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Controlling the Walrasian Tatonnement Process 

Abstract 

In this thesis I examine a discrete-time Walrasian tatonnement process. The criterion for stability is 
examined in a two good tatonnement process. It is shown that the stability of the system depends upon the 
speed of adjustment and holdings of endowments as well as preferences. It is then shown that periodic 
solutions as well as aperiodic or chaotic trajectories occur. The analysis is then extended to multiple agents. 

Having established the results for the one-dimensional system, the analysis is extended to the case of three 
goods in which one of the goods is a numeraire. It is shown that similar dynamics to the one dimensional 
case exist. It is found that if one market acts in a chaotic manner then both markets act in a chaotic manner. 
Such that markets do not act in a chaotic manner, certain restrictions on the speed of adjustment and the 
holding of the non-numeraire good with respect to the numeraire good need to be enforced. 

Following in the footsteps of Uzawa [26], exchange out of equilibrium is examined for the case of one 
traded good and one numeraire as well as two traded goods and one numeraire. It is found that if any good 
can be exchanged for any other good there is a direct parallel between the tatonnement process and the non
tatonnement process. If the numeraire is treated as a primitive currency then the policy implications differ 
significantly due to the amount of liquidity in the system. 
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Introduction 

This dissertation is organised as follows. In section one the stability of competitive equilibria are reviewed. 
Work by Arrow and Hurwicz [2], [3], [4], Arrow, Block and Hurwicz [5], Uzawa [22], [23] and Uzawa and 
Nikaido [24] are reviewed as well as Scarfs [18] counter-examples of global instability. Work by Day [8] 
is then reviewed in which global stability breaks down in the face of chaotic trajectories if the tatonnement 
process is discrete time in nature. Parallels and differences between aspects of these articles are highlighted. 

Section two proposes the tatonnement process that will be used in this analysis. This section closely mirrors 
Day [8]. Price dynamics are examined for a two person, two good economy in which one good is treated as 
the numeraire. It is shown that the price sequences in the discrete tatonnement process can be complex. 

Having established that complex price dynamics exist, section three proposes differing methods of 
controlling these dynamics in the one dimensional case. It is in this section that the fundamental argument 
of this paper is made; if there are complex movements in prices, such that the market clearing price is never 
reached, then, by suitable adjustment in the holdings of endowments and speed of adjustment, the system 
can be rendered stable. The liet motif of this section is "stability good, chaos even better" as an analysis of 
the complexity of the system strengthens the understanding of the stability conditions. Policy implications 
can be inferred from this maxim and further lines of enquiry necessarily arise. 

Section four includes a three good tatonnement process. Stability and instability conditions are examined. It 
is noted that the two dimensional case is a natural extension of the one dimensional case but more 
complicated to analyse. 

Section five examines the case in which exchange is permitted out of equilibrium. This section is based on 
the analysis by Uzawa [26]. Two approaches to exchange out of equilibrium are considered. The first 
approach is that in which any good can be exchanged for any other good. The second approach is that in 
which exchange for any good can only take place through the medium of the numeraire. In the first case the 
tatonnement process (T) and the non-tatonnement process (NT) have strong equivalence relations. In the 
second case, liquidity constraints drive a wedge in between T and NT, for which the dynamics of the latter 
differ fundamentally to those of the former. 

The appendix contains the various theorems used in this paper as well as providing subsidiary explanations 
when needed. 
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Literature Review 

In order to treat the subject of this thesis two strains ofliterature need to be considered. The first type is that 
which concerns the stability properties of general equilibrium, especially general equilibrium under gross 
substitution. The second is the application of chaos theory to such general equilibrium analysis. There is an 
abundant literature in both. 

Negishi [13] provides a succinct proof that, if the tatonnement process is continuous time in nature, and for 
the case in which one of the goods is elected as a numeraire, then, if all goods are gross substitutes (GS), 
the tatonnement process is globally stable. 

This proof relies on the construction of a Jacobian matrix whose principal minors alternate in sign. From 
this, Negishi is able to conclude that if the own price effect dominates all off-price effects, global stability 
is ensured in which there is convergence to a unique set of points. Gross substitution implies diagonal 
dominance which in tum guarantees global stability. 

In his survey article Negishi [14] delves further into the idea of gross substitutability and global stability!, 
naming this result as one of the most important results obtained in the study of the stability of the 
tatonnement process. Negishi notes that this result can be obtained by various means. 

The starting point in [14] is the use of a strictly quasi-concave utility function2 such 

as V, (X,!' ... , Xm) = L) a'f logX'f' Vi, where Lja'f = 1 and a'f > 0. The demand for any good by any 

individual is given by; 

I, " X'f = a'f p , where income, I, = L.., p'X" ' is a function of prices and endowments. Gross substitution 
) 

ax _ ax 
implies that, __ '1 > 0, V P, X> 0, j '" k and __ '1 < 0, V P, X > 0, j = k 

a~ a~ 

By means of such a utility function, it is shown that the equilibrium price vector is uniquely determined up 
to a scalar mUltiple. From the demonstration of this last point, the tatonnement process can be shown to be 
stable by considering that, if the equilibrium is unique, quasi-stability3 implies global stability. To prove 
quasi-stability, some function needs to be defined such that this function is decreasing through time if there 
is a state of disequilibria4

. If such a function exists, then by gross-substitutability, which implies the weak 
axiom of revealed preference, global stability is ensured. Different types of functions can be constructed 
that have this desired property. Negishi [14] notes that different choices of such a function offer different 
proofs of the same theorem; differing functions can be the Euclidean distance in the price spaces or the 
distance in terms of maximum norm in the price space. Both types of proofs arrive at the same conclusion; 
the tatonnement process is globally stable under certain mild assumptions. 

Nikaido and Uzawa [15] note a similar result. If the aggregate excess demand function is single valued and 
homogenous of degree zero, if Walras' law holds and if the weak axiom of revealed preference holds such 

that for any equilibrium price vector p' , and any other price vector p not proportional to p' , the inequality 

L~=oP,'Z,(p) > ° prevails. If the speed of adjustment is small, the distance of any price to the unique price 

equilibrium falls shrinks monotonically to zero over time. 

1 This result is due to Arrow, Block and Hurwicz [5] 
2 As used by Arrow and Hurwicz [2], p. 550 
J Convergence to a set of equilibrium points that are not necessarily unique 
4 i.e. a Lyapunov function 
5 The sum of squares of the difference between prices and equilibrium prices 
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At this point one may point out that global stability may be deemed the domain of continuous time price 
adjustment mechanisms. This would be erroneous as Uzawa [23] demonstrates the case in which global 
stability can take place in a tatonnement process that is of a discrete time formulation 6

; 

P, (t + I) = max {O, P, (t) + f(t)} 

t = 0,1,2, ..... ; (I) 

i = 0,1,2, ... ,n, 

In the same vein as Arrow, Block and Hurwicz [5], Uzawa shows that the Lyapunov stability theorem can 
be applied to the above set discrete time price adjustment mechanisms. He proposes the following stability 
theorem7

: 

Let p(t; Po) be the solution to (1) with initial price vector Po' If 

(a) the solution path p(t; Po) is boundedfor any initial price vector Po; and 

(b) there exists a continuous function C:P(p) defined for all price vectors p such that 

cp(t) = C:P[p(t;po)] is strictly decreasinl unless p(t;po) is an equilibrium, then the process is 

quasi-stable. 

The simultaneous adjustment process (I) is defined as quasi-stable if, for any initial price vector Po' every 

limiting point of the solution p(t; Po) is an equilibrium. If the set of all equilibria is finite, the quasi

stability of the process (I) implies global stability. Uzawa goes on to show that if the speed of adjustment is 
small and if the weak axiom holds, then (I) is globally stable. Uzawa's stability theorem is of prime import 
in the context of this thesis as it is the transgression of this stability theorem that allows complex dynamics 
to occur. Strictly speaking, Uzawa's stability theorem cannot be violated; as if the distribution of 
endowments is such that the system (1) is not stable then Uzawa's theorem implies that stability can be 
induced by a reduction in the speed of adjustment. Whilst this is true and incontrovertible, this author 
asserts that a continual reduction in the speed of adjustment is a penurious line to follow; there are other 
factors that allow stability to be induced in the presence of instability, or that allow the auctioneer to pre
empt the occurrence of complex dynamics. In Uzawa's defence, one must note that the presence of 
complex dynamics are not a strict counter-example to global stability as Uzawa and his peers wrote at a 
time when chaos theory and its adjunct fields of interest had not yet been properly formulated. To evoke 
chaos as a counter argument to the stability properties of a discrete time tatonnement process simply does 
not hold as the latter was constructed when the former was absent9

. 

Scarf [18] provides several counter-examples to stability which do not make recourse to complex 
behaviour. Scarf's counter-example may be deemed more appropriate in the sense that it was written 
contemporaneously and in response to Uzawa and his peers. One of Scarf's counter-examples considers the 
case in which there are three goods and three individual's, each of whom has taste for only two of the 
goods. The holdings of initial endowments are cyclic in the sense that each individual only holds one unit 
of a good; the endowment matrix is equivalent to a three dimensional identity matrix. The specific form of 
the utility function is of a Leontief type in which the two commodities desired by each of the three 

6 Saari [17] p. 1119 also notes that correct dynamical process for the tatonnement process is an iterative one, at least in 
the present context in which an auctioneer calls out prices 
7 Uzawa [23], p 185 
8 i.e. is a Lyapunov function 
9 Mathematical interest in deterministic dynamical systems that generate apparently random trajectories has dated back 
to at least Poincare's work in the late 1800s. Interest in the natural sciences was piqued by a paper by Ruelle and 
Takens in 1971 who argued that the traditional model of fluid flow turbulence was structurally unstable and that a 
dynamical system that converged to a low dimensional deterministic system was a better model of certain types of fluid 
flow turbulence than the traditional one 
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individuals are perfectly complementary to each other. It is shown that any other price vector other than the 
market clearing price vector will create a trajectory in which prices circle around the fixed points. The 
unique fixed points are thus never reached. It can be noted that, if trade can only ever be effectuated once 
the market clearing price is attained, then Scarfs counter-example provides a case in point in which trade 
will never take place. It is further noted that the instability 10 in this case is a product of the income effect 
dominating the substitution effect. 

In light of [18], Negishi [14] concludes his survey article by stating that "the tatonnement process is not 
perfectly reliable as a computing device to solve the system of equations for general equilibrium" 

On the one hand, a counterpoise to Negishi's conclusion may simply be that the weak axiom need hold or 
that all goods be gross substitutes. This would circumvent counter-examples such as those constructed by 
Scarf. On the other hand, as alluded to previously, work subsequent to Scarf has demonstrated that even in 
the presence of the weak axiom or revealed preference and gross substitutability, there is no guarantee that 
stability in the large need hold. 

Morishima [12] does not appear so optimistic about any such counter-argument. He demonstrates, by 
means of a simple example, a case in which even in the presence of gross substitutability, periodic price 
dynamics can be generated. He concludes that the tatonnement process can be disappointing as a price 
adjustment mechanism. 

Day [8] considers a pure exchange economy in which supply does not change as price changes. This 
corresponds to Uzawa's [23] in that endowments are static and there is a change in goods only once the 
market clearing price has been reached. The precise form of the tatonnement process that he considers uses 
a utility function of the Cobb-Douglas form as in Arrow, Block and Hurwicz [5], but uses a discrete time 
tatonnement mechanism as in Uzawa [23]. Day's analysis focuses on the fact that if endowments are 
cyclic ll

, and there are two goods, two market participants and one of the goods is treated as a numeraire, 
then the discrete tatonnement process has the capacity to generate complex dynamics. Such complex 
dynamics encompass the case in which the unique fixed point is reached as well as the cases of the 
occurrence of periodic and chaotic trajectories. In the latter two cases the market clearing price is never 
reached. This occurs even if gross substitutes and the weak axiom of revealed preference hold. Day's result 
is therefore a caveat to Uzawa's stability theorem, as it constitutes a sub-set of that which can occur if the 
stability theorem does not hold. 

Day states his results as 12: 

1. A unique competitive equilibrium exists and is the unique stationary state of the process. 
2. If the eigenvalue falls within the unit circle, then the competitive equilibrium is globally stable. 
3. The tatonnement process generates prices that are bound to a finite interval. 
4. If the eigenvalue falls outside the unit circle then fluctuations persist almost surely. 
5. For some set of parameters, chaotic trajectories exist robustly over a significant parameter interval. 
6. Given any speed of adjustment, these results occur robustly. 

Point 6 is of especial interest as, for a given distribution of endowments, the speed of adjustment may need 
to be altered such that either monotonic or oscillatory converge of price to equilibrium. Generally stated, if 
the holdings of the endowment of the numeraire are scarce relative to the non-numeraire, then, for a given 
speed of adjustment, price dynamics may be complex. The negation of this last point is subsumed into 
Uzawa's stability theorem as, in this theorem; the upper bound for the speed of adjustment is directly 
related to the precise value of aggregate excess demands, which in tum are dependent on the distribution of 
the holdings of the endowments. Day therefore appears to be providing a specific type of dynamic which 

10 Scarfs example is one in which global stability is not possible, but stability in the sense defined by Lyapunov is 
possible. Lyapunov's stability requires that the orbit tends to a neighbourhood of the fixed point and remain there or 
simply circle about it 
II This is not a necessary condition to obtain the results that he does, but a simplifying factor 
12 Bearing in mind that Day's example is one-dimensional in nature 
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lends itself more to an examination of trajectories that are chaotic in nature. Furthermore, stability in [23] is 
rigorously demonstrated for a system of any dimension. Day falls short in his caveat in that he considers a 
one dimensional system. 

We are therefore left with the following problem: it need not necessarily follow that global stability does 
not hold if any such caveat is restricted to a one-dimensional system. A strict caveat would have to be 
extended to a system of any arbitrary dimension simply by dint that (1) is stable for any dimension if the 
speeds of adjustment are small enough and WARP holds. A strict caveat would also have to show that 
holdings of relative endowments in a system of any dimension have a bearing on the stability of that 
system, given that Day's result is premised in part on the robust occurrence of chaos for any speed of 
adjustment. 

Goree at al. [9] note that under the assumption of gross substitutability, the price process may not converge 
to a point, yet the price process is stable in the sense that prices converge to a bounded region. It is this fact 
that prices are bound to fluctuate within a certain region that permits them to posit that an out of 
equilibrium exchange is beneficial to no trade at all. They note that within this region, in the case of three 
goods, as the speed of adjustment changes, the attracting set of the system changes from (i) the unique 
fixed point to (ii) a period two orbit, to (iii) a quasi-periodic attractor, to (iv) a strange attractor on which 
the dynamics are completely chaotic. 

Goree et al. state the following proposition for the type of economy considered here: 

For all economies there exists a finite Ao such that for A > Ao all fixed points of the discrete process ((1) 

above) are repellers13. 

They note the following: 

1. Under gross substitutability the unique equilibrium is globally stable when the speed of adjustment 
is sufficiently small. 

