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Abstract

When optimising the likelihood function one often encounters various stationary
points and sometimes discontinuities in the parameter space (Gupta and Mehra,
1974). This is certainly true for a majority of multi-factor affine term structure mod-
els. Practitioners often recover different parameter optimisations depending on the
initial parameters. If these parameters result in different option prices, the implica-
tions would be severe. This paper examines these implications through numerical
experiments on the three-factor Vasicek and Arbitrage-free Nelson-Siegel (AFNS)
models. The numerical experiments involve Kalman filtering as well as likelihood
optimisation for parameter estimation. It was found that the parameter sets lead to
the same short rate process and thus the same model. Moreover, likelihood opti-
misation in the AFNS does not result in different parameter sets irrespective of the
starting point.
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Chapter 1

Introduction

The understanding of what moves bond yields has been and continues to be a sub-
ject of profound interest for market analysts, investors and policy makers. Term
structure modelling in particular has produced immense literature over the years:
not only does it give insight into interest-rate risk, it also facilitates the simulation
of interest rate scenarios and the valuation of financial instruments– all of which
are essential to these economic agents (Piazzesi, 2009).

Interest rate term structures define a relationship between the yield of a fixed
income investment and the time to maturity of its cash flows. Models of term struc-
ture describe these interest rate dynamics in two dimensions. The first is essentially
a cross-sectional fitting of a zero-coupon yield curve to a set of zero-coupon bond
prices and the other describes term structure inter-temporal dynamics, showing the
evolution of interest rates with time (Chatterjee, 2005).

As a result of the substantial correlations among bond yields of different matu-
rities, researchers have endeavoured to construct parsimonious models using state
variables that drive the entire yield curve for a given market while describing their
correlation structure. Maes (2000) and Dai and Singleton (2003) delineate three re-
quirements for the construction of any continuous-time yield curve model: a partic-
ular diffusion for the underlying factors, risk premia and a functional relationship
between the risk-free rate and the underlying state variables.

Pioneering studies (Vasicek, 1977; Cox et al., 1985) were based on a single fac-
tor. However, the significant disparities between empirical data and model pre-
dictions necessitated the development and implementation of multi-factor models.
Contemporary research is primarily focused on two classes of such models viz.
Nelson-Siegel Models (NSMs) and Affine Term Structure Models (ATSMs) (Gasha
et al., 2010). Whereas the former tend to incorporate both observable and unob-
servable macroeconomic factors, they need not be consistent with the absence of
arbitrage opportunities. ATSMs on the other hand may depend on the absence of
arbitrage and assume that the underlying unobservable factors follow stochastic
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processes. This study only considers the latter class of TSMs.
The affine class of models is relatively tractable and there are extensive studies

on it (Duffee and Stanton, 2012; Duffie and Kan, 1996; Christensen et al., 2011).
Despite this the models rely on imperfect observations of bond data. Naturally,
therefore, some assumptions about the distributions of these errors have to be made
(state variable dynamics are also stochastic). Regardless of the chosen structure of
the measurement error it is often the case that one cannot simply invert the model to
find unknown factors. Hence more sophisticated filtering techniques are essential
(Chatterjee, 2005). One of these techniques is the Kalman filter.

Following the work of Duan and Simonato (1999), Lund (1997), De Jong (2000),
Geyer and Pichler (1999) and Babbs and Nowman (1999), the Kalman filter has be-
come widely used for parameter estimation in term structure modelling. It has been
observed however, that when using the Kalman filter in conjunction with quasi—
maximum likelihood estimation the original parameters used to simulate state pro-
cesses are rarely recovered in the case of multi-factor models. It is therefore the aim
of this study to explain why this is the case and to make some inferences about the
effects of this in option pricing.



Chapter 2

Affine Term Structure Models

2.1 Overview of Affine Term Structure Literature

The underlying state variables (factors that describe the state of a dynamic sys-
tem at any given time) and their stochastic processes simultaneously determine the
cross-sectional shape as well as the temporal evolution of the yield curve. Prior to
the advent of Vasicek (1977), empirical and theoretical investigations such as those
by Macaulay et al. (1938) tended to analyse only one of these implications. The first
term structure model to use the panel data approach— where the dynamic and
cross-sectional implications are accounted for simultaneously— was developed by
Vasicek (1977) (Lund, 1995). This model treats the instantaneous spot interest rate
as the single factor. It involves a specification of the underlying short rate diffusion
and the use of no-arbitrage arguments to derive bond pricing formulae which then
enable the construction of a term structure. Whereas Vasicek (1977) used Gaussian
diffusion, Cox et al. (1985) proposed a one-dimensional square root diffusion pro-
cess which ensures positive short rates in what is known as the CIR model (Cox
et al., 1985). Despite their popularity, the predictions of these pioneering models
were vastly different to empirical data and this failure inspired the development of
numerous other models including multi-state extensions of these models (Dai and
Singleton, 2000).

The development of multi-factor models was further substantiated by the co-
gent argument that term structures are embedded in large macroeconomic systems.
Logically therefore, there should be a multiplicity of economic factors which relate
to the term structure of interest rates (Langetieg, 1980). Motivated by this argu-
ment, Langetieg (1980) extended the Vasicek model three years after its publication
to incorporate a general number of economic factors. Multi-factor versions of the
CIR model were then developed by inter alia Longstaff and Schwartz (1992) and
Chen and Scott (1992).

With respect to the sufficient number of factors to adequately characterize the
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term structure, principal components analysis can be used to decompose the mo-
tion of interest rates into independent factors. Wilson (1994) showed that 80-90% of
the variation of the term structure is explained by parallel shifts of the yield curve,
5-10% by a twist (long term and short term rates move in opposing directions, cen-
tred around a point), and 1-2% by a butterfly (long and short term rates move in the
same direction, while mid-term rates move in the opposite direction)— see Figure
2.1. This result has important consequences because researchers inevitably have
to make some concession between richness of econometric representation of the
underlying factors and the computational expense of running these models.

Fig. 2.1: The first three principal components of US Treasury yields for 9
maturities— to construct this figure we take the time series of bond yields
for N maturities, and find the eigenvalues of the resulting M × N matrix
(where M is the number of observations in each time series). Then we ar-
range these in decreasing order i.e. l1, l2, l3, ..., lN . Then the first princi-
pal component explains l1/(l1+..+lN ) of the variance, the first two explain
(l1 + l2)/(l1 + .. + lN ) of the variance, etc. Typically the first three will ex-
plain over 95%. The graph shows how the factors may be interpreted. The
first one is typically flat, which means that a move in the direction of the
first eigenvector results in a roughly equal move for all maturities – a par-
allel shift. The second is increasing, and thus a move in the direction of the
second eigenvector will move big maturities more than small maturities —
a slope. The third has a hump.
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In light of this trade-off that confronts all practitioners, it is perhaps not surpris-
ing that empirical implementation of multi-factor models (those that consider the
co-movement over time of short and long term bond yields) is primarily focused
on ATSMs. This class of models was defined by Duffie and Kan (1996) and was
so called because bond yields are affine functions of the underlying state variables
that introduce stochasticity to the model. Equivalently, they are those models for
which both the drift and the volatility-squared are affine functions of the state vari-
ables. These models greatly facilitate empirical implementation since they yield
essentially closed-form expressions for zero-coupon-bond prices. The numerical
and analytical tractability thus afforded by these models makes them a subject of
much research.

Notwithstanding the notable progress heretofore, there are numerous limita-
tions associated with this class of models particularly the first-generation interest
rate models above. For a summary of the disparities between the models and em-
pirical term structures as well as an elaborate evaluation of these limitations see
Duffee (2002). Among other things it was found there that the standard class of
affine models produces a poor forecast of future moves in long dated bonds. In
addition— and of equal importance— parameter estimation in these models is
known to be problematic due preponderantly to the existence of numerous local
likelihood maxima that have a similar fit to the data while their economic implica-
tions may be substantially different. These difficulties seem to reflect a problem of
model over-parametrisation (Christensen et al., 2011). Many practitioners (e.g Duf-
fee (2002) and Dai and Singleton (2000)) attempt to remedy this by restricting some
parameters to zero thereby obtaining a more parsimonious model. This approach
seems to assuage the estimation problem but it is a method improvised for reasons
of expediency and is not well motivated theoretically or statistically (Christensen
et al., 2011). In spite of these short-comings however, Dai and Singleton (2003)
insist that these models give appreciable insight into the expectation hypothesis
and the term structure; therefore they cannot be discarded. This exemplifies the
conundrum that plagues interest rate modelling incessantly i.e. theoretically rigor-
ous models often yield disappointing empirical results while empirically successful
models are not in harmony with accepted theory.

