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Controlling the Walrasian Tatonnement Process

Abstract

In this thesis 1 examine a discrete-time Walrasian tatonnement process. The criterion for stability is
examined in a two good tatonnement process. It is shown that the stability of the system depends upon the
speed of adjustment and holdings of endowments as well as preferences. It is then shown that periodic
solutions as well as aperiodic or chaotic trajectories occur. The analysis is then extended to multiple agents.

Having established the results for the one-dimensional system, the analysis is extended to the case of three
goods in which one of the goods is a numeraire. It is shown that similar dynamics to the one dimensional
case exist. It is found that if one market acts in a chaotic manner then both markets act in a chaotic manner.
Such that markets do not act in a chaotic manner, certain restrictions on the speed of adjustment and the
holding of the non-numeraire good with respect to the numeraire good need to be enforced.

Following in the footsteps of Uzawa [26], exchange out of equilibrium is examined for the case of one
traded good and one numeraire as well as two traded goods and one numeraire. It is found that if any good
can be exchanged for any other good there is a direct parallel between the tatonnement process and the non-
tatonnement process. If the numeraire is treated as a primitive currency then the policy implications differ
significantly due to the amount of liquidity in the system.
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Introduction

This dissertation is organised as follows. In section one the stability of competitive equilibria are reviewed.
Work by Arrow and Hurwicz [2], [3], [4], Arrow, Block and Hurwicz [5], Uzawa [22], [23] and Uzawa and
Nikaido [24] are reviewed as well as Scarf’s [18] counter-examples of global instability. Work by Day [8]
is then reviewed in which global stability breaks down in the face of chaotic trajectories if the tatonnement
process is discrete time in nature. Parallels and differences between aspects of these articles are highlighted.

Section two proposes the tatonnement process that will be used in this analysis. This section closely mirrors
Day [8]. Price dynamics are examined for a two person, two good economy in which one good is treated as
the numeraire. It is shown that the price sequences in the discrete tatonnement process can be complex.

Having established that complex price dynamics exist, section three proposes differing methods of
controlling these dynamics in the one dimensional case. It is in this section that the fundamental argument
of this paper is made; if there are complex movements in prices, such that the market clearing price is never
reached, then, by suitable adjustment in the holdings of endowments and speed of adjustment, the system
can be rendered stable. The liet motif of this section is “stability good, chaos even better” as an analysis of
the complexity of the system strengthens the understanding of the stability conditions. Policy implications
can be inferred from this maxim and further lines of enquiry necessarily arise.

Section four includes a three good tatonnement process. Stability and instability conditions are examined. It
is noted that the two dimensional case is a natural extension of the one dimensional case but more
complicated to analyse.

Section five examines the case in which exchange is permitted out of equilibrium. This section is based on
the analysis by Uzawa [26]. Two approaches to exchange out of equilibrium are considered. The first
approach is that in which any good can be exchanged for any other good. The second approach is that in
which exchange for any good can only take place through the medium of the numeraire. In the first case the
tatonnement process (T) and the non-tatonnement process (NT) have strong equivalence relations. In the
second case, liquidity constraints drive a wedge in between T and NT, for which the dynamics of the latter
differ fundamentally to those of the former.

The appendix contains the various theorems used in this paper as well as providing subsidiary explanations
when needed.



Literature Review

In order to treat the subject of this thesis two strains of literature need to be considered. The first type is that
which concerns the stability properties of general equilibrium, especially general equilibrium under gross
substitution. The second is the application of chaos theory to such general equilibrium analysis. There is an
abundant literature in both.

Negishi [13] provides a succinct proof that, if the tatonnement process is continuous time in nature, and for
the case in which one of the goods is elected as a numeraire, then, if all goods are gross substitutes (GS),
the tatonnement process is globally stable.

This proof relies on the construction of a Jacobian matrix whose principal minors alternate in sign. From
this, Negishi is able to conclude that if the own price effect dominates all off-price effects, global stability
is ensured in which there is convergence to a unique set of points. Gross substitution implies diagonal
dominance which in turn guarantees global stability.

In his survey article Negishi [14] delves further into the idea of gross substitutability and global stability’,
naming this result as one of the most important results obtained in the study of the stability of the
tatonnement process. Negishi notes that this result can be obtained by various means.

The starting point in [14] is the use of a strictly quasi-concave utility function’ such
asU(X,,., X, )= Zja” logX , Vi, where ZjaU =landa, > 0. The demand for any good by any

individual is given by;

X, =a, —, where income, / =Z P,)?U , is a function of prices and endowments. Gross substitution
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By means of such a utility function, it is shown that the equilibrium price vector is uniquely determined up
to a scalar multiple. From the demonstration of this last point, the tatonnement process can be shown to be
stable by considering that, if the equilibrium is unique, quasi-stability’ implies global stability. To prove
quasi-stability, some function needs to be defined such that this function is decreasing through time if there
is a state of disequilibria’. If such a function exists, then by gross-substitutability, which implies the weak
axiom of revealed preference, global stability is ensured. Different types of functions can be constructed
that have this desired property. Negishi [14] notes that different choices of such a function offer different
proofs of the same theorem; differing functions can be the Euclidean distance in the price space’ or the
distance in terms of maximum norm in the price space. Both types of proofs arrive at the same conclusion;
the tatonnement process is globally stable under certain mild assumptions.

Nikaido and Uzawa [15] note a similar result. If the aggregate excess demand function is single valued and
homogenous of degree zero, if Walras’ law holds and if the weak axiom of revealed preference holds such

that for any equilibrium price vector p' , and any other price vector p not proportional to p' , the inequality

ZO p,'Z, (p) > 0 prevails. If the speed of adjustment is small, the distance of any price to the unique price

equilibrium falls shrinks monotonically to zero over time.

! This result is due to Arrow, Block and Hurwicz {5]

? As used by Arrow and Hurwicz [2], p. 550

* Convergence to a set of equilibrium points that are not necessarily unique
*i.e. a Lyapunov function

* The sum of squares of the difference between prices and equilibrium prices



At this point one may point out that global stability may be deemed the domain of continuous time price
adjustment mechanisms. This would be erroneous as Uzawa [23] demonstrates the case in which global
stability can take place in a tatonnement process that is of a discrete time formulation®;

p(t+1)=max{0, p,(t) + f,()}
r=0,1,2,....; (1)
i=0,1,2,...,n,

In the same vein as Arrow, Block and Hurwicz [5], Uzawa shows that the Lyapunov stability theorem can
be applied to the above set discrete time price adjustment mechanisms. He proposes the following stability
theorem”:

Let p(t; p,) be the solution to (1) with initial price vector p,. If

(a) the solution path p(t; p,) is bounded for any initial price vector p,; and
(b) there exists a continuous function D(p) defined for all price vectors p such that
@(t) =D p(t; p,)] is strictly decreasing’ unless p(t; p,) is an equilibrium, then the process is

quasi-stable.

The simultaneous adjustment process (1) is defined as quasi-stable if, for any initial price vector p,, every

limiting point of the solution p(f; p,)is an equilibrium. If the set of all equilibria is finite, the quasi-

stability of the process (1) implies global stability. Uzawa goes on to show that if the speed of adjustment is
small and if the weak axiom holds, then (1) is globally stable. Uzawa’s stability theorem is of prime import
in the context of this thesis as it is the transgression of this stability theorem that allows complex dynamics
to occur. Strictly speaking, Uzawa’s stability theorem cannot be violated; as if the distribution of
endowments is such that the system (1) is not stable then Uzawa’s theorem implies that stability can be
induced by a reduction in the speed of adjustment. Whilst this is true and incontrovertible, this author
asserts that a continual reduction in the speed of adjustment is a penurious line to follow; there are other
factors that allow stability to be induced in the presence of instability, or that allow the auctioneer to pre-
empt the occurrence of complex dynamics. In Uzawa’s defence, one must note that the presence of
complex dynamics are not a strict counter-example to global stability as Uzawa and his peers wrote at a
time when chaos theory and its adjunct fields of interest had not yet been properly formulated. To evoke
chaos as a counter argument to the stability properties of a discrete time tatonnement process simply does
not hold as the latter was constructed when the former was absent’.

Scarf [18] provides several counter-examples to stability which do not make recourse to complex
behaviour. Scarf’s counter-example may be deemed more appropriate in the sense that it was written
contemporaneously and in response to Uzawa and his peers. One of Scarf’s counter-examples considers the
case in which there are three goods and three individual’s, each of whom has taste for only two of the
goods. The holdings of initial endowments are cyclic in the sense that each individual only holds one unit
of a good; the endowment matrix is equivalent to a three dimensional identity matrix. The specific form of
the utility function is of a Leontief type in which the two commodities desired by each of the three

® Saari [17] p. 1119 also notes that correct dynamical process for the tatonnement process is an iterative one, at least in
the present context in which an auctioneer calls out prices

" Uzawa [23], p 185

¥i.e. is a Lyapunov function

? Mathematical interest in deterministic dynamical systems that generate apparently random trajectories has dated back
to at least Poincare’s work in the late 1800s. Interest in the natural sciences was piqued by a paper by Ruelle and
Takens in 1971 who argued that the traditional model of fluid flow turbulence was structurally unstable and that a
dynamical system that converged to a low dimensional deterministic system was a better model of certain types of fluid
flow turbulence than the traditional one



individuals are perfectly complementary to each other. It is shown that any other price vector other than the
market clearing price vector will create a trajectory in which prices circle around the fixed points. The
unique fixed points are thus never reached. It can be noted that, if trade can only ever be effectuated once
the market clearing price is attained, then Scarf’s counter-example provides a case in point in which trade
will never take place. It is further noted that the instability'® in this case is a product of the income effect
dominating the substitution effect.

In light of [18], Negishi [14] concludes his survey article by stating that “the tatonnement process is not
perfectly reliable as a computing device to solve the system of equations for general equilibrium”

On the one hand, a counterpoise to Negishi’s conclusion may simply be that the weak axiom need hold or
that all goods be gross substitutes. This would circumvent counter-examples such as those constructed by
Scarf. On the other hand, as alluded to previously, work subsequent to Scarf has demonstrated that even in
the presence of the weak axiom or revealed preference and gross substitutability, there is no guarantee that
stability in the large need hold.

Morishima [12] does not appear so optimistic about any such counter-argument. He demonstrates, by
means of a simple example, a case in which even in the presence of gross substitutability, periodic price
dynamics can be generated. He concludes that the tatonnement process can be disappointing as a price
adjustment mechanism.

Day [8] considers a pure exchange economy in which supply does not change as price changes. This
corresponds to Uzawa’s [23] in that endowments are static and there is a change in goods only once the
market clearing price has been reached. The precise form of the tatonnement process that he considers uses
a utility function of the Cobb-Douglas form as in Arrow, Block and Hurwicz [5], but uses a discrete time
tatonnement mechanism as in Uzawa [23]. Day’s analysis focuses on the fact that if endowments are
cyclic'!, and there are two goods, two market participants and one of the goods is treated as a numeraire,
then the discrete tatonnement process has the capacity to generate complex dynamics. Such complex
dynamics encompass the case in which the unique fixed point is reached as well as the cases of the
occurrence of periodic and chaotic trajectories. In the latter two cases the market clearing price is never
reached. This occurs even if gross substitutes and the weak axiom of revealed preference hold. Day’s result
is therefore a caveat to Uzawa’s stability theorem, as it constitutes a sub-set of that which can occur if the
stability theorem does not hold.

Day states his results as'*:

A unique competitive equilibrium exists and is the unique stationary state of the process.

If the eigenvalue falls within the unit circle, then the competitive equilibrium is globally stable.
The tatonnement process generates prices that are bound to a finite interval.

If the eigenvalue falls outside the unit circle then fluctuations persist almost surely.

For some set of parameters, chaotic trajectories exist robustly over a significant parameter interval.
Given any speed of adjustment, these results occur robustly.

ARl

Point 6 is of especial interest as, for a given distribution of endowments, the speed of adjustment may need
to be altered such that either monotonic or oscillatory converge of price to equilibrium. Generally stated, if
the holdings of the endowment of the numeraire are scarce relative to the non-numeraire, then, for a given
speed of adjustment, price dynamics may be complex. The negation of this last point is subsumed into
Uzawa’s stability theorem as, in this theorem; the upper bound for the speed of adjustment is directly
related to the precise value of aggregate excess demands, which in turn are dependent on the distribution of
the holdings of the endowments. Day therefore appears to be providing a specific type of dynamic which

1 Scarf’s example is one in which global stability is not possible, but stability in the sense defined by Lyapunov is
possible. Lyapunov’s stability requires that the orbit tends to a neighbourhood of the fixed point and remain there or
simply circle about it

! This is not a necessary condition to obtain the results that he does, but a simplifying factor

"2 Bearing in mind that Day’s example is one-dimensional in nature



lends itself more to an examination of trajectories that are chaotic in nature. Furthermore, stability in [23] is
rigorously demonstrated for a system of any dimension. Day falls short in his caveat in that he considers a
one dimensional system.

We are therefore left with the following problem: it need not necessarily follow that global stability does
not hold if any such caveat is restricted to a one-dimensional system. A strict caveat would have to be
extended to a system of any arbitrary dimension simply by dint that (1) is stable for any dimension if the
speeds of adjustment are small enough and WARP holds. A strict caveat would also have to show that
holdings of relative endowments in a system of any dimension have a bearing on the stability of that
system, given that Day’s result is premised in part on the robust occurrence of chaos for any speed of
adjustment.

Goree at al. [9] note that under the assumption of gross substitutability, the price process may not converge
to a point, yet the price process is stable in the sense that prices converge to a bounded region. It is this fact
that prices are bound to fluctuate within a certain region that permits them to posit that an out of
equilibrium exchange is beneficial to no trade at all. They note that within this region, in the case of three
goods, as the speed of adjustment changes, the attracting set of the system changes from (i) the unique
fixed point to (ii) a period two orbit, to (iii) a quasi-periodic attractor, to (iv) a strange attractor on which
the dynamics are completely chaotic.

Goree et al. state the following proposition for the type of economy considered here:

For all economies there exists a finite A, such that for A > A, all fixed points of the discrete process ((1)

above) are repellers”.
They note the following:

1. Under gross substitutability the unique equilibrium is globally stable when the speed of adjustment
is sufficiently small.

2. The tatonnement process becomes unstable at some finite value of the speed of adjustment.

3. There exists an attracting set to which all initial price vectors converge (for all values of the speed
of adjustment)

4. The dynamics inside the attracting set are quite complicated for sufficiently high values of the
speed of adjustment.

It is also concluded that 1 to 3 are independent of the precise choice of the type of aggregate excess demand
function or the dimensionality of the system. However, the specific type of bifurcation occurs (periodic-
doubling, Hopf, saddle-node, or global bifurcations) and for what values of the speed of adjustment,
depends upon the particular system studied. It is also pointed out that if the system is stable, then the
eigenvalues of the Jacobian of the aggregate excess demand function evaluated at the fixed point are less
than one in absolute value and that this condition is dependent upon the value of the speed of adjustment
(amongst other parameters). Goree at al.’s results accord entirely with the results of this thesis and indeed
provide a generalisation of Day’s caveat to higher (two) dimensions. Goree et al. however, do not consider
that their results could be modified by a change in the holdings of relative endowments. In other words,
points 1 — 4 hold for a given endowment matrix. If this endowment matrix changes | — 4 may be altered.