2. The tatonnement process becomes unstable at some finite value of the speed of adjustment. 
3. There exists an attracting set to which all initial price vectors converge (for all values of the speed 

of adjustment) 
4. The dynamics inside the attracting set are quite complicated for sufficiently high values of the 

speed of adjustment. 

It is also concluded that 1 to 3 are independent of the precise choice of the type of aggregate excess demand 
function or the dimensionality of the system. However, the specific type of bifurcation occurs (periodic
doubling, Hopf, saddle-node, or global bifurcations) and for what values of the speed of adjustment, 
depends upon the particular system studied. It is also pointed out that if the system is stable, then the 
eigenvalues of the Jacobian of the aggregate excess demand function evaluated at the fixed point are less 
than one in absolute value and that this condition is dependent upon the value of the speed of adjustment 
(amongst other parameters). Goree at al. 's results accord entirely with the results of this thesis and indeed 
provide a generalisation of Day's caveat to higher (two) dimensions. Goree et al. however, do not consider 
that their results could be modified by a change in the holdings of relative endowments. In other words, 
points 1 - 4 hold for a given endowment matrix. If this endowment matrix changes 1 - 4 may be altered. 

Tuinstra [21] considers a discrete price adjustment mechanism in which there are three agents each of 
whom have a CES utility function and three goods. He argues that the appropriate price normalisation rule 
is that prices sum to one. Tuinstra thus considers chaotic dynamics on the unit simplex rather than 
arbitrarily choosing one good as the numeraire. This analysis is especially instructive as the author notes 
that, in the three dimensional case, there are simply too many free parameters for a simple analysis. To this 
end symmetry is introduced into the tatonnement process and is imposed on the endowment matrix and the 
preference matrix. Such symmetry can be rotational, reflective or both. The imposition of some form of 

13 Where Au is the speed of adj ustment 
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symmetry allows the study of the global dynamics by reducing the number of free parameters from 20 to 8. 
Symmetry not only produces spectacular bifurcations on the simplex but also has the function that "the 
symmetric tatonnement process can serve as an 'organising centre' in the analysis of the global dynamics 
in general tatonnement process". Symmetry also yields the neat property that the Jacobian matrix has an 
immediate symmetry to it as well. Like Goree et aI., Tuinstra states that in order to study the bifurcations in 
the system, the eigenvalues of the Jacobian, need to be examined. If the market clearing price vector is 
stable and the eigenvalues lie inside the unit circle then the system is locally stable 14. If at least one of the 
eigenvalues lie outside the unit circle then the market clearing price vector is unstable. At the point at 
which an eigenvalue does cross the unit circle as a parameter is varied (for example the speed of 
adjustment), a bifurcation point occurs and the characteristics of the tatonnement process fundamentally 
change. 

Whilst the literature reviewed is unequivocal in the conclusions reached regarding stability, there does 
appear to be some gaps in the analysis of general equilibrium. This author asserts that not only can 
instability be induced by shifts in the speeds of adjustment but endowments play an equally important role 
and have much more interesting implications for policy especially if trade in disequilibrium is permitted. 
The examination of the former, to date has been done at the expense of the latter and the latter cannot be 
neglected as both types of parameters find their way into the tatonnement process and will therefore 
generate stable or complex price dynamics. 

Uzawa [26] examines the transaction rules for which an out of equilibrium exchange is allowed. If 
exchange increases the utility of at least one individual and reduces the utility of no one, then trade will 
take place. If this rule is abided by then the holdings of endowments converge to a Pareto optimum over 
time. Uzawa establishes this result for both the discrete and continuous time tatonnement process noting 
that a strict preference relation must be defined as well as that individual, and hence global, constraints of 
endowments remain unchanged. Under these conditions, there is an equilibrium price vector that supports 
the Pareto optimal holdings of endowments. 

It must be noted that Pareto optimal holdings will be determined not only by the rigorous enforcement of 
the trading rule but also by the choice of initial prices and initial holdings of endowments. These starting 
conditions may favour one individual over the others. In this sense, for a different starting price and 
different holdings of endowments, the Pareto optimal may be highly skewed in the favour of one individual 
over the other. Uzawa is silent on this point. 

Trade at disequilibrium also starts to allow various other questions to be asked. If individuals are allowed to 
trade at any price vector, providing that the trading rules are adhered to, such trade may start to encompass 
a speculative component, especially if one starts to build into the model the role of expectations. If prices 
are, for example, falling monotonically over time, one individual may withhold an amount that he would 
otherwise exchange even though, by the trading rules, it would be beneficial to trade. Such holdings of 
goods that are withheld would be speculative in nature and may either stabilise or destabilise the Pareto 
holdings of endowments with respect to the case in which no speculative trading were permitted. A 
confounding factor in the context of the non-tatonnement processes presented in this paper may be that 
speculative holdings either work in accordance or in discord with complex dynamics in the reaching of 
Pareto optimal holdings of goods. No statement can be made out of hand without a thorough analysis of 
both the effect of speculative holdings of goods and the effect of non-speculative holdings of goods in the 
presence and absence of complex dynamics. For the purposes of this thesis speculative holdings are 
disallowed and the trading rules are strict. 

14 Locally stability implies global stability in the case of gross substitutes at all price vectors 
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Section Two: The Tatonnement Process 

In this section the tatonnement process is defined. The type of economy that is assumed is Cobb-Douglas. 
The specification of this type of economy ensures that gross-substitutability and the weak axiom of 
revealed preference hold and therefore, for a stable system, there is a unique fixed point. 

This section is organised as follows. The specific tatonnement process is first derived. Conditions for price 
to remain bound to a particular interval are formulated. Conditions for stability are then introduced. A 
discussion of the importance of the relative abundance of the endowment of the numeraire with respect to 
the non-numeraire is noted. A specific cyclic endowment matrix is then considered, for which the stability 
of the tatonnement process is examined as the speed of adjustment is varied. Stable trajectories, periodic 
trajectories and chaotic trajectories are all found to exist for different values of the speed of adjustment. 
Whilst this analysis has been carried out elsewhere (Day [8]), the need for such a thorough examination in 
this section is justified by the contents of section three, in which solutions to the periodic or chaotic nature 
of the tatonnement process are presented. In light of what is presented below and in subsequent sections, 
we find that a sufficient condition for the attainment of the unique fixed points is that the eigenvalue of the 
system lies within the unit circle. It will be shown that this latter condition is directly related to the relative 
values of endowments and the speed of adjustment. This finding is an extension to the work named in the 
literature review in which only the speed of adjustment is considered as having the potential to generate 
complex price paths. 

The Cobb-Douglas Economy and Walras' Tatonnement 

Since GS holds then the demand for any good is given 
aim 

by15 Xl =_;_' . 
, i 

Since the income for any 
P 

individual is dependent upon the price prevailing at any point in time, the following identity holds: 

m, == L pi OJ,i, Vi, where OJ/ is the endowment of good j for individual i. The aggregate excess demand is 

the summation of any particular good for all individuals, less the endowment of that good for all 
individuals: 

n n 

Zi = LX: -LOJ,J, Vj (2.1) 

Since the demand for any good j depends upon individual i's income, and this in turn depends upon prices 
then (2.1) becomes; 

(2.2) 

The price adjustment mechanism or tatonnement process is 

(2.3) 

where ,,1/ is the speed of adjustment for market j. 

15 Index i refers to the individual and j refers to the good 
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This type oftatonnement process follows the mechanism described in detail in Uzawa l6 in which there arej 
markets running concurrently for the j commodities that are desired (but not necessarily held) by the i 
individuals. 

We note that if the market clearing price vector is reached then Zi (p) = 0, Vj, which in tum implies that 

n n n n 

L X,i -L W,i = ° ~ LX: = L W,i, Vj; (2.4) 
I==! /==1 1=1 

Denote the market clearing holding as; 

n n 

Ix;*= Im/ (2.5) 
l=! l=! 

which is the equilibrium exchange of goods l7
• Such that there has been the exchange of at least one good 

(between at least two agents) then; 

(2.6) 
l=! l=! l=! 

(2.6) simply states such that the tatonnement process is not vacuous or trivial in the sense that individuals 
come to the market already holding the distribution of endowments that would come about by means of the 
price adjustment mechanism (that is the pre- and post-trade holdings of commodities are the same), then the 
initial holdings of at least one good for at least two people must differ to the optimal distribution of 
resources 18 at the market clearing price. Or alternatively, some trade has to take place. If gross substitution, 
the weak axiom of revealed preference and Walras' law hold, there is then some unique price vector that 
allows (2.6) to be attained. 

In order to render the tatonnement process more concrete, the highly simplified case in which there are only 
two goods and two market participants is considered. 

By (2.3) we have two simultaneous adjustment mechanisms: 

, =f'( "')=max{O '+A'Z'( "')} P,+, P, ' P, P, 
(2.7) 

2 = f'( "') = max{O ' + A'Z'( "')} P,+, P, ' P, P, 

Commodity two is arbitrarily chosen as the numeraire good so that p2 = 1, Vt. (2.7) therefore reduces to a 

tatonnement process for good one only; 

P,+, = f(p) = max{O, P, + AZ(p)} (2.8) 

Substituting the demand for good one and the endowments for all consumers into (2.8) and rearranging; 

16 See literature review for an outline of the details of this type of mechanism 
17 Exchange only takes place if the market clearing price has been reached. This is tantamount to the same price being 
called for at least two consecutive periods. No exchange takes place beforehand. This mechanism differs fundamentally 
to that proposed by Uzawa [26] in which trade can take place out of equilibrium. The use of the word "traded" in the 
context of sections two, three and four is slightly incorrect as no trade actually takes place throughout the price 
discovery process 
18 This condition is not strictly needed for what follows. It can be shown that even if individuals enter the market 
holding the optimal (post-exchange) distribution of endowments, the tatonnement process can still be chaotic 
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---------

P
'
+ 1 = f(p') = max {o, P, + A[ ~X,I - ~(V,I]} 

P", ~ f(p,l ~ mox {o, P, +A[ ~ a:,' -~",:(l- a: l ]} 

(2.9) 

If the market clearing price is reached then the same price is called by the auctioneer for at least two 
consecutive periods. If such a price is reached, and is positive, then (2.9) becomes; 

AZ(p') = 0 

Z(p')=o 

=> 

If Z(p') = 0 (absence of excess demand and supply for good one), then; 

p 

(2.10) 

(2.11) 

which is the market clearing price for good one. The market clearing price is thus simply the ratio of the 
endowment for the numeraire by the preference for the traded good to the endowment of the traded good by 
the preference for the numeraire. 

It must be noted that if (2.11) holds, then the market for good two is also in a state of equilibrium in which 
there is no excess demand or supplyl9; 

(Zl(p*) == 0) <=> (0 == Z2(p*)) (2.12) 

It must furthermore be noted that the speed of adjustment has no bearing on the market clearing 
price; ,1 only has a bearing on the rate at which that price is attained (or whether such a price is attained at 
all). 

We now want to establish the stability properties of the tatonnement process (2.9). By the stability property 
(A9); 

19 Conversely if Z' (p) * 0 <=> 0 * Z' (p) . Moreover, any particular dynamic that occurs in market one also occurs for 

the aggregate excess demand for good two. By (2.12), it is sufficient to consider only the market for which price has 
not been normalised in the two good case 
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dp'+1 = if '(p*)1 < 1 
dp, p=p' 

Applying (2. I I) to (2. I 3); 

, aim' 
\r(p)\ = I-A L-' -', ' 

,=, (p,) 

(! m,' (1- a,' ))' 
\f'(p*)1 = I-A ,=, , <I 

'" ' 2 ~alOJj 
/=1 

Define20 
K 

( ~ m,' (I - a,') )' 
as; K == A -,-,-'-:..:-' -,----'--

'" ' 2 L...J a, m, 
1=1 

The stability condition is therefore; 

If'(p*)1 = 11- KI < 1 

(2.13) 

(2.14) 

(2. I 5) 

(2.16) 

(2.16) is simply a statement that the modulus of the eigenvalue or multiplier of the discrete map is less than 
one, or lies within the unit circle, and for this particular type of map the eigenvalue can be decomposed into 

11-KI· 
Such that (2.16) holds we can make a further statement about K ; 

If K E (0,2) (2.17) 

then (2. I 6) holds21 
. 

If the tatonnement process is unstable the inequality in (2. 16) is reversed such that; 

If '(p*)1 = 11 - KI > 1 (2.18) 

Definition (2.15) provides an immediate way of evaluating the conditions under which (2.16) is attained 
and as a consequence (2. I 7) holds. Given that K depends on the speed of adjustment, preferences and 
endowments for the numeraire and the non-numeraire, the factors that enter into the tatonnement process 
(2.9) are precisely those factors that determine the value of the eigenvalue and therefore the stability of that 
process (2.8). 

In order to ensure that prices are strictly positive, that is to say so that p, > ° at any point in time, then let 

there be a p that minimises the map f, such that22
; 

f'(jJ)=o 

20 This methodology is used by Day [8] 
21 The interval is open as if K = 0, then by (2.15) and (2.9), there would be no actual tatonnement process 
22 The zero price boundary is avoided 

(2.19) 
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From (2.9); 

(2.20) 

Substituting the expression for pinto (2.8) and noting23
; 

f(p) = p + AZ(p) > 0 (2.21) 

Rearranging (2.21) and simplifying the inequality 

K<4 (2.22) 

is obtained. Combining (2.17) and (2.22) the following interval for K is obtained; 

K E (0,4) (2.23) 

An expression for the optimal speed of adjustment, A * can also be derived. This is the value for which the 
market clearing price (or a solution to the tatonnement process) is reached in the shortest time possible (i.e. 
the system is super-stable). 

(2.24) 

where p * is defined as in (2.llf4. 

The following general properties are noted; 

• For K E (0,4) prices are positive and bounded. 

• For K E (0,2) , the eigenvalue is less than one in absolute value; stability is ensured as in (2.16). 

• For K E (2,4), the eigenvalue is greater than one in absolute value; instability in the sense of 

(2.18) occurs for which (2.16) is necessarily ruled out. 

23 (2.19), (2.20) and (2.21) takes the minimum point in the domain for p and maps it onto the range by (2.9). By the 

inequality in (2.21), the minimum value for p (fCp) ) can be obtained. This constitutes the lower bound of the interval 

for which price is feasible. Since price is not bound from above, the domain of price is P E (f(p), OCJ) . (2.23) therefore 

imposes that prices exist on a non-degenerate interval of the real line 
24 The optimal speed of adjustment can also be seen as that speed of adjustment for which the eigenvalue is zero, i.e. 

f '(p*) = 0, which would entail, by (2.16) K = I . At this point the system is super-stable 
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Chugo, in RoMi ... Endowment. 