Recently Christensen et al. (2011) claimed to have overcome this dilemma by
developing a new class of models— the Arbitrage-Free Nelson-Siegel (AFNS) mod-
els. They developed this class by augmenting the popular Dynamic Nelson-Siegel
(DNS) model with properties of ATSMs. The DNS model is empirically success-
ful but lacks a theoretical foundation, while ATSMs are empirically inadequate but
theoretically sound. Furthermore, the DNS is empirically stable and simple to es-
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timate; it is also relatively flexible and fits the cross-section as well as the time
series of yields remarkably well for many grades of bonds and in many countries
(Christensen et al., 2011). These are some of the properties that justify its popularity
among financial market practitioners. Nevertheless, DNS fails on a fundamental
theoretical dimension— it does not impose the restriction necessary to eliminate
the possibility of arbitrage opportunities. Thus, Christensen et al. (2011) imposed
the absence of arbitrage on the DNS to reconcile it with theory— the result is what
is now known as the AFNS.

The AFNS was formulated such that it is consistent with the affine class of mod-
els as defined by Duffie and Kan (1996). This model has the tractability and theoret-
ical appeal of ATSMs without the parameter estimation difficulties and with much
better empirical performance. It is more parsimonious than the three-factor Vasicek
and CIR models and because it uses DNS, the latent state variables are easily identi-
fied as the level, slope and curvature. These facts make the model easier to optimise
since it is not as over-specified as other ATSMs (Christensen et al., 2011). Further-
more, bond prices have simple closed form expressions, making implementation
simple.

Typically the number of bond maturities used is greater than the number of
state variables, so if no error structure is specified, solution methods break down
due to the singularity problem— which occurs when the number of bond tenors
exceeds the number of state variables. This is unsurprising because there are inher-
ent measurement errors in the observed data. These errors stem primarily from the
fact that ATSMs assume frictionless markets, which is obviously untrue. Further-
more, there are exogenous sources of error e.g. non-synchronous trading, rounding
of prices and bid-ask spreads (Lund, 1995). According to Maes (2000), irrespective
of the measurement error structure; if the model cannot simply be inverted to solve
for the state variables, a more sophisticated filtering technique is necessary— this
is where the Kalman filter finds relevance.

The Kalman filter is a recursive algorithm that is used for parameter estimation.
The fundamental idea and application of this approach was first put forward by
Pennachi (1991) (Lund, 1997) and after subsequent work by inter alia Duan and
Simonato (1999), Lund (1997), De Jong (2000), Geyer and Pichler (1999) and Babbs
and Nowman (1999), there was a proliferation of papers using this methodology
for estimating exponential affine term structure models, especially for multi-factor
Gaussian and CIR models.

The filter uses maximum likelihood estimation (MLE) for parameter estima-
tions. In the case of Gaussian term structure models, the exact likelihood func-
tion is obtained directly from the Kalman filter algorithm. However, when using
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non-Gaussian models there is no exact closed form likelihood function. In such
instances a quasi-maximum likelihood (QML) estimator can be constructed from
the first and second conditional moments (Maes, 2000). Duan and Simonato (1999)
showed that this results in a loss of efficiency as well as the consistency property
but Bollerslev and Wooldridge (1992) showed that the QML is asymptotically effi-
cient and consistent.

In their review of various numerical optimisation algorithms for the likelihood
function, Gupta and Mehra (1974) acknowledge that maximum likelihood estima-
tion leads to difficult non-linear programming problems in practice. One usually
encounters numerous maxima, saddle points and sometimes even discontinuities
in the parameter space. Moreover, Kim and Orphanides (2005) alluded to these
difficulties, adding that the likelihood function can be flat in multiple directions
around these maxima resulting in large standard errors of the estimates. The so-
lutions that researchers have for such problems involve the use of arbitrary proce-
dures as mentioned before. Needless to say, this is a precarious course especially
when one does not understand the consequences of selecting one solution over an-
other because the economic implications of each distinct set of parameters may be
different. We therefore wish to consider the effects of these disparate parameter
estimations on short rate dynamics and briefly on bond option pricing. We also
wish to verify the claim that AFNS models do not have multiple maxima in the
likelihood function.

2.2 Mathematical Framework

This section is explores some of the fundamental concepts that pertain to term
structure modelling as treated by Piazzesi (2009) and Pitsillis (2015). We focus ex-
clusively on the affine class, as suggested in the preceding text. At this stage it
would be appropriate to note that there are numerous important assumptions that
facilitate term structure modelling. The assumption of an arbitrage-free and com-
plete market forms the framework in which bond prices are modelled.

The term structure relates bond yields to different maturities so its most basic
building blocks are Pt(τ), the time-t zero coupon bond price with tenor τ = T − t
(where T is the maturity) and the instantaneous short rate (risk free), rt. Bond
yields can then be calculated as

yt(τ) = − logPt(τ)

τ
.

The short rate is simply the limit of the yield as maturity tends to zero i.e. rt =

limτ↓0 yt(τ). The relationship between the short rate and bond prices depends on
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the assumptions made about the bond market. For the purposes of this study, only
martingale pricing theory is considered.

We assume the absence of arbitrage in the following form: that there exists a
measure Q (equivalent to the real world or data generating measure P) under which
discounted bond prices are martingale, and because we also assume the market is
complete, such a measure is unique. Under the Q-measure bond prices given by

Pt(τ) = EQ
[

exp

(
−
∫ t+τ

t
rudu

)Ft]
where the filtration generated by the stochastic processes is given by Ft. Here the
numéraire is the riskless money market account therefore, Q is the risk-neutral mea-
sure. It has been assumed that the reader is familiar with the martingale pricing
theory and thus much detail has been omitted for brevity— for further reading see
Björk (2009).

Building a term structure model in this paradigm is well established. To con-
struct a model, one has to assume:

• a particular diffusion for the unobservable states;

• specification of the price of interest rate risk;

• a functional relationship between the underlying factors and the short rate.

Formally this can presented as

Assumption 1 : dXt = ν(X, t)dt+ σ(X, t)dWt

Assumption 2 :
dπt
πt

= −r(X, t)dt− Λ(X, t)′dWt

Assumption 3 : r = f(X, t).

In the equations above, Wt is an n× 1 vector of independent P standard Brownian
motions that constitute the noise component of the model, Xt is an n-dimensional
vector of state variables, ν(X, t) is an n × 1 vector of instantaneous (conditional)
means, σ(X, t) is the covariance matrix of size n × n, πt is the price deflator i.e.

πt = exp

(∫ T

t
rudu

)
for maturity T , and lastly, Λ(X, t) is a vector of size n × 1

representing the market price of risk. Every ith element of Λ(X, t) is the price of
risk corresponding to W (i)

t . Since pricing is done under risk neutral dynamics, a
change of measure is required and to accomplish this, Girsanov’s theorem can be
used. This theorem relates the risk neutral and real dynamics in this equation:

dW̃t = dW + Λ(X, t)dt.
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where W̃t is the standard Q Brownian motion. Furthermore, under Q

dXt = (ν(X, t) + Λ(X, t)σ(X, t))dt+ σ(X, t)dW̃t.

Thus the dynamics are

dXt = µ(X, t)dt+ σ(X, t)dW̃t.

Since the Q dynamics of the risk factors are specified, Itō’s lemma can be used to
facilitate the identification of arbitrage-free prices. The assumption that the under-
lying states are Itō diffusions (and thus Markovian) allows one to write the bond
price as a function of Xt directly, i.e.

P
(τ)
t = F (Xt, t, τ).

Provided that F (X, t, τ) satisfies certain smoothness conditions Itō’s lemma can be
used to derive a differential equation for P (t)

t . The SDE of the bond price is given
by

dF (X, t, τ) = µF (X, t, τ)dt+ σF (X, t, τ)dW̃t.

From Itō’s lemma we get that

µF (X, t, τ) = Ft(X, t, τ) + FX(X, t, τ)µ(X, t) +
1

2
tr[σ(X, t)σ(X, t)′FXX(X, t, τ)].

Here Ft(X, t, τ) = ∂F (X,t,τ)
∂t , FX(X, t, τ) is a 1 × n gradient vector and FXX(X, t, τ)

is an n× n Hessian matrix. Also

σF (X, t, τ) = FX(X, t, τ)σ(X, t).

The risk neutral dynamics of F (X, t, τ) are known to follow

dF (X, t, τ) = rtF (X, t, τ)dt+ σF (X, t, τ)dW̃t;

by definition of Q. For no arbitrage to be admitted µF (X, t, τ) = rtF (X, t, τ) and
this yields the bond price PDE

Ft(X, t, τ)+FX(X, t, τ)µ(X, t)+
1

2
tr[σ(X, t)σ(X, t)′FXX(X, t, τ)]−rtF (X, t, τ) = 01.

