00 0.25 0.04 0.08 0.00 0.15 0.13 0.05 0.03

1.4 0.05 0.01 0.00 0.00 0.06 0.07 0.00 0.00 0.18 0.02 0.00 0.04 0.04 0.06 0.01 0.00

Pan 0.13 0.02 0.00 0.07 0.12 0.09 0.03 0.01 0.22 0.13 0.03 0.00 0.16 0.21 0.04 0.03

Total mass (g) 3.11 7.76 14.22 20.29 2.73 7.35 14.37 18.64 2.78 7.84 11.64 20.85 2.57 8.06 14.76 20.48

Mass retained (g)

Sieve size (mm) Test 49 Test 50 Test 51 Test 52 Test 53 Test 54 Test 55 Test 56 Test 57 Test 58 Test 59 Test 60 Test 61 Test 62 Test 63 Test 64
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 1.30 3.40 8.74 11.54 1.27 4.71 7.76 8.36 1.31 2.04 7.73 10.77 0.82 4.09 6.32 12.03

4.0 0.69 3.73 3.88 5.59 0.94 2.16 5.11 7.18 0.73 4.67 4.78 5.91 0.86 2.97 4.39 6.91

2.8 0.00 0.00 0.12 0.11 0.22 0.24 0.18 0.37 0.35 0.31 0.00 0.20 0.42 0.60 1.04 0.28

2.0 0.00 0.00 0.00 0.00 0.09 0.03 0.00 0.00 0.06 0.00 0.00 0.00 0.13 0.00 0.00 0.00

1.4 0.00 0.00 0.00 0.00 0.09 0.05 0.00 0.04 0.00 0.06 0.00 0.03 0.02 0.04 0.00 0.04
Pan 0.00 0.00 0.02 0.00 0.16 0.03 0.00 0.04 0.04 0.01 0.02 0.06 0.20 0.20 0.10 0.02

Total mass (g) 1.99 7.13 12.76 17.24 2.77 7.22 13.05 15.99 2.49 7.09 12.53 16.97 2.45 7.90 11.85 19.28

Mass retained (g)
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Particle size distributions for Repeat 1 of tests conducted on UG2 using the 110 g ball 

 

Note: ‘R1’ refers to Repeat 1 

 

Particle size distributions for Repeat 2 of tests conducted on UG2 using the 110 g ball 

 

Note: ‘R2’ refers to Repeat 2 

 

 

 

 

Sieve size (mm) Test 49 R1 Test 50 R1 Test 51 R1 Test 52 R1 Test 53 R1 Test 54 R1 Test 55 R1 Test 56 R1 Test 57 R1 Test 58 R1 Test 59 R1 Test 60 R1 Test 61 R1 Test 62 R1 Test 63 R1 Test 64 R1
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0.22 1.56 3.20 8.78 0.98 2.55 3.30 8.18 0.00 1.08 2.85 3.82 0.00 1.39 1.83 3.53

4.0 0.33 3.90 5.23 7.79 0.00 4.13 7.13 7.59 1.38 4.84 5.85 11.35 1.08 2.97 5.48 7.54

2.8 0.63 0.63 2.88 0.78 0.64 1.20 1.09 1.29 0.52 1.06 2.93 0.98 0.58 1.79 2.81 4.08

2.0 0.16 0.23 0.06 0.05 0.20 0.09 0.08 0.00 0.04 0.15 0.06 0.06 0.05 0.20 0.06 0.02

1.4 0.19 0.18 0.04 0.07 0.09 0.03 0.00 0.00 0.00 0.07 0.04 0.02 0.07 0.17 0.05 0.06
Pan 0.79 0.41 0.19 0.15 0.32 0.11 0.03 0.06 0.16 0.24 0.19 0.08 0.16 0.39 0.09 0.10

Total mass (g) 2.32 6.91 11.60 17.62 2.23 8.11 11.63 17.12 2.10 7.44 11.92 16.31 1.94 6.91 10.32 15.33

Mass retained (g)

Sieve size (mm) Test 49 R2 Test 50 R2 Test 51 R2 Test 52 R2 Test 53 R2 Test 54 R2 Test 55 R2 Test 56 R2 Test 57 R2 Test 58 R2 Test 59 R2 Test 60 R2 Test 61 R2 Test 62 R2 Test 63 R2 Test 64 R2
8.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.6 0.00 1.61 3.90 6.82 1.10 0.80 5.56 7.47 0.88 0.45 1.93 8.73 0.22 1.37 3.43 6.76

4.0 0.72 3.08 5.21 9.29 0.64 5.42 5.08 8.76 0.00 4.22 7.13 7.69 0.33 5.18 5.90 6.63

2.8 0.61 1.04 2.73 0.75 0.00 0.99 1.51 0.24 0.51 1.22 1.90 0.78 0.53 0.56 0.30 2.44

2.0 0.14 0.30 0.06 0.00 0.00 0.23 0.02 0.04 0.20 0.32 0.02 0.05 0.16 0.06 0.03 0.05

1.4 0.06 0.07 0.04 0.00 0.00 0.00 0.03 0.03 0.09 0.16 0.04 0.07 0.19 0.06 0.05 0.04
Pan 0.41 0.36 0.19 0.03 0.00 0.19 0.01 0.08 0.32 0.37 0.07 0.12 0.78 0.29 0.09 0.02

Total mass (g) 1.94 6.46 12.13 16.89 1.74 7.63 12.21 16.62 2.00 6.74 11.09 17.44 2.21 7.52 9.80 15.94

Mass retained (g)