Tuinstra [21] considers a discrete price adjustment mechanism in which there are three agents each of
whom have a CES utility function and three goods. He argues that the appropriate price normalisation rule
is that prices sum to one. Tuinstra thus considers chaotic dynamics on the unit simplex rather than
arbitrarily choosing one good as the numeraire. This analysis is especially instructive as the author notes
that, in the three dimensional case, there are simply too many free parameters for a simple analysis. To this
end symmetry is introduced into the tatonnement process and is imposed on the endowment matrix and the
preference matrix. Such symmetry can be rotational, reflective or both. The imposition of some form of

" Where A, is the speed of adjustment



symmetry allows the study of the global dynamics by reducing the number of free parameters from 20 to 8.
Symmetry not only produces spectacular bifurcations on the simplex but also has the function that “the
symmetric tatonnement process can serve as an ‘organising centre’ in the analysis of the global dynamics
in general tatonnement process”. Symmetry also yields the neat property that the Jacobian matrix has an
immediate symmetry to it as well. Like Goree et al., Tuinstra states that in order to study the bifurcations in
the system, the eigenvalues of the Jacobian, need to be examined. If the market clearing price vector is
stable and the eigenvalues lie inside the unit circle then the system is locally stable'*. If at least one of the
eigenvalues lie outside the unit circle then the market clearing price vector is unstable. At the point at
which an eigenvalue does cross the unit circle as a parameter is varied (for example the speed of
adjustment), a bifurcation point occurs and the characteristics of the tatonnement process fundamentally
change.

Whilst the literature reviewed is unequivocal in the conclusions reached regarding stability, there does
appear to be some gaps in the analysis of general equilibrium. This author asserts that not only can
instability be induced by shifts in the speeds of adjustment but endowments play an equally important role
and have much more interesting implications for policy especially if trade in disequilibrium is permitted.
The examination of the former, to date has been done at the expense of the latter and the latter cannot be
neglected as both types of parameters find their way into the tatonnement process and will therefore
generate stable or complex price dynamics.

Uzawa [26] examines the transaction rules for which an out of equilibrium exchange is allowed. If
exchange increases the utility of at least one individual and reduces the utility of no one, then trade will
take place. If this rule is abided by then the holdings of endowments converge to a Pareto optimum over
time. Uzawa establishes this result for both the discrete and continuous time tatonnement process noting
that a strict preference relation must be defined as well as that individual, and hence global, constraints of
endowments remain unchanged. Under these conditions, there is an equilibrium price vector that supports
the Pareto optimal holdings of endowments.

It must be noted that Pareto optimal holdings will be determined not only by the rigorous enforcement of
the trading rule but also by the choice of initial prices and initial holdings of endowments. These starting
conditions may favour one individual over the others. In this sense, for a different starting price and
different holdings of endowments, the Pareto optimal may be highly skewed in the favour of one individual
over the other. Uzawa is silent on this point. '

Trade at disequilibrium also starts to allow various other questions to be asked. If individuals are allowed to
trade at any price vector, providing that the trading rules are adhered to, such trade may start to encompass
a speculative component, especially if one starts to build into the model the role of expectations. If prices
are, for example, falling monotonically over time, one individual may withhold an amount that he would
otherwise exchange even though, by the trading rules, it would be beneficial to trade. Such holdings of
goods that are withheld would be speculative in nature and may either stabilise or destabilise the Pareto
holdings of endowments with respect to the case in which no speculative trading were permitted. A
confounding factor in the context of the non-tatonnement processes presented in this paper may be that
speculative holdings either work in accordance or in discord with complex dynamics in the reaching of
Pareto optimal holdings of goods. No statement can be made out of hand without a thorough analysis of
both the effect of speculative holdings of goods and the effect of non-speculative holdings of goods in the
presence and absence of complex dynamics. For the purposes of this thesis speculative holdings are
disallowed and the trading rules are strict.

' Locally stability implies global stability in the case of gross substitutes at all price vectors



Section Two: The Tatonnement Process

In this section the tatonnement process is defined. The type of economy that is assumed is Cobb-Douglas.
The specification of this type of economy ensures that gross-substitutability and the weak axiom of
revealed preference hold and therefore, for a stable system, there is a unique fixed point.

This section is organised as follows. The specific tatonnement process is first derived. Conditions for price
to remain bound to a particular interval are formulated. Conditions for stability are then introduced. A
discussion of the importance of the relative abundance of the endowment of the numeraire with respect to
the non-numeraire is noted. A specific cyclic endowment matrix is then considered, for which the stability
of the tatonnement process is examined as the speed of adjustment is varied. Stable trajectories, periodic
trajectories and chaotic trajectories are all found to exist for different values of the speed of adjustment.
Whilst this analysis has been carried out elsewhere (Day [8]), the need for such a thorough examination in
this section is justified by the contents of section three, in which solutions to the periodic or chaotic nature
of the tatonnement process are presented. In light of what is presented below and in subsequent sections,
we find that a sufficient condition for the attainment of the unique fixed points is that the eigenvalue of the
system lies within the unit circle. It will be shown that this latter condition is directly related to the relative
values of endowments and the speed of adjustment. This finding is an extension to the work named in the
literature review in which only the speed of adjustment is considered as having the potential to generate
complex price paths.

The Cobb-Douglas Economy and Walras’ Tatonnement

a'm
Since GS holds then the demand for any good is given by" x! 2_,— Since the income for any
P
individual is dependent upon the price prevailing at any point in time, the following identity holds:

m = Z p'@, Vi, where a),:’ is the endowment of good j for individual i. The aggregate excess demand is
7

the summation of any particular good for all individuals, less the endowment of that good for all

individuals:

zZ' = Zx —i ®, Y Q.1
i=] 1=

Since the demand for any good j depends upon individual i’s income, and this in turn depends upon prices
then (2.1) becomes;

Z'(p)= ) x/(@ p.@)- 2 0, V) 22)

The price adjustment mechanism or tatonnement process is
pla=1"(p))=max{0, p/ + A’Z’(p)}, j=12,.. 2.3)

where A’ is the speed of adjustment for market j.

' Index i refers to the individual and j refers to the good



This type of tatonnement process follows the mechanism described in detail in Uzawa'® in which there are j
markets running concurrently for the j commodities that are desired (but not necessarily held) by the i
individuals.

We note that if the market clearing price vector is reached then Z’(p) = 0, ¥}, which in turn implies that

ixf ‘Z": w =0 < Z":x,’ =§": w', Vj; (2.4)
i=l =1 =t i=1

Denote the market clearing holding as;

ix/* = Zn:a’/ @2.5)
i=1 i=1

which is the equilibrium exchange of goods'’. Such that there has been the exchange of at least one good
(between at least two agents) then;

Se Y=Y o @)
i=l i=1 I=]

(2.6) simply states such that the tatonnement process is not vacuous or trivial in the sense that individuals
come to the market already holding the distribution of endowments that would come about by means of the
price adjustment mechanism (that is the pre- and post-trade holdings of commodities are the same), then the
initial holdings of at least one good for at least two people must differ to the optimal distribution of
resources'® at the market clearing price. Or alternatively, some trade has to take place. If gross substitution,
the weak axiom of revealed preference and Walras’ law hold, there is then some unique price vector that
allows (2.6) to be attained.

In order to render the tatonnement process more concrete, the highly simplified case in which there are only
two goods and two market participants is considered.

By (2.3) we have two simultaneous adjustment mechanisms:

pLo= (P =max{0, p! +A'Z'(p!*)}
P =1 (p) =max{0, p} + X2 (p!")}

@2.7)

Commodity two is arbitrarily chosen as the numeraire good so that p2 =1, Vt.(2.7) therefore reduces to a
tatonnement process for good one only;

P, =f(p)=max{0, p, + AZ(p,)} (2.8)

Substituting the demand for good one and the endowments for all consumers into (2.8) and rearranging;

'® See literature review for an outline of the details of this type of mechanism

'7 Exchange only takes place if the market clearing price has been reached. This is tantamount to the same price being
called for at least two consecutive periods. No exchange takes place beforehand. This mechanism differs fundamentally
to that proposed by Uzawa [26] in which trade can take place out of equilibrium. The use of the word “traded” in the
context of sections two, three and four is slightly incorrect as no trade actually takes place throughout the price
discovery process

'8 This condition is not strictly needed for what follows. It can be shown that even if individuals enter the market
holding the optimal (post-exchange) distribution of endowments, the tatonnement process can still be chaotic

10



P =/(p,)=max {o, P+ i[ix.‘ - Zw}}

l

i=l

2.9)

i=
2

P :f(P,) =maX{0, D, +ﬂ{i.a_‘(?'__iw‘l(]_all):|}

i=1 f i=|

If the market clearing price is reached then the same price is called by the auctioneer for at least two
consecutive periods. If such a price is reached, and is positive, then (2.9) becomes;

p=p +AZ(p)=
AZ(p)=0 = (2.10)

Z(p')=0
If Z( p‘) =0 (absence of excess demand and supply for good one), then;

n 2 n
YL N o(-a)=0=
i=1 p* i=1

P U

Z(—Z;)—w*i—:ia),l(l—ai’) = (2.11)
i=1 i=1
ia.lw,z
p=—t—>0
D ol(-a))
i=1

which is the market clearing price for good one. The market clearing price is thus simply the ratio of the
endowment for the numeraire by the preference for the traded good to the endowment of the traded good by
the preference for the numeraire.

It must be noted that if (2.11) holds, then the market for good two is also in a state of equilibrium in which
there is no excess demand or supply'®;

(Z'(p*) =0) & (0=Z"(p*) 2.12)

It must furthermore be noted that the speed of adjustment has no bearing on the market clearing
price; A only has a bearing on the rate at which that price is attained (or whether such a price is attained at
all).

We now want to establish the stability properties of the tatonnement process (2.9). By the stability property
(A9);

"% Conversely if Z'(p) # 0 < 0 # Z'(p) . Moreover, any particular dynamic that occurs in market one also occurs for

the aggregate excess demand for good two. By (2.12), it is sufficient to consider only the market for which price has
not been normalised in the two good case

11



dj
P —|f (M) <1 (2.13)

p=p*

t

Applying (2.11) to (2.13);

(iw,' q —all)j

' e’ ' ~
\f il =1-22 ==, 1 (M) =)l-2~— < (2.14)
=l (P,) a,]a’,»z
[Zw)(l—a/'))
Define® x as; x =it (2.15)
Za,]w,2
The stability condition is therefore;
|/ (p*)]=|1-x|<1 (2.16)

(2.16) is simply a statement that the modulus of the eigenvalue or multiplier of the discrete map is less than
one, or lies within the unit circle, and for this particular type of map the eigenvalue can be decomposed into

|1 - K| .

Such that (2.16) holds we can make a further statement about k" ;

If k€(0,2) .17
then (2.16) holds*".

If the tatonnement process is unstable the inequality in (2.16) is reversed such that;

If (o9 =1-«]>1 (2.18)
Definition (2.15) provides an immediate way of evaluating the conditions under which (2.16) is attained
and as a consequence (2.17) holds. Given that k¥ depends on the speed of adjustment, preferences and
endowments for the numeraire and the non-numeraire, the factors that enter into the tatonnement process
(2.9) are precisely those factors that determine the value of the eigenvalue and therefore the stability of that

process (2.8).

In order to ensure that prices are strictly positive, that is to say so that p, >0 at any point in time, then let

therebea p that minimises the map f, such that*;

S(p)=0 (2.19)

 This methodology is used by Day [8]
NTMhMWMSWMMMfK=OJMnWQJSmMQ%JMmwwawmmmMmmmmmeW$
% The zero price boundary is avoided
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From (2.9);

|

f'(ia)=1—zi%=o - i)=[iia,‘cof}2 (2.20)
=t \pP i=l

Substituting the expression for p into (2.8) and noting®;

f(p)=p+AZ(p)>0 (22D
Rearranging (2.21) and simplifying the inequality

k<4 (2.22)

is obtained. Combining (2.17) and (2.22) the following interval for x is obtained;
x€(0,4) (2.23)
An expression for the optimal speed of adjustment, A * can also be derived. This is the value for which the

market clearing price (or a solution to the tatonnement process) is reached in the shortest time possible (i.e.
the system is super-stable).

£ =1-23 %%
o (p%)

(p*)’ (2.24)
5]

where p* is defined as in (2.11)*.

= A*=

The following general properties are noted;

e For x €(0,4) prices are positive and bounded.

e For x €(0,2), the eigenvalue is less than one in absolute value; stability is ensured as in (2.16).

o For x €(2,4), the eigenvalue is greater than one in absolute value; instability in the sense of
(2.18) occurs for which (2.16) is necessarily ruled out.

3 (2.19), (2.20) and (2.21) takes the minimum point in the domain for p and maps it onto the range by (2.9). By the
inequality in (2.21), the minimum value for p ( f(p) ) can be obtained. This constitutes the lower bound of the interval
for which price is feasible. Since price is not bound from above, the domain of price is p € (f(ﬁ), oo) . (2.23) therefore

imposes that prices exist on a non-degenerate interval of the real line
* The optimal speed of adjustment can also be seen as that speed of adjustment for which the eigenvalue is zero, i.c.

S '(p*) = 0,which would entail, by (2.16) x = 1. At this point the system is super-stable
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Changes in Relative Endowments

Ay ou first pass in examining the properties of the tatonnement process, the relative value of one commodity

vis=f-vis the other commodily is examined. The case in which there is a numeraire and a non-numeraire iy
X i 5 e

examined. We assume that there are only two markel participants™, Gach market participant has equal

preferences both for the nuneraite and the non-numeraire, ie. &’ = 0.5, 7,/ = 1,2, Futhermore, the
endowments for both goods are described by the following matrix:

|/v o
= (2.25)
0 1)

Find

Holdingz of good one for individual one is denoted v, This value of v varies from 1] to 9 in steps of {11,
This change caplures the relutive scarcicy of the holding of the pou-numeraire with respect to the
numeraire. The market elearing price, the Lyapunov exponent und the value of & are plotted against the
e lutive holding ol good gne in graph 2.1

Graph 2.1
o

10

—— Market Clearing Price —— Walue of Kappa Lyapuroy Exponent |

As the telative gbundance of the ngre=nomeraice increases, the price falls. This is as theory would dictae.
However, as the non-numeraire becomes relatively less searce with respect to the numeraire, other
dvnamics occur, The following relations are noted:

v v eE(0,6.3) thenw & (0, 21% Stability is epsured in the sense of (2.16)

v IF &= (0.2) thep the Dyapunoy cxponent is less than zeee™; A ) < 0. Chaos is absent

e IFveE(6.3,9) k= (2,4). The system is unstable in the sense of (2,1 8),

o Ifw = (2.4}, there are certain values of ¥ for which f{g) = 0, Chaos is present, The Lyapunoy
caponent is both positive and negative implying that chuos both dovs and does not oceur™ yet
starts to oceur more Tobustly as the nen-numeraite beeomes loss searce.

The presence of chaos indicares that Walras® iden abour scarcity may be subject to the need for further
qualifications. Wulras notes thut i 4 good becomes increusingly plentiful, it will cease to have a value in

= A - 0. is assumed throughoul this sectioe.

* This can be read oft the vertical axis

Y S Appenbix Lor discussion of Lyapunoy exponends

** The absence of chaos dogs nol imply the presence of & unique fixed poin
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exchange. It is noted here that both goods will cease to have a value in exchange as holdings of the non-
numeraire increase relative to the numeraire simply as there is no convergence to the fixed point. Define;

As the value of y tends to zero, the holdings of the numeraire increase in terms of the non-numeraire. The
tatonnement process is however stable in the sense that”;

limh(p)=0

limL(p)=1"

s (2.27)
lim p=w

vt

lim A* =
vo0®

(2.27) states that as the relative amount of good one becomes small vis-a-vis good two, in the sense defined
by endowment matrix (2.25)°°, then the Lyapunov exponent tends to zero from below. Similarly, the
Lyapunov number tends asymptotically to one from below. This implies that average contraction of the
map is zero at the limit and that the system is stable up until that point. Since the price of commodity one
becomes infinitely large and it would take infinitely long to reach such a point (the point at which the
system is super-stable tends towards infinity), Walras appears to be correct in that if one good becomes
plentiful (good two), then that good ceases to have any value in terms of trade.