As " flr't p"" in ",amining 'he pro""""" of the mC>tm<ment pro<;. ". lh. reloti ... ,,"Iu. of <'1'" «mm">dit) 
,-j,·a·,i, [he orner commodity is examined. n", case in which thor. i, a "unl,,,'"i,, "nd" rlO1HUJmemi,c is 
ex,mined. We "-,,ume lha' [ile,e or" on ly hH' marhL paJ1icipanh". E1I<h market parlicip.1nt has <quo] 

i><efewLc", lx)(1\ fo,. 111< numerah Jtld the non-numemi,. , i <. a,' = 0.5. i. j ~ I, 2. Furthcrm(l<c. the 

endowment< for both g()()d, art d",cri""d by the fo llow ing ma1l'i~; 

(2.25) 

H(Mlng' 01' go()d On" for individual one i, denoted ". 11,;, value or,' ,'ari., from 0. I to 9 itl 'teps of 0. I , 
[bi, change Capl"'" the "l"h'e ,,",ci(y of the holding of {he notl-numerair. with r.,p"<! {o the 
numera;,"_ The market clcaring price, the Lyapuno,' "'lx",,,nl "nd the ,'alue of K are pkmed again,( tho 
re laL,Ye holJ'ng or go,xl <,,'" ,n g,aph 2 I. 

Graph 2,1 

" 
" 
• 
• 
• , "-
0 , , • , • , • • , 
• 
• 

A, Lhe ,clatiye "oundanee <,f Ihe n<'n_numera,re ,nc,ca,c" Ihe p"ee fall" Thi, i, a, Iheo'y would di<laL< 
H<'w.".,-, "' tho non-Humo",ire oo<om." rdmi.-ely k" ,',"re'e with ,e'pe<t to Ihe numeroire, other 
dynam ies occur, rho follo"itlg relatiotlS ar. ootect: 

• If l'F (0,6,3) then~' F (0.2) ". Slabilit) iHnsured ,n Lhe sense of(2,1~) 

• If K F (0.2) then the 1.)"f'lJn,l\ e'F"',>cnt "Ie" lhan ze,,'·'; h(p) < 0 eh"", i, aO."'nl 

• Ify F (6.3,9) K F (2. 4), n,. systom i, "nstoble in the ,el];e <,1'(2, I 8), 

• Ih: '= (2.4), Ih. , . or. <ortoin "ohoe, <,r,' ti,r which h(p) > 0, Cho<', is p,,,"enl, The I.Y"run<>Y 

np<'nenL i, both p<lS'ti.-e and negatiye implying LhaL chao, both Joe, anJ J,:"" no, 'KOCUr" yet 
,,",lS to 0"".- moro rohustly"' the ')(lll-tlumem"e t>ccome, Ie" ,,'",Ce 

1'1" pr<sence of chao, indicate, that Walra,' id. a aoo", searcil) may b< ,ubj«t 10 the n« d 1001' I"rtl"" 
4"ali~c.tion', \l'aira' not« that il' a good b<co"", increa,ingly plentiful, it "ill c"ase to ha,'" a '-Jlue if] 

" ), _ 0, I i, »",mcd lhrougholiL thi> .wi"". 
16 Tllj, can be reoJ otfthewrtj,," ""j< 
" s...: Apl"'."lix ll>r eli""»i",, of l},>p ur"'" '~p<."'''l> 
" ne .b>oocc of ch"", Joc. ooL inc.pl)' tbe prc>cncc of . IInKloc fixed I'(ll[l< 
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exchange. It is noted here that both goods will cease to have a value in exchange as holdings of the non
numeraire increase relative to the numeraire simply as there is no convergence to the fixed point. Define; 

(2.26) 

As the value of y tends to zero, the holdings of the numeraire increase in terms of the non-numeraire. The 
tatonnement process is however stable in the sense that29

; 

lill} h(p) = 0-
V-JoO 

lill} L(p) = r 
,->0 

(2.27) 
lill} p = 00 
V-joO 

(2.27) states that as the relative amount of good one becomes small vis-a-vis good two, in the sense defined 
by endowment matrix (2.25)30, then the Lyapunov exponent tends to zero from below. Similarly, the 
Lyapunov number tends asymptotically to one from below. This implies that average contraction of the 
map is zero at the limit and that the system is stable up until that point. Since the price of commodity one 
becomes infinitely large and it would take infinitely long to reach such a point (the point at which the 
system is super-stable tends towards infinity), Walras appears to be correct in that if one good becomes 
plentiful (good two), then that good ceases to have any value in terms of trade. 

However, suppose now that the holding of good one becomes large. Recalling that the imposition of global 
stability requires that v be bound by a value approximately equal to nine31 , the converse to (2.27) can be 
examined. It would be expected that the same results as (2.27) hold; if commodity one becomes 
increasingly abundant then its price would become zero and at the limit, the market ceases to function. This 
is, however, not that which is demonstrated in graph 4.1 as for certain quantities of commodity one, we 
have; 

li~ h(p) > 0 

li~ L(p) > 1 
(2.28) 

,->9 

As the holdings of good one increases relative to that of good two, since K E (2,4) for certain values of v, 

and by (2.28), chaotic sequences are observed. The tatonnement process becomes unstable. Whilst Walras 
was correct in the assumption that the relative value of commodity one would become negligible as the 
supply of that commodity becomes large, his intuition needs to be corrected in the present context to the 
extent that as the non-numeraire becomes more abundant relative to the numeraire good, the tatonnement 
process becomes first unstable32 and then chaos occurs. It can therefore be stated thae3

; 

29 0- means just below zero and 1- means just below one, at the limit 

30 v ~ 0+ is equivalent to K ~ O' as is v ~ 9- equivalent to K ~ 4-

31 As this ensures that K E (0,4) 

32 The specific dynamics in which the tatonnement process becomes first unstable in the sense of periodic orbits and 
then chaotic sequences 
33 This result is a direct consequence of the fact that goods one and two are treated asymmetrically in the tatonnement 
process 
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As the holdings of the non-numeraire increase, the tatonnement process is at first stable in the sense that 
K E (0,2); the eigenvalue is within the unit circle, then unstable in the sense that K E (2,4) or the 

eigenvalue is outside the unit circle. Furthermore for K E (2,4) a positive Lyapunov exponent is observed 

indicative of the presence of chaos34
. 

This result is not confined to the cyclic endowment of (2.25). Suppose that there are n market participants. 
The endowment matrix can be defined generically as; 

, 2 
OJ, OJ, 

, 2 
OJ, OJ

2 (2.29) liJ= 

, 2 
OJ OJ" , 

If the values in the first column of (2.29) become large relative to those in the second column, and all 
agents are identical and have equal preferences for both goods35

, then the tatonnement process becomes 
unstable and chaotic price sequences are observed36

. This occurs as the numerator in (2.15) becomes large 
relative to the denominator. Of course by (2.15), if there were a commensurate shift in preferences away 
from the numeraire towards the non-numeraire, then it is conceivable that K remains static so stability can 
occur even if the holdings of the non-numeraire become large relative to the numeraire. This however, 
cannot occur if all individuals are alike and have equal preferences for both goods. 

Changes in the Speed of Adjustment 

Consider the case of two market participants. Each market participant can hold either the non-numeraire or 
the numeraire but not both. The endowment matrix is cyclic; 

and all preferences are equal37
. Accordingly, in the two good case, preference for each individual and for 

each good is 0.5. 

An arbitrary initial price of Po = 4 is chosen. Any initial price can be chosen provided that this initial price 

does not coincide with the market clearing price and is not zero. 

In order to understand the stability of the system, the eigenvalue is considered. It is noted that the value of 
the eigenvalue is a function of the speed of adjustment, the parameters that capture preferences and the 
endowments. We recall that the stability condition is: 

If '(p*)1 = 11- KI < 1, that is, the eigenvalue lies within the unit circle. If instability occurs then the 

eigenvalue lies without the unit circle; If '( p*)1 = 11 - KI > 1 . For the latter case the system will never 

34 This is the same result that Day obtains but by means of a change in the speed of adjustment not in relative holdings 
of endowments 
35 This assumption is not necessary but merely simplifies the analysis 
36 An increase in the number of individuals holding a certain good is equivalent to an increase in the holdings of that 
good by one individual, provided all market participants are the same 
37 By imposing these conditions, the number of free parameters falls from 9 to I; the speed of adjustment 

16 

Univ
ers

ity
 of

 C
ap

e T
ow

n



conwrgo 1{1 Ihe unique fixed p'Ji1ll irre<pecti\ie of th e mmJb<r of itoration, Qver which tho ,)'stom i, 
int egrat ed, 

In (l·rder to quontify the- ".hility of tit<' 'y'!em with ,"sP"'-t to the 'peed of ooj"stlll<nt. given that 
elld<JwmelK, "'" cyclic .,1<1 that prde,.",« are " lllJ] for both individuals and for booth good, th" 
Lyopuno\, expoo ent i, calculated for 

l~" Op"n inl""'" l ). E (0,8) (C<>lTo'P'lfld ing l<1 ~. <= (0, 4 ) )" " j, <", urod. Til< ".h>< of th e sp<ed of 

adiu,lm enl agaln-'l lh< Lyap u,,,,,, ex!"""ml " ,~""n in lI'"ph 2.1 

Cr.ph2' • .. 
, 
0 -, t 9 ., , 

"""'7" 
, -'-. " 7 • , 

• • . - .. - . .. .. . - --.--" --- - . . 
0 
0 < 0 

" W . , - . 
> 
0 
0 W -0 
0 • " - . -> 

" " .. -

'" 
'" Speed of Adjustment 

The d,""mio< und erlying g'''ph 2.1 "Te' outl iT><'tl in lahio 1, I. 

Tabl~l.l. 

V.luc of ), 

AE(I},2) 

., s", i"piL O,2, I 

Valu e of " 

~- E «(),l) 

Dyn"mic. 

• Monof<lnic con\iergell". \(lword , t tl< j; «d »oinr" 

• ",-, K ---> IT . lit<- oigc",'a lw ,,'main, ju,t insi<k' 
til<, boulldary of l~" un it cirdo. 11", rato of 
<(In,,",'lion i, low "00 tb o l imo until tb o fiXed 

poiO! i, ro. ched •. , loog" A, ,,---'> 1- the 
cigcoyaluo fall ' from ju" in'ido lll< uOil tiro k to 
jLl>t .\>0", ,"rO. The 'y""m l~u, lend, toward, 
l ... in" , r-<tJbl." " 

b},(2, 15) 

"Soc, gr"piL 0.2.2 .• , well., oi><II";o" o<low r<~",o; lIg tnne ullti l market cleor, 
" S<o Strog.lI. p. J5(1 for' Or .. I\I;><u,,;,,' of 301'<'-"."' IL!y 
"s«: llJ"piL G,2..1 
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..1=2 

A E (2,4) 

..1=4 

A E (4,5) 

44 See Graph G.2.! 
45 See graph G.2.4 

K= 1 

K E (1,2) 

K=2 

K E (2,2.5) 

• The Lyapunov exponent is negative and falling. 
The map contracts at an increasing rate as 
K tends towards one 

• Monotonic convergence of prices towards fixed 
point 

• Eigenvalue is zero. The system is super-stable 
(see (2.24» 

• Super-stability coincides with, and is defined by 
the optimal speed of adjustment 

• The Lyapunov exponent is negative and large in 
magnitude (minus infinity) 

• Oscillatory convergence of price towards fixed 
point44 

• For K --+ r , the eigenvalue tends to just below 

zero and is thus negative. For K --+ 2-, the 
Eigenvalue oscillates from just below zero to just 
above negative one. Such oscillations can take 
the eigenvalue outside the unit circle as price 
converges to the fixed point, but at the limit the 
eigenvalue still lies within the unit circle. 
Accordingly the modulus of the eigenvalue is 
still less than one .. The system is thus moving 
away from super-stability as K increases to the 
upper end of the open interval45 

• The Lyapunov exponent is negative 
• Onset of periodic orbit of period two. A 

bifurcation point is present 
• Fundamental shift in the nature of the dynamics, 

occurring at the point at which the Lyapunov 
exponent tends towards zero 

• The Eigenvalue fluctuates just above and below 
negative one 

• The system is stable in the sense of equation 
(A5), but unstable in the sense of (2.18). Stability 
in the sense of (2.16) will not be re-obtained for 
any value of K equal to or greater than 2. There 
is therefore no convergence to the unique market 
clearing price and stability in the large breaks 
down. The system IS however stable in 
Lyapunov's sense, but not asymptotically S046. 

• Periodic orbits of period two occur47 

• The product of the eigenvalues falls from 
positive one for A = 4 to negative one 
for A = 5 . This is the same change in the values 
of the eigenvalues for A E (0,4), but in this case 

the domain is one quarter that of the domain for 
which there is a unique (non-periodic) fixed 
~oint of the system. This indicates that the 

46 That is to say, the system converges to a stable (non-expanding or non-contracting) area in the vicinity of the fixed 
point. See LST in the appendix 
47 See graph G.2.5 
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domain over which each period doubling takes 
place gets shorter and shorter (see Feigenbaum's 
constant below). This implies that once the 
period doubling route to chaos starts, chaos 
quickly ensues. 

• The Lyapunov exponent is less than zero as the 
product of the first derivatives about the two 
period points is less than zero (see A5). 

• As K ~ 2.2Y from 2+, the oscillations of the 
eigenvalue become increasingly large and 
further and further outside the unit circle48

• 

fall 

,.1,=5 K= 2.5 • Onset of periodic trajectory of period four49 

A E (5,5.235) K E (2.5,2.6175) • Periodic orbit of period four 

• Product of eigenvalue for each of the unique 
periodic orbits is less than one 

• The Lyapunov exponent is negative 
,.1,=5.235 K=2.6175 • Periodic orbit of period eight first occurs 

(approximately) at this value 
A E (5.235,5.299) K E (2.6175,2.6495) • Period doubling occurs. The system is stable in 

the sense of (A5) 
,.1,=5.299 K = 2.6495 • Lyapunov exponent is positive for the first time; 

chaos first occurs at this point 

• The system is no longer stable in the sense of 
(A5) 

A E (6,6.07) K E (3,3.035) • Trajectory of period three occurs 

A E (5.299,8) K E (2.6495,4) • Chaos occurs robustly interspersed with 
windows of periodic orbits (see graphs 2.3 and 
2.4) 

Table 2.1 points to several interesting dynamics occurring. Given that stability occurs if K E (0,2), then the 

Lyapunov exponent is negative. The tatonnement process is therefore energy dissipative. For this open 
interval in which the eigenvalue lies in the unit circle, stability in the large is guaranteed. However, the 
dynamics within this interval are not identical to each other. For K E (0,1) 50 prices (and the Lyapunov 

function) fall monotonically towards the fixed point. This open interval corresponds to the interval that lies 
to the left of the optimal speed of adjustment, or the super-stable point. For K E (1,2) 51 prices converge in 

an oscillatory manner towards the fixed point. Furthermore K E (0,1) , the eigenvalue lies in (0+,1-) , whilst 

forKE(1,2), the eigenvalue lies within (-r,O-) at the fixed point. Once K>2(corresponding to the 

eigenvalue lying outside the unit circle), stability in the large breaks down. We also note that for 
K E (0,1) the dynamics that are generated by a continuous time tatonnement are equivalent to the discrete 

time case as there is monotonic convergence in the price and hence the Lyapunov function for this interval. 
Once K E (1,2) occurs, there is a break in the equivalency of the dynamics of the continuous and discrete 

time tatonnement. 