2.3 Affine term structure models

A short rate model is said to possess an affine term structure (ATS) if bond prices
are given by

P
(τ)
t = F (X, t, T ) = eA(τ)+B(τ)Xt2.

1 Here tr[...] refers to a trace as opposed to a transpose.
2 Generally one can have A(t, τ) and B(t, τ) but we ignore this for our purposes
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Where A(τ) and B(τ) are sufficiently regular deterministic functions. In particu-
lar, A(τ) and B(τ) are at least twice differentiable functions of τ . Duffie and Kan
(1996) illustrate under general circumstances that such an expression of bond prices
implies that µ(X, t), σ(X, t)σ(X, t)′ as well as rt are all affine functions of Xt, i.e.

µ(X, t) = α1(t)Xt + α0(t)

σ(X, t)σ(X, t)′ = β1(t)Xt + β0(t)

rt = δ′XXt + δ0

where α1(t) and β1(t) are real-valued n × n matrices while α0(t), β0(t) and δX are
n× 1 vectors with δ0 being a scalar.

Following Dai and Singleton (2000) we note that Xt follows an affine diffusion
given by

dXt = κ̃(θ̃ −Xt)dt+ Σ
√
S(t)dW̃t.

κ̃ and Σ are n × n matrices which may be non-diagonal and asymmetric, θ̃ is an
n× 1 matrix while S(t) is a diagonal matrix where the diagonal elements are given
by S(t)ii = ρi + β′iXt.

Under this parametrisation, A(τ) and B(τ) are solutions to these Ricatti equa-
tions

dA(τ)

dτ
= −θ̃′κ̃′B(τ) +

1

2

n∑
i=1

[Σ′B(τ)]2i ρi − δ0,

dB(τ)

dτ
= κ̃′B(τ)− 1

2

n∑
i=1

[Σ′B(τ)]2iβi + δX .

These ODEs can be solved through numerical integration using A(T, T ) = 0 and
B(T, T ) = 0n×1 as initial conditions since they are completely specified when the
risk neutral dynamics of rt are known.

Pricing bonds in empirical studies of ATSMs requires the distributions of Xt

and P (t, T ) under the data-generating measure P and for this we consider the price
of risk. Since the drift and the square diffusion are affine functions of the short rate,
the price of risk is assumed to have the form

Λt =
√
S(t)λ,

where λ is an n × 1 vector of constants. With this specification of the price of risk
the P dynamics of Xt are

dXt = [κ̃(θ̃ −Xt) + ΣS(t)λ]dt+ Σ
√
S(t)dWt,

which implies (2.1)

dXt = κ(θ −Xt)dt+ Σ
√
S(t)dWt,
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where κ = κ̃ − ΣΦ and θ = κ−1(κ̃θ̃ + Σψ). Φ is an n × n matrix with the ith row
given by λiβ′i and and ψ is an n× 1 vector elements λiρi.

In order to ensure that these differential equations have strong solutions, a num-
ber of restrictions need to be invoked. For a detailed exposition of these conditions
see Dai and Singleton (2000).

We consider two such models— the three-factor Vasicek model and AFNS model.
The general Vasicek model has the following dynamics.

dXt = κ(θ −Xt)dt+ ΣdWt,

where all the parameters are constant. For an n-factor Vasicek model the τ -bond
price is given by

Pt(τ) = exp

(
A(τ) +

n∑
i=1

Bi(τ)Xi
t

)
,

where

Bi(τ) =
1

κi
(1− e−κiτ )

and

A(τ) =

n∑
i=1

γi(Bi(τ)− τ)

κ2i
− σ2iB

2
i (τ)

4κi
+

∑
{i,j:i 6=j}

σi,j
2κiκj

(
τ −Bi(τ)−Bj(τ) +

1

κi + κj

(
1− e(κi+κj)(τ)

))
;

γi = κ2i

(
θi −

σiλi
κi

)
− σ2i

2

(Gasha et al., 2010). In a three factor model we use n = 3. The AFNS is considered
in the next section.

2.4 The Nelson-Siegel yield curve model

Since the AFNS model is more novel, it is given more consideration. In this section
we provide a brief exposition of the Nelson-Siegel model. We commence with a
simple derivation from first principles following which we accentuate some of its
defining characteristics and thereafter we relate it to the AFNS model.

Nelson and Siegel (1987) developed the Nelson-Siegel model to fit static yield
curves. They considered an instantaneous forward rate model at maturity τ , de-
noted f(τ) as the solution to a 2nd order ODE with real and unequal roots. The
motivation behind this was the fact that functions that readily produce the typical
term structure shapes are usually solutions to such ODEs. The derivation therefore
begins with the differential equation in this generalised form

∂2f(τ)

∂τ2
+ b

∂f(τ)

∂τ
+ cf(τ) = d.
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Dividing through by d we get

1

d

∂2f(τ)

∂τ2
+
b

d

∂f(τ)

∂τ
+
c

d
f(τ) = 1.

This is a non-homogeneous differential equation because the right-hand side is
non-zero. To solve this we invoke the following theorem (Stewart, 2015).

Theorem 1. The general solution of the second order non-homogeneous linear differential
equation

y′′ + p(t)y′ + q(t)y = g(t)

can be expressed in the form
y = yc + yp,

where yp is any specific function that satisfies the non-homogeneous equation and yc =

C1y1 + C2y2 is the general solution to the corresponding homogeneous equation

y′′ + p(t)y′ + q(t)y = 0.

y1 and y2 are fundamental solutions of the corresponding homogeneous equation while C1

and C2 are arbitrary constants.

�

It should be obvious that the analogous homogeneous differential equation in
our case is

1

d

∂2f(τ)

∂τ2
+
b

d

∂f(τ)

∂τ
+
c

d
f(τ) = 0.

The general solution yc of this homogeneous equation is

yc =
1

d
eα1τ +

b

d
eα2τ ,

where α1 and α2 are the solutions to the quadratic equation

1

d
α2 +

b

d
α+

c

d
= 0.

Thus the solution of the non-homogeneous equation we need to find yp s.t.

f(τ) =
1

d
eα1τ +

b

d
eα2τ + yp.

Solving this requires that some inference is made about the form we expect the
solution to take. Since the right-hand side of the non-homogeneous equation is
constant, we attempt to identify a solution (yp) which is a constant i.e. we assume
it satisfies

yp = u.
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This implies
∂yp
∂τ

= 0 and
∂2yp
∂τ2

= 0.

We verify whether this is sufficient by substituting into the non-homogeneous equa-
tion

1

d
· 0 +

b

d
· 0 +

c

d
· u = 1⇒ u =

d

c
.

Therefore the solution to our differential equation is

f(τ) =
1

d
eα1τ +

b

d
eα2τ +

d

c
.

This can be rewritten as

f(τ) = β0 + β1e
−τ/m1 + β2e

−τ/m2 ,

For β0 = d
c , β1 = 1

d , β2 = b
d ,m1 = − 1

α1
,m2 = − 1

α2
.

The original Nelson-Siegel model for instantaneous forward rates at time τ took
this form. The zero curve version of this was derived by integrating the forward
curve from 0 to τ then dividing by τ i.e.

y(τ) = 1/τ

∫ τ

0
f(x)dx.

which is easily solved to give the Nelson-Siegel yield curve model as

y(τ) = βL + βS

(
1− e−λτ

λτ

)
+ βC

(
1− e−λτ

λτ
− e−λτ

)
.

Here, βL = β0, βS = β1, βC = β2 and λ is a constant. In practice, rates are obtained
as random variables with noise. Thus

Yt(τ) = yt(τ) + εt(τ), ε(τ) ∼ N(0, σε).

Note that this is a cross-sectional model so the β terms are constant.

2.4.1 Characteristics of Nelson-Siegel Model

The NSM has been studied extensively heretofore, for an exhaustive analysis of the
NSM see Diebold and Li (2005). We bring to light only some of the key findings of
that work here.

It is clear from the above representation that the static model has one variable τ ,
corresponding to bond maturities and four independent parameters λ, βL, βS and
βC . The solution for these parameters occurs under a multivariate setting where
there will be a series of noisy bond yield data corresponding to various tenors (τ ).
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In the model framework, the multiple yields are captured in Y (τ). The yields gener-
ally cluster around the short maturities instead of longer ones, reflecting that most
trading activity in interest rate securities occurs with shorter tenors.