However, suppose now that the holding of good one becomes large. Recalling that the imposition of global
stability requires that v be bound by a value approximately equal to nine’', the converse to (2.27) can be
examined. It would be expected that the same results as (2.27) hold; if commodity one becomes
increasingly abundant then its price would become zero and at the limit, the market ceases to function. This
is, however, not that which is demonstrated in graph 4.1 as for certain quantities of commodity one, we
have;

lim A(p) >0
" (2.28)
limL(p)>1

vo9”

As the holdings of good one increases relative to that of good two, since k € (2,4) for certain values of v,

and by (2.28), chaotic sequences are observed. The tatonnement process becomes unstable. Whilst Walras
was correct in the assumption that the relative value of commodity one would become negligible as the
supply of that commodity becomes large, his intuition needs to be corrected in the present context to the
extent that as the non-numeraire becomes more abundant relative to the numeraire good, the tatonnement
process becomes first unstable®® and then chaos occurs. It can therefore be stated that>:

% 0" means just below zero and 1™ means just below one, at the limit

%y 0" is equivalent to ¥ — 0" asis v — 9 equivalentto & — 4

*! As this ensures that x € (0, 4)
32 The specific dynamics in which the tatonnement process becomes first unstable in the sense of periodic orbits and

then chaotic sequences
% This result is a direct consequence of the fact that goods one and two are treated asymmetrically in the tatonnement

process
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As the holdings of the non-numeraire increase, the tatonnement process is at first stable in the sense that
x €(0,2); the eigenvalue is within the unit circle, then unstable in the sense thatx € (2,4) or the

eigenvalue is outside the unit circle. Furthermore for x € (2,4) a positive Lyapunov exponent is observed
indicative of the presence of chaos™.

This result is not confined to the cyclic endowment of (2.25). Suppose that there are n market participants.
The endowment matrix can be defined generically as;

wl a)l
a)' w
o= = (2.29)
i 2
w w

If the values in the first column of (2.29) become large relative to those in the second column, and all
agents are identical and have equal preferences for both goods®, then the tatonnement process becomes
unstable and chaotic price sequences are observed®®. This occurs as the numerator in (2.15) becomes large
relative to the denominator. Of course by (2.15), if there were a commensurate shift in preferences away
from the numeraire towards the non-numeraire, then it is conceivable that x remains static so stability can
occur even if the holdings of the non-numeraire become large relative to the numeraire. This however,
cannot occur if all individuals are alike and have equal preferences for both goods.

Changes in the Speed of Adjustment

Consider the case of two market participants. Each market participant can hold either the non-numeraire or
the numeraire but not both. The endowment matrix is cyclic;

and all preferences are equal®’. Accordingly, in the two good case, preference for each individual and for
each good is 0.5.

An arbitrary initial price of p, = 4 is chosen. Any initial price can be chosen provided that this initial price

does not coincide with the market clearing price and is not zero.

In order to understand the stability of the system, the eigenvalue is considered. It is noted that the value of
the eigenvalue is a function of the speed of adjustment, the parameters that capture preferences and the
endowments. We recall that the stability condition is:

If'(p*)| =|]—K’| <1, that is, the eigenvalue lies within the unit circle. If instability occurs then the

eigenvalue lies without the unit circle;|f '(p*)| = |1 - K'I > 1. For the latter case the system will never

3% This is the same result that Day obtains but by means of a change in the speed of adjustment not in relative holdings
of endowments

3% This assumption is not necessary but merely simplifies the analysis

% An increase in the number of individuals holding a certain good is equivalent to an increase in the holdings of that
good by one individual, provided all market participants are the same

37 By imposing these conditions, the number of free parameters falls from 9 to 1; the speed of adjustment
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comverge 10 e unique fixed point irespective of the number of iterations over which the system is
integrated.

[n order o quantify the stability of the system with respect to the speed of adjustment, given that
endirwments are cvelic and that preferences are equal for both individuals and for both goods, the
Lvapunoy exponent is calculated for

i o e & :I
L 0.5 05 o . )

cmowhich A mereases in steps o A4 — 00 such that
Lol s
i, 'k[}"’ R )
the open interval A £(0,8) (cormesponding tw & = (0,43 " is ensured. The valus of the speed of
adjusiment against the Lyvapunoy cxponenil s shown inograph 2.2

10 { e
w= andA=|
( l/u l‘\ﬂ

2

Graph 2.2

Lyapunov Exponent

-14
-1
-18

Speed of Adjustment

The dvnamics underlying graph 2.2 are gutlined in table 2.1

Tahle 2.1.
Value of A - Yalueol & Dvnamics
Ae(i, 2} SN s Monotonic convergence towards the fixed point™

s As ok =00 the cigenvalue remains just ibside
the boundary of the unil ciccle. The rate of
contraction s low and the time unei! the fixed

point is reached is long''. As x — 17, the
cigenvalue Talls from just inside the onit circle 10
Just above were. The swstem thus londs lowards
being super-stable’™ '

ot ko 4 rhen the vero price houndary i5 hivand tatannement pracess breaks down such that p =10, 7f = £

A
" For the preferenes and endewments given, — =« by (2,15}
2

* See praph G.2.]

*! See graph (2.2, as wel! as discussion below regarding time until market clears
* See Stragats, p. 350 far a brief discussion ol super-stakility

* See graph G.2.3
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The Lyapunov exponent is negative and falling.
The map contracts at an increasing rate as
x tends towards one

Monotonic convergence of prices towards fixed
point

Eigenvalue is zero. The system is super-stable
(see (2.24))

Super-stability coincides with, and is defined by
the optimal speed of adjustment

The Lyapunov exponent is negative and large in
magnitude (minus infinity)

1e(2,4)

xke(l,2)

Oscillatory convergence of price towards fixed
point*

Forx — 1, the eigenvalue tends to just below

zero and is thus negative. For & —> 2, the
Eigenvalue oscillates from just below zero to just
above negative one. Such oscillations can take
the eigenvalue outside the unit circle as price
converges to the fixed point, but at the limit the
eigenvalue still lies within the unit circle.
Accordingly the modulus of the eigenvalue is
still less than one.. The system is thus moving
away from super-stability as «x increases to the
upper end of the open interval®’

The Lyapunov exponent is negative

Onset of periodic orbit of period two. A
bifurcation point is present

Fundamental shift in the nature of the dynamics,
occurring at the point at which the Lyapunov
exponent tends towards zero

The Eigenvalue fluctuates just above and below
negative one

The system is stable in the sense of equation
(AS), but unstable in the sense of (2.18). Stability
in the sense of (2.16) will not be re-obtained for
any value of K equal to or greater than 2. There
is therefore no convergence to the unique market
clearing price and stability in the large breaks
down. The system is however stable in
Lyapunov’s sense, but not asymptotically s0*.

Ae(4,5)

xke(2,2.5)

Periodic orbits of period two occur®’

The product of the eigenvalues falls from
positive one for A=4 to negative one
for A =5 . This is the same change in the values
of the eigenvalues for A € (0,4), but in this case
the domain is one quarter that of the domain for
which there is a unique (non-periodic) fixed
point_of the system. This indicates that the

4 See Graph G.2.1
* See graph G.2.4

“® That is to say, the system converges to a stable (non-expanding or non-contracting) area in the vicinity of the fixed
point. See LST in the appendix

7 See graph G.2.5
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domain over which each period doubling takes
place gets shorter and shorter (see Feigenbaum's
constant below). This implies that once the
period doubling route to chaos starts, chaos
quickly ensues.

e The Lyapunov exponent is less than zero as the
product of the first derivatives about the two
period points is less than zero (see AS).

e As x —> 225 from2", the oscillations of the
eigenvalue become increasingly large and fall
further and further outside the unit circle®®.

A=5 Kk=2.5 e Onset of periodic trajectory of period four®

A €(5,5.235) K €(2.5,2.6175) e  Periodic orbit of period four

e Product of eigenvalue for each of the unique
periodic orbits is less than one

e The Lyapunov exponent is negative

A=5.235 Kk=2.6175 e Periodic orbit of period eight first occurs
(approximately) at this value

A€(5.235,5.299) | k€(2.6175,2.649)5) e Period doubling occurs. The system is stable in
the sense of (AS)

A=5299 K =2.6495 * Lyapunov exponent is positive for the first time;

chaos first occurs at this point
e The system is no longer stable in the sense of

(A5)

A €(6,6.07) x €(3,3.035) e Trajectory of period three occurs

A €(5.299,8) Kk €(2.6495,4) e Chaos occurs robustly interspersed with
windows of periodic orbits (see graphs 2.3 and
2.4)

Table 2.1 points to several interesting dynamics occurring. Given that stability occurs if k € (0,2), then the

Lyapunov exponent is negative. The tatonnement process is therefore energy dissipative. For this open
interval in which the eigenvalue lies in the unit circle, stability in the large is guaranteed. However, the
dynamics within this interval are not identical to each other. For x & (0,1)*° prices (and the Lyapunov

function) fall monotonically towards the fixed point. This open interval corresponds to the interval that lies
to the left of the optimal speed of adjustment, or the super-stable point. For x & (1,2)>' prices converge in

an oscillatory manner towards the fixed point. Furthermore x € (0, 1), the eigenvalue lies in (0",17), whilst

forkx € (1,2), the eigenvalue lies within (-17,07) at the fixed point. Once & > 2 (corresponding to the
eigenvalue lying outside the unit circle), stability in the large breaks down. We also note that for
& € (0,1) the dynamics that are generated by a continuous time tatonnement are equivalent to the discrete

time case as there is monotonic convergence in the price and hence the Lyapunov function for this interval.
Once « € (1,2)occurs, there is a break in the equivalency of the dynamics of the continuous and discrete

time tatonnement.

Graph 2.1 also shows that there are several open intervals for which trajectories of a given period occur.
The midpoint of that open interval corresponds to the case in which #( p) = — . Since the open interval

for which a trajectory of a given period occurs becomes shorter and shorter as periods of higher order

8 See graph G.2.6 and G.2.7
* See graph G.2.9

1 e(0,2)
U1 e(2,4)

19




occur. [ observe that periods of {2,4,8,16,...,2°}, Vk occur. By Sharkovski’s Theorem (see Appendix),

trajectories of all periods occur. The point at which a2t period trajectory occurs, where k = o, denoted
by K, is intimately related to Feigenbaum’s constant.

I note that x_ has a value of approximately 2.6495 which is equivalent to an approximate value

of A, =5.299. At this value of k', a positive Lyapunov exponent is observed for the first time. The

tatonnement process therefore has the ability to generate chaotic trajectories™> and does so at this point only
after period doubling has occurred. Furthermore, since period three orbits are observed then the second
result of this section can be stated:

Forx € (3,3.035), a three period trajectory is observed®. By LYT™, if:

Fp)<p<fp)<fip),or f7(p)=p>f(p)>f>(p) , then there is an uncountable set which
contains no periodic points such that for every initial condition contained in that set, the solution of

p,.. = f(p,) is ermratic, i.e., the solution is aperiodic and remains bounded in that set.

I note that for k¥ =3, then A = 6, the following prices are generated;

Prooos = 3.879414
Pro oo = 1652727
Prooos = 0.467909
Prosos = 3.879414
=1.652727

p20,000

A three period cycle is present in the sense that £°(p) = p > f(p) > f (p). Trajectories of all periods as
well as chaotic trajectories are present. The three period orbit can be seen in graph 2.4. Furthermore, this
occurs for any initial price. It can be concluded that forx € [x_,4), chaos occurs robustly. Since the

existence of chaos occurs for a given endowment matrix as the speed of adjustment changes, for a given
speed of adjustment, changes in the endowment matrix will generate the same type of dynamics.

Feigenbaum’s Constant and the Period Doubling Cascade

From table 2.1 it can be discerned that at first there is a unique fixed point towards which all trajectories
approach. At a certain point there is a period doubling and a periodic orbit of period two is observed. After
a certain interval, periodic orbits of period four are observed after which, periodic orbits of period eight are
present. From this point, orbits of sixteen, thirty two and so on occur until at the limit chaos is present.

The period doubling route to chaos is intimately related to Feigenbaum’s constant. (A25) can be used to get
an approximate value of the point at which chaos will occur once the first few period doubling points are

observed.

Noting that Feigenbaum’s Constant is approximately given as*’;

*2 See graph G.2.11
3 See graph G.2.14
3% See appendix for a discussion of this theorem
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S ks d BT (2.30)
S

arl r

where v is the period doubling peint, (2.30) ¢an be rearranged to give an approximate value for v, | as

fial lovws;
pip
R (2.31)
]

Table 2.1 indicates that the first three period douhling pomts occur at A=4, A =35 and A =5.235,
which correspond™ o periods of two, Tour and eighe respectively, Using the latter two values in (2.35)
allows an approximation of a sixteen period orbvit, This value is 4 — 5285320, Repeating the same process
for a thirty two period orbir vields a value of 2 = 5.2961 , If the same procedure is carried out a few more
lime (corresponding o periodic orbirs of 64, 128, 2536 and so on}, a value of A = 32880777 is quickly
converged upon. Lhis is an approximation of the limit pomt in {2,307, Onece the limit point has been reached
chaos eecurs: Craph 2.3 shows the bifurcation diagram as the value of the speed of adjustment is varied in
steps of 0.0 from 0.0] to 7.99, Graph 2.47 shows a magnification of the hifurcation for A £(3.75.6.4) in

steps of (h(.

Graph 2.3

Prace

10¢

dpead of Adjustment

* Fergenhaum's constant 15 an irational samber

¥ Or allermatively £ =2 . & =25 and x = 26175 respectively

7 (iraph 2.3 alse shoows that as the speed of adjustment inercases the hounded interval withio which poce Qucivates
inereases, This comesponds ey [feyuency plot us inén2 14
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Graph 2.4

Frice

Speed of Adjastment

Discussion

Stability has been quantified o this section by means of the Lyvapunov exponent. The walue of the
Lyvapunov exponent has been plotted wzainst both the relative value of the non-numeraice and the speed of
adjustment. 1 owas found thut prices cooveree o the unigue cquilibrium point ar follow complex paths as
the values of hoth the furmer and the latier vary, In the lieratore review it was mentioned thal the ahility of
the speed of adjustment 1o generate complex time paths hus long been estublished und indeed analvsed,
lfawewver, this author has et to find any mention of the relevanes of the distribution of endowments in the
setiing of complex dvnamics. The guesuon thus arises of why a varianon in both the speed of adjustinent
and the distribution of endowments allow the seneration of complex dvnumics.

Consider the first derivative af the aggregate excess demand evaluated at the fixed point (i, the one
dimensjonal lacobian matrix),

ok _ﬂz
)

L &, 2o

The stability criterion gan be slaed us: 1+ As|< L. Since the cigenvalue of the wreregate exeess demand
matrix, 5 is 2 luncoon of relative eodowments, 0 is clear that o chanee in the holdings ol relutive
endowments will dictate whether the stability condition s satislied or not. Similarly a chunge in the speed
of adjusiment will dictate whether the stability condition is met. The fac thut 2 eyvelic ehdowment matrix
has been used does not have any bearing on the robustoess of these results; both individuals could hold
both goods ver, for a given speed of adjustment, stability may or may not be present depending on the
relative ratios of those goods. The implication of this result is that, for a given speed of adjustuent, if there
15 4 spalar multiple of the economy, eventually, that economy will become unstable. Tor exampls, if
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A =0.2 and 10 units of both good one and good two are held then x = 1. If 35 units of both goods are held
then & = 3.5 . Increasing the size of the economy by a factor of 3.5 has induced a chaotic price trajectory. A
larger economy will generate complex price dynamics for a given speed of adjustment, until at the limit the
tatonnement process breaks and the zero price boundary is reached.