Graph 2.1 also shows that there are several open intervals for which trajectories of a given period occur. 
The midpoint of that open interval corresponds to the case in which h(p) = - 00 . Since the open interval 

for which a trajectory of a given period occurs becomes shorter and shorter as periods of higher order 

48 See graph G.2.6 and G.2.7 
49 See graph G.2.9 
50 A E (0,2) 

51 AE(2,4) 
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occur. I observe that periods of {2,4,8,16, ... ,2k
}, Vk occur. By Sharkovski's Theorem (see Appendix), 

trajectories of all periods occur. The point at which a 2k period trajectory occurs, where k = 00 , denoted 

by Kef)' is intimately related to Feigenbaum's constant. 

I note that Kef) has a value of approximately 2.6495 which is equivalent to an approximate value 

of Ax = 5.299. At this value OfK, a positive Lyapunov exponent is observed for the first time. The 

tatonnement process therefore has the ability to generate chaotic trajectories52 and does so at this point only 
after period doubling has occurred. Furthermore, since period three orbits are observed then the second 
result of this section can be stated: 

For K E (3,3.035) , a three period trajectory is observed53
• By LYT54

, if: 

f3(p) ~ P < f(p) < f2(p), or f3(p) ~ P > f(p) > f2(p) ,then there is an uncountable set which 

contains no periodic points such that for every initial condition contained in that set, the solution of 

Pn+l = f(Pn) is erratic, i.e., the solution is aperiodic and remains bounded in that set. 

I note that for K = 3 , then A = 6 , the following prices are generated; 

P19,996 =3.879414 

P19,997 = 1.652727 

P 19.998 = 0.467909 

P19.999 = 3.879414 

P2o,ooo = 1.652727 

A three period cycle is present in the sense that I J 
(p) = p > I(p) > I' (p) . Trajectories of all periods as 

well as chaotic trajectories are present. The three period orbit can be seen in graph 2.4. Furthermore, this 

occurs for any initial price. It can be concluded that for K E [Kx' 4), chaos occurs robustly. Since the 

existence of chaos occurs for a given endowment matrix as the speed of adjustment changes, for a given 
speed of adjustment, changes in the endowment matrix will generate the same type of dynamics. 

Feigenbaum's Constant and the Period Doubling Cascade 

From table 2.1 it can be discerned that at first there is a unique fixed point towards which all trajectories 
approach. At a certain point there is a period doubling and a periodic orbit of period two is observed. After 
a certain interval, periodic orbits of period four are observed after which, periodic orbits of period eight are 
present. From this point, orbits of sixteen, thirty two and so on occur until at the limit chaos is present. 

The period doubling route to chaos is intimately related to Feigenbaum'S constant. (A25) can be used to get 
an approximate value of the point at which chaos will occur once the first few period doubling points are 
observed. 

Noting that Feigenbaum's Constant is approximately given as55
; 

52 See graph G.2.11 
53 See graph G.2.14 
54 See appendix for a discussion of this theorem 
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, -, 
i5~[im-'--'-' -~.Mn()16._ (2_30) 

"- " r." " 

wheTc c. is the period dO<lhlin~ point (2.30) oan k rearranged to gi>" an apprD~;matc "nlll< tOr r,,, '" 

follow,; 

r -- r , . - '--' -' .. 
" ' T, 

(2.3 I ) 

Tabl. 2.1 ;ndie'aT" thm (he liN throe period ""u" linM points ("cur .t l= 4, 1=5 aJld A = 5.235. 
which C<>IT."pooo" to peri!,,]' of [''0, four "n" cigh, ,o'pecti,ely Using the laner rna values in (2 .H) 
allow, an approximation of J sixt •• n pcrioo orbit. TIlL' "0"'" ;, A - j,28532Q. R.pc"tin~ the ,arne pr(}(O" 
foe a thirty two period om;, ~icld, J ,'aluc of). = 5.296 1 , Iftlle ,"me procedul'e i, ,',rried 0.11" tow mor< 
limo «orrc,ponding W periodic omi" afM. 128. 2~6 Jnd SO on), J "al". of .< = 5.29901777 [ j, G,,;dl; 
("""crgod upon. lhi> js an approximaljoo ortlle limiT poinT in (2.30). OllCe tb. limit point h., t><.n """hod 
(hao, ,>cOUT>, (;Taph 2.3 show, tho hifuroation diagram as 'he ,'alue oftb<o 'pe<d of adj"snn<nt is ,'ariect in 
" ' ps of 0,01 from 0,0] to 7.99, Grapb 2.4" sbow, " mOMnil,,-.t ion oflho hifuTo.lion for A E (5.75,6.4) in 

>t"p' MIUlOI 

Craph 2,3 

", ". 

, 

, 

, 

, , , , 

" Fe'l'ctl"aIlm', oon<tant " all "ratin nal num];.or 
" Or .ltomaLi,dy ~ _ 2 . '" _ 2.5 ."d ~ _ ~,tl 75 ''''pCeLi""l} 
" «far" 2..1 ,1.", <.tin", Ina! " 'h ' ']\<"" nf odju''''''-'tlt in<"o:." " [oc hounded IIltmal within which prICe ~lJC"""'" 
i""",",,<>, Th i, ,orre"9Gnd, to " lr"-! """'}' plot '" i" G.2 1-1 
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Graph 2.4 

Stability has be..,n qu.mifLod In thi' ,",ction by moan, of the Lyaputl"" c>.pOtlCtlt rhe value of tho 
Lyapuoo, exrxH",m ha' b.;C tl riOIlCd again'( ,,~h the rc lalivo ,.1"" nl-lbe ootl-numo,aire "nd the <,pecd [] f 
"dju,!m"nl. It ""' li,und that rci<c' «,m'"'go to lh<; uni4uC c4ui1ibrium poiot (If li,II"" (ompie>. rath' a' 
(he ,'olu", of he>th til<; f",me' and to.; l"lIer nr .... In ,f>c li!OmlUr" Tc,-;ew it wa, mCTIli<lncd th allh" ahility of 
the sp<cd of "djU'lmcnl 10 ge nem!c ,-ompb lime path, no, long been eHab l;,f",d and indeed anaiy,cd, 
110\\<"<[, {hi, mnilor h", 0'.1 to find "tly mention of til< rel .. 'on« DrIll. disnibll1ioo of endo",nenls in lhe 
"'[li ng of complex d~tlamin_ 'I ho '1",,";Otl lhus ari,e, of "'h~ " ,'"rimiotl in both the , pe.,d of adjustment 
and tho d""ibution ,,1-"n"'""men" allo", [he geocration ni" «>mpb. dynamJc, 

C"",ide, th. Ii" r \kri,mi,e of th. "~~,e~' te exc'e " ""m,nd e"aluated at lhe fixed po in[ (i_e, lhe one 
dimo::n'ional la<ooian m"trix). 

( w,' )' 
-- 2("':) - '" 

Th e Hahiti[y eritorio" can ~ Ha[Cd a" ] + .<.$ 1< I _ Sin"e [he ei ~envalue of th<; agg'eg"lC e,.<os> dem,nd 

mmri~. ,_ " a i"unG;nn 01- relali.'e ~ndowm~n". it i, clear that a "hange in the holdin~, oi" relalive 
cndnwmcnh "i ll dictale whether tho ""hi]i[y condi[ion i, ,ati,ned or not, Similar]y a chan~e in lhe 'Peed 
of adju"mc m "ill diet"tc "hotho"r tho" ' tab ilil} condition i, mot. The lac[ (ha( a cyclic endn wmeol mat,i,. 
ims beon [[S<...:l d"", not hay~ ony bearing on tile ",bu,t""" nf (ho,~ ,o,u l(,; both indi vidual> could huld 
borh goods to(, for a gi,on 'pecd of adju'tmonl. stability mayor may lHX be pr~""nt d~pond;n~ 00 lh~ 
roi"ri". mtios of tho," gMs, '11"" impiicati"" of th;, r~,[[lt i, th't, for a gj, on 'pec..:l of adju'tment, if tho,~ 

i, a "'alar mu llir1. of th. e<onomy, <"e mu"lly. thm .conomy will 1>«001. unst,bl<. for e~"mple, if 
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A = 0.2 and 10 units of both good one and good two are held then K = 1 . If 3 5 units of both goods are held 
then K = 3.5. Increasing the size of the economy by a factor of3.5 has induced a chaotic price trajectory. A 
larger economy will generate complex price dynamics for a given speed of adjustment, until at the limit the 
tatonnement process breaks and the zero price boundary is reached. 

Where does this result leave the assumptions of gross substitution and the weak axiom of revealed 
preference? It may be argued that if stability breaks down even in the presence of GS and WARP, then 
such assumptions are superfluous and do nothing to create conditions of stability. Such an argument would 
however be erroneous. By GS and WARP, there always exists a unique price that clears the market, 
whether these prices are reached or not. In other words there is a unique stable manifold. These 
assumptions permit the creation of a basin of attraction that is populated by single points (or singletons) 
towards which, in the presence of stability all points converge. As the speed of adjustment changes or the 
relative endowments change (or both), this basin of attraction becomes a repelling fixed point or a source, 
and periodic and chaotic dynamics are observed. In the presence of these latter dynamics, the auctioneer 
cannot call out a price that allows trade to take place. This occurs for any initial starting price. The 
Walrasian auctioneer is therefore charged with ensuring that the unique fixed point of the system is an 
attracting fixed point rather than a repelling point. In the presence of GS, he needs to modify the speed of 
adjustment such that convergence takes place. By the fact that GS implies WARP which in turn implies 
that the fixed points are unique or global stability occurs, then the auctioneer does not need to worry 
whether prices fall on a stable or unstable manifold. Very simply, the auctioneer needs only to consider that 
a fall in the speed of adjustment will put prices on a path that guarantees that the market clearing price 
vector is reached. The extent to which the speed of adjustment is modified will in turn depend on the 
holdings of the non-numeraire relative to the numeraire. If the auctioneer abides by this rule then stability 
in the large holds. The next section demonstrates this point in a more rigorous manner. 

Section Three: Controlling Chaos in the One-Dimensional Case 
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In section two it was seen that for a one-dimensional discrete tatonnement process with two identical 
market participants differing only in their initial holdings of the two goods, both stable and unstable price 
sequences are observed. Whether the former was present and the latter absent depended entirely upon 
whether 

If '(p*)1 = 11- KI < 1 (3.1) 

was observed. If the inequality switched directions such that 

If'(p*)1 = 11- KI > I (3.2) 

then both periodic orbits of all periods and chaotic sequences were observed. 

It was also noted that K E (0,2) was associated with (3.1) and K E (2,4) was associated with (3.2). 

The possibility of the existence of an eigenvalue greater than one (i.e. instability) is ruled out in the 
continuous time one-dimensional tatonnement process. Uzawa [23] circumvents the possibility of this 
occurring in his discrete-time version by assuming that fJ (the equivalent to A in the tatonnement process 

specified here) is small in value and positive and so (3.2) is avoided; Walras' price adjustment mechanism 
remains valid. In the absence of such an assumption, the question naturally arises of how to induce stability 
if the system is unstable. 

Three methods are proposed: 

I. The introduction of market participants who hold the numeraire good or simply a larger holding of 
the numeraire good by each individual 58 

2. A decrease in the speed of adjustment 
3. An approximation to the continuous time system as presented in AH and ASH 

Differing Market Participants 

Consider the case in which there are initially two market participants who have the following preferences 
and endowments: 

(3.3) 

o,SJ 
0.5 

(3.4) 

These dynamics were examined in section two. Now suppose that a third participant enters the market59
. 

Furthermore assume that all the third participant has identical preferences to the incumbent market 
participants and holds an initial amount identical to either one or the other of the incumbents. 

58 These two approaches are equivalent if all agents are identical 
59 As mentioned previously, if all agents are equal, an increase in the number of individuals holding the numeraire is 
equivalent to an increase in the holding of the numeraire by only one individual 
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Denote type A market participant as those who hold one unit of good one; the traded good and type B 
market participant as those who hold one unit of good two; the numeraire good. 

The introduction of another market participant alters (3.3) and (3.4) respectively to 

(3.5) 

or 

(3.6) 

and 

[ 

I 'J ( 
a l a; 0.5 

A = a~ a: = 0.5 

a a 0.5 
3 3 

0.5J 
0.5 

0.5 

(3.7) 

Suppose now that (3.4) holds; there are only two market participants. Consider the tatonnement process for 
the first 200 periods with a speed of adjustment It = 6.5, corresponding to K = 3.25. For this speed of 
adjustment, preferences and initial endowments, and market clearing price of 1, the Lyapunov exponent is 
0.51745606; chaos is present and (3.2) holds. 

Suppose now that one type B participant enters the market precisely at t = 200. The introduction of this 
market participant changes the market clearing price to 2 and K = 1.625 whilst the speed of adjustment 
remains unchanged at 6.5. 

Graphs G.3.1 to G.3.6 reports the change in the price dynamics when a type B market participant is 
introduced into the market at t = 200 

It is immediately apparent that the introduction of a type B participant induces stability precisely as the 
eigenvalue changes from 2.25 in (3.2) to 0.625 in (3.1). The Lyapunov exponent accordingly changes from 
being positive to being negative60

• 

Suppose now that a type A market participant is introduced in the stead of a type B such that (3.6) occurs 
over (3.5). 

In this case K = 13 which is associated with an eigenvalue of 12. The tatonnement process becomes 
undefined: 

(3.8) 

60 There is no reason that the endowment needs to be an integer; any value could be considered 
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Graph 3.1 also shows that the properties of the tatonnement process remain constant for the open interval 
K E (0,4). The three plots in graph 3.1 are replicas of each other but merely stretched or shrunk with 

respect to holdings of the numeraire as the speed of adjustment is altered. There is therefore a one-to-one 
correspondent between the property of the map and the value of K 63. It can be asserted that stability or 
instability cannot be defined by the speed of adjustment alone, and that any such consideration needs to 
examine the value of the relative endowments. Furthermore, the larger the value of the holdings of 
endowments of the numeraire, the larger the interval over which the speed of adjustment can vary in which 
the system is stable. 

Change in the speed of adjustment 

In the literature review it was noted that much of Uzawa's stability theorem was dependent upon f3 being 

small, where f3 is equivalent to A. It has been shown numerically that if A (f3) is small, stability is 

guaranteed. There is thus an equivalence between that which Uzawa states and that which is found in this 
work. 

However, to the extent that f3 is small then, following Uzawa's proof; 

<p( t + 1) :s; <p(t) - f3 {2[ Zo (t) + ~ P, z, (t)] - f3 ~ Z,2 (t) } becomes <p(t + 1) < <p( t) . This argument rests 

crucially on f3 being a number smaller than 

[ 

n ] 2 zo(p)+ LP,z,(p) 

~ :s; inf <I>(p) :s; <I>[p(O)] ,=1 

2 ~>'(p) 
(3.9) 

1=1 

By the converse of the above result, it is conceivable that if there is a large holding of the traded good with 
respect to the numeraire good, the numerator in (3.9) would be large with respect to the denominator. This 
would entail a smaller f3 such that convergence and stability are ensured. The difficulty then becomes how 

small does f3 have to be. 