The fact that the model is derived as a solution of a second order differential
equation implies that the numerous possible permutations of the β parameters
allow the curve to take extremely different shapes. From the perspective of eco-
nomics this is vital because the term structure is a construct of interest rate expec-
tations. Thus the shape of the yield curve changes drastically over time as a result
of multiple contributing elements including demand and supply of money. The
term structure typically has an upward slope since longer term bonds usually offer
higher yields. However, it is possible under certain economic conditions to have
the contrary where longer term rates are lower than short term rates. Moreover,
humps and troughs are also possible in the mid-rates depending on market expec-
tations.

The β parameters are essential in determining the shape of the term structure. In
literature they are known to be the level, slope and curvature of the term structure
respectively. The coefficients of each of these terms gives some insight about their
effect on the yield curve. The coefficient of βL for instance, is 1 hence it is called the

level or long-term factor. The coefficient of βS is
(

1−e−λτ
λτ

)
however , and is 1 when

τ = 0 and rapidly decreases to 0 monotonically. Lastly, the coefficient of the third

term, βC is
(

1−e−λτ
λτ − e−λτ

)
. This term begins at 0 when τ = 0 and increases to a

maximum before decaying to 0 for longer maturities (Veerhuis, 2011). These effects
are illustrated graphically in Figure 2.2 below.

2.4.2 Arbitrage Free Nelson Siegel

In this section we provide a derivation of the three factor AFNS as outlined by
Christensen et al. (2011). For convenience, we denote A(τ) and B(τ) as A(t, T ) and
B(t, T ) respectively (recall that τ = T − t).

Following from section 2.3, bond yields can be written as

y(t, T ) = −B(t, T )

T − t
Xt −

A(t, T )

T − t
.

Given a three-factor affine term structure model withXt = (X1
t , X

2
t , X

3
t ), the model

most compatible (in terms of factor loadings in the yield equation) with the Nelson-
Siegel yield function has a yield function of the form

y(t, T ) = X1
t +

(
1− e−λ(T−t)

λ(T − t)

)
X2
t +

(
1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

)
X3
t −

A(T − t)
T − t

,
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Fig. 2.2: Factor loadings for the three-factor NSM with fixed λ (Nelson and Siegel
1984)

with ODE solutions for the B(t, T ) matrix being

B1(t, T ) = −(T − t)

B2(t, T ) = −1− e−λ(T−t)

λ

B3(t, T ) = −1− e−λ(T−t)

λ
+ (T − t)e−λ(T−t).

At this point it is clear that the variable loadings exactly match Nelson-Siegel. How-
ever there is a the ”yield-adjustment term” (A(t,T )T−t ) which is only a function of τ
(τ = T − t) and distinguishes this yield equation from Nelson-Siegel.

To show that the class of affine models that satisfies these ODEs exists, Chris-
tensen, Diebold and Rudebusch (2011) make the following argument.

Proposition 2.1. Suppose that the short rate is

rt = X1
t +X2

t ,

where the risk-neutral dynamics of the underlying factors are given by
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dX
1
t

dX2
t

dX3
t

 =

0 0 0

0 λ −λ
0 0 λ


θ̃1 −X

1
t

θ̃2 −X2
t

θ̃3 −X3
t

 dt+ Σ


dW̃ 1

t

dW̃ 2
t

dW̃ 3
t

 , λ > 0.

Then the zero-coupon bond prices are

P (t, T ) = exp(A(t, T ) +B1(t, T )X1
t +B2(t, T )X2

t +B3(t, T )X3
t ),

where B1(t, T ), B2(t, T ), B3(t, T ) and A(t, T ) satisfy the following system of ODEs

dB(t, T ) =

(
dB1(t, T )

dt

dB2(t, T )

dt

dB3(t, T )

dt

)

=

[0 0 0

0 λ 0

0 −λ λ


B

1(t, T )

B2(t, T )

B3(t, T )

+

1

1

0

]′ (2.2)

and
dA(t, T )

dt
= −B(t, T )κ̃θ̃ − 1

2

n∑
i=1

[Σ′B(t, T )]2i

with boundary conditions B1(T, T ) = B2(T, T ) = B3(T, T ) = A(T, T ) = 0. The
solution for this system is

B1(t, T ) = −(T − t)

B2(t, T ) = −1− e−λ(T−t)

λ

B3(t, T ) = −1− e−λ(T−t)

λ
+ (T − t)e−λτ .

and

A(t, T ) = (κ̃θ̃)2

T∫
t

B2(s, T )ds+ (κ̃θ̃)3

T∫
t

B3(s, T )ds+
1

2

n∑
i=1

T∫
t

[Σ′B(s, T )]2i ds.

Finally, we can represent bond yields as

y(t, T ) = X1
t +

(
1− e−λ(T−t)

λ(T − t)

)
X2
t +

(
1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

)
X3
t −

A(t, T )

T − t
,

Proof. See Appendix A.



Chapter 3

Estimating Multi-factor Affine
Term Structure Models

The short rate process has significant autocorrelation therefore we use a vector au-
toregressive process to simulate the dynamics of the underlying factors. In this
respect, the Kalman filter has enjoyed much use especially in Gaussian affine term
structure models owing to their Gaussianity and their defining linear relationship
between yields and risk factors (Pitsillis, 2015). Drawing from the discussions by
Duffee and Stanton (2012), Pitsillis (2015) and Veerhuis (2011), our exposition of the
Kalman filter begins with an overview of the filtering problem in the most general
sense. This is merely an overture and is therefore a sparse section that serves to
contextualise the Kalman Filter as an estimation tool. Following the presentation
of the filtering problem, we derive the steps of the filter specifically for our pur-
poses. To complete the discussion, the derivation of the likelihood function is also
included.

In state space form, the dynamics of the underlying factors can be denoted as

Xt+1 = ΦXt + C + ν,

where
ν ∼ N(0,Σ).

This representation provides a useful way to model the time evolution of the sys-
tem. Having employed a state space model, a process that enables the optimisation
of unknown parameters is required. The optimisation is carried out through filter-
ing, an approach which we discuss below.
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3.1 The Filtering Problem

The filtering problem seeks to address the evolving state process Xt, t ∈ N given
by

Xt = gt(Xt−1, ηt−1)

where gt : RnX × Rnη → RnX is a function of the state Xt and of ηt−1, an iid
process. Given the context of this investigation we specifically wish to sequentially
estimate the stochastic process

rt =
N∑
i=1

Xi
t ,

(i.e. the short rate) from the measurements given by

Yt = ht(Xt, εt)

where ht : RnX × Rnε → Rnz , εt−1 is also a function of the state Xt and the iid
process εt.

The filter is designed to sequentially estimateXt at some time s given measure-
ments up to time t, i.e. given Y0:t— here 0 : t indicates the measurements from
time zero up to t. This requires that a probability density function describing the
problem p(Xt|Y0:t) be defined. The approach therefore makes two assumptions to
this effect. The first being that the initial value p(X0|Y0) ≡ p(X0) is equal to Y0.
The second assumption is that Xt is Markov, making Xt−1 a sufficient statistic of
the history ofXt. Likewise Yt−1 possesses all the information required to calculate
Xt and Yt hence,

p(Xt|X0:t−1, Y0:t−1) = p(Xt|Xt−1).

Moreover,
p(Yt|X0:t, Y0:t−1) = p(Yt|Xt).

In essence, the filtering problem is solved by predicting the state at the next time
step given our current knowledge and then updating our prediction once addi-
tional measurements are available. We therefore consider the prediction and up-
date steps to preface the Kalman filter.

3.2 Prediction

To predict the state vector at time t given the information available up to time t−1

we employ the probability density function p(Xt−1|Yt−1). The prediction density



3.3 Update 19

function can then be obtained through the Chapman-Kolmogorov equation.

p(Xt|Yt−1) =

∫
p(Xt, Xt−1|Yt−1)dXt−1

=

∫
p(Xt|Xt−1, Yt−1)p(Xt−1|Yt−1)dXt−1

=

∫
p(Xt|Xt−1)p(Xt−1|Yt−1)dXt−1

3.3 Update

To update we use the new measurements at time t i.e. Yt. Using Bayes’ rule we
obtain posterior density of the current state

p(Xt|Yt) =
p(Yt|Xt)p(Xt|Yt−1)

p(Yt|Yt−1)

where the normalising constant

p(Yt|Yt−1) =

∫
p(Yt|Xt)p(Xt|Yt−1)dXt

depends on the likelihood function p(Yt|Xt) which is defined by the measurement
equation ht and known statistic εt.

3.4 The Kalman filter

For the Kalman filter the posterior density is assumed to be Gaussian and thus fully
characterised by the mean and covariance. Moreover, since our scope extends only
to Gaussian models, we note that it can be shown that p(Xt|Yt) is also Gaussian
when the following are true:

• p(Xt−1|Yt−1) is Gaussian;

• ηt−1 and εt are both sampled from Gaussian; distributions with known mean
and covariance;

• gt(Xt−1|ηt−1) is a known linear function; and

• ht(Xt|εt) is also known and linear.