Where does this result leave the assumptions of gross substitution and the weak axiom of revealed
preference? It may be argued that if stability breaks down even in the presence of GS and WARP, then
such assumptions are superfluous and do nothing to create conditions of stability. Such an argument would
however be erroneous. By GS and WARP, there always exists a unique price that clears the market,
whether these prices are reached or not. In other words there is a unique stable manifold. These
assumptions permit the creation of a basin of attraction that is populated by single points (or singletons)
towards which, in the presence of stability all points converge. As the speed of adjustment changes or the
relative endowments change (or both), this basin of attraction becomes a repelling fixed point or a source,
and periodic and chaotic dynamics are observed. In the presence of these latter dynamics, the auctioneer
cannot call out a price that allows trade to take place. This occurs for any initial starting price. The
Walrasian auctioneer is therefore charged with ensuring that the unique fixed point of the system is an
attracting fixed point rather than a repelling point. In the presence of GS, he needs to modify the speed of
adjustment such that convergence takes place. By the fact that GS implies WARP which in turn implies
that the fixed points are unique or global stability occurs, then the auctioneer does not need to worry
whether prices fall on a stable or unstable manifold. Very simply, the auctioneer needs only to consider that
a fall in the speed of adjustment will put prices on a path that guarantees that the market clearing price
vector is reached. The extent to which the speed of adjustment is modified will in turn depend on the
holdings of the non-numeraire relative to the numeraire. If the auctioneer abides by this rule then stability
in the large holds. The next section demonstrates this point in a more rigorous manner.

Section Three: Controlling Chaos in the One-Dimensional Case
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In section two it was seen that for a one-dimensional discrete tatonnement process with two identical
market participants differing only in their initial holdings of the two goods, both stable and unstable price
sequences are observed. Whether the former was present and the latter absent depended entirely upon
whether

/() =l-x|<1 3.1)
was observed. If the inequality switched directions such that

/(M) =1« >1 (3.2)
then both periodic orbits of all periods and chaotic sequences were observed.

It was also noted that k € (0,2) was associated with (3.1) and x € (2,4) was associated with (3.2).

The possibility of the existence of an eigenvalue greater than one (i.e. instability) is ruled out in the
continuous time one-dimensional tatonnement process. Uzawa [23] circumvents the possibility of this
occurring in his discrete-time version by assuming that /3 (the equivalent to A in the tatonnement process
specified here) is small in value and positive and so (3.2) is avoided; Walras’ price adjustment mechanism
remains valid. In the absence of such an assumption, the question naturally arises of how to induce stability
if the system is unstable.

Three methods are proposed:

1. The introduction of market participants who hold the numeraire good or simply a larger holding of
the numeraire good by each individual®®

2. A decrease in the speed of adjustment

3. An approximation to the continuous time system as presented in AH and ABH

Differing Market Participants

Consider the case in which there are initially two market participants who have the following preferences
and endowments:

(10 s
7o 1 G-

o a 0.5 05
A= - (B34
a, 05 05

2

These dynamics were examined in section two. Now suppose that a third participant enters the market™.
Furthermore assume that all the third participant has identical preferences to the incumbent market
participants and holds an initial amount identical to either one or the other of the incumbents.

5% These two approaches are equivalent if all agents are identical
% As mentioned previously, if all agents are equal, an increase in the number of individuals holding the numeraire is
equivalent to an increase in the holding of the numeraire by only one individual
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Denote type A market participant as those who hold one unit of good one; the traded good and type B
market participant as those who hold one unit of good two; the numeraire good.

The introduction of another market participant alters (3.3) and (3.4) respectively to

10

o=0 1 (3.5)
0 1

or
1

o=|1 0 (3.6)
0 1

and
a o« 0.5 05

A=la, a;|={05 05 (3.7)
a, al 0.5 05

Suppose now that (3.4) holds; there are only two market participants. Consider the tatonnement process for
the first 200 periods with a speed of adjustment 4 =6.5, corresponding to x =3.25. For this speed of
adjustment, preferences and initial endowments, and market clearing price of 1, the Lyapunov exponent is
0.51745606; chaos is present and (3.2) holds.

Suppose now that one type B participant enters the market precisely atf = 200. The introduction of this
market participant changes the market clearing price to 2 and x =1.625 whilst the speed of adjustment
remains unchanged at 6.5.

Graphs G.3.1 to G.3.6 reports the change in the price dynamics when a type B market participant is
introduced into the market at ¢ = 200

It is immediately apparent that the introduction of a type B participant induces stability precisely as the
eigenvalue changes from 2.25 in (3.2) to 0.625 in (3.1). The Lyapunov exponent accordingly changes from
being positive to being negative®.

Suppose now that a type A market participant is introduced in the stead of a type B such that (3.6) occurs
over (3.5).

In this case x =13 which is associated with an eigenvalue of 12. The tatonnement process becomes
undefined:

D :f(p,):max{o, P, +l[iﬂ—iw"(l—a,})}}:o (3.8)

!

% There is no reason that the endowment needs to be an integer; any value could be considered
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as & = 4 The jnreduction of a type A market participant induces instability as Lhe adjustment mechanism
hits the zeto price boundany®,

The abewve line of rewsoning only holds if an iodividual i3 allowed to enter the markel once the price
discovery mechanism has starled, 18 this is not the case, it equivalently holds that a muarkel with fewer
individuals holding the numuraice or simply less holdings of the numeraire will, for a given speed of
adjustment, generale periodic or comples dynamics, iFsuch holdings are sutficiently small.

Graph 3.1 plots the Lyapunoy exponunt against changes in the speed of adjustment for ditfering numbers of
market participants for preterences as represented as in (3.7} and evelic endowments as in {3.5) ot (3.6)

Liraph 3.1,

AT Lyapunow Exponent 1 Type A 3 T\,f;m A —— Lyapunoy BExpansnt 1 Tyne A 2 Type B
Vaiue of Lyapungy Exponent, 1 Type &, 1 Type B

From graph 3.1 3t is noted that, it the Lyapunov exponent is positive, or (F periodic orbits are present
teomresponding toa = (2,430, the addition of 4 type B participant will, for a given speed of adjustment,

shift the map such that the Lvapunoy exponent becomes negative, I other words, for a given A | there is a
unigue £ The introduction of a market participant will keep the speed of adjustment constant but shift the
value of &%, 1f more holdings of the numeraire pood are introduced then & — & = (00, 2} und slahiliey 15

induced. This allows the (Bllowing result:

An unstuble or chaotic sysiem as well as one Lhal has periodic orbits can be rendered stable if the holdings
of the numeraite good vis-3-vis the non-numeraire are nereased. Conversely, if chaetic or perindic
trajeciories are ti be avoided, the auctioneer needs 1o note how much of the numeraite is held wilh ruspeet
tir the non-numeraire and vary the speed of adjustment accordingly. To the extent that the speed of
adjustment needs to be large or small is inversely propottional 1 the rato of the holding of the non-
nurmeraire with respect o the numeraire.

“' This result may nat accur il he bolding of the non-numerain: was less than ooe for the new market participant
* For example. if there are only twn participants, the relevanr plot af the Lvapungy exponent s the left most.

Ilw=i2,4), as shown by the arrow, then the trajeciory vccurs in the chaatic repion. By introducing a type 1 market
participant, the relevant plot of the Lyapuinny exponant is lhe middle ane, For @ given value of the spesd of adjustment
oow A (0,250 sability 1s induecd (trace the arrow down to the plot of the middle and right most Lyvapunny
cxproncnt iFane ne two type 135 are pntrodug el




Graph 3.1 also shows that the properties of the tatonnement process remain constant for the open interval
x €(0,4). The three plots in graph 3.1 are replicas of each other but merely stretched or shrunk with

respect to holdings of the numeraire as the speed of adjustment is altered. There is therefore a one-to-one
correspondent between the property of the map and the value of & ®. It can be asserted that stability or
instability cannot be defined by the speed of adjustment alone, and that any such consideration needs to
examine the value of the relative endowments. Furthermore, the larger the value of the holdings of
endowments of the numeraire, the larger the interval over which the speed of adjustment can vary in which
the system is stable.

Change in the speed of adjustment

In the literature review it was noted that much of Uzawa’s stability theorem was dependent upon /S being
small, where [ is equivalent to 4. It has been shown numerically that if 4 (/) is small, stability is

guaranteed. There is thus an equivalence between that which Uzawa states and that which is found in this
work.

However, to the extent that £ is small then, following Uzawa’s proof;

e+ <pt)-p {2[20 O+ Z p.z(]- ﬁi zf (t)} becomes (¢ +1) < @(t). This argument rests

crucially on S being a number smaller than

2[::0(1)) " i;—),z,(m}

i=l

D2 (p)

2 < inf D(p) < B[ p(0)] (3.9)

By the converse of the above result, it is conceivable that if there is a large holding of the traded good with
respect to the numeraire good, the numerator in (3.9) would be large with respect to the denominator. This
would entail a smaller £ such that convergence and stability are ensured. The difficulty then becomes how

small does f have to be.

For example, suppose there are 450 type A individuals and 30 type B individuals. If A = £ =0.001, then,
x =3.375 and the Lyapunov exponent has a value of 0.5037. The trajectory is chaotic even though the
speed of adjustment is low. Now suppose that the speed of adjustment changes such that 4 = § = 0.0001,

then x =0.3375. The system is stable and the speed of adjustment is sufficiently small such that Uzawa’s
proof for stability holds.

This type of argument however presents a problem for Uzawa inasmuch as if there are increasingly more
type A individuals in the market then

z,(p)+ Z Pz (p) becomes increasingly large. Such that f3{2[z (¢)+ Z pz ()] - ﬂz z,2 (¢); becomes

i=1

small then £ must become smaller and smaller so that ¢(r +1) < @(¢) holds. It is conceivable that at the

% This point allows Day (see literature review) to make the statement that chaos can occur robustly for any speed of
adjustment
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fimit and with the appropriate mix of type A and B participants, £ must tend to zero. Relative holdings of
endowments therefore play a role that is just as important as the speed of adjustment

Discussion

This section has demonstrated that chaotic trajectories can exist for any holdings of the numeraire and the
non-numeraire and for various values of the speed of adjustment. Graph 3.1 showed that the properties of
the one-dimensional tatonnement process remain invariant as the relative holdings of the non-numeraire are
changed with respect to the numeraire.

Recalling from the last section that a stable system can be defined by;

|f'(p*)|:|1-lc|<1,where

(Z o(-a ))
i 2o’

k=41

It holds that if A — 0", then x — 0" . Similarly if ® — 0, Vithen x — 0" . Conversely, if @’ — «, for

at least one individual, then the stability condition is satisfied. There is an asymmetry to the above criterion;
for a given speed of adjustment, all individuals need to hold sufficiently small amounts of the non-
numeraire relative to the numeraire, or at least one individual needs to hold a large amount of the numeraire
relative to the non-numeraire such that stability is ensured. It can also be seen that if the preference for the

non-numeraire is Jarge® ((;gl - 1), then x becomes large relative to a smaller value of «' . This implies

that, for a given speed of adjustment, if aggregate holdings of the non-numeraire are small vis-2-vis the
numeraire and preferences for the non-numeraire are large relative to the numeraire, then the tatonnemnet
process is stable. At first, this may seem a paradoxical result; one may expect that a market is well defined
if individuals bring large amounts of the non-numeraire to the market and have a strong desire to exchange.
By the stability criterion this is not the case as the tatonnement process will be destabilised to the extent
that the non-numeraire is held in an amount that is too large relative to the numeraire. An intuitive
explanation of why this should be the case is related to the idea of scarcity. If endowments of the non-
numeraire are small and preferences for that good are large, that commodity is accordingly scarce; the
market is stable and price sequences are well behaved. If the converse holds; aggregate holdings of the non-
numeraire are large and there is little preference for holding the non-numeraire, there is then a lack of
scarcity. Scarcity thus generates price sequences in the tatonnement process that are stable and converge to
a single point. The opposite necessarily holds.

On the one hand, it is a strong result that a market that attempts to reallocate scarce resources is well-
defined. On the other hand, the strength of this result is precisely its shortcoming; intuitively it is unclear
why a market that does not exhibit scarcity is rendered stable if the speed of adjustment of that market is
low, nor why a market that does not exhibit scarcity is able to generate chaotic price sequences.

Irrespective of why this is the case, the Walrasian auctioneer is able to rely on these properties in ensuring
that the market clearing price is reached. If it is assumed that it is preferable to reach the market clearing
price in as little time as possible, then the Walrasian auctioneer needs to consider the holdings of the
endowment of the non-numeraire with respect to the numeraire when setting the speed of adjustment
((2.24) gives the value of the optimal speed of adjustment). If the auctioneer cannot know the holdings of

% By homogeneity of degree one of the utility function, if @ — 1, then (I-a') - 0
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the numeraire then the safest course of action, which would exclude the occurrence of periodic and chaotic
price sequences, is to set the speed of adjustment as small as possible.

If the speed of adjustment is small there is then a coincidence between the properties of the discrete time
tatonnement process and the continuous time tatonnement process. It follows that if there is to be
convergence then the discrete time map should replicate properties of the continuous time process
inasmuch as prices converge monotonically towards the fixed point. Scarcity and abundance have no
bearing on whether the tatonnement process reaches the market clearing price if the speed of adjustment is
made sufficiently small.

Section Four: The Two Dimensional Case
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That the one dimensional case is both problematic in the sense of section two and has solutions to those
problems as demonstrated in section three, one may question whether the introduction of another good
changes the fundamental dynamics.

The case in which there are three market participants and three goods is now considered. The price of good
three is normalised to one yielding two simultaneous discrete price adjustment mechanisms.

For the sake of completeness, the tatonnement process is presented in the appendix.

Consider the endowment matrix as;

@ 0 0
1
o=| 0 0)22 0 |ande] = (3—), Vi, J , so the initial holdings are cyclic in the sense of sections two
0 0 o

3

and three and all agents are identical and have equal preference for all goods. We note that the market
clearing prices are given as;

3 3
* * a) -
D, = [—3J and p, = a)—:’z as well as p, =1. The stability criteria can now be analysed.

1 2

Consider the Jacobian matrix of the linearised system.

R CA/A
p.-(r) ] |a o || 2 -(F)

Pa-(r7)) |2 TP -(r)

op op

J

Stability depends on the roots of the Jacobian, J, evaluated at the fixed points;

.@i il 1_/113 w‘l)z All(wll)(wlz)
7o op'  op’ ~ 3 @) 3 @,

ol | )e) |

A 3 @ 3

Stability will be assured if several conditions as satisfied. The first of these is that the map be dissipative.
For a dissipative map, the modulus of the determinant needs to be less than one®. If the determinant

satisfies this condition then the two dimensional map will be contracting about the fixed points ( p" , pzt) in

the ( p,I . p,z) space. By GS, the fixed points are unique so if the map contracts about this point, then the map

% In two dimensions, the tatonnement process maps an infinitesimal rectangle at (p1 , pz) , with area dpldp2 ,into an

infinitesimal parallelogram with area| det J(p', p°) | dp'dp’ . Therefore if | det J(p', p°) |< 1 everywhere, the map is

area-contracting or dissipative. Since the map has the property of GS, the map needs to be considered only about the
market clearing fixed points; if the map is dissipative about these points it is dissipative everywhere
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will contract for p] , p2 € (0,0) . In other words, a contractionary map has a basin of attraction that is Rf o
there is no smaller set of prices for which convergence will take place.

An alternative but related concept of stability is that both eigenvalues lie within the unit circle®. If one or
both of the eigenvalues lies outside the unit circle, then |det J(p', p°)|> 1 and the system is unstable.

Attractors and strange attractor are defined as follows®”:

An attracting set is a closed set; A with the following properties:

A is invariant; any trajectory p, , that starts in A remains in A for all t.
2. A attracts an open set of initial conditions: there is an open set U containing A such that if
p, € Uthen the distance from p,to A tends to zero ast — o . The largest U is the basin of

attraction of A.
3. A is minimal; there is no proper subset of A that satisfies 1 and 2.