For example, suppose there are 450 type A individuals and 30 type B individuals. If A = f3 = 0.001 , then, 

K = 3.375 and the Lyapunov exponent has a value of 0.5037. The trajectory is chaotic even though the 
speed of adjustment is low. Now suppose that the speed of adjustment changes such that A = f3 = 0.0001 , 

then K = 0.3375. The system is stable and the speed of adjustment is sufficiently small such that Uzawa's 
proof for stability holds. 

This type of argument however presents a problem for Uzawa inasmuch as if there are increasingly more 
type A individuals in the market then 

"" (p) + ~ p:z, (p) becomes increasingly large. Such that f3 {2[Zo (t) + ~ p:z, (t)] - f3 ~ z,' (t)} becomes 

small then f3 must become smaller and smaller so that <p(t + 1) < <p(t) holds. It is conceivable that at the 

63 This point allows Day (see literature review) to make the statement that chaos can occur robustly for any speed of 
adjustment 
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limit and with the appropriate mix of type A and B participants, fJ must tend to zero. Relative holdings of 

endowments therefore playa role that is just as important as the speed of adjustment 

Discussion 

This section has demonstrated that chaotic trajectories can exist for any holdings of the numeraire and the 
non-numeraire and for various values of the speed of adjustment. Graph 3.1 showed that the properties of 
the one-dimensional tatonnement process remain invariant as the relative holdings of the non-numeraire are 
changed with respect to the numeraire. 

Recalling from the last section that a stable system can be defined by; 

If '(p*)1 = 11- KI < 1 , where 

It holds that if A ~ 0+ , then K ~ 0+ . Similarly if aJ,1 ~ 0, Vi then K ~ 0+ . Conversely, if aJ,2 ~ 00 , for 

at least one individual, then the stability condition is satisfied. There is an asymmetry to the above criterion; 
for a given speed of adjustment, all individuals need to hold sufficiently small amounts of the non
numeraire relative to the numeraire, or at least one individual needs to hold a large amount of the numeraire 
relative to the non-numeraire such that stability is ensured. It can also be seen that if the preference for the 

non-numeraire is large64 (a: ~ I), then K becomes large relative to a smaller value of a,1 . This implies 

that, for a given speed of adjustment, if aggregate holdings of the non-numeraire are small vis-a-vis the 
numeraire and preferences for the non-numeraire are large relative to the numeraire, then the tatonnemnet 
process is stable. At first, this may seem a paradoxical result; one may expect that a market is well defined 
if individuals bring large amounts of the non-numeraire to the market and have a strong desire to exchange. 
By the stability criterion this is not the case as the tatonnement process will be destabilised to the extent 
that the non-numeraire is held in an amount that is too large relative to the numeraire. An intuitive 
explanation of why this should be the case is related to the idea of scarcity. If endowments of the non
numeraire are small and preferences for that good are large, that commodity is accordingly scarce; the 
market is stable and price sequences are well behaved. If the converse holds; aggregate holdings of the non
numeraire are large and there is little preference for holding the non-numeraire, there is then a lack of 
scarcity. Scarcity thus generates price sequences in the tatonnement process that are stable and converge to 
a single point. The opposite necessarily holds. 

On the one hand, it is a strong result that a market that attempts to reallocate scarce resources is well
defined. On the other hand, the strength of this result is precisely its shortcoming; intuitively it is unclear 
why a market that does not exhibit scarcity is rendered stable if the speed of adjustment of that market is 
low, nor why a market that does not exhibit scarcity is able to generate chaotic price sequences. 

Irrespective of why this is the case, the Walrasian auctioneer is able to rely on these properties in ensuring 
that the market clearing price is reached. If it is assumed that it is preferable to reach the market clearing 
price in as little time as possible, then the Walrasian auctioneer needs to consider the holdings of the 
endowment of the non-numeraire with respect to the numeraire when setting the speed of adjustment 
«2.24) gives the value of the optimal speed of adjustment). If the auctioneer cannot know the holdings of 

64 By homogeneity of degree one of the utility function, if a,1 ~ I, then (I - a,l) ~ 0 
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the numeraire then the safest course of action, which would exclude the occurrence of periodic and chaotic 
price sequences, is to set the speed of adjustment as small as possible. 

If the speed of adjustment is small there is then a coincidence between the properties of the discrete time 
tatonnement process and the continuous time tatonnement process. It follows that if there is to be 
convergence then the discrete time map should replicate properties of the continuous time process 
inasmuch as prices converge monotonically towards the fixed point. Scarcity and abundance have no 
bearing on whether the tatonnement process reaches the market clearing price if the speed of adjustment is 
made sufficiently small. 

Section Four: The Two Dimensional Case 
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That the one dimensional case is both problematic in the sense of section two and has solutions to those 
problems as demonstrated in section three, one may question whether the introduction of another good 
changes the fundamental dynamics. 

The case in which there are three market participants and three goods is now considered. The price of good 
three is normalised to one yielding two simultaneous discrete price adjustment mechanisms. 

For the sake of completeness, the tatonnement process is presented in the appendix. 

Consider the endowment matrix as; 

o 

o 
~,J and a: = (~), \;Ii, j , so the initial holdings are cyclic in the sense of sections two 

W3 

and three and all agents are identical and have equal preference for all goods. We note that the market 
clearing prices are given as; 

• ~ • W • 

( 3J ( 3J PI = -;: and P2 = W~ as well as P3 = 1 . The stability criteria can now be analysed. 

Consider the Jacobian matrix of the Iinearised system. 

«,,-(p?} 
8/ 8/ 

(P:-V): J 8pI 8p2 

8j2 8j2 
P'+I-(P) p,2_(p2) 

8i 8p2 
'-----.r------I 

J 

Stability depends on the roots of the Jacobian, J, evaluated at the fixed points; 

8/ 8/ l_;V~(Wllr A I ~ (WII )( w:) 
J= 

8pI 8p2 3 w: 3 w: 
8j2 8j2 

A 2 ~ ( WI
I 
) ( W; ) 1 - A 2 ~ ( W; r 

8pl 8p2 
p=p 3 w: 3 w: 

Stability will be assured if several conditions as satisfied. The first of these is that the map be dissipative. 
For a dissipative map, the modulus of the determinant needs to be less than one65

. If the determinant 

satisfies this condition then the two dimensional map will be contracting about the fixed points (pl', p2') in 

the (p;, p,2) space. By GS, the fixed points are unique so if the map contracts about this point, then the map 

65 In two dimensions, the tatonnement process maps an infinitesimal rectangle at (pi, p2), with area dpl dp2 ,into an 

infinitesimal parallelogram with area 1 det J(p', p') 1 dp'dP' . Therefore if 1 det J(p' ,p') 1< 1 everywhere, the map is 

area-contracting or dissipative. Since the map has the property of as, the map needs to be considered only about the 
market clearing fixed points; if the map is dissipative about these points it is dissipative everywhere 
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will contract for pi ,/ E (0,00) . In other words, a contractionary map has a basin of attraction that is RL ; 
there is no smaller set of prices for which convergence will take place. 

An alternative but related concept of stability is that both eigenvalues lie within the unit circle66
• If one or 

both of the eigenvalues lies outside the unit circle, then 1 det J(pl, p2) I> 1 and the system is unstable. 

Attractors and strange attractor are defined as follows 67
: 

An attracting set is a closed set; A with the following properties: 

I. A is invariant; any trajectory P, ' that starts in A remains in A for all 1. 

2. A attracts an open set of initial conditions: there is an open set U containing A such that if 

Po E U then the distance from P, to A tends to zero as t ~ 00. The largest U is the basin of 

attraction of A. 
3. A is minimal; there is no proper subset of A that satisfies I and 2. 

A strange attractor is an attractor that exhibits sensitive dependence to initial conditions. 

As mentioned above, since P E (0,00), then the set of feasible initial conditions is R:+. The set U that 

contains A is therefore U E (0,00) . For any p starting in U, there is convergence to A. Now, if 1 ': 1< 1, Vi, 

then A - p'; the invariant set A is precisely the set of fixed points or market clearing prices of the 

tatonnement process. All trajectories starting in R:+ converge to this set. Furthermore A is a minimal set as 

this set is populated by two single points (or singletons) in R:+ . If this were not so then at least one fixed 

point would be either equal to zero or infinity or there would be many local equilibria for at least one price 
sequence68

. The tatonnement process would be ill defined and GS would be contravened leading to a 
contradiction that, by GS, a stable system is globally stable. 

If 1 ': I> 1 for one of the eigenvalues69
, then two possibilities can occur; periodic trajectories occur or a 

strange attractor is present. A strange attractor can be defined by considering the forward limit set 70 of the 

66 In the two-dimensional case, the roots can be obtained by the following relationship; 

tr(J) ± ~(tr(J)' - 4 detJ 
(4.1) 

2 

The condition for stability is that {I ~ 1,1 r, I} < I or the spectral radius of the system is less than one in absolute value. 

Accordingly (4.1), once rearranged, gives the stability criterion as: 

l. 1- tr(J) + detJ > 0 

2. 1+ tr(J) + detJ > 0 

3. detJ < I 

(4.2) 

(4.3) 

( 4.4) 

Conditions (4.2) to (4.4) give three conditions which, when satisfied, will ensure that the market clearing price vector is 
reached. It can be noted that conditions (4.2) and (4.3) encompass the stability condition for which the modulus of the 
determinant is less than one. If one or more of these conditions are violated then the system is unstable in that either 
periodic or chaotic trajectories are present. If chaotic trajectories are observed there is then a strange attractor. 
67 This definition applies to a system of any dimension 
68 Strictly speaking, since the price sequences are coupled, if anything other than a single market clearing price is 
observed in one market, the same dynamic is observed in the other market 

69 If 1 r, I> I for both eigenvalues the zero price boundary is reached 
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price sequences and observing whether this set exhibits sensitive dependence to initial conditions. If 
sensitive dependence is observed then chaos is present. 

For a given endowment matrix, the characteristics of the system are analysed as the speed of adjustments 
change. Consider the case in which individual one holds one unit of commodity one, individual two holds 
one unit of commodity two and individual three holds one unit of the numeraire (as outlined above). The 

speed of adjustment of market one is fixed at AI = 0.75 and the speed of adjustment for market two is 

allowed to vary by ~A 2 = 0.01. Fixed, periodic and chaotic trajectories were searched for as the speed of 
adjustment of market two varied7

'. The results are presented in table 4.1. 

Table 4.1 

Value of ..1,2 Dynamics 

..1,2 E (0,2.76) The unique market clearing price is reached for both goods . 

,.12 = 2.76 A period doubling bifurcation occurs and a two period trajectory emerges for 
both goods. This corresponds precisely to the point at which one of the 
eigenvalues lies on the unit circle and is negative. 

..1,2 E [2.76,4.3) A two period orbit is present for both prices. The amplitude of the two period is 

p2 than I due to ..1,2 > A I . A 2 increases, larger for for p As one of the 

eigenvalues moves outside the unit circle and becomes increasingly negative. 

..1,2 = 4.3 A period doubling bifurcation occurs and orbits of period four emerge for both 
price sequences. As in the case of a two period orbit, the amplitudes of the four 

period trajectory are larger for p2 than for pi 

..1,2 E [4.3,4.58) A four period trajectory is present in both markets . 

..1,2 = 4.58 An eight period trajectory emerges . 

..1,2 E [4.58,4.65) An eight period trajectory is present in both markets 

..1,2 = 4.65 A sixteen period trajectory is emerges. Between this point and the next periodic 
orbit, complex (chaotic) sequences are observed for both prices. 

..1,2 =4.69 A twenty period trajectory is present for both price movements. Between this 
point and the next periodic orbit, complex sequences are observed for both 
prices. 

..1,2 =4.7 A twenty eight period is observed. Between this point and the next periodic orbit, 
complex sequences are observed for both prices. 

..1,2=4.74 A twelve period is observed. Between this point and the next periodic orbit, 
complex sequences are observed for both 2rices. 

..1,2 = 5.6 A five period orbit emerges for both markets . 

..1,2 E [5.6,5.64) A five period is present in both markets. Between this point and the next periodic 
orbit, complex sequences are observed for both prices. 

..1,2 = 5.64 A ten period emerges . 

..1,2 = 5.87 The zero price boundary is hit (for good two first), and the tatonnement process 
ceases to function. 

Table 4.1 demonstrates that, as in the case of the one dimensional tatonnement process, chaotic trajectories 
are interspersed with periodic trajectories. Unlike the case of the one dimensional map, the two dimensional 
tatonnement process is not as ordered inasmuch as there is no multi-dimensional analogue of Feigenbaum's 
constant, Sharkovski's natural ordering system or Li-Yorke's theorem. Instead of being able to evoke such 
theorems which can quantify and qualify the nature of a chaotic sequence, recourse has to be made to 

70 The forward limit set is equivalent to the invariant set A as t ~ OC) 

71 The starting prices of goods one and two are p,: = 4.2 and p~ = 3.95 respectively 

32 

Univ
ers

ity
 of

 C
ap

e T
ow

n



numerical evaluation. What is consistent between the one and two dimensional maps is that as the speed of 
adjustment of one of the markets increases, periodic trajectories emerge which are then followed by the 
emergence of chaotic trajectories amongst which periodic trajectories are also observed. Graphs GA.l and 
G A.2 examine the sudden shift in dynamics as the speed of adjustment is altered for market two. 

Despite the fact that the nature of the trajectories, be they stable, periodic or chaotic, are more complicated 
to evaluate in the two dimensional case, several points emerge. 

• If one of the eigenvalues lies outside the unit circle, a saddle point is present. The saddle point can 
generate periodic or chaotic trajectories. 

• If the market clearing price vector is reached, then the modulus of both eigenvalues need to lie 
inside the unit circle. The invariant set A is minimal and consists of only two points. 

• If one price sequence is periodic or chaotic then both price sequences are periodic or chaotic. The 
reason for this is due to the way in which the tatonnement process is constructed; both 
simultaneous equations are coupled. Feed back between both equations occurs in both directions. 
Therefore, if one market does not converge towards its market clearing price then the other does 
not. This is not surprising given that the market clearing vector is determined simultaneously for 
all markets. 

• By the results of table 4.1, the market that exhibits periodic or chaotic movements within a larger 
bounded interval is the perpetrating market in the sense that its speed of adjustment is the larger of 
the two. 

• It naturally holds; such that (pI rand (p2 r are reached then ,.12 needs to fall. If ,.12 falls 

sufficiently then {Ilj 1,1 r
2 

I} < 1, or the modulus of the spectral radius is less than one. 

Graph GA.3 shows how the eigenvalues calculated from the Jacobian above varies as ,.12 varies 

given i = 0.75 . 

The question now arises; can the auctioneer induce stability by shifting the speed of adjustment of market 
one, holding the speed of adjustment for market two constant? 