Therefore, in state spaced form

Yt = ZtXt + εt

Xt = TtXt−1 + ηt
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Where Zt and Tt are matrices defining the linear functions εt and ηt are assumed
to be Gaussian noise.

In affine term structure modelling where the set of parameters ρ is known, we
observe a set of m zero-coupon bond yields as the measurement in order to up-
date predictions of n underlying factors. The linear function which relates the risk
factors to the measurements is

Yt = Dt(ρ) + Zt(ρ)Xt + εt.

The prediction step is

Xt = Ct(ρ) + Ft(ρ)Xt−1 + ηt.

Usually εt is assumed to be a m dimensional serially independent Gaussian white
noise with covariance matrix H(ρ). This noise is the measurement error and rep-
resents the variation not captured by the model as well as liquidity effects and
micro-structure noise. ηt with covariance matrix Q(ρ), represents the innovations
process governing the dynamics of the risk factors.

Note that there are no restrictions on the temporal dynamics of the model so
that the model is time varying in all parameters. However, we concern ourselves
only with the Vasicek and AFNS case where all the parameters ρ, are constant with
respect to time. This specificity permits us to re-depict our model simply as

Yt = D + ZXt + ε

Xt = C + FXt−1 + ηt.

Here D and Z depend on risk neutral dynamics and bond tenors while C and F
depend on real world parameters and the observation time step.

The Kalman filter provides the minimum mean square error estimate ofXt. We
denote the mean estimate of Xt by Xt|t and the Variance by Pt|t. In light of our
assumptions, Xt is multivariate normal and we assume without loss of generality
that

X0|0 = E[Xt]

P0|0 = Var[Xt].

The subsequent step-ahead predictionsXt+1|t with covariance Pt+1|t are obtained
from the transition equation as

Xt+1|t = E[Xt+1|Xt = Xt|t]

= C + FXt|t



3.5 Maximum Likelihood Estimation 21

Pt+1|t = Var[Xt+1|Xt = Xt|t]

= FPt|tF
′ +Q.

This in turn allows the forecast of the measurements as

Yt+1|t = E[Yt+1|Xt = Xt|t]

= D + ZXt+1|t,

with covariance

Vt+1|t = Var[Yt+1|Xt = Xt|t]

= ZPt+1|tZ
′ +H.

Having calculated the forecasts, we now direct our focus to reconciling the pre-
dictions with the actual observation at t+ 1. When new information is available at
time t+ 1 we can calculate the error in the prediction as given by

dt+1 = Yt+1 − Yt+1|t.

Finally, we can then update our estimates ofXt+1 as follows1

Xt+1|t+1 = Xt+1|t + Pt+1|tZ
′V −1
t+1|tdt+1

Pt+1|t+1 = Pt+1|t − Pt+1|tZ
′V −1
t+1|tZPt+1|t.

3.5 Maximum Likelihood Estimation

When the model parameters are not known, the log-likelihood is used as an objec-
tive function that can be optimised numerically in order to estimate the parameters
that are implied by the zero-coupon bond yield data. As evident from the dis-
course of Chapter 2, maximum likelihood estimation is perhaps the distillation of
our study. Therefore this discussion would be incomplete without making pro-
nounced some of the central elements that relate to optimising the likelihood func-
tion.

Owing to their limiting properties, maximum likelihood estimators (MLEs) are
invoked continually in the theory and practice of statistics. A thorough study of the
theory of statistical inference and MLEs is given in the book by Millar (2011). Under
our assumptions the conditional density function corresponding to the likelihood
is defined as

f(yt+1|yt+1|t) =
[
(2π)N |Vt+1|t|

]−1
2 exp

[
−

1

2
d′tV

−1
t+1|tdt

]
.

1 There are numerous equivalent formulations, see Lund (1997) for example
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The associated log-likelihood is then

l(ρ) = −
NT

2
log(2π)−

1

2

T∑
t=1

(
log |Vt+1|t|+ d′tV

−1
t+1|tdt

)
,

so that the parameter estimates are

ρ̂(y) = max
ρ
l(ρ, y).

The parameter estimates ρ̂(y) are dependent on observations Y and are thus
stochastic. If the distribution of the parameter estimates is sufficiently regular,
MLEs show some desirable qualities as the sample size approaches infinity. One
of the characteristics is the fact that ρ̂(y) converges to the true parameter set ρ0 i.e.
they are consistent. Another useful property is the Gaussian limiting distribution
(Pitsillis, 2015) so that

P(
√
T (ρ̂(y)− ρ0))→ P(N (0,I(ρ0)−1))

where I(ρ0) is the Fischer information matrix. This matrix is defined as

I(ρ0)ij = E
[(

∂

∂ρi
log f(Y |ρ)

)(
∂

∂ρj
log f(Y |ρ)

)]∣∣∣∣
ρ=ρ0

.

Under certain regularity conditions this becomes

I(ρ0)ij = −E
[(

∂2

∂ρi∂ρj
log f(Y |ρ)

)]∣∣∣∣
ρ=ρ0

.

This is clearly the information matrix because its inverse is the covariance matrix
of the limiting distribution as shown above. This means that with a large enough
Fischer information matrix, this covariance matrix will be zero. Obviously this will
only occur when we have all the information so that ρ̂ = ρ0 with certainty. Fur-
thermore, I(ρ0) has the geometric interpretation of being the curvature. That is,
apart from some pathological cases, the greater the (negative) curvature of the like-
lihood function around ρ0, the more information there is about the true parameters
making estimation more accurate.

The optimisation of the likelihood function requires the calculation of the first
derivative and Fisher information matrix which is an arduous exercise. However
Harvey (1989) (Veerhuis, 2011) illustrates that the information matrix is simply

Iij =
1

2

∑
t

[
V −1
t+1|t

∂Vt+1|t

∂ρi
V −1
t+1|t

∂Vt+1|t

∂ρj

]′
+ E

[∑
t

(
∂dt

∂ρi

)′
V −1
t+1|t

∂dt

∂ρj

]
,
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and we get an asymptotically equivalent result when we drop the expectation. We
then maximise the likelihood function by setting the scores

U(ρ) =
∂l(ρ|Y )

∂ρ

to zero. The score vector can be computed as

U(ρ) =
1

2

∑
t

{[
V −1
t+1|t

∂Vt+1|t

∂ρi

]
(I − V −1

t+1|tdt+1d
′
t+1) + 2

∂d′t+1

∂ρi
V −1
t+1|tdt

}
.

Here the score vector and Fisher information matrix are represented explicitly,

however the new terms
∂Vt+1|t

∂ρi
and

∂dt

∂ρi
need further exploration. They are ex-

pressed as

∂dt

∂ρi
= −Z

∂Xt+1|t

∂ρi
−
∂Z

∂ρi
Xt+1|t −

∂D

∂ρi
∂Vt+1|t

∂ρi
=
∂Z

∂ρi
Pt+1|tZ

′ + Z
∂Pt+1|t

∂ρi
Z′ + ZPt+1|t

∂Z′

∂ρi
+
∂H

∂ρi

Furthermore we need expressions for
∂Xt+1|t

∂ρi
and

∂Pt+1|t

∂ρi
. These are simply

∂Xt+1|t

∂ρi
=
∂C

∂ρi
+
∂F

∂ρi
Xt|t + F

∂Xt|t

∂ρi
∂Pt+1|t

∂ρi
=
∂F

∂ρi
Pt|tF

′ + F
∂Pt|t

∂ρi
F + FPt|t

∂F ′

∂ρi
+
∂Q

∂ρi

∂Xt

ρi
∂Xt|t

∂ρi
=
∂Xt|t−1

∂ρi
+
∂Pt|t−1

∂ρi
Z′V −1

t|t−1dt + Pt|t−1

∂Z′

∂ρi
V −1
t|t−1dt

= Pt|t−1Z
′
∂V −1

t|t−1

∂ρi
dt + Pt|t−1Z

′V −1
t|t−1

∂dt

∂ρi
∂Pt|t

∂ρi
=
∂Pt|t−1

∂ρi
−
∂Pt|t−1

∂ρi
Z′V −1

t|t−1ZPt|t−1 − Pt|t−1

∂Z′

∂ρi
V −1
t|t−1ZPt|t−1

− Pt|t−1Z
′
∂V −1

t|t−1

∂ρi
ZPt|t−1 − Pt|t−1Z

′V −1
t|t−1

∂Z

∂ρi
Pt|t−1

− Pt|t−1Z
′V −1
t|t−1Z

∂Pt|t−1

∂ρi
.