A strange attractor is an attractor that exhibits sensitive dependence to initial conditions.

As mentioned above, since p € (0,), then the set of feasible initial conditions is R’ . The set U that
contains A is therefore U € (0,) . For any p starting in U, there is convergence to A. Now, if| 7 |<1, Vi,
thenA~13‘; the invariant set A is precisely the set of fixed points or market clearing prices of the
tatonnement process. All trajectories starting in Ri converge to this set. Furthermore A is a minimal set as

this set is populated by two single points (or singletons) in Ri . If this were not so then at least one fixed

point would be either equal to zero or infinity or there would be many local equilibria for at least one price
sequence®. The tatonnement process would be ill defined and GS would be contravened leading to a
contradiction that, by GS, a stable system is globally stable.

If | 7 |>1for one of the eigenvalues®, then two possibilities can occur; periodic trajectories occur or a

strange attractor is present. A strange attractor can be defined by considering the forward limit set’® of the

% In the two-dimensional case, the roots can be obtained by the following relationship;

r(J) \/(rr(J))’ —4detJ

rr = @
2
The condition for stability is that{| # [,| », |} <1 or the spectral radius of the system is less than one in absolute value.

Accordingly (4.1), once rearranged, gives the stability criterion as:

I 1-tr(J)+detJ >0 4.2)
2 1+tr(J)+detJ >0 4.3)
3. detJ <1 (4.4)

Conditions (4.2) to (4.4) give three conditions which, when satisfied, will ensure that the market clearing price vector is
reached. It can be noted that conditions (4.2) and (4.3) encompass the stability condition for which the modulus of the
determinant is less than one. If one or more of these conditions are violated then the system is unstable in that either
periodic or chaotic trajectories are present. If chaotic trajectories are observed there is then a strange attractor.

®7 This definition applies to a system of any dimension

% Strictly speaking, since the price sequences are coupled, if anything other than a single market clearing price is
observed in one market, the same dynamic is observed in the other market

“1If | r |> 1 for both eigenvalues the zero price boundary is reached
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price sequences and observing whether this set exhibits sensitive dependence to initial conditions. If
sensitive dependence is observed then chaos is present.

For a given endowment matrix, the characteristics of the system are analysed as the speed of adjustments
change. Consider the case in which individual one holds one unit of commodity one, individual two holds
one unit of commodity two and individual three holds one unit of the numeraire (as outlined above). The

speed of adjustment of market one is fixed at A' = 0.75and the speed of adjustment for market two is

allowed to vary by AA> = 0.01. Fixed, periodic and chaotic trajectories were searched for as the speed of
adjustment of market two varied’'. The results are presented in table 4.1.

Table 4.1

Value of A° Dynamics

12 e (0,2.76) The unique market clearing price is reached for both goods.

12 =2.76 A period doubling bifurcation occurs and a two period trajectory emerges for
both goods. This corresponds precisely to the point at which one of the
eigenvalues lies on the unit circle and is negative.

1t e [2.76,4.3) A two period orbit is present for both prices. The amplitude of the two period is

larger for p’than for p' due toA®>A'. As A’increases, one of the
eigenvalues moves outside the unit circle and becomes increasingly negative.

A2 =43 A period doubling bifurcation occurs and orbits of period four emerge for both
price sequences. As in the case of a two period orbit, the amplitudes of the four

period trajectory are larger for p’ than for p'

1le [4.3,4.58) A four period trajectory is present in both markets.

11 =458 An eight period trajectory emerges.

A% €[4.58,4.65) An eight period trajectory is present in both markets

A1 =465 A sixteen period trajectory is emerges. Between this point and the next periodic
orbit, complex (chaotic) sequences are observed for both prices.

A1 =4.69 A twenty period trajectory is present for both price movements. Between this
point and the next periodic orbit, complex sequences are observed for both
prices.

A =47 A twenty eight period is observed. Between this point and the next periodic orbit,
complex sequences are observed for both prices.

1 =4.74 A twelve period is observed. Between this point and the next periodic orbit,
complex sequences are observed for both prices.

1°=56 A five period orbit emerges for both markets.

1t e [5.6,5.64) A ﬁve period is present in both markets. Between 'this point and the next periodic
orbit, complex sequences are observed for both prices.

12 =564 A ten period emerges.

11 =587 The zero price boundary is hit (for good two first), and the tatonnement process

ceases to function.

Table 4.1 demonstrates that, as in the case of the one dimensional tatonnement process, chaotic trajectories
are interspersed with periodic trajectories. Unlike the case of the one dimensional map, the two dimensional
tatonnement process is not as ordered inasmuch as there is no multi-dimensional analogue of Feigenbaum’s
constant, Sharkovski’s natural ordering system or Li-Yorke’s theorem. Instead of being able to evoke such
theorems which can quantify and qualify the nature of a chaotic sequence, recourse has to be made to

7 The forward limit set is equivalent to the invariant set A as f —> oo

7! The starting prices of goods one and two are pl'J =4.2 and po2 = 3.95 respectively
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numerical evaluation. What is consistent between the one and two dimensional maps is that as the speed of
adjustment of one of the markets increases, periodic trajectories emerge which are then followed by the
emergence of chaotic trajectories amongst which periodic trajectories are also observed. Graphs G.4.1 and
G.4.2 examine the sudden shift in dynamics as the speed of adjustment is altered for market two.

Despite the fact that the nature of the trajectories, be they stable, periodic or chaotic, are more complicated
to evaluate in the two dimensional case, several points emerge.

e Ifone of the eigenvalues lies outside the unit circle, a saddle point is present. The saddle point can
generate periodic or chaotic trajectories.

e If the market clearing price vector is reached, then the modulus of both eigenvalues need to lie
inside the unit circle. The invariant set A is minimal and consists of only two points.

e If one price sequence is periodic or chaotic then both price sequences are periodic or chaotic. The
reason for this is due to the way in which the tatonnement process is constructed; both
simultaneous equations are coupled. Feed back between both equations occurs in both directions.
Therefore, if one market does not converge towards its market clearing price then the other does
not. This is not surprising given that the market clearing vector is determined simultaneously for
all markets.

o By the results of table 4.1, the market that exhibits periodic or chaotic movements within a larger
bounded interval is the perpetrating market in the sense that its speed of adjustment is the larger of
the two.

e It naturally holds; such that (pl) and (pz)' are reached then A’needs to fall. If A*falls

sufficiently then {| 7, |,| , |} <1, or the modulus of the spectral radius is less than one.

Graph G.4.3 shows how the eigenvalues calculated from the Jacobian above varies as A’ varies
givenA' =0.75.

The question now arises; can the auctioneer induce stability by shifting the speed of adjustment of market
one, holding the speed of adjustment for market two constant?

Consider the same distribution of endowments as above and A' = 0.75, 4” = 2.79 . A two period trajectory
is present. The Jacobian is;

093 -0.86

eigenvalues over 20,000 iterates in the (7, 7,) space. One of the eigenvalues oscillates in and outside of the

05 025
( j and the eigenvalues are 7 =0.6536and » =-1.013. Graph G.4.4 shows the

unit circle. Now if A'falls to A' = 0.6 , the Jacobian becomes;

093 -0.86
shows that both roots lie within the unit circle. A fall in the speed of adjustment for market one has shifted

06 02
J =[ ) and the corresponding eigenvalues are r =0.7178andr, = -0.9778. Graph G.4.5

the eigenvalues such that they both lie within the unit circle for all iterates. If at the limit A' — 0", then the
Jacobian becomes72;

2 q- . + .
™ 1" means just below one and 0" means just above zero
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1~ +
J= . The corresponding eigenvalues are r, =1 and r, =—0.86. The system is stable.
093 -0.86

The auctioneer can induce stability or avoid instability by reducing either A'or A*.

Such that this occurs then;

2
Qf—l <1 4.5)
P lipe

2
afz <1 (4.6)
o e

(4.5) and (4.6) imply that the present period change in both p1 and p2 have a less than unitary increase on
the price in market two, and that this increase or decrease falls in magnitude over time.

In order to demonstrate this, assume that (4.5) and (4.6) do not hold and

2
a—f]— >1 4.7
P lppr

2
Qf—z >1 (4.8)
Do

A given p'and p’in this period will have a more than unitary increase or decrease on the price of good

two in the next period. Chaotic or periodic trajectories cannot be rendered stable by reducing A'. The

auctioneer must ensure that A’ is therefore sufficiently small such that (4.7) and (4.8) switch to (4.5) and
(4.6) respectively. The case of (4.7) and (4.8) is illustrated in graphs G.4.6 and G.4.7.

In the case of one numeraire and one non-numeraire in section two, the ratio of the former to the latter had
a bearing the degree to which the speed of adjustment could be large or small and stability present or
absent. This concept can be extended to the case in which there are two non-numeraires. If the distribution
of the endowments is:

1 0 0
=0 1 0
0 0 2

For A' =0.75, A" varies in steps of 0.01. Fixed points, periodic and chaotic trajectories are searched for.
Table 4.2 summarises the results.

Table 4.2
Value of 1° Dynamics
A% €(0,5.79) The unique market clearing price is reached for both goods. The Lyapunov
’ function is well defined for this interval.
A2 =579 A period doubling bifurcation occurs and a two period trajectory emerges for
both goods. This corresponds precisely to the point at which one of the
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¢igenvalues lies on the unit circle and is negative.

2% €[5.79,8.3) A two period orbit is present for both prices. The amplitude of the two period is
larger for p’than for p' due toA’>A'. As A’increases, one of the
eigenvalues moves outside the unit circle and becomes increasingly negative.

17=83 A period doubling bifurcation occurs and orbits of period four emerge for both
’ price sequences. As in the case of a two period orbit, the amplitudes of the four

period trajectory are larger for p° than for p'

2% €[8.3,8.8) A four period trajectory is present in both markets.

17 =88 An eight period trajectory emerges.

A% €[8.8,8.94) An eight period trajectory is present in both markets

17 =894 A sixteen period trajectory is emerges. Between this point and the next periodic
orbit, complex (chaotic) sequences are observed for both prices.

22=911 A twelve period trajectory is present for both price movements. Between this
point and the next periodic orbit, complex (chaotic) sequences are observed for
both prices.

12 =11.22 A seven period is observed. Between this point and the next periodic orbit,
complex (chaotic) sequences are observed for both prices.

A1 =12.35 The zero price boundary is hit (for good two first), and the tatonnement process

ceases to function.

A comparison between tables 4.1 and 4.2 indicates that, if the holdings of the numeraire with respect to the
non-numeraires increase, then the occurrence of periodic orbits and chaotic trajectories takes place but at
higher levels of the speed of adjustment of market two. There is a direct parallel between the qualitative
characteristics of the one dimensional case and the two dimensional case. The inclusion of another good
into the tatonnement process does not therefore fundamentally alter the basic results of the one dimensional
case. The only aspect that is altered in the two dimensional case is that the dynamics become harder to
quantify and complexity occurs at higher dimensions for which numerical analysis becomes increasingly
difficult unless more sophisticated techniques need to be employed.

A caveat needs to however be attached to the last statement: in the two dimensional case a stable manifold
is present for a symmetric system that would otherwise generate periodic or chaotic trajectories if there

were some asymmetry in the system. Consider the case in which pl’J = p(f =1000 ,A' = A" =4 and each
individual holds only one unit if one good and no individual holds the same good as any other individual.
The eigenvalues are r, = -0.333and r, = -3 . The system is unstable by the definitions above. Graph G.4.8

shows prices in the (p,, p,) space. Prices converge over time to the market clearing vector. This occurs as

the system is symmetrical. The symmetry generates price sequences that are also symmetric (seen by the
straight line in the price space). Now suppose that there is an asymmetry in the initial prices;

p, =1000and p. =1000.1. Graph G.4.9 shows the prices in the price space and G.4.10 shows the limit

sequence of these price trajectories. Contrasting G.4.8 and G.4.10 demonstrates that, for a small
perturbation in initial conditions prices “fall off” the stable manifold and onto a strange attractor.

Discussion

This section has demonstrated that the inclusion of a second non-numeraire into the tatonnement process
does not alter the fundamental results of sections two and three. It however does become necessary to
evaluate the two dimensional case in a slightly different manner as the auctioneer now has two speeds of
adjustment that can be altered. By altering the speed of adjustment whose price fluctuates within the
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smaller bounded interval, if prices are periodic or chaotic, then stability can be induced only if the own
price effect and cross price effect on the next period price is less than unity for the market that has the
higher speed of adjustment. If the own price and cross price effects for the market with the higher speed of
adjustment is larger than unity, then stability can be induced only by a reduction in the speed of adjustment
for that market. An implication of this last point is that if the auctioneer wishes to ensure that the unique
market clearing price vector is reached then this can be achieved by reducing the speed of adjustment of the
price that fluctuates within the larger bounded interval. By focusing on speed of adjustment for the market
that has prices that are bound within the smaller interval, there is no guarantee that stability can be attained.
This result extends to a system of any dimensions; the auctioneer can make sure that for an economy of any
arbitrary size, stability can be guaranteed by fixing the speed of adjustment so that it is small in a// markets.
The largest speed of adjustment will be dictated by the market that has the smallest level of scarcity.
Furthermore, this holds for any distribution of endowments. However, for significantly small holdings of
the numeraire with respect to all non-numeraires, the speeds of adjustment have to be increasingly small.

The concept of stability and scarcity can also be extended to the two dimensional case. The results of table
4.1 indicate that if the holdings of goods one and two relative to the numeraire are sufficiently scarce, for a
given speed of adjustment, the system will be stable. Similarly for sufficient degrees of scarcity of both
goods, the range of values that both speeds of adjustment take such that the entire system is stable becomes
larger. This is backed up by the results of table 4.2 compared to those of table 4.1.

Section Five: The Case of Trade out of Equilibrium

In sections two to four, the tatonnement process did not permit any trade or exchange at any other point
other than the unique market clearing price vector. It was shown that periodic and complex price dynamics
can occur for which no market clearing price was reached and, as a consequence, no equilibrium price
vector was ever reached no matter how long the period over which the system was integrated.
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The question now arises of whether exchange out of equilibrium can stabilise prices. The methodology of
this section follows that of Uzawa [26]. The rule that determines whether exchange is optimal at each point
in time is that if, by means of exchange, at least one individual’s utility increases and the utility of no one
decreases then, at that point, exchange takes place. If exchange takes place on this basis then the holdings
of endowments will converge to a Pareto optimal distribution which, when reached, no individual can
effectuate any exchange with another whilst none lose or gain in terms of utility.

For the one dimensional case, the price adjustment mechanism for the non-tatonnement process is exactly
the same as in the tatonnement process but, if exchange is optimal at any point in time there will be a
redistribution of endowments. Prices in the next period will be dependent on the same speed of adjustment
and preferences but the distribution of endowments will have changed.

The price adjustment mechanism, in the case in which there are two individuals that have the same
preferences for both goods but differ in the initial holdings of endowments is given as;

n 2 n
w
Py =f(p)=maxi0, p+i|a) —-(1-a)) o .1)
=t P, i=1

It is noted that if the global constraint for the traded and numeraire good hold, then any distribution of
endowments does not alter the price sequence for a given speed of adjustment, initial endowments and
staring price” ™ .

That the price sequence is unique and remains unchanged for any redistribution of endowments implies that
there is a one-to-one correspondence between the tatonnement process and the non-tatonnement process in
that, for a given speed of adjustment and starting price, the tatonnement and non-tatonnement process share
the same price sequence irrespective of the distribution of resources, provided the global constraint on such
resources is the same in both cases. The question is therefore whether a given speed of adjustment allows

there to be a unique Pareto optimal distribution of endowments as¢t — « .