Consider the same distribution of endowments as above and A I = 0.75 , A 2 = 2.79 . A two period trajectory 
is present. The Jacobian is; 

(

0.5 
J-

0.93 

0.25 ) 
and the eigenvalues are r

l 
= 0.6536 and r

2 
= -1.013. Graph GAA shows the 

-0.86 

eigenvalues over 20,000 iterates in the (lj, r
2

) space. One of the eigenvalues oscillates in and outside of the 

unit circle. Now if AI falls to Al = 0.6, the Jacobian becomes; 

( 

0.6 
J-

0.93 

0.2 ) 
and the corresponding eigenvalues are " = 0.7178 and r, = -0.9778. Graph GA.5 

-0.86 ' 

shows that both roots lie within the unit circle. A fall in the speed of adjustment for market one has shifted 

the eigenvalues such that they both lie within the unit circle for all iterates. If at the limit A I ~ 0+ , then the 
Jacobian becomes 72; 

72 1- means just below one and 0+ means just above zero 
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( 
r 

J-
0.93 

0+ ) . The corresponding eigenvalues are 'i = 1- and r
2 

= -0.86. The system is stable. 
-0.86 

The auctioneer can induce stability or avoid instability by reducing either 41 or 4 2
• 

Such that this occurs then; 

812 

I <1 
ap p=p. 

(4.5) 

al2 

2 < 1 
ap p=p. 

(4.6) 

(4.5) and (4.6) imply that the present period change in both pi and p2 have a less than unitary increase on 

the price in market two, and that this increase or decrease falls in magnitude over time. 

In order to demonstrate this, assume that (4.5) and (4.6) do not hold and 

al2 

I >1 
ap p=p. 

(4.7) 

al2 

2 > 1 
ap p=p. 

(4.8) 

A given pi and p2 in this period will have a more than unitary increase or decrease on the price of good 

two in the next period. Chaotic or periodic trajectories cannot be rendered stable by reducing AI. The 

auctioneer must ensure that ,1,2 is therefore sufficiently small such that (4.7) and (4.8) switch to (4.5) and 
(4.6) respectively. The case of(4.7) and (4.8) is illustrated in graphs G.4.6 and G.4.7. 

In the case of one numeraire and one non-numeraire in section two, the ratio of the former to the latter had 
a bearing the degree to which the speed of adjustment could be large or small and stability present or 
absent. This concept can be extended to the case in which there are two non-numeraires. If the distribution 
of the endowments is: 

For A I = 0.75 , ,1,2 varies in steps of 0.01. Fixed points, periodic and chaotic trajectories are searched for. 
Table 4.2 summarises the results. 

Table 4.2 

Value of 4 2 Dynamics 

4 2 
E (0,5.79) The unique market clearing price is reached for both goods. The Lyapunov 

function is well defined for this interval. 

4 2 =5.79 A period doubling bifurcation occurs and a two period trajectory emerges for 
both goods. This corresponds precisely to the _point at which one of the 
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eigenvalues lies on the unit circle and is negative. 

,1,2 E [5.79,8.3) A two period orbit is present for both prices. The amplitude of the two period is 

larger for p2 than for I due to ,1,2 > A I . As A 2 increases, of the P one 

eigenvalues moves outside the unit circle and becomes increasingly negative. 

,1,2 = 8.3 A period doubling bifurcation occurs and orbits of period four emerge for both 
price sequences. As in the case of a two period orbit, the amplitudes of the four 

period trajectory are larger for p2 than for p I 

,1,2 E [8.3,8.8) A four period trajectory is present in both markets. 

,1,2 = 8.8 An eight period trajectory emerges. 

,1,2 E [8.8,8.94) An eight period trajectory is present in both markets 

,1,2 =8.94 A sixteen period trajectory is emerges. Between this point and the next periodic 
orbit, com£lex (chaotic) sequences are observed for both prices. 

,1,2 =9.11 A twelve period trajectory is present for both price movements. Between this 
point and the next periodic orbit, complex (chaotic) sequences are observed for 
both prices. 

,1,2 = 11.22 A seven period is observed. Between this point and the next periodic orbit, 
complex (chaotic) sequences are observed for both prices. 

,1,2=12.35 The zero price boundary is hit (for good two first), and the tatonnement process 
ceases to function. 

A comparison between tables 4.1 and 4.2 indicates that, if the holdings of the numeraire with respect to the 
non-numeraires increase, then the occurrence of periodic orbits and chaotic trajectories takes place but at 
higher levels of the speed of adjustment of market two. There is a direct parallel between the qualitative 
characteristics of the one dimensional case and the two dimensional case. The inclusion of another good 
into the tatonnement process does not therefore fundamentally alter the basic results of the one dimensional 
case. The only aspect that is altered in the two dimensional case is that the dynamics become harder to 
quantify and complexity occurs at higher dimensions for which numerical analysis becomes increasingly 
difficult unless more sophisticated techniques need to be employed. 

A caveat needs to however be attached to the last statement: in the two dimensional case a stable manifold 
is present for a symmetric system that would otherwise generate periodic or chaotic trajectories if there 

were some asymmetry in the system. Consider the case in which p(~ = p~ = 1000 , Al = A' = 4 and each 

individual holds only one unit if one good and no individual holds the same good as any other individual. 

The eigenvalues are ~ = -0.333 and r, = -3 . The system is unstable by the definitions above. Graph GA.8 

shows prices in the (PI' P
2

) space. Prices converge over time to the market clearing vector. This occurs as 

the system is symmetrical. The symmetry generates price sequences that are also symmetric (seen by the 
straight line in the price space). Now suppose that there is an asymmetry in the initial prices; 

p~ =1000andp~ =1000.1. Graph GA.9 shows the prices in the price space and GA.I0 shows the limit 

sequence of these price trajectories. Contrasting GA.8 and GA.IO demonstrates that, for a small 
perturbation in initial conditions prices "fall off' the stable manifold and onto a strange attractor. 

Discussion 

This section has demonstrated that the inclusion of a second non-numeraire into the tatonnement process 
does not alter the fundamental results of sections two and three. It however does become necessary to 
evaluate the two dimensional case in a slightly different manner as the auctioneer now has two speeds of 
adjustment that can be altered. By altering the speed of adjustment whose price fluctuates within the 
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smaller bounded interval, if prices are periodic or chaotic, then stability can be induced only if the own 
price effect and cross price effect on the next period price is less than unity for the market that has the 
higher speed of adjustment. If the own price and cross price effects for the market with the higher speed of 
adjustment is larger than unity, then stability can be induced only by a reduction in the speed of adjustment 
for that market. An implication of this last point is that if the auctioneer wishes to ensure that the unique 
market clearing price vector is reached then this can be achieved by reducing the speed of adjustment of the 
price that fluctuates within the larger bounded interval. By focusing on speed of adjustment for the market 
that has prices that are bound within the smaller interval, there is no guarantee that stability can be attained. 
This result extends to a system of any dimensions; the auctioneer can make sure that for an economy of any 
arbitrary size, stability can be guaranteed by fixing the speed of adjustment so that it is small in all markets. 
The largest speed of adjustment will be dictated by the market that has the smallest level of scarcity. 
Furthermore, this holds for any distribution of endowments. However, for significantly small holdings of 
the numeraire with respect to all non-numeraires, the speeds of adjustment have to be increasingly small. 

The concept of stability and scarcity can also be extended to the two dimensional case. The results of table 
4. I indicate that if the holdings of goods one and two relative to the numeraire are sufficiently scarce, for a 
given speed of adjustment, the system will be stable. Similarly for sufficient degrees of scarcity of both 
goods, the range of values that both speeds of adjustment take such that the entire system is stable becomes 
larger. This is backed up by the results of table 4.2 compared to those of table 4. I. 

Section Five: The Case of Trade out of Equilibrium 

In sections two to four, the tatonnement process did not permit any trade or exchange at any other point 
other than the unique market clearing price vector. It was shown that periodic and complex price dynamics 
can occur for which no market clearing price was reached and, as a consequence, no equilibrium price 
vector was ever reached no matter how long the period over which the system was integrated. 
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The question now arises of whether exchange out of equilibrium can stabilise prices. The methodology of 
this section follows that ofUzawa [26]. The rule that determines whether exchange is optimal at each point 
in time is that if, by means of exchange, at least one individual's utility increases and the utility of no one 
decreases then, at that point, exchange takes place. If exchange takes place on this basis then the holdings 
of endowments will converge to a Pareto optimal distribution which, when reached, no individual can 
effectuate any exchange with another whilst none lose or gain in terms of utility. 

For the one dimensional case, the price adjustment mechanism for the non-tatonnement process is exactly 
the same as in the tatonnement process but, if exchange is optimal at any point in time there will be a 
redistribution of endowments. Prices in the next period will be dependent on the same speed of adjustment 
and preferences but the distribution of endowments will have changed. 

The price adjustment mechanism, in the case in which there are two individuals that have the same 
preferences for both goods but differ in the initial holdings of endowments is given as; 

(5.1) 

It is noted that if the global constraint for the traded and numeraire good hold, then any distribution of 
endowments does not alter the price sequence for a given speed of adjustment, initial endowments and 
staring price 73 74 . 

That the price sequence is unique and remains unchanged for any redistribution of endowments implies that 
there is a one-to-one correspondence between the tatonnement process and the non-tatonnement process in 
that, for a given speed of adjustment and starting price, the tatonnement and non-tatonnement process share 
the same price sequence irrespective of the distribution of resources, provided the global constraint on such 
resources is the same in both cases. The question is therefore whether a given speed of adjustment allows 

there to be a unique Pareto optimal distribution of endowments as t -+ 00 • 

It was noted in section two that for K E (0,1) there was monotonic convergence in prices towards the 

market clearing price and for K E (1,2) oscillatory convergence takes place. The same methodology can be 

used in the non-tatonnement case. The case in which initial starting price is Po = 4, both individuals have 

the same preferences for both goods (equal to a half) and good one is held entirely by individual one and 
good two by individual two was examined in section two and is reproduced here for the non-tatonnement 
process. 

By the author's calculations for K E (0,1), since prices fall monotonically towards p' = 1, exchange can 

take place at each point in time75 such that utility continually increases (by decreasing amounts) up until the 

point at which p' is reached. At the market clearing price, no more exchange can take place as the Pareto 

optimal point has been reached. Furthermore, the number of iterations over which exchange takes place 
until the Pareto optimal distribution has been reached is exactly the same in the non-tatonnement process as 
the tatonnement process where, in the latter case, exchange only ever takes place once the market clearing 
price has been reached76

• The reason for this is due to the price sequence remaining unchanged for any 
distribution of endowments. 

73 This is not the case is both individuals have differing preferences for both goods 
74 See Appendix for an explanation of why this is the case 
75 i.e. at each iterate of (5.1) 
76 This point cannot be stressed enough and is directly dependent upon each individual having the same preference for 
both the numeraire and traded good. 
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favour one individual over the other78
• There can therefore be no quid pro quo exchange in which utility 

remains unaltered. The price envelope at which trade takes place will either encompass the up movements 
of the periodic trajectories or the down movement depending on the initial endowment matrix and starting 
price79

• However, even though periodic trajectories are observed, a Pareto optimal holding may be attained. 
For highly uneven initial holdings of the endowments this situation is more likely to arise than the case in 
which initial holdings are very similar for both of the individuals. 

From the bifurcation diagram it can be seen that as the speed of adjustment increases, the amplitude of the 
two period orbit increases asymmetrically about the fixed point. As the speed of adjustment increases and 
as the amplitude of the price movements increase, the Pareto optimal endowments may favour one of the 
individuals over the other by increasing amounts and final holdings of endowments become increasingly 
skewed in favour of one of the individuals. As the speed of adjustment increases further, periodic orbits of 
higher periods are observed. As this takes place the Pareto optimal distribution of endowments may 
become even more skewed in favour of one of the individuals over the other. 

The non-tatonnement process may therefore generate Pareto optimal holdings of the endowments that are 
increasingly skewed in favour of one or the other of the individuals. If this is the case then one of the 
individuals will be better off if the speed of adjustment is lower. However, that this is the case will depend 
upon the initial holdings of the endowments. It is therefore difficult to generalise such a statement. 
Furthermore, the initial starting price has a strong bearing on the Pareto optimal distribution. 

It is however possible to state that for a large class of initial holdings, period trajectories still permit 
convergence to a Pareto optimal distribution of resources. The non-tatonnement process is an improvement 
on the tatonnement process as, in the case of the latter, if periodic trajectories are present then there can be 
no exchange and accordingly each individual cannot improve upon the initial distribution of endowments. 
Despite this improvement, exchange at disequilibrium does not stabilise prices if prices are periodic. 

At a certain point chaotic trajectories are observed. For chaotic trajectories, several very different 
possibilities are observed. Certain speeds of adjustment may create sequences of exchange that allow the 
distribution of resources to move very close to the type of distribution of endowments that are present in 
the case in which the system is stable in the sense discussed above. However, given that a chaotic trajectory 
is often characterised by its "visiting" many points in a bounded interval (see G.2.l4), the market 
participants may face a price vector for which exchange is beneficial, yet this price vector may not occur in 
finite time80

. Accordingly no Pareto optimal point of exchange can take place as there may always exist 
another Pareto optimal point of exchange at an indeterminate point in the future. 

Another potential difficulty is that, for a chaotic trajectory, there may be no exchange that can take place at 
any price. Whilst this will not be the case when initial holdings are81

: 

78 The degree to which the Pareto optimal holdings are more inequitable depends not only upon the initial holdings but 
on the starting price. If the initial price is close to the price vector that supports the optimal holdings then there will be a 
lower degree of inequality in these holdings. However, that such a price can be chosen implies that the Walrasian 
auctioneer has a notion of what such a price is. There would need to be a strong justification that he can actually have 
such a notion 
79 The Pareto optimal holding will be reached once one fluctuation of the periodic orbit has taken place. If there is no 
quid pro quo exchange that leaves utility unaltered then utility cannot be increased at any subsequent point 
80 G.2.l4 shows the frequency for 20,000 iterates. It is conceivable that as the number of iterates increases and as the 
intervals become increasingly fine grained then at some future point there will be a price such that exchange can take 
place. Since the sequence is chaotic, it is not possible to know beforehand whether there exists such a price or when 
such a price would take place 
81 For this initial holding of endowments some exchange can be effectuated for at least one element in any price 
sequence 
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if the initial holdings are different to this, then it is conceivable that for a chaotic trajectory, no exchange at 
any price can take place (see 0.2.12)82. The same argument can be applied for periodic trajectories but not 
for stable trajectories. The sUb-optimality of the Pareto optimal distribution of endowments for periodic and 
chaotic price with respect to stable price sequences poses a problem for both the auctioneer and the market 
participants. The nature of sub-optimality in the former two cases may take the form of either no trade 
taking place or trade taking place such that there is a much more inequitable distribution of endowments or 
trade not taking place in finite time. Similarly, in the presence of complex dynamics, the Pareto holdings 
may be less for both individuals with respect to the case in which the system is stable in that the Pareto 
optimal distribution of resources is reached precisely at the point at which prices cease to change. Whilst 
the occurrence of inequitable distributions of endowments is a function of the initial price and holdings of 
endowments, the presence of the case in which no trade can take place at any point is a more serious 
problem and cannot be overlooked. 