This concludes the derivation of the Kalman filter in general form and we can now
implement this for both the Vasicek and AFNS models. Obviously this requires
looping through twhere the step size is the frequency of sampling from the market
(e.g. daily, weekly, monthly, etc.). We conclude this chapter by a presentation of the
specific state-space formulations of the Vasicek and AFNS models below.
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3.6 The State-space Fomulation

To reformulate or model to state-space form, the measurement and transition equa-
tions of our system have to be defined. Our development begins with a specifica-
tion of m market yields, y(τ ) (corresponding to bond tenors τ1, τ2, ..., τm) which
we will observe from market data as our measurement in each time step. In gen-
eral, we require 3 bond tenors for a 3-factor model however, adding more matu-
rities introduces more cross-sectional information about the term structure at each
time step. This information is especially important in specifying the price of risk
(Pitsillis, 2015). The measurement equation therefore relates the measured yields to
the unobservable factors in the following:

yt(τ ) = −
lnPt(τ )

τ
=
−A(τ )−

∑3
j=1Bj(τ )yj,t

τ
.

This is a general equation and applies for continuous t, but for any practical appli-
cation one has to discretize t since observations are discrete. Denoting the current
time step as ti and the next as ti+1 = ti+4t, where4t is the sampling frequency;
the measurement equation for both the Vasicek and AFNS models is

yi(τ1)

yi(τ2)
...

yi(τm)

 = −


A(τ1)
τ1

A(τ2)
τ2
...

A(τm)
τm

−

B1(τ1)
τ1

B2(τ1)
τ1

B3(τ1)
τ1

B1(τ2)
τ1

B2(τ2)
τ2

B3(τ2)
τ2

...
...

...
B1(τm)
τm

B2(τm)
τm

B3(τm)
τm


x1,i

x2,i

x3,i

+


ε1

ε2
...
εm


or equivalently

Yt = Dt(ρ) + ZtXt + εt

where

ε ∼ N (0,H)

H =


h2

1 0 . . . 0

0 h2
2 . . . 0

...
...

. . .
...

0 0 . . . h2
m

 .

The transition equations are depend on the dynamics of the underlying factors
which are different for both models. In our case, we considered the independent
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Vasicek model with a diagonal κ̄ therefore the transition equation for this model isx1,i+1

x2,i+1

x3,i+1

 =

θ1(1− eκ14t)

θ2(1− eκ24t)

θ3(1− eκ34t)

+

e
κ14t 0 0

0 eκ24t 0

0 0 eκ34t


x1,i

x2,i

x3,i

+

η1

η2

η3


or equivalently

Xt+1 = Ct+1(ρ) + Ft+1(ρ)Xt + ηt+1

where

η ∼ N (0, Q)

Q =


σ2
1

2κ1

(
1− e−2κ14t

)
0 0

0
σ2
2

2κ2

(
1− e−2κ24t

)
0

0 0
σ2
3

2κ3

(
1− e−2κ34t

)
 .

The form of the transition system for the AFNS model is similar to the Vasicek
since both models are Gaussian. However, a more general representation of the
transition equation of Gaussian models is required because although the covari-
ance matrix is diagonal, the κ matrix is not. In general, the AFNS state transition
equation is

Xt+1 = (I − exp(−κ̄4 t))θ̄ + exp(−κ̄4 t)Xt + ηt+1

or equivalently

Xt+1 = Ct+1(ρ) + Ft+1(ρ)Xt + ηt+1

where I is the identity matrix with the same size as κ̄ and

η ∼ N (0, Q)

Q =

∫ 4t
0

e−κ̄sΣΣ′e−κ̄
′sds.

Since the Kalman filter is recursive, one needs to find an appropriate starting
values for the recursion. We use the unconditional mean and variance or our sys-
tem as initialisations. Thus

X0|0 = θ̄

for both models whereas

P0|0 =


σ2
1

2κ1
0 0

0
σ2
2

2κ2
0

0 0
σ2
3

2κ3


for the Vasicek model and

P0|0 =

∫ ∞
0

e−κ̄sΣΣ′e−κ̄
′sds

for the AFNS model. This concludes the chapter.



Chapter 4

Simulation Based Study of
Parameter Estimates

When simulation studies of the Kalman filter are done– where the underlying state
process is simulated from a known set of parameters– the original parameters are
rarely recovered for multi-factor models. The aim of this study therefore, is to per-
form numerical experiments in order to find out why, and whether this matters.
The key questions which were considered in order to achieve this aim were as fol-
lows.

• Are there multiple parametrizations of a model that lead to essentially the
same model?

• Does the quasi-log likelihood function that is maximised have many essen-
tially equivalent local maxima?

• Given that we are unable to obtain the original parameters for the state pro-
cess, how does this affect our ability to price options (bond options)?

To answer these questions a time series of zero-coupon bond yields of different
maturities was simulated from a known set of parameters and these were consid-
ered as the measurement data excluding noise. A measurement noise matrix was
then specified (also known) in order to account for the measurement error inher-
ent in real data. The likelihood function was then optimised multiple times from a
randomly generated set of starting parameters within the feasible parameter space.

The optimisation was successful for both of the considered models and it was
found that the original parameters were not recovered (entirely). The AFNS model
however recovers all but one of the parameters. Furthermore, the quasi-log like-
lihood function seems to have multiple maxima corresponding to each of the dis-
parate parameters. Monte Carlo approximations of bond call options were done
for each parameter set to illustrate the effects on option pricing. Since the primary
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focus of the study was the effect of disparate parameter sets on option pricing, the
price of risk was set to zero in each case.

4.1 Yields and the Kalman Filter

Simulations were performed using a time step of 0.01 years (4t = 1/100 yrs)
and the sampling period was 30 years (T = 30 yrs). In every case, the bond tenors
that were employed were 3 months, 6 months, 1 year and 5 years. Using these
tenors and a set of arbitrary but feasible parameters, paths of the underlying vari-
ables were simulated following which, bond yields were calculated. Then Gaussian
white noise was added to these yields as measurement error. The noise standard
deviation was chosen to be equal for all the yields. This results in some loss of
generality. However, the yields would be ”measured” from the same market. So it
should be plausible to suppose that they would be subject to the same mechanisms
that introduce the measurement error and therefore that this error is similar.

The resulting time series of bond yields with noise yk, k ε {1, ...., n} (n =

T/4t) was passed into an optimisation routine to search the feasible parameter
space for the original parameters that were used to simulate the yields. In each it-
eration the Kalman filter is called with the specified starting parameters (a feasible
random guess) then the quasi-log likelihood value is calculated and the optimiser
iterates through until the function maximising parameters are identified1. Ten sets
of initial parameters were generated randomly and for each set, fifteen optimisa-
tions were conducted where the resulting parameters including the likelihood val-
ues corresponding to each of the fifteen runs were calculated. The average of these
parameters as well as the average likelihood value was recorded as the final re-
sult. This means that for ten different starting values, ten sets of parameters with
respective likelihood values result. The optimisation was performed using the sqp
algorithm in the constrained non-linear programming solver fmincon in Matlab2.

1 Most optimisers minimise the function thus one may need to optimise the negative of the objec-
tive function.

2 More information regarding this solver may be found in: http://www.mathworks.com/

help/optim/ug/fmincon.html?requestedDomain=www.mathworks.com

http://www.mathworks.com/help/optim/ug/fmincon.html?requestedDomain=www.mathworks.com
http://www.mathworks.com/help/optim/ug/fmincon.html?requestedDomain=www.mathworks.com
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4.2 Single Factor Vasicek

This methodology was applied first to the single factor Vasicek model. The results
as displayed in Table 4.1 show that the original parameters have been identified
successfully. The low standard deviations also show that these parameters were
recovered with high precision. Furthermore, Figure 4.1 clearly shows that the fil-
tered path approximates the simulated path satisfactorily for the one-factor Vasicek
model. In this case there were no problems with recovering the original parameters.
These results are hardly surprising because one factor models are not known to be
susceptible to the problem of having non-unique parameter sets that maximise the
likelihood function. The problem is endemic to multi-factor models.