It was noted in section two that for x € (0,1)there was monotonic convergence in prices towards the

market clearing price and for x € (1, 2) oscillatory convergence takes place. The same methodology can be

used in the non-tatonnement case. The case in which initial starting price is p, = 4, both individuals have

the same preferences for both goods (equal to a half) and good one is held entirely by individual one and
good two by individual two was examined in section two and is reproduced here for the non-tatonnement
process.

By the author’s calculations for x € (0,1), since prices fall monotonically towards p‘ =1, exchange can
take place at each point in time” such that utility continually increases (by decreasing amounts) up until the

point at which p‘ is reached. At the market clearing price, no more exchange can take place as the Pareto

optimal point has been reached. Furthermore, the number of iterations over which exchange takes place
until the Pareto optimal distribution has been reached is exactly the same in the non-tatonnement process as
the tatonnement process where, in the latter case, exchange only ever takes place once the market clearing
price has been reached’®. The reason for this is due to the price sequence remaining unchanged for any
distribution of endowments.

3 This is not the case is both individuals have differing preferences for both goods

™ See Appendix for an explanation of why this is the case

7% i.e. at each iterate of (5.1)

7® This point cannot be stressed enough and is directly dependent upon each individual having the same preference for
both the numeraire and traded good.
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Forx e (1,2}, the situation is slightly different. Since prices oscillate towards the fixed point yet do soin g

manner that is nol symmetrical abow the Oxed podm, exchange, for the particular initial holdings of
endowments and starting price mentioned ahove, is only beneficial on the up mevement of the price. 11 the

price oscillated in a manner that was symmetrical about g2 | it would be possible to envisien that in one

period, individual one is a net supplier of good one and net demander of good two whilst individual two is 4
net demander of pood one and net supplier of good two. In the next period, individual one would be a ner
demander of good one and net supplier of good ewo and odividual twe would similarly have reversed his
position. This situation cannot acedr as the oscillations about the Mxed point ave not sy mmetrical. Since this
is the case then the upper envelope of the price sequence vver time can be comsidered as the points at which
exchange takes place, Such exchange takes place every other period. As the upper envelope of the price
seguence falls monotonically over time, due to the fact that the amplitude in the oscillations in price fall
over time, then a Pareto optimal paint of exchange is reached .

Ciraph 3.1 shows the time it takes aatil, by means of exchange, the Pareto eptimal peint is reached.

Graph 5.1

a 55 1 15 B ek | o 4 45
TeriE Nl Parets Dptmal Cistnibudon Is Reaohed

The time it takes until the Pareto optimal distribution of resources 0 the noo-tatennement is precisely the
sgme as the time it tnkes until the market clears in the lawnnement process. For speeds ol adjustment in
which the system is stable in the tatonnement process, the svstem is stable in the non-talwnnement prisess
and a Pareto optimal exchange s achieved, The minimum time it takes to achieve the Purete vptimal
distribution of resources is that at which the system is super-stable; the eigenvatue about the fixed point i
vero. An interesting result oceors fork e (0,11 As tw speed of adjusement increases in this interval then

the Parcto optimal bolding of resources is less for individual one at successively higher values of A, and
higher for individual two for successively higher values of A,

It was noted in section two that a period doulding occurs ar & = 2 and lor Targer values of the speed of
adjustments orbits of higher periods ocour followed by chantic trajectories interspersed with windows of
iperiodic) stability (see bifurcation diagram 2.3).

For the case in which a trajectory of period two 18 observed, it is again noted that once the system has
seltled down, the periodic fluctuations are ool symmettical about the Mixed point. This can be seen by
nowing thae in the bifurcation diagram, one side of tw orhit occors ac a poiot that is further away from the
fixed poiot (the upside ol the price movement) and the other side of the orkil lalls closer to the fixed point
but below it {the downside of the price mevement). This implies that the Pareto optimal point will always

“ This situativn would change if the slarling price were different, The asyrmmietry in the fluctualions does inply thal
reversal of pesitions at cach ierate would he difficulc it not impessible, to constnoct




favour one individual over the other’. There can therefore be no quid pro quo exchange in which utility
remains unaltered. The price envelope at which trade takes place will either encompass the up movements
of the periodic trajectories or the down movement depending on the initial endowment matrix and starting
price””. However, even though periodic trajectories are observed, a Pareto optimal holding may be attained.
For highly uneven initial holdings of the endowments this situation is more likely to arise than the case in
which initial holdings are very similar for both of the individuals.

From the bifurcation diagram it can be seen that as the speed of adjustment increases, the amplitude of the
two period orbit increases asymmetrically about the fixed point. As the speed of adjustment increases and
as the amplitude of the price movements increase, the Pareto optimal endowments may favour one of the
individuals over the other by increasing amounts and final holdings of endowments become increasingly
skewed in favour of one of the individuals. As the speed of adjustment increases further, periodic orbits of
higher periods are observed. As this takes place the Pareto optimal distribution of endowments may
become even more skewed in favour of one of the individuals over the other.

The non-tatonnement process may therefore generate Pareto optimal holdings of the endowments that are
increasingly skewed in favour of one or the other of the individuals. If this is the case then one of the
individuals will be better off if the speed of adjustment is lower. However, that this is the case will depend
upon the initial holdings of the endowments. It is therefore difficult to generalise such a statement.
Furthermore, the initial starting price has a strong bearing on the Pareto optimal distribution.

It is however possible to state that for a large class of initial holdings, period trajectories still permit
convergence to a Pareto optimal distribution of resources. The non-tatonnement process is an improvement
on the tatonnement process as, in the case of the latter, if periodic trajectories are present then there can be
no exchange and accordingly each individual cannot improve upon the initial distribution of endowments.
Despite this improvement, exchange at disequilibrium does not stabilise prices if prices are periodic.

At a certain point chaotic trajectories are observed. For chaotic trajectories, several very different
possibilities are observed. Certain speeds of adjustment may create sequences of exchange that allow the
distribution of resources to move very close to the type of distribution of endowments that are present in
the case in which the system is stable in the sense discussed above. However, given that a chaotic trajectory
is often characterised by its “visiting” many points in a bounded interval (see G.2.14), the market
participants may face a price vector for which exchange is beneficial, yet this price vector may not occur in
finite time®. Accordingly no Pareto optimal point of exchange can take place as there may always exist
another Pareto optimal point of exchange at an indeterminate point in the future.

Another potential difficulty is that, for a chaotic trajectory, there may be no exchange that can take place at
any price. Whilst this will not be the case when initial holdings are®’:

78 The degree to which the Pareto optimal holdings are more inequitable depends not only upon the initial holdings but
on the starting price. If the initial price is close to the price vector that supports the optimal holdings then there will be a
lower degree of inequality in these holdings. However, that such a price can be chosen implies that the Walrasian
auctioneer has a notion of what such a price is. There would need to be a strong justification that he can actually have
such a notion

™ The Pareto optimal holding will be reached once one fluctuation of the periodic orbit has taken place. If there is no
quid pro quo exchange that leaves utility unaltered then utility cannot be increased at any subsequent point

80 (G.2.14 shows the frequency for 20,000 iterates. It is conceivable that as the number of iterates increases and as the
intervals become increasingly fine grained then at some future point there will be a price such that exchange can take
place. Since the sequence is chaotic, it is not possible to know beforehand whether there exists such a price or when
such a price would take place

8! For this initial holding of endowments some exchange can be effectuated for at least one element in any price
sequence
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if the initial holdings are different to this, then it is conceivable that for a chaotic trajectory, no exchange at
any price can take place (see G.2.12)*. The same argument can be applied for periodic trajectories but not
for stable trajectories. The sub-optimality of the Pareto optimal distribution of endowments for periodic and
chaotic price with respect to stable price sequences poses a problem for both the auctioneer and the market
participants. The nature of sub-optimality in the former two cases may take the form of either no trade
taking place or trade taking place such that there is a much more inequitable distribution of endowments or
trade not taking place in finite time. Similarly, in the presence of complex dynamics, the Pareto holdings
may be less for both individuals with respect to the case in which the system is stable in that the Pareto
optimal distribution of resources is reached precisely at the point at which prices cease to change. Whilst
the occurrence of inequitable distributions of endowments is a function of the initial price and holdings of
endowments, the presence of the case in which no trade can take place at any point is a more serious
problem and cannot be overlooked.

In section three it was noted that if the tatonnement process is unstable in the sense of periodic or chaotic
trajectories then there are two solutions; a reduction in the speed of adjustment or an increase in the holding
of the numeraire vis-a-vis the non-numeraire. The same reasoning applies to the case in which trade out of
equilibrium occurs.

Suppose that for a given speed of adjustment, periodic or chaotic price sequences are observed and no
exchange at any price can take place. It naturally follows that there is too much demand for one of the
goods and too much supply of the other good. In other words, there is pent up demand in the system; the
ratio of the endowment of the traded good with respect to the numeraire is too high. If the numeraire is
treated as a primitive form of money through which all exchange must take place®, then it is natural to
interpret periodic and chaotic orbits as situations in which the non-tatonnement process is liquidity
constrained. For a given speed of adjustment if the system is sufficiently liquidity constrained then periodic
or chaotic trajectories will occur for which either no exchange can take place or any exchange that does
take place would be inferior to the exchange that would take place if the non-tatonnement process were
stable or there were more liquidity in the system.

For the one-dimensional case in which all agents are alike in their preferences for both goods and in which
trade is permitted out of equilibrium, it can be inferred that if the global constraint for the numeraire or
“monetary good” is too small with respect to the non-numeraire or traded good then there will be pent up
demand or supply of the traded good®. Periodic and chaotic trajectories may occur for which there may
either be no feasible trade at any point over a price sequence or, if trade does occur it, may entail a Pareto
optimal exchange that is inferior to the case in which there is a greater degree of liquidity. The auctioneer
thus becomes charged with ensuring that there is sufficient liquidity in the system or that the speed of
adjustment is low. By ensuring this, he also ensures that there is a price sequence that supports a sequence
of exchanges that converges on a Pareto optimal distribution as time tends to infinity. It is tempting to
assume that a periodic or chaotic trajectory can be rendered stable by the injection of more of the numeraire
into the system. This line of reasoning would be erroneous, as at least one of the individuals would move to
a utility contour that is higher than that before the point at which the injection of liquidity takes place.
Accordingly, the market clearing price changes and the non-tatonnement process is disrupted. There is no
guarantee that at the prevailing price or any other subsequent price, the injection of more of the numeraire
into the system would permit a sequence of exchanges that converge towards a Pareto optimal distribution.
Instead the auctioneer has to ensure from the ouwtser that there is sufficient liquidity such that there is
asymptotic convergence to the Pareto optimal distribution.

%2 For G.2.12, prices occur in two intervals. There is a large sub-set of prices that are never reached irrespective of
whether the number of iterates considered is large or small. If the initial endowment matrix is such that exchange could
only take place within the price interval that is not visited, there can then never be any exchange. The Pareto optimal
distribution is therefore the initial distribution. If the speed of adjustment is smaller, such that ¥ € (0,1), then some

exchange can be effectuated. The presence of complex dynamics may therefore create a situation in which the Pareto
optimal holdings are sub-optimal with respect to the absence of complex dynamics

%5 This is a trivial statement in the one dimensional case but not so in higher dimensions

8 Whether there is pent up demand or supply will depend upon the preferences for the traded good with respect to the
numeraire
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The extension of these results to systems of higher dimensions is problematic. A system in which there are
at least two traded goods and a numeraire can be interpreted in two different ways: At any price, exchange
can take place either:

1. Between any of the goods in the system, or
2. Exchange can only take place through the medium of the numeraire which is treated as a primitive
form of money

The first scenario is an extension of the one dimensional case for which the same type of reasoning can
apply. In section four it was shown that for a given endowment matrix and given (distinct) starting prices,
as one of the speeds of adjustment increases, periodic orbits as well as chaotic orbits occur. It was also
noted that if the holding of the numeraire is increased then, for a speed of adjustment for which periodic or
chaotic trajectories occur, the system may become stable. Since any distribution of endowments in a system
of higher dimensions leaves the price sequences unaltered for given speeds of adjustment and starting
values®, higher dimensional systems, in the case of 1 above, are extensions of the one dimensional system.

If 2 is observed the dynamics are fundamentally altered. This author finds that if an initial endowment
matrix of the form

oS O
<

is assumed then, irrespective of whether the system exhibits stability or complex dynamics, (i.e.
irrespective of the values of the speeds of adjustment) it becomes difficulty to carry out any trade that
increases the utility of at least one individual without reducing that of no other. As in the first case, it is
natural to assume that the system is liquidity constrained. However, unlike the first case, it is possible that
if exchange can only take place through the medium of the numeraire, an impasse to trade can occur
independently to whether the price sequences are stable or not (the speeds of adjustment are low). This
implies that if trade can only ever take place through the numeraire, any higher dimensional system quickly
becomes more liquidity constrained than the case in which trade can take place amongst any of the goods.
For such a scenario, complex price dynamics are a confounding factor but of little import; the first
difficulty faced is that the system is liquidity constrained. The second difficulty is that complex dynamics
can occur.

Very different policy implications arise for case one or case two. In the first scenario, the auctioneer can
ensure that there is convergence to a Pareto optimal holding of endowments by lowering the speed of
adjustment in one or both of the markets (see section four for a discussion of which speed of adjustment
can lead to stability and the conditions under which it can do so). In the second scenario it is conceivable
that if the system is liquidity constrained then it is so for any speed of adjustment. The only solution in this
case is to ensure that there is sufficient liquidity in the system. Clearly the second scenario is much more
problematic as there is no way to gauge, prior to the event, whether a given amount of liquidity will ensure
convergence to a Pareto optimal endowment distribution. The first scenario is less problematic in this
regard as the speeds of adjustment and holdings of endowments need to be such that the modulus of the
eigenvalues falls within the unit circle.

Conclusion

This thesis has attempted to analyse various aspects of both the discrete tatonnement and discrete non-
tatonnement process in the presence of gross substitution and the weak axiom of revealed preference. It was
found that, for the case of one non-numeraire and one numeraire that stable, periodic and chaotic price

% This statement necessarily relies on each individual having the same preference arrangement for all goods.
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sequences were possible. The occurrence of one over the other depended entirely on the value of the speed
of adjustment as well as the relative holdings of endowments. These dynamics were readily quantifiable by
means of a Lyapunov exponent and bifurcation diagram. It was also noted that as the endowment matrix
changed, the qualitative nature of the price sequences with respect to the speed of adjustment did not
change. This implies that a periodic or chaotic trajectory can be avoided if the holdings of the numeraire
with respect to the non-numeraire are sufficiently large or if the speed of adjustment is sufficiently low. To
this author’s knowledge, work to date has focussed almost exclusively on the analysis of the speed of
adjustment and not on the role of endowments.

The tatonnement process was then extended to a two dimensional system, in which there were two non-
numeraire goods and one numeraire. The quantification of chaos for this system was more difficult than in
the one dimensional case. Concepts such as Feigenbaum’s constant or the Li-Yorke theorem used to define
chaos in a one dimensional map have no analogue in higher dimensions. Instead, it was found that once one
of the eigenvalues moved outside the unit circle a saddle node was present and periodic orbits occurred. In
the search for orbits of differing periods it was found that various periods occur as well as the presence of
speeds of adjustment for which there is sensitive dependence to initial conditions. The situation in two
dimensions is therefore more complex and less easy to quantify than in the one dimensional case but the
results do point towards there being a natural extension in the qualitative nature of the analysis to higher
dimensions.