In section three it was noted that if the tatonnement process is unstable in the sense of periodic or chaotic 
trajectories then there are two solutions; a reduction in the speed of adjustment or an increase in the holding 
of the numeraire vis-it-vis the non-numeraire. The same reasoning applies to the case in which trade out of 
equilibrium occurs. 

Suppose that for a given speed of adjustment, periodic or chaotic price sequences are observed and no 
exchange at any price can take place. It naturally follows that there is too much demand for one of the 
goods and too much supply of the other good. In other words, there is pent up demand in the system; the 
ratio of the endowment of the traded good with respect to the numeraire is too high. If the numeraire is 
treated as a primitive form of money through which all exchange must take place83

, then it is natural to 
interpret periodic and chaotic orbits as situations in which the non-tatonnement process is liquidity 
constrained. For a given speed of adjustment if the system is sufficiently liquidity constrained then periodic 
or chaotic trajectories will occur for which either no exchange can take place or any exchange that does 
take place would be inferior to the exchange that would take place if the non-tatonnement process were 
stable or there were more liquidity in the system. 

For the one-dimensional case in which all agents are alike in their preferences for both goods and in which 
trade is permitted out of equilibrium, it can be inferred that if the global constraint for the numeraire or 
"monetary good" is too small with respect to the non-numeraire or traded good then there will be pent up 
demand or supply of the traded good84

. Periodic and chaotic trajectories may occur for which there may 
either be no feasible trade at any point over a price sequence or, if trade does occur it, may entail a Pareto 
optimal exchange that is inferior to the case in which there is a greater degree of liquidity. The auctioneer 
thus becomes charged with ensuring that there is sufficient liquidity in the system or that the speed of 
adjustment is low. By ensuring this, he also ensures that there is a price sequence that supports a sequence 
of exchanges that converges on a Pareto optimal distribution as time tends to infinity. It is tempting to 
assume that a periodic or chaotic trajectory can be rendered stable by the injection of more of the numeraire 
into the system. This line of reasoning would be erroneous, as at least one of the individuals would move to 
a utility contour that is higher than that before the point at which the injection of liquidity takes place. 
Accordingly, the market clearing price changes and the non-tatonnement process is disrupted. There is no 
guarantee that at the prevailing price or any other subsequent price, the injection of more of the numeraire 
into the system would permit a sequence of exchanges that converge towards a Pareto optimal distribution. 
Instead the auctioneer has to ensure from the outset that there is sufficient liquidity such that there is 
asymptotic convergence to the Pareto optimal distribution. 

82 For G.2.12, prices occur in two intervals. There is a large sub-set of prices that are never reached irrespective of 
whether the number of iterates considered is large or small. If the initial endowment matrix is such that exchange could 
only take place within the price interval that is not visited, there can then never be any exchange. The Pareto optimal 

distribution is therefore the initial distribution. If the speed of adjustment is smaller, such that K E (0, I), then some 

exchange can be effectuated. The presence of complex dynamics may therefore create a situation in which the Pareto 
optimal holdings are sub-optimal with respect to the absence of complex dynamics 
83 This is a trivial statement in the one dimensional case but not so in higher dimensions 
84 Whether there is pent up demand or supply will depend upon the preferences for the traded good with respect to the 
numeraire 
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The extension of these results to systems of higher dimensions is problematic. A system in which there are 
at least two traded goods and a numeraire can be interpreted in two different ways: At any price, exchange 
can take place either: 

1. Between any of the goods in the system, or 
2. Exchange can only take place through the medium of the numeraire which is treated as a primitive 

form of money 

The first scenario is an extension of the one dimensional case for which the same type of reasoning can 
apply. In section four it was shown that for a given endowment matrix and given (distinct) starting prices, 
as one of the speeds of adjustment increases, periodic orbits as well as chaotic orbits occur. It was also 
noted that if the holding of the numeraire is increased then, for a speed of adjustment for which periodic or 
chaotic trajectories occur, the system may become stable. Since any distribution of endowments in a system 
of higher dimensions leaves the price sequences unaltered for given speeds of adjustment and starting 
values85

, higher dimensional systems, in the case of 1 above, are extensions of the one dimensional system. 

If 2 is observed the dynamics are fundamentally altered. This author finds that if an initial endowment 
matrix of the form 

is assumed then, irrespective of whether the system exhibits stability or complex dynamics, (i.e. 
irrespective of the values of the speeds of adjustment) it becomes difficulty to carry out any trade that 
increases the utility of at least one individual without reducing that of no other. As in the first case, it is 
natural to assume that the system is liquidity constrained. However, unlike the first case, it is possible that 
if exchange can only take place through the medium of the numeraire, an impasse to trade can occur 
independently to whether the price sequences are stable or not (the speeds of adjustment are low). This 
implies that if trade can only ever take place through the numeraire, any higher dimensional system quickly 
becomes more liquidity constrained than the case in which trade can take place amongst any of the goods. 
For such a scenario, complex price dynamics are a confounding factor but of little import; the first 
difficulty faced is that the system is liquidity constrained. The second difficulty is that complex dynamics 
can occur. 

Very different policy implications arise for case one or case two. In the first scenario, the auctioneer can 
ensure that there is convergence to a Pareto optimal holding of endowments by lowering the speed of 
adjustment in one or both of the markets (see section four for a discussion of which speed of adjustment 
can lead to stability and the conditions under which it can do so). In the second scenario it is conceivable 
that if the system is liquidity constrained then it is so for any speed of adjustment. The only solution in this 
case is to ensure that there is sufficient liquidity in the system. Clearly the second scenario is much more 
problematic as there is no way to gauge, prior to the event, whether a given amount of liquidity will ensure 
convergence to a Pareto optimal endowment distribution. The first scenario is less problematic in this 
regard as the speeds of adjustment and holdings of endowments need to be such that the modulus of the 
eigenvalues falls within the unit circle. 

Conclusion 

This thesis has attempted to analyse various aspects of both the discrete tatonnement and discrete non
tatonnement process in the presence of gross substitution and the weak axiom of revealed preference. It was 
found that, for the case of one non-numeraire and one numeraire that stable, periodic and chaotic price 

85 This statement necessarily relies on each individual having the same preference arrangement for all goods. 
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sequences were possible. The occurrence of one over the other depended entirely on the value of the speed 
of adjustment as well as the relative holdings of endowments. These dynamics were readily quantifiable by 
means of a Lyapunov exponent and bifurcation diagram. It was also noted that as the endowment matrix 
changed, the qualitative nature of the price sequences with respect to the speed of adjustment did not 
change. This implies that a periodic or chaotic trajectory can be avoided if the holdings of the numeraire 
with respect to the non-numeraire are sufficiently large or if the speed of adjustment is sufficiently low. To 
this author's knowledge, work to date has focussed almost exclusively on the analysis of the speed of 
adjustment and not on the role of endowments. 

The tatonnement process was then extended to a two dimensional system, in which there were two non
numeraire goods and one numeraire. The quantification of chaos for this system was more difficult than in 
the one dimensional case. Concepts such as Feigenbaum's constant or the Li-Yorke theorem used to define 
chaos in a one dimensional map have no analogue in higher dimensions. Instead, it was found that once one 
of the eigenvalues moved outside the unit circle a saddle node was present and periodic orbits occurred. In 
the search for orbits of differing periods it was found that various periods occur as well as the presence of 
speeds of adjustment for which there is sensitive dependence to initial conditions. The situation in two 
dimensions is therefore more complex and less easy to quantifY than in the one dimensional case but the 
results do point towards there being a natural extension in the qualitative nature of the analysis to higher 
dimensions. 

Having examined the tatonnement process, Uzawa's non-tatonnement process was then considered. For the 
case in which there is one traded good and one numeraire, it was found that there is a direct parallel 
between the tatonnement process and the non-tatonnement process on the basis that, if all agents have the 
same preference relations but differ in their initial holdings of endowments, the price sequence remains 
unchanged if exchange does take place. This allowed there to be a unique correspondence between the 
tatonnement process and the non-tatonnement process if any good is allowed to be exchanged for any other 
good. If the tatonnement process was stable then the non-tatonnement process was stable in the sense that 
there was convergence to a unique distribution of endowments as time tends to infinity and that that 
distribution of endowments is Pareto optimal. In the presence of periodic and chaotic trajectories exchange 
becomes more complicated. Much depends upon the initial holding of endowments and the initial prices. It 
is conceivable that if prices were to settle into a periodic trajectory of any order there mayor may not be a 
Pareto optimal exchange depending on whether the initial holding of endowments permits such an 
exchange. 

If the numeraire has the function of acting as a primitive currency or medium of exchange, then it is 
possible that there be insufficient holdings of the currency. The system would then be liquidity constrained 
and there may be no feasible solution to such a constraint as there would be no Pareto optimal exchange for 
any set of speeds of adjustment. This case is much more complicated and difficult to diagnose than the case 
in which exchange can take place between any of the goods. 

The policy implications in the case of the non-tatonnement are more interesting than those of the 
tatonnement process. A serious difficulty in the former case is that the system needs to have sufficient 
levels of liquidity, but such levels of liquidity are difficult to determine on an a priori basis and are difficult 
to determine irrespective of whether complex dynamics are present. The auctioneer or the equivalent policy 
making institution thus becomes charged with managing a market or an economy whose liquidity needs are 
uncertain. Only once the liquidity needs have been determined can attention be focused on the nature of the 
price sequences and how best to render a complex system stable, for which a Pareto optimal exchange can 
take place. Again such a statement cannot be justified prior to numerical investigation. Analysis in this 
direction becomes very complicated very quickly as even with only three agents, the number of exchanges 
at any point, such that the convergence of endowments lies on the Pareto optimal route, can be large. This 
number increases very quickly as the economy becomes large or the number of individuals wanting to 
exchange increases. 

Not only does analysis in the direction of policy become difficult in the case of non-tatonnement but even 
in the case of tatonnement, the presence of chaos renders analysis difficult. The analysis of most chaotic 
systems does not go beyond systems of three dimensions. Since the general equilibrium framework is 
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formulated as an economy of any dimension, the presence of chaos in such a system makes analysis almost 
impossible, if not at a qualitative level. This holds even for a two dimensional system. Due to the 
complexity of the system even at low dimensions, it is tempting to impose further simplifications on the 
discrete time general equilibrium framework. However, this direction is fraught with difficulties. For 
example, assume that symmetry is imposed upon the system. It was seen in section four that prices would 
fall on a stable manifold. Such a manifold yields predictions about the set of parameters that ensure 
convergence that are inconsistent with an asymmetric system. Whilst convenient to analyse, symmetric 
systems are but a small subset of all the systems that can be actually observed. 

One may argue that general equilibrium is the incorrect framework in which to analyse the role of liquidity, 
even if this liquidity is deemed primitive in nature. However, many of the difficulties faced by more 
sophisticated models are captured in this general equilibrium framework. 

There are however various unavoidable shortcomings to the analysis in this thesis other than the ones 
mentioned. The type of price generating algorithm used in this thesis is simplistic in nature; a more 
sophisticated algorithm may preclude complex dynamics. In the case of trade in disequilibrium, it would be 
natural to posit that market participants consider the direction in which prices are moving. If a price vector 
is increasing over time, a rational market participant that holds the good for which the price is increasing 
may withhold exchanges until some price threshold had been reached at which point he would exchange. 
The Pareto optimal distribution of endowments would thus have to incorporate speculative holdings. 
Questions such as adaptive expectations in the presence of stable or complex systems then arise. 

Putting aside these shortcomings, the abstraction from the theoretical confines of the GE framework to 
actual observed behaviour leaves one wondering whether the predictions of the T and NT process as well as 
the caveat presented in this work, are applicable. 

If one objects to the caveat, then the challenge of GE is explain certain facets of an economy given a model 
that predicts stability. Not an easy feat. If no such objection is put forward then the challenge is to find 
aspects of an economy that are both stable and unstable and that align with the GE framework as well as 
any caveat to this framework. The recent bailout of AIG and the re-absorption of Fannie Mae and Freddie 
Mac into the US Government are a tentative step in this direction. 

It was noted in the last chapter, that if there is sufficient scarcity present in both the T and NT process then 
the system is stable. The present state of the US financial markets illustrates the case in which various 
institutions have become "bloated"; for example, AIG held large amounts of mortgage backed securities. 
Holdings of such securities were accordingly abundant with respect to cash holdings. As these assets 
changed to having a dubious value, AIG, along with other institutions, found that their position could not 
be reserved; the market was liquidity constrained. A direct parallel emerges between the present state of 
flux in the US and the predictions of the NT process in a GE framework. In both cases it is seen that a lack 
of liquidity in the system creates a block to the smooth functioning of the market; the price mechanism 
ceases to work either in a coherent manner or at all. 

The US Federal Deposit Insurance Corporation deemed that AIG was simply too large to fail; lines of 
credit were opened up to AIG. The extension of lines of credit is akin to an increase in the quantity of the 
numeraire in the NT model in which there is an impasse to any trade taking place. An increase in the 
numeraire86 in the NT process "loosens" the system, for a given speed of adjustment such that trade can 
take place at subsequent points in time. In this regard, the actions of the US Federal Reserve are consistent 
with the predictions of NT. 

Whilst NT does not capture dynamics such as causal factors of bank failures (i.e. the banking sector 
searching for higher and higher earnings without giving proper weight to the assuming of increasing 
amounts of risk) or the aspects of moral hazard involved in the bailout of an institution (especially an 
institution as large as AIG), the cessation of a market's smooth functioning can be traced to factors that are 

86 For the case in which any good can be exchanged for any other good and the case in which any good can be 
exchanged only by means of the numeraire 
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present in the NT framework. For example, the "too-big-to-fail" policy implicit in the bailout of AIG, as 
well as Fortris bank, has an analogue in the NT framework; by the fact that all markets or price sequences 
are coupled, the failure of any single market will cause all markets to fail (i.e. if the zero price boundary is 
reached in one market, the zero price boundary is reached in all markets). Analogously, by the fact that the 
price sequence that hits the zero price boundary first is precisely the market that has the largest ratio of 
traded good to the numeraire good. Accordingly a crash in one price sequence causes a crash in all price 
sequences and the genesis of that crash emanates from the market (firm, sector or institution) that is most 
liquidity constrained. In the NT framework, AIG and similar institutions are the perpetrators. Similar 
reasoning premised on the NT framework points to the solution to the avoidance of the crash of all price 
sequences as the injection of liquidity into the whole economy or a reduction of holdings of assets (or 
endowments) away from the perpetrating sector; indeed it would be an odd situation if any set of 
institutions or sectors whose structure and behaviour was coherent with the smooth functioning of a market 
were treated as culpable of the failure of the price system. NT strongly predicts that any misplaced 
culpability will simply not resolve the improper functioning of the price system. Instead such that NT 
works properly and Pareto optimal holdings are reached, the problematic price sequence needs to be 
identified and that market modified accordingly. 