Tab. 4.1: One factor Vasicek model parameter estimation results
Parameters True value Mean Est. Std. Dev

κ 0.6000 0.6003 0.0007
θ 0.1000 0.1000 0.0000
σ 0.0200 0.0202 0.0009
ε 0.0001 0.0001 0.0000

Fig. 4.1: Simulated and Filtered states for one factor Vasicek— this graph was con-
structed by simulating the short rate from a known set of parameters
shown in Table 4.1 and then the mean estimates from the optimisation
were used to generate the filtered paths from bond yields.
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4.3 Three-Factor Vasicek Model

Many optimisations of the independent Vasicek model were performed but to avoid
redundancy we present a summary of the results. Table 4.2 displays some of the
permutations of recovered parameters from the optimisation. The disparities be-
tween the parameter sets in this table are immediately obvious. Clearly none of
the recovered parameters match the original ones except for the measurement er-
ror. Furthermore, we see from these results that although the parameters are dif-
ferent, the value of the likelihood function is very similar in all cases particularly
for Runs 1,4,6 and 7. This suggests one or a combination of two things. The first
being that the likelihood function has local maxima that are similar to the global
maximum and the second being that the global maximum is not given uniquely
by one parameter set. The latter case may further insinuate that there are multiple
parametrisations even for a single model. On the other hand, the former may mean
that the although the likelihood function has a global maximum corresponding to
a unique set of parameters, the numerical techniques used in the optimisation find
a local maximum which may in some instances result in a model that differs in
behaviour when compared to the actual parameters.

Moreover, Figures 4.3 and 4.4 show a comparison of simulated and filtered short
rate and underlying factors respectively. We used the original parameters to sim-
ulate the underlying factors from which we then calculated the short rate as well
as the corresponding zero-coupon bond yields with added white noise. Figure 4.3
was then constructed by filtering through these yields using the original parame-
ters and the rest of the parameters in Table 4.2 for the short rate; Figure 4.4 shows
the results of filtering through the same yields but for the unobservable factors.
What is clear from these figures is that the Kalman filter does not capture the un-
derlying processes (Xis) correctly but the short rate is captured well in all cases.
This is simply because the filter is designed to approximate the short rate so the fil-
tered underlying processes are not necessarily the same as the simulated ones but
the short rate process always resembles the simulated short rate.

Since rsimulated = X1
simulated + X3

simulated + X2
simulated, a filter that cor-

rectly captures all the underlying processes will surely capture the short rate pro-
cess as well. So if the short rate can be correctly filtered out even when the under-
lying processes are not, there should be at least two ways of representing it. In fact
the short rate r can be expressed as follows

r(t) = X1 +X2 +X3

Where

Xi(t) ∼ N(Xi(0)e−κit + θi(1− e−κit),Φi(t))
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⇒ r(t) ∼ N(
∑i=3
i=1(Xi(0)e−κit + θi(1− e−κit)),

∑i=3
i=1 Φi(t))

⇒ r(t) =
∑i=3
i=1(Xi(0)e−κit + θi(1− e−κit)) +

√∑i=3
i=1 Φi(t)Z

Where Z ∼ N(0, 1) and Φi(t) =
σ2
i

2κi
(1− e2κit).

As one can imagine, there will be a numerous ways of arriving at the same
short rate i.e. whatever set of parameters yields the drift

∑i=3
i=1(Xi(0)e−κit +

θi(1− e−κit)) and volatility
√∑i=3

i=1 Φi(t) will suffice. Suppose for example that

Xi(0) = θi then r(t) =
∑i=3
i=1 θi +

√∑i=3
i=1 Φi(t)Z in which case θ1 = 0.1,

θ2 = 0.2, θ1 = 0.3 would an short rate equivalent to θ1 = 0.2, θ2 = 0.2, θ1 =

0.2 if the volatilities are kept the same. Likewise Φ1(t) = 0.02, Φ2(t) = 0.04,
Φ3(t) = 0.02 yields the same short rate as Φi(t) = (0.02 + 0.04 + 0.02)/3.

Table 4.3 clearly shows that the parameters from Table 4.2 yield the same short
rate, this holds for any feasible t. This is in harmony with the above analysis,
i.e. there are many equivalent parameter sets that represent the same short rate.
This means therefore that the global maximum is not determined uniquely by one
parameter set. One should therefore not expect to consistently recover the original
parameters when optimising– in fact the original parameters are rarely recovered.

The question about which are the ”true” parameters is one that requires con-
sideration. For this we remind the reader that the Kalman filter takes zero-coupon
bond yields as the observable processes and such are expressed as

P
(τ)
t = EQ

[
exp

(
−
∫ t+τ

t
rudu

)
· 1
Ft].

Hence given that the different parametrisations yield the same short rate process,
the bond yields should also follow the same processes. The optimiser can there-
fore not ascertain which set of parameters was used to simulate the yields. One
therefore gets the solution closest to the initial guess.

We are able to pose such a question here because this is a simulation based study
where every parameter is known beforehand but in reality one should consider
whether the ”true” parameter set does indeed exist and if so, whether it can be
recovered deliberately in the context of our model. Real data is not simulated so it
is extremely difficult or even impossible to know the ”data generating” parameter
set. Thus it would be nonsensical to consider two parameter sets which yield the
same short rate model with partiality.

We see furthermore in Figure 4.2 that for the most part, the prices are similar
with only two parameter sets pricing without the error bound. Run 6 as seen in
Table 4.3 has a slightly higher volatility in rt compared to the rest and this is prob-
ably why it has a higher price. This shows that it is possible to get parameter sets
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that result in different prices, depending on the precision in the optimisation. The
tolerance and the maximum number of iterations used in the optimisation strongly
affect the quality of the results. For obvious reasons one would prefer the highest
tolerance and maximum number of iterations because this gives more accurate re-
sults. However, this was made impossible by the time constraints and the speed of
the computers that could be used in this study so the optimisation is not perfect.

Tab. 4.2: Results from the three factor Vasicek model
Original Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

Likelihood 2386322 2386322 2386318 2386316 2386321 2386216 2386322 2386321
κ1 0.6 0.420892 0.401544 0.449136 0.368763 0.004846 0.658336 0.678350
κ2 0.3 0.385128 0.180147 0.389024 0.411483 0.391150 0.396464 0.406237
κ3 0.7 0.682629 0.676115 0.694639 0.683725 0.623222 0.659439 0.348437
θ1 0.01 0.009316 0.031120 0.032404 0.007067 0.000192 0.021370 0.022176
θ2 0.02 0.051577 0.010588 0.000281 0.014269 0.004163 0.021827 0.024996
θ3 0.04 0.009174 0.028338 0.037380 0.048730 0.070893 0.027284 0.022883
σ1 0.02 0.037241 0.050490 0.029934 0.021116 0.001014 0.019496 0.034857
σ2 0.05 0.034889 0.001444 0.042366 0.046497 0.046837 0.050411 0.049291
σ3 0.03 0.034432 0.035194 0.033131 0.034379 0.039969 0.030524 0.012095
ε 0.001 0.001000 0.001000 0.001000 0.001000 0.001000 0.00993 0.001000

Tab. 4.3: Drift and volatility of short rate using t = 0.01 years,Xi(0) = θi
Original Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7∑i=3

i=1(Xi(0)e−κit + θi(1− e−κit)) 0.07000 0.07007 0.07005 0.07007 0.07007 0.07525 0.07048 0.07006√∑i=3
i=1 Φi(t) 0.00615 0.00614 0.00614 0.00614 0.00614 0.00614 0.00619 0.00614



4.3 Three-Factor Vasicek Model 32

Fig. 4.2: Three-factor Vasicek bond call options— this graph shows Monte Carlo
zero-coupon bond call option prices under the three-factor Vasicek model
for each parameter set in Table 4.2. The horizontal axis corresponds to ma-
turities 3m, 6m, 1yr and 5yrs as ranked in ascending maturity. 500 000
realisations were used to calculate each call price using an exercise price
of e−0.5(θ1+θ2+θ3) where the θ corresponds only to the original param-
eter set. The maturity was 6 months. Lastly, the error bounds are three
standard deviations from the original parameter price.
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Fig. 4.3: Simulated and Filtered three-factor Vasicek Short rates.
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Fig. 4.4: Simulated and Filtered three-factor Vasicek states.
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4.4 The Independent Risk-Neutral AFNS

Upon examining the results of Table 4.4 one can easily notice that contrary to the
Vasicek model, the AFNS optimisation has a reasonably good parameter recovery.
All the parameters excluding θ3 have been reproduced. This serves as confirmation
that the AFNS model has a better recovery of parameters. This is because the model
has fewer parameters therefore permutations of possible sets are sparse. Further-
more, the underlying processes of the AFNS have been identified in advance and
the model is in fact constructed so that the underlying processes are exactly the
level, slope and curvature. We know thatX1 is the level,X2 is the slope andX3 is
the curvature. All of these factors are distinct and have specific and unique coeffi-
cients in the bond yield formula. To notice this, recall that for the AFNS

y(t, τ ) = X1(t) +

[
1− e−λτ

λτ

]
X2(t) +

[
1− e−λτ

λτ
− e−λτ

]
X3(t)−

A(t, τ )

τ
,

whereas for the Vasicek

y(t, τ ) =
B1(t, τ )

τ
X1(t) +

B2(t, τ )

τ
X2(t) +

B3(t, τ )

τ
X3(t)−

A(t, τ )

τ
.