Having examined the tatonnement process, Uzawa’s non-tatonnement process was then considered. For the
case in which there is one traded good and one numeraire, it was found that there is a direct parallel
between the tatonnement process and the non-tatonnement process on the basis that, if all agents have the
same preference relations but differ in their initial holdings of endowments, the price sequence remains
unchanged if exchange does take place. This allowed there to be a unique correspondence between the
tatonnement process and the non-tatonnement process if any good is allowed to be exchanged for any other
good. If the tatonnement process was stable then the non-tatonnement process was stable in the sense that
there was convergence to a unique distribution of endowments as time tends to infinity and that that
distribution of endowments is Pareto optimal. In the presence of periodic and chaotic trajectories exchange
becomes more complicated. Much depends upon the initial holding of endowments and the initial prices. It
is conceivable that if prices were to settle into a periodic trajectory of any order there may or may not be a
Pareto optimal exchange depending on whether the initial holding of endowments permits such an
exchange.

If the numeraire has the function of acting as a primitive currency or medium of exchange, then it is
possible that there be insufficient holdings of the currency. The system would then be liquidity constrained
and there may be no feasible solution to such a constraint as there would be no Pareto optimal exchange for
any set of speeds of adjustment. This case is much more complicated and difficult to diagnose than the case
in which exchange can take place between any of the goods.

The policy implications in the case of the non-tatonnement are more interesting than those of the
tatonnement process. A serious difficulty in the former case is that the system needs to have sufficient
levels of liquidity, but such levels of liquidity are difficult to determine on an a priori basis and are difficult
to determine irrespective of whether complex dynamics are present. The auctioneer or the equivalent policy
making institution thus becomes charged with managing a market or an economy whose liquidity needs are
uncertain. Only once the liquidity needs have been determined can attention be focused on the nature of the
price sequences and how best to render a complex system stable, for which a Pareto optimal exchange can
take place. Again such a statement cannot be justified prior to numerical investigation. Analysis in this
direction becomes very complicated very quickly as even with only three agents, the number of exchanges
at any point, such that the convergence of endowments lies on the Pareto optimal route, can be large. This
number increases very quickly as the economy becomes large or the number of individuals wanting to
exchange increases.

Not only does analysis in the direction of policy become difficult in the case of non-tatonnement but even

in the case of tatonnement, the presence of chaos renders analysis difficult. The analysis of most chaotic
systems does not go beyond systems of three dimensions. Since the general equilibrium framework is

42



formulated as an economy of any dimension, the presence of chaos in such a system makes analysis almost
impossible, if not at a qualitative level. This holds even for a two dimensional system. Due to the
complexity of the system even at low dimensions, it is tempting to impose further simplifications on the
discrete time general equilibrium framework. However, this direction is fraught with difficulties. For
example, assume that symmetry is imposed upon the system. It was seen in section four that prices would
fall on a stable manifold. Such a manifold yields predictions about the set of parameters that ensure
convergence that are inconsistent with an asymmetric system. Whilst convenient to analyse, symmetric
systems are but a small subset of all the systems that can be actually observed.

One may argue that general equilibrium is the incorrect framework in which to analyse the role of liquidity,
even if this liquidity is deemed primitive in nature. However, many of the difficulties faced by more
sophisticated models are captured in this general equilibrium framework.

There are however various unavoidable shortcomings to the analysis in this thesis other than the ones
mentioned. The type of price generating algorithm used in this thesis is simplistic in nature; a more
sophisticated algorithm may preclude complex dynamics. In the case of trade in disequilibrium, it would be
natural to posit that market participants consider the direction in which prices are moving. If a price vector
is increasing over time, a rational market participant that holds the good for which the price is increasing
may withhold exchanges until some price threshold had been reached at which point he would exchange.
The Pareto optimal distribution of endowments would thus have to incorporate speculative holdings.
Questions such as adaptive expectations in the presence of stable or complex systems then arise.

Putting aside these shortcomings, the abstraction from the theoretical confines of the GE framework to
actual observed behaviour leaves one wondering whether the predictions of the T and NT process as well as
the caveat presented in this work, are applicable.

If one objects to the caveat, then the challenge of GE is explain certain facets of an economy given a model
that predicts stability. Not an easy feat. If no such objection is put forward then the challenge is to find
aspects of an economy that are both stable and unstable and that align with the GE framework as well as
any caveat to this framework. The recent bailout of AIG and the re-absorption of Fannie Mae and Freddie
Mac into the US Government are a tentative step in this direction.

It was noted in the last chapter, that if there is sufficient scarcity present in both the T and NT process then
the system is stable. The present state of the US financial markets illustrates the case in which various
institutions have become “bloated”; for example, AIG held large amounts of mortgage backed securities.
Holdings of such securities were accordingly abundant with respect to cash holdings. As these assets
changed to having a dubious value, AIG, along with other institutions, found that their position could not
be reserved; the market was liquidity constrained. A direct parallel emerges between the present state of
flux in the US and the predictions of the NT process in a GE framework. In both cases it is seen that a lack
of liquidity in the system creates a block to the smooth functioning of the market; the price mechanism
ceases to work either in a coherent manner or at all.

The US Federal Deposit Insurance Corporation deemed that AIG was simply too large to fail; lines of
credit were opened up to AIG. The extension of lines of credit is akin to an increase in the quantity of the
numeraire in the NT model in which there is an impasse to any trade taking place. An increase in the
numeraire®® in the NT process “loosens” the system, for a given speed of adjustment such that trade can
take place at subsequent points in time. In this regard, the actions of the US Federal Reserve are consistent
with the predictions of NT.

Whilst NT does not capture dynamics such as causal factors of bank failures (i.e. the banking sector
searching for higher and higher earnings without giving proper weight to the assuming of increasing
amounts of risk) or the aspects of moral hazard involved in the bail out of an institution (especially an
institution as large as AIG), the cessation of a market’s smooth functioning can be traced to factors that are

% For the case in which any good can be exchanged for any other good and the case in which any good can be
exchanged only by means of the numeraire
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present in the NT framework. For example, the “too-big-to-fail” policy implicit in the bail out of AIG, as
well as Fortris bank, has an analogue in the NT framework; by the fact that all markets or price sequences
are coupled, the failure of any single market will cause all markets to fail (i.e. if the zero price boundary is
reached in one market, the zero price boundary is reached in all markets). Analogously, by the fact that the
price sequence that hits the zero price boundary first is precisely the market that has the largest ratio of
traded good to the numeraire good. Accordingly a crash in one price sequence causes a crash in all price
sequences and the genesis of that crash emanates from the market (firm, sector or institution) that is most
liquidity constrained. In the NT framework, AIG and similar institutions are the perpetrators. Similar
reasoning premised on the NT framework points to the solution to the avoidance of the crash of all price
sequences as the injection of liquidity into the whole economy or a reduction of holdings of assets (or
endowments) away from the perpetrating sector; indeed it would be an odd situation if any set of
institutions or sectors whose structure and behaviour was coherent with the smooth functioning of a market
were treated as culpable of the failure of the price system. NT strongly predicts that any misplaced
culpability will simply not resolve the improper functioning of the price system. Instead such that NT
works properly and Pareto optimal holdings are reached, the problematic price sequence needs to be
identified and that market modified accordingly.

NT (and also T) framework highlights only a few characteristics of any market, yet those characteristics are
fundamental in nature. It is reassuring that the fundamental aspects captured in GE encompass the
irregularities that a market may experience. Chaotic price sequences and the poor functioning of a market
due to constrained amounts of liquidity are two cases in point. Yet a word of caution needs to be stated; any
such reassurance must be recognised as being didactic in nature and wrested on abstractions from real
world examples, but after all, wasn’t the GE framework constructed as an abstraction from that which is
actually observed.

Graphs: Section Two

G.2.1
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G.2.2 shows that the eigenvalue falls within the unit circle for A = 0.01 { & = 0005 ). Stability as well as
manotanic convergence is ensured

G.2.3 B o

=

£

T

=

o
I
[

c

=

=

-

=

3 S0 100 153 200 25C 300

¢ Time
T}mec‘E}'?rpmrr:fm'uu U‘.‘:Ullliil”[}' ITIARIEIED BLFE AL = 23,7 l R~ 1.3FTT I

45




04 3

Lyapinoy Function
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(323 and (3.2 4 show that the Lyupunoy funclion falls over time. This decline is however not menotonic in
the lutter, To this end Uzawa® seems (oo gencrous in his statement thal if the Weak Axiom of Revealed
Preference helds (which necessarily dovs for the Cobh-Douglas function) then the function;

T o T (1)
3 P

is a Lyapuoyv finction and the stability theorem holds. Recalling that the Lyapunoy function must
converge monotonically towards the fixed point, such monotonic convergence is nol ohserved
tora = {1, 2], yel the fixed podnt g5 reached nonetheless. 1 convergenee does not bave o be monotonic
then (1) remains a Lyapunoy function for the tatonnement process. This latter assumption is equivalent to
the assumplion thal the @onnemene process be crieegy-dissipanive. A dissipative system would mean that
the price sequence [ulls monolonjcally wwards the fixed point al which all energy has been dissipated, or if
ascillations pocur, the amplitude of the fluctuations diminish over time until the fixed point is reached al
which all fluctuaticns and energy in the system woeuld have vanished.

M Uzawa [23] P.18EA
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{126, shows that for A =495 or & = 2,473 two perivd trgjectories peesist but are larger than those
shown in (1.2.5.
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(G.2.7, shows that the eigenvalue fluchuates in and out of the unit circle indicative of a two period trajectory
uccurring lor A =495 0r 0= 2475 .
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(3.2.8. shows that for A =4.250r &= 2.125, the eigenvalue falls between (3,07 ). This is to be
contrasted with G.2.7 above,
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G.2.9

0 &0 100 150 200 230 00

Time

(.29, shows that for A = 5.05or & = 2,525, a four period trajectory occurs,
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(210, has values A =535, £ =2.675 and i p) = 01485, indicative of the presence of chaos, G.2.11

shoows that the Lvapunoy exponent fluctuates both above zero and below zero. The former fluctuations
dominate as 4 p) = 01485
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(:.2.12 shows that for x = 2,675 . the Irequency of the trajectories over 20,000 iterutes start 1o [ill the
spectrum of permissible prices. In other words. a chaotic map is often synonymous with the trajectory
visiong “many” points.
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€213 shows the delay plot io which the price one period forward s plotted against present perii:u:l price. It
is clear thal a three period orbit 15 present. LY can thus be evoked and the map can be said to have the
ahility g wenerale chaolic price sequences.
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the price trajectony of that with 4 starting value of 4 and that with a starting valoe of 4. 001
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A trajectory that is chaotic demonsirates sensitive dependence 4o initial conditions, This 1s seen In G2.15 n
which the dilference in the ahsolute values over 330 iterates of the map are plotted. The twa trajectorics are
products of 4 set of identical puramelers in all but that the starting values differ by a small amount: that is iF
the starting value is perturbed and the trajectory s chaatic, then two trajectories will wander arbitrarily
close tr eueh other and arbitrarily far wway from each other within a bounded space. The former (s observed
by prrinnts eluse w overo and the Jatter by points close to 16,

Graphs: Section Three

(.31 Introduction of Type B Market Participant at { = 200
' o ™\
T - . & -

Price
(]

Time
N >

For 0 <1« 200 there are two market participants and a speed of adjustment of 5 = ¢ 5, & = 3.23 50 the
trajeclory 15 chaotic for this interval of time. A1 ¢ = 2{M], a markel panticipant that holds one unit of the
numerdire {type B} enters the market. The fixed point of the system is no longer a repeller and increases
from one Lo twa. Stability is induced,




(.3.2 Delay Plot for Introduction af Type B Market Participant at 1 = 200

Pit+1)

it

(7,32 shows the delay plot for the cuse in which there 15 a switeh at £ = 2060 by the introduction of o type
B market padicipant, The arrow shows how the delay plot s modilicd when a type B individual s
miroduced; the Jine of the delay plot overlaps another part of the delay plot

Graph 3.3, Delay Plat for Introduction of Type B Market Participant al ¢ = 200

7 =

Pita1)

Pt

-

(3.3.53 is a replication of G.3.2 but differs in that onby points inthe {p . p ) space arc considered. The first

200 jrerates are associated with the trace of a smooth curve. The trajectory 1s chaotic here. The introduction
of 4 tvpe B markel pariicipant shifis the rrajectory so that ir is clustered around the markel clearing

price p’ =2
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(r.3.4. Absolute Dilferenee between P{ and Pit+1) for Introdaction of Type B
Market Participant at + — 200

il Y

Absalute Difference batwnnn Pt
and Prte1p

Tre
i 7

(i.3.4 shows the absalule difference berween the present value of price and the price one period forward
both before the introdyction and aller the introduclion ol a tvpe B warket participant. For the firsc 200
periods there is clearly no convergence whilst at £ = 200 convergence takes place. There is 4 move away
from the case in which there js sensitive dependence Lo the initial condilion.

G35 Lyapunoy Exponent on a per lterate Basis for Introduction of Type B Market Participant at
£ =200

Value of Lyapunoy Exponent on a per
emte Basis

Time
b 7

(3.3.5 shows thal whilst the trajectory s chaotic, the Lyapunoy exponent fluctuates both above and below
7ero (but the average of those fluctuations 15 greater than zerod whilst once stability s attained by the
imtraduction of a type B market puricipant, the 1 yapunoy exponenl slays below cero; the svstem is stable,
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G346, Yalue of Lyapunoy Funetion for Intraduction of Type B Markel Parlicipant at ¢ = 200

Lyapunoy Funetlcn

Time

5 >

(i 3.6 shows that the system 1s not stable lor the first two hundred iterutes us the Lyvapupoy function is ill-
defined. Onee o lvpe B market participant is introduced then the Lvapunoy funetion converges ta a point,
(5. 3.7 shows the change in the Lyapunoy function described in G386,

(iraphs Section 4

(4.1 shows the prices ol both gomds in the phuse spuce for holdings of endowmentsar’ =1,

i— j, i i =1,2.3 and speeds of adjustment ' = (075 and A7 = 5.59 . For this value of endowments and

speeds of adjustment, the cigenvalues are 7, = 0L6384 and r, = -2.8506 . A saddle poant is present. (.41

shows a strange attractor; for any initial set of conditions, the limit set ol the prices tends towards this
bounded shape.

Prico of Good Twss

0 nan 1na 1.0 2.00 240 A 4o 4 450 & o
Prirn of Good Cne




It is apparent that since A° > A' then pz i5 bound to un interval that is larger than thut of pl . Graph G.4.2

' by . - : -
shivws the price phase space but 4™ has increase marginalivtio A” = 5.6,

G.4.2.

B

4 5

d I

15

3o

2.5

2

Prlce of Good Twi

18

100

IR74]

0
I 0,70 020 dan 0,64 IRH ©oan 120 14 1.40 1.B2 R

Prive of Good Ooe

(r.4.2 shows Lhat a five period trajectory 14 presenl. That the price space can exhibit such drastic changes in
the qualitative nature of the price dymamics 15 a prochuet of chaolic tryjectorics being nterspersed with
periodic orbits in both markets,

Graph G.4.3 shows the values of hoth of the eigenvalues us the spead o whjustment Tor market twe is

varicd whilst the speed of adjustment [or market one is Kept constant at A’ = 0.75 . The distribution of
endowments 18 the same as graphs (14,1 and G.4.2,

.43

175

Speed of Adjustment for Market Two

— Eigemalue One —— Eigemalue Two | |

As the speed of adjustment A7 Increases, one of the eigenvalues moves outside the unit circle, This
corresponds to periodic orbits and chaotic trajectorics starting o emerge. The other cigenvalue lies inside
the unit circle. A saddle point emerges,




G.4.4

Raot Twio

Root QOne |

Graph G.4.4 shows that for all 20,000 jterates of the tatonnement process, for 4° — 0,75 und AP =279 fur
some iterations, the second eipenvalue falls outside the unit girele, Graph G485 shows that for

A =06and A7 — 2,79, both roots Tie inside the unit circle for il 200 THH} Merutes.