NT (and also T) framework highlights only a few characteristics of any market, yet those characteristics are 
fundamental in nature. It is reassuring that the fundamental aspects captured in GE encompass the 
irregularities that a market may experience. Chaotic price sequences and the poor functioning of a market 
due to constrained amounts of liquidity are two cases in point. Yet a word of caution needs to be stated; any 
such reassurance must be recognised as being didactic in nature and wrested on abstractions from real 
world examples, but after all, wasn't the GE framework constructed as an abstraction from that which is 
actually observed. 

Graphs: Section Two 
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It is apparent that si",," A' > A' tilen p' is bound to an j"tcrvai lha( i, larger [han t"at of pi, Groph G-4.2 
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Appendix 

Stability 

Let a be any number between f '(p*) and one. Since 

lim 1 f(p) - f(p*) 1 =1 f'(p*) 1 
T~p' 1 p - p* 1 

(AI) 

there is a neighbourhood Nc (p*) for some £ > 0 

1 f(p) - f(p*) 1 

<a 
1 p- p*1 

(A2) 

for pin Nc (p*) . This means that f(p) is closer to p * than p is, by at least a factor of a (which is less 

than one); if p ENe (p*) then so is f(p) E Nc (p*) so that if p is within £ of p * then so is f(p) . 

Repeating this argument over many iterations we may obtain: 

(A3) 

Thus for a < 1, fk (p) converges exponentially to p * as k ~ 00 . 

The above considers only an epsilon area around the fixed point p. That is an area equivalent to the 
radius (p * -£, P * +£) . This radius could in theory be very small and at the limit be zero. A radius that is 

small in dimensions will rule out the consideration of other orbits that have nearby initial conditions. Such 
a set of initial conditions may be large in number and not necessarily converge to the same fixed point. All 
the fixed points of the system must thus be evaluated and initial conditions classified in terms of whether 
they converge to a given a given fixed point or are repelled away from it. Fortunately in the case of GS, 
there will only ever be one such set of unique points. 

To recapitulate: 

1. If I f '(p) 1<1 , then p is an attracting fixed point 

2. If I f '(p) I> 1 , then p is a repelling fixed point. 

Periodic Points along a Trajectory 

Suppose that the map f has a periodic orbit of period k and that {PI' ... , Pk} are the k points along this 

orbit. If f is a smooth map that is at least once differentiable then, by the chain rule, 

(fk) '(PI) =:: (/«(fk-I) '(PI) 

= f,(/k-I(PI»(/k-I),(PI) 

=:: / ,«/k-I (PI »/ ,«/k-2 (PI » .... / '(PI) 

=:: !'(Pk)!'(Pk-I) .. .j'(Pl) 

(A4) 
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This states that the derivative of the kth iterate fk of the map at a point of an orbit that has k periods, is 

the product of the derivatives of the map at the k points of the orbit. 

An orbit of period k is an attracting point (or a sink) if 

(AS) 

The orbit is a repelling point (or a source) if 

(A6) 

It must be noted that if there are infinitely many periodic orbits (i.e. k ~ co ), the existence of chaos is not 
guaranteed as chaos is associated with non-periodic orbits as well as sensitive dependence upon initial 
conditions. 

Li-Yorke Theorem (L YT) 

Let f be a difference equation that is continuous and for which two numbers a and b exist such that if 

a ::::; Y t < b then a ::::; Yt+1 < b . If a Yt can be found such that when Yt rises for two successive periods it 

will fall back to below its initial position in the next period, that is, 

then, 

(a) For any integer k > 1 there is at least one initial point Yo between !!. and b such that the 

subsequent time path Yt is characterised by cycles of period k. 

(b) There exists an uncountable set, S, of initial points between a and b such that if initial points 

Xo and Yo both lie in S then, 

i. At some time t in the future the difference (x
t 

- yJ will come arbitrarily close to zero and 

the two paths will temporarily move as close to one another as desired. 
ii. After some interval of close proximity as in i. the two time paths will diverge again. 
HI. No such time path will ever converge asymptotically to any periodic time path and a time path 

originating in S will not converge to any time path that originates outside S. 

lim inf 1 x, - Y, 1= 0 (A7) 

(A8) 

HX 

lim sup 1 x, - Y, I> 0 

where x and y have two distinct starting values, one of which is in an epsilon neighbourhood vicinity of the 
other. 

Therefore, if a periodic orbit of period three can be shown to exist, then it follows that there are a large set 
of initial points that demonstrate sensitive dependence. Chaos is thus present. Chaos in the sense of L YT is 
thus an orbit that is bounded, non-periodic and that is sensitive to initial conditions. L YT is not a very 
tractable theorem and is limited in its numerical applicability. Instead, a more utilisable definition of chaos 
can be applied in which the rate of convergence or divergence of one orbit to another orbit is compared and 
for which the beginning points of which are in epsilon neighbourhoods of each other. That which is to be 
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determined is thus the degree to which two trajectories with near initial points either converge to each other 
exponentially fast or depart from each other exponentially fast. The Lyapunov exponent gives a measure of 
this. 

Sharkovski's Theorem 

Sharkovski's Theorem gives a scheme for ordering the natural numbers in a manner such that for each 
natural number n, the existence of a period-n point implies the existence of periodic orbits of all the periods 
in the ordering higher than n. Sharkovski's ordering is; 

3 -< 5 -< 7 -< 9 -< ... -< 2x3 -< 2x5 -< ... 

-< 22 X 3 -< 2' x 5 -< ... -< i x 3 -< i x 5 ... 

-< 2' x 3 -< 2' x 5 ... -< i -< 22 -< 2 -< I 

On the basis of this ordering, the following theorem can be stated; 

Sharkovski's Theorem: 

Assume that f is a continuous map on an interval and has a period p orbit. If p -< q , then f has a period q 

orbit. 

This theorem states that if a period three orbit is observed then periodic orbits of all periods are observed as 
well as chaotic orbits88

• 

The Lyapunov Number and the Lyapunov Exponent 

The Lyapunov exponent provides a single value for an iterative map that summarises the extent to which a 
trajectory expands or contracts on average. 

Consider f' (p*) = a where p * is the fixed point of the map. We note that if 

1 f'(p*) 1= 1 a 1 < I (A9) 

then the orbit of any p in the vicinity of p * will converge towards p * . If 

1 f'(p*) 1 = 1 a I> I (AIO) 

then the orbit of each p near p * will diverge away from p at a rate that is approximately equal to a per 

iteration. In other words, the distance between fn (p) and fn (p*) = p * is increased by an amount 

approximately equal to a > 1 upon each iteration. Thus for a periodic point of period k, the derivative of 
the kth iterate of the map needs to be evaluated. Using the chain rule (A4), the Lyapunov number is defined 
as: 

Lyapunov Number 

Let fbe a smooth map of the real line R. The Lyapunov number L(p) of the orbit {Pl,P2""} is defined 

as 

88 See [I], ppl35 -138 for a comprehensive discussion ofSharkovski's ordering 
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, 
L(p) ::: lim (I f'(p,) 1· .. 1 f'(pJ I)~ (All) 

"~~ 

if this limit exists. 

The Lyapunov exponent is defined as 

h(p) = ~~ (~){In 1 f'(p,) I··· In 1 f'(p) I) (AI2) 

if this limit exists. 

The rationale of this number is as follows. Consider an initial point Po and a nearby point (or a 

perturbation of the initial point); Po + '70' Let '7" be the value of the separation after n iterates. Consider: 

Now take the logarithm of(AI3); 

I lJ 
h(p) "" - In -"-

t lJ" 

= ~ In IU') '(p,,)1 
t 

Now by the chain rule; (A4), (A13) is equivalent to (AI2). 

(AI3) 

(AI4) 

(A 12) can be actualised by noting that for a trajectory of period k, the Lyapunov exponent can be defined 
as: 

h(p)::: In I f'(p,) 1···ln I f'(Pk) I 
k 

Or alternatively (A14) can be written as; 

I T 

h(p)::: T 2:,)n' f'(p) , 

(AIS) 

(A1S') 

It is clear from (AI2) that h(p) is a limit argument. In order to use (AI2) in a form such as (A14) then 

sufficiently large t needs to be applied. Whilst (A 14) suggests that h(p) is calculated for periodic points 

up to and including the smallest integer k such that the periodic orbit repeats itself, there will be a repetition 
of periodic k orbit in the calculation of (A 14). This is deemed unimportant and in fact desirable as a 
standard number of iterations for the calculation of (A 14), for different parameter values, facilitates the 
comparison between these different parameter values. Furthermore, the inclusion of repeated periodic 
orbits in the calculation of (A 14) does not alter the results in any meaningful way especially if t is large 
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enough; if a map is convergent for 1000 iterates it will be so for 20,000. Upon the reading of various 
articles, 20,000 iterations for a map are sufficiently large for the properties of that map to be discernible. 

It must be noted that h(p) depends on Po (the starting value). For that reason Po is taken as the same 

value for all comparisons for the change in parameters. 

Fundamentally, h(p) > 0 is a hallmark of chaos as this is the condition for which a map expands as 

t ~ r:f). Conversely, h(p) < 0 is a signature of the stability of the system as the map contracts as t ~ r:f). 

Lyapunov Stability Theorem (LST) 

Consider a one dimensional system of the form p = f(p) that has a fixed point at p * . Let E be an open 

subset of R that contains an isolated critical point p * . Suppose that f is continuously differentiable and 

there exists a continuously differentiable function; V (p) which satisfies the following properties: 

• V(p')=O 

• V (p ) > 0 if P 7:- p' 

where pER. Then 

LST 1. V(p):S;O for all pEE,then p* is stable 

LST 2. V (p) < 0 for all pEE, then p * is asymptotically stable 

LST 3. V(p) > 0 for all pEE, then p * is unstable 

Stability in LST 1. is defined as: 

(AI6) 

(AI7) 

A critical point such as p * of a system such as p = f (p) is called stable if given 6' > 0 , there is a 

c5 > 0 such that for all t ~ to ' then 

IIp(t) - p * (t)11 < 6' (AI8) 

Stability in LST 2 is defined as: 

A critical point is asymptotically stable if it is stable (LST 1 holds) and there is an 17 > 0 such that; 

lim IIp(t) - p * (t)11 = 0 
t->x 

(AI9) 

whenever IIp(to) - p * (to )11 < '7 

LST stability states that for a trajectory that starts within a distance c5 of the fixed point, over time the 
Euclidean distance fall to within an & distance of the fixed point. (A 18) does not necessitate that the 
Euclidean distance shrink any further than this and accordingly the fixed point may not be reached. In other 
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words a trajectory that starts in the vicinity of the critical point will remain close to that point89
. Obviously, 

close is defined arbitrarily but arbitrarily small. 

LST asymptotically stability requires that if the system starts at a distance 17 from the fixed point then over 

time the Euclidean distance converges monotonically to the fixed point of the system. 

It must be noted that the LST pertains to continuous time functions. Since discrete time maps are under 
examination, it is necessary make an equivalent relation between (A 16), (AI7) and results 1.-3. of LST. We 
note first that, assuming that asymptotic stability holds then: 

V(p) 
--<0 
V(p) 

Since, 

V(p) ;:,;In(V(P'+I)]=lnV(p )-lnV(p) 
V(p) V(p) ,+1 , 

Then if; 

In V(P'+I) -In V(p,) < 0 <=> In V(P'+I) < In V(p,) <=> V(P'+I) < V(p,), 

V(p,+,) > 0, Vi 

(A20) 

(A21) 

(A22) 

If (A20) is observed in a continuous time setting, then a discrete time analogue of LST asymptotic stability 
is implied which in turn implies that there is a function described in discrete time such that it shares the 
same properties as the Lyapunov function in continuous-time. 

An equivalent relation between LST stability and (A29) can be made by changing the strict equality of 
(A20) to that of a weak one. Similarly, for a system that is unstable, the inequality in (A22) would be 
reversed such that: 

In V (Pal) -In V (p) > 0 <=> In V (P'+I ) > In V (p) <=> V (P'+I) > V (p), 

V(p,+) > 0, Vi 

The rate of change of the Lyapunov function in discrete time is thus assumed to be 

dV(p) 
--;:,; V(p ,)-V(p) 

dt ,+ , 

Feigenbaum's Constant 

(A23) 

(A24) 

Section two showed period doubling of cycles or bifurcations occurring, before chaos becomes present in a 
system. Feigenbaum's constant is a measure of the ratios of these points between successive periodic 
doublings. Formally; 

89 Scarf's counter-example is an example of this type of stability 
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r -r 
c5 = lim _"_"_-1 = 4.6692016 ... (A25) 

n-'J'T.! r -r 
n+J n 

(A25) is Feigenbaum's universal constant, so called as this is universal for all one dimensional maps, 
provided such maps satisty the Schwarzian derivative. 

Feigenbaum's constant is useful as, if several period doubling points have been observed, it is possible, by 
manipulation of (A25) to approximate the next period doubling point. Whilst such an approach may be 
prone to errors, given that (A25) is a limit argument, it is instructive to observe that the occurrence of 
period doubling points occur at intervals closer and closer together; that is to say, once period doubling has 
started to occur, the onset of chaos can occur quite quickly for certain types of maps. 

Section Four 

For the sake of completeness, the derivation of the two dimensional tatonnement process is presented here. 

The tatonnement process for good one is given as: 

And that for good two: 

Rearranging and simplitying for both goods: 

P~+I = fl(p~2) = p~ + Al [( ;,~ j(aicq2 +aiwi +ajwJ)+(~~ } aicq3 +aiwi +ajwi)-[ cql (I-ai)+ wi(l-ai)+wj(l-aj)] J 

P;+I = f2(p~,2) = P; + A 2 [( ;!z } a~cql + a;wi + aiwi) + (;,2 } al
2cq3 + a;wi + ai~) -[ cq2 (I-ai)+ wi (I-ai)+ wJ (I-an] J 

Section Five 

It is asserted in section five that if individuals share the same preferences for both goods then the price 
sequence is invariant to the manner in which endowments are held. This implies that exchange at any point 
in time does not alter the price sequence and this price sequence is the same in the case of the tatonnement 
process and the non-tatonnement process. The demonstration of this is as follows; 

By a: = a; = a , the tatonnement process can be written as; 

(5.1 ) 

That initial endowments are; 

67 

Univ
ers

ity
 of

 C
ap

e T
ow

n



lJJ = (~ ~). (5.1) thus takes the form of; 

p, .. " f(p') " mox {O, P, + ,,[ a ~, -(I-al]} (5.2) 

Suppose now that there is an exchange such that; 

lJJ' = ( ~ ~ ). This exchange is equivalent to the endowment matrix being rotated. Such a rotation 

encompasses every exchange permissible for a range of prices. (5.2) now has the form of; 

(5.3) 

n n 

(5.2) and (5.3) are equivalent. As long as LlU,' = LlU,1 = I, VI, any exchange will not alter the price 
1=1 1=1 

sequence. The price sequence therefore remains invariant as exchange is effectuated and there is an 
equivalence between the price sequence in T and in NT. Clearly this result holds only for the case in which 

utility is of the Cobb-Douglas form and for which all = a; = a . If this were not so, then this result would 

not be able to be established. 
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