.45 N

Rt Twn

Root One

Graph G.4.6 shows the values of the eipenvalues for 200001} iterates when A' —075and A7 =5 The
Jacobian about the fixed point is

0.5 025 :
= and the eigenvalues are » = 0.640128 and r, — -2.473

1.666 —2.333,




G.4.6

Rioot Twi

Riool Cine

Graph G 4.7 shows the cigenvalues when 2 =0.0Mund A7 = 3. By decreasing the speed of adjustment
tor market one. stabibity canmt be indeeed as. wboot the Nxed poiot. there is one elgenvalue whose
medulus is greater than zere one (# -~ 0.9995 and £, = =2.335 ) und (his ¢igenvalue cannot e induced 1o

full within the unit eircle as A falls.
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Rt Ciem

1
=




1000

[

Priceal Good Two
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] 207 400 LA 104 1000 1200

Price of Goaod One

Gruph G 4.8 shows the prices of both goods in the cuse in which the system is symumerric in the speeds of
adjustmend, holdings of endowments and starting prices. There is convergence o the unique market
clearing prices even though one of the cizenvalues lies outside the unit circle. The reason that Lhis ocours s
that prices fall on the stable manidold of the system. [F asymmetry s intcoduced into the syvstem then a
strange attraclor is presenl. Ciraph (.49 shows prices over all 20000 jterates whilst graph G.4.10 shows
the forward Limit set of the price sequenges. G410 exhibits trajectorics that ure chaotic und fall within a
limil sct which is invariant, The svmmetry in the price spuce is due to the svmmetry in the system. The
strunge afractor is present us prices “fall off” the stable manifold and “fall onto’ a strange arractor (the
maduius of one of the eigenvalues is greater than zero).

(4.9

1201
1000+
ugn S

&00

Priceof Guod Twa

FI|

200 &

H 2c0 40 Lo Yl LA 1EH)
PFrce of Good QOne

i
|
;
:
i
¥
;
i
!
|
1
:
:
|



G.4.10

§.00

0.7a




Appendix
Stability

Let a be any number between f'(p*) and one. Since

i PV =S (P |
m—-—

et | p-p¥

= /(M| (AT)

there is a neighbourhood N_(p*) for some £ > 0

| /(p) - S (p*)|
—<a
| p=p*l

(A2)

for pin N,(p*). This means that f(p)is closerto p* than p is, by at least a factor of @ (which is less

than one); if pe N _(p*) thensois f(p)e N, (p*) so that if p is within & of p* then so is f(p).
Repeating this argument over many iterations we may obtain:

| £ ()= p*l< a* | x - p*| (A3)
Thus fora <1, f g (p) converges exponentially to p* ask — oo .

The above considers only an epsilon area around the fixed point p. That is an area equivalent to the
radius (p* —¢, p*+¢) . This radius could in theory be very small and at the limit be zero. A radius that is

small in dimensions will rule out the consideration of other orbits that have nearby initial conditions. Such
a set of initial conditions may be large in number and not necessarily converge to the same fixed point. All
the fixed points of the system must thus be evaluated and initial conditions classified in terms of whether
they converge to a given a given fixed point or are repelled away from it. Fortunately in the case of GS,
there will only ever be one such set of unique points.

To recapitulate:

1. If| f'(p)|<1, then p is an attracting fixed point
2. If| f'(p)|>1, then p is a repelling fixed point.

Periodic Points along a Trajectory

Suppose that the map f has a periodic orbit of period k and that {p,,..., p,} are the k points along this
orbit. If f is a smooth map that is at least once differentiable then, by the chain rule,

(fP) =N @)
= £ EN Y (P)
A CAN VA (VAR BT
=PI ()L (P)

(A4)
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This states that the derivative of the kth iterate f “ of the map at a point of an orbit that has k periods, is
the product of the derivatives of the map at the k points of the orbit.

An orbit of period k is an attracting point (or a sink) if

| P (pe)S(P)I< ] (A5)

The orbit is a repelling point (or a source) if

| /() (Pe)-S (P[> 1 (A6)

It must be noted that if there are infinitely many periodic orbits (i.e. K — 00), the existence of chaos is not
guaranteed as chaos is associated with non-periodic orbits as well as sensitive dependence upon initial
conditions.

Li-Yorke Theorem (LYT)

Let f be a difference equation that is continuous and for which two numbers g and b exist such that if

a<y <bthena<y  <b.Ifa y can be found such that when y, rises for two successive periods it

will fall back to below its initial position in the next period, that is,

Vo=f)and y. = (y)>y., but y, = ()<Y,
then,

(a) For any integer k > 1 there is at least one initial point y  between a and b such that the
subsequent time path y, is characterised by cycles of period k.

(b) There exists an uncountable set, S, of initial points between @ and b such that if initial points
x, and y, both lie in S then,

i At some time t in the future the difference (x, —y,) will come arbitrarily close to zero and

the two paths will temporarily move as close to one another as desired.

ii. After some interval of close proximity as in i. the two time paths will diverge again.

iii. No such time path will ever converge asymptotically to any periodic time path and a time path
originating in S will not converge to any time path that originates outside S.

liminf | x -y |=0 (A7)

1

limsup|x -y >0 (A8)

1%

where x and y have two distinct starting values, one of which is in an epsilon neighbourhood vicinity of the
other.

Therefore, if a periodic orbit of period three can be shown to exist, then it follows that there are a large set
of initial points that demonstrate sensitive dependence. Chaos is thus present. Chaos in the sense of LYT is
thus an orbit that is bounded, non-periodic and that is sensitive to initial conditions. LYT is not a very
tractable theorem and is limited in its numerical applicability. Instead, a more utilisable definition of chaos
can be applied in which the rate of convergence or divergence of one orbit to another orbit is compared and
for which the beginning points of which are in epsilon neighbourhoods of each other. That which is to be
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determined is thus the degree to which two trajectories with near initial points either converge to each other
exponentially fast or depart from each other exponentially fast. The Lyapunov exponent gives a measure of
this.

Sharkovski’s Theorem
Sharkovski’s Theorem gives a scheme for ordering the natural numbers in a manner such that for each
natural number n, the existence of a period-n point implies the existence of periodic orbits of all the periods

in the ordering higher than n. Sharkovski’s ordering is;

3<5<7<9<..<2x3<2x5<...
<2°x3=<2"x5<..<2"x3<2 x5...

<2'x3<2'x5.<2"<2" <2<1

On the basis of this ordering, the following theorem can be stated;

Sharkovski’s Theorem:

Assume that f is a continuous map on an interval and has a period p orbit. If p < g, then f has a period q
orbit.

This theorem states that if a period three orbit is observed then periodic orbits of all periods are observed as
well as chaotic orbits®.
The Lyapunov Number and the Lyapunov Exponent

The Lyapunov exponent provides a single value for an iterative map that summarises the extent to which a
trajectory expands or contracts on average.

Consider f'(p*) = a where p* is the fixed point of the map. We note that if

| ()= Tal<1 (A9)
then the orbit of any p in the vicinity of p* will converge towards p* . If

| f'(p*)|=1al>1 (A10)

then the orbit of each p near p* will diverge away from p at a rate that is approximately equal to a per

iteration. In other words, the distance between f"(p) and f"(p*)= p* is increased by an amount

approximately equal to a > 1 upon each iteration. Thus for a periodic point of period k, the derivative of
the kth iterate of the map needs to be evaluated. Using the chain rule (A4), the Lyapunov number is defined
as:

Lyapunov Number

Let f be a smooth map of the real line R . The Lyapunov number L(p) of the orbit {p , p,,...} is defined
as

88 Qee [1], pp135 -138 for a comprehensive discussion of Sharkovski’s ordering
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Lpy=1m (| £ (p) ] ()]} (A1)

if this limit exists.

The Lyapunov exponent is defined as

1
h(p)=lim(;)(lnIf'(pl)l...lnlf'(p")]) (A12)

if this limit exists.

The rationale of this number is as follows. Consider an initial point p, and a nearby point (or a

perturbation of the initial point); p, +7,. Let 77, be the value of the separation after n iterates. Consider:

(n I=in, "™ (A13)

Now take the logarithm of (A13);

n

My
@) - 7w
! T,

1
h(p) ~~In
!

(A14)
1 "
=~t-1n|(f )(pu)l
Now by the chain rule; (A4), (A13) is equivalent to (A12).

{A12) can be actualised by noting that for a trajectory of period k, the Lyapunov exponent can be defined
as:

n{/p)l In| f'(p,)]

h(p) = (A15)
k
Or alternatively (A14) can be written as;
I .
Wp) == Il S (p)] (A15)

It is clear from (A12) that A(p) is a limit argument. In order to use (A12) in a form such as (A14) then
sufficiently large t needs to be applied. Whilst (A14) suggests that A(p) is calculated for periodic points

up to and including the smallest integer k such that the periodic orbit repeats itself, there will be a repetition
of periodic k orbit in the calculation of (A14). This is deemed unimportant and in fact desirable as a
standard number of iterations for the calculation of {A14), for different parameter values, facilitates the
comparison between these different parameter values. Furthermore, the inclusion of repeated periodic
orbits in the calculation of (A14) does not alter the results in any meaningful way especially if t is large
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enough; if a map is convergent for 1000 iterates it will be so for 20,000. Upon the reading of various
articles, 20,000 iterations for a map are sufficiently large for the properties of that map to be discernible.

It must be noted that A(p) depends on p, (the starting value). For that reason p, is taken as the same

value for all comparisons for the change in parameters.

Fundamentally, A(p) >0 is a hallmark of chaos as this is the condition for which a map expands as
t — o, Conversely, A(p) <0 is a signature of the stability of the system as the map contracts as ¢ —> 0.

Lyapunov Stability Theorem (LST)

Consider a one dimensional system of the form p = f(p) that has a fixed point at p *. Let E be an open
subset of R that contains an isolated critical point p*. Suppose that f is continuously differentiable and
there exists a continuously differentiable function; V'(p) which satisfies the following properties:

e V(pH=0 (A16)
o V(p)>0ifpp (A17)

where p € R. Then

LST1. V(p)<0 forall pe E then p* is stable
LST2. V(p)<0 forall p € E, then p* is asymptotically stable
LST3. V(p)>0 forall p€ E, then p* is unstable

Stability in LST 1. is defined as:

A critical point such as p* of a system such as p = f(p) is called stable if given& >0, there is a
0 >0 such that for allf >, then

lp()-p*)|<e (A18)
whenever Hp(to) -p*(, )” <o

Stability in LST 2 is defined as:

A critical point is asymptotically stable if it is stable (LST 1 holds) and there is an 77 > 0 such that;

lim||p(0) - p*()] =0 (A19)

whenever ”p(to) -p* (to)” <n

LST stability states that for a trajectory that starts within a distance & of the fixed point, over time the
Euclidean distance fall to within an & distance of the fixed point. (A18) does not necessitate that the
Euclidean distance shrink any further than this and accordingly the fixed point may not be reached. In other
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words a trajectory that starts in the vicinity of the critical point will remain close to that point*’. Obviously,
close is defined arbitrarily but arbitrarily small.

LST asymptotically stability requires that if the system starts at a distance 77 from the fixed point then over
time the Euclidean distance converges monotonically to the fixed point of the system.

It must be noted that the LST pertains to continuous time functions. Since discrete time maps are under
examination, it is necessary make an equivalent relation between (A16), (A17) and results 1.-3. of LST. We
note first that, assuming that asymptotic stability holds then:

i) (A20)
Vip)

Since,

V(p)zln[V(p'”)]zan(pM)—an(p,) (AZ1)
V{p) V(p,)

Then if;

nV(p, )-InV(p)<0<=InV(p )<InV(p)=V(p,)<V(p),
Vip,)>0,Vi

(A22)

If (A20) is observed in a continuous time setting, then a discrete time analogue of LST asymptotic stability
is implied which in turn implies that there is a function described in discrete time such that it shares the
same properties as the Lyapunov function in continuous-time.

An equivalent relation between LST stability and (A29) can be made by changing the strict equality of

(A20) to that of a weak one. Similarly, for a system that is unstable, the inequality in (A22) would be
reversed such that:

InV(p, )-InV(p)>0=InV(p, )>InV(p)Vip,)>V(p)

(A23)
Vip,,)>0,Vi
The rate of change of the Lyapunov function in discrete time is thus assumed to be
dv(p)
~V(p.)-V(p) (A24)

dt

Feigenbaum’s Constant

Section two showed period doubling of cycles or bifurcations occurring, before chaos becomes present in a
system. Feigenbaum’s constant is a measure of the ratios of these points between successive periodic
doublings. Formally;

% Scarf’s counter-example is an example of this type of stability
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5 = lim 212 — 4.6692016.. (A25)

non g e

n+l n

(A25) is Feigenbaum’s universal constant, so called as this is universal for all one dimensional maps,
provided such maps satisfy the Schwarzian derivative.

Feigenbaum’s constant is useful as, if several period doubling points have been observed, it is possible, by
manipulation of (A25) to approximate the next period doubling point. Whilst such an approach may be
prone to errors, given that (A25) is a limit argument, it is instructive to observe that the occurrence of
period doubling points occur at intervals closer and closer together; that is to say, once period doubling has
started to occur, the onset of chaos can occur quite quickly for certain types of maps.

Section Four
For the sake of completeness, the derivation of the two dimensional tatonnement process is presented here.
The tatonnement process for good one is given as:

1 112 T IT IR IPE ST DR SR S
Pia=L (P )=p + A +x+t x5 -0 -0, -]

=M+W[

Vb, 2 2 3 b, 2 2 3 Vi, 2,2, 3
a(po + plo +w1)+a2(l71w2+p1 w; +a)2)+a3(p,a)3+p, w; +5)
]

SR
] T o w3}
12, P b,

And that for good two:

2 2002\ 2, q2f 2, 02, 2 2 2 2
P =1 (p)=p + A7 X7+ + X -0 —w; — 5]
2000 1, 2.2 3 200, 22, 3 2000 01, 2 2, 3
— 2+ A2 al(p,a)]+p,w1+a)1)+a2(p,a)2+p,w2+a)2) G (poy+poy+ay) 5 5 o
=P+ D2 D’ * 2 o —W; —wy
1 ! I3

Rearranging and simplifying for both goods:

po=r(p)=p +1 i @ + a0 + ayw; )+ i, ala} + o} + a0} )-| o (1-a) )+ wy (1 -al )+ o) (1 - a)
n P
{ t

b= 72019 = | ot s aed oo aod e aod) [ -at) o3 -} 1-a)]
t t

Section Five
It is asserted in section five that if individuals share the same preferences for both goods then the price
sequence is invariant to the manner in which endowments are held. This implies that exchange at any point

in time does not alter the price sequence and this price sequence is the same in the case of the tatonnement
process and the non-tatonnement process. The demonstration of this is as follows;

i .
By a: = a, = a , the tatonnement process can be written as;

P, = f(p,) = max {0, ’ +{ai“’—'—(l—a)iw}}} 51)

=t P, i=1

That initial endowments are;
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1 0
@ =( Ij.(S.l)thus takes the form of;
0

p.., = /(p,) = max {0, P, +l[al—(l—a)J} (5.2)
pl

Suppose now that there is an exchange such that;

1 0
encompasses every exchange permissible for a range of prices. (5.2) now has the form of;

0 1
w’:( j This exchange is equivalent to the endowment matrix being rotated. Such a rotation

p., =f(p,)=max {O, P, +i[ai—(l—a)}} (5.3)
pl

(5.2) and (5.3) are equivalent. As long asZ:a)r2 = E:w‘l =1, Vt, any exchange will not alter the price

i=1 i=1
sequence. The price sequence therefore remains invariant as exchange is effectuated and there is an
equivalence between the price sequence in T and in NT. Clearly this result holds only for the case in which

utility is of the Cobb-Douglas form and for which al] = azI = a . If this were not so, then this result would

not be able to be established.
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