The Bi(t,τ)
τ

terms in the latter have the same form whereas the coefficients of the
X1(t) terms in the former are significantly different. This has the implication that
for the Vasicek model, one does not know at all whatX1(t) is and how it is different
toX2(t) for instance. Thus these models accommodate any set of processes as long
as they model short rate and the bond prices correctly. The AFNS removes this
ambiguity by having specific underlying factors so that the level does not take the
place of the slope for example. The Kalman filter can distinguish between X1(t)

andX1(t) because of their specific dynamics and unique relation both to the bond
price and the short rate.

This is in harmony with the results shown in Figure 4.7 (cf. Figure 4.4) i.e. as
opposed to the Vasicek model the simulated factor processes are well approximated
by the filter in the AFNS. Figure 4.6 shows that the short rate is also approximated
well. These figures were constructed by the same methodology used for Figures 4.3
and 4.4 above. A possible explanation to the failure in approximating X3(t) may
be that the Kalman filter estimates the short rate which is only a function of X1(t)

and X2(t) so that because X3(t) is only features in the bond yield equation, it is
not as restricted and therefore it is not estimated well. Another likely possibility is
that the optimiser found local maxima which do not have the right θ3.

The specificity of the AFNS model allows one know that ”true” parameters do
indeed exist in its context. This is because two disparate sets of parameters have
different economic meanings since all the factors have well defined implications
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for the bond curve. The fact that all the level and slope are recovered well gives a
good short rate approximation however, the mean reversion level of the curvature
is poorly recovered. This inspires mixed expectations about how the bond prices
generated from the optimisation parameters will compare to those of the original
parameters because different curvatures can mean different yield curves while sim-
ilar short rates should mean similar yield curves.

Lastly, the option prices in Figure 4.5 are all clearly within the error bound thus
we conclude they are similar.

Tab. 4.4: Results from the AFNS model
Original Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

Likelihood 84796.58 84796.41 84796.41 84796.41 84796.41 84796.41 84796.41 84796.41
λ 0.10000 0.09589 0.09577 0.09589 0.09589 0.09586 0.09589 0.09592
θ1 0.17221 0.16743 0.17002 0.17270 0.17408 0.17460 0.17203 0.16169
θ2 0.18587 0.18547 0.18421 0.18061 0.17992 0.18103 0.18151 0.19121
θ3 0.06905 0.10142 0.07334 0.08765 0.041765 0.05579 0.06062 0.06276
σ1 0.04154 0.04112 0.04111 0.04112 0.04112 0.04112 0.04112 0.04113
σ1 0.03029 0.03066 0.03067 0.03065 0.03066 0.03066 0.03065 0.03065
σ1 0.00890 0.01070 0.01075 0.01070 0.01070 0.01071 0.01070 0.01069
ε 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010

Fig. 4.5: Three-factor AFNS bond call options— this graph shows Monte Carlo
zero-coupon bond call option prices under the three-factor AFNS model
for each parameter set in Table 4.4. The horizontal axis corresponds to ma-
turities 3m, 6m, 1yr and 5yrs as ranked in ascending maturity. 500 000
realisations were used to calculate each call price using an exercise price
of e−0.5(θ1+θ2+θ3) where the θ corresponds only to the original parame-
ter set. The maturity was 6 months. Finally, the error bounds are three
standard deviations from the original parameter price.
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Fig. 4.6: Simulated and Filtered three-factor AFNS Short rates.
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Fig. 4.7: Simulated and Filtered three-factor AFNS factors rates.



Chapter 5

Conclusions

In conclusion, the raison d’être of this dissertation was to employ numerical experi-
ments to explain the existence disparate parameter estimates in multi-factor affine
term structure models and to establish whether these disparities matter as far as
option pricing is concerned. To guide our conclusions we answer the questions
outlined at the start of the previous chapter.

The disparate parameter sets essentially lead to the same short rate process.
This was demonstrated in the assessment of the three-factor Vasicek model because
it resulted in different parameter recoveries. The AFNS model recovers its param-
eters adequately except for the long term drift of the curvature which is different
in every run. It was shown that the cause of the optimisation difficulties in the Va-
sicek model is that the model is specified with the same functional form for each
variable so that it is not known in advance what the unobservable factors are. The
specification of the AFNS on the other hand, is such that every factor has a distinct
functional form so there is no ambiguity about what each factor represents. Thus
the AFNS precludes possibilities for different parameter sets.

The likelihood function has many essentially equivalent maxima and possibly
a global maximum value corresponding to several parameter sets. This follows
logically from the fact that the parameter sets are representations of the same short
rate process. Since they model the same short rate process, which in turn produces
the yields, the parameters should have the same likelihood.

Finally, the models generally lead to the same option prices, however it is possi-
ble to have different prices as a result of the precision of the optimisation. Therefore
one should use a precise optimiser.
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Appendix A

Proof of Proposition 2.1

A.1 Derivation of B(t,T) Term

As explained by Christensen et al. (2011), we begin the proof of this proposition by
limiting the volatility to be constant. The system of ODEs forB(t, T ) then becomes

dB(t, T )

dt
= δ′X + κ̃′B(t, T ), B(T, T ) = 0.

Since

d

dt
[eκ̃
′(T−t)B(t, T )] = eκ̃

′(T−t)dB(t, T )

dt
− κ̃′eκ̃′(T−t)B(t, T )

we can conclude that
T∫
t

d

dt
[eκ̃
′(T−s)B(s, T )]ds =

T∫
t

eκ̃
′(T−s)δXds

moreover, when we invoke the boundary conditions it is easy to see that

B(t, T ) = −eκ̃′(T−t)
T∫
t

eκ̃
′(T−s)δXds.

Now define κ̃′ and δX as

κ̃′ =

0 0 0
0 λ 0
0 −λ λ

 , δX =

1
1
0

 .
We can then show that

eκ̃
′(T−t) =

1 0 0

0 e−λ(T−t) 0

0 −λ(T − t)eλ(T−t) e−λ(T−t)


and

e−κ̃
′(T−t) =

1 0 0

0 e−λ(T−t) 0

0 λ(T − t)eλ(T−t) e−λ(T−t)

 .
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Substituting into the ODE

B(t, T ) = −

1 0 0

0 e−λ(T−t) 0

0 λ(T − t)eλ(T−t) e−λ(T−t)

 T∫
t

1 0 0

0 e−λ(T−s) 0

0 −λ(T − s)eλ(T−s) e−λ(T−s)

1
1
0

 ds
= −

1 0 0

0 e−λ(T−t) 0

0 λ(T − t)eλ(T−t) e−λ(T−t)

 T∫
t

 1

e−λ(T−s)

−λ(T − s)eλ(T−s)

 ds.
and because

t∫
T

ds = T − t,

t∫
T

e−λ(T−s)ds =

[−1

λ
eλ(T−s)

]T
t

= −
1− eλ(T−t)

λ
,

T∫
t

−λ(T − s)eλ(T−t)ds =
1

λ

0∫
λ(T−t)

ueudu

= −(T − t)eλ(T−t) −
1− eλ(T−t)

λ
,

the solution becomes

B(t, T ) = −

1 0 0

0 e−λ(T−t) 0

0 λ(T − t)eλ(T−t) e−λ(T−t)


 T − t

−1−eλ(T−t)
λ

−(T − t)eλ(T−t) − 1−eλ(T−t)
λ


=

 −(T − t)
−1−e−λ(T−t)

λ

(T − t)e−λ(T−t) − 1−e−λ(T−t)
λ

 .
which concludes our proof forB(t, T ).

A.2 Derivation of Yield Adjustment Term

A(t, T ) as expressed in proposition 2.1 is just a simple result of matrix multipli-
cation for the fist term. The closed form of the yield adjustment term is long and
deriving it is an arduous undertaking, we therefore present it in Appendix A.

The last term of A(t, T ) may be derived by equating θ to zero. In that case the
yield adjustment term has this general form

A(t, T )

T − t
=

1

2

1

T − t

∫ T

t

3∑
j=1

(Σ′B(s, T )B(s, T )′Σ)j,jds.
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Given the volatility matrix

Σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


the analytical solution may be evaluated as follows

A(t, T )

T − t
=

1

2

1

T − t

∫ T

t

3∑
j=1

[σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33

B1(t, T )
B2(t, T )
B3(t, T )


(
B1(t, T ) B2(t, T ) B3(t, T )

)σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

]
j,j

=
Ā

2

1

T − t

∫ T

t
B1(s, T )2ds+

B̄

2

1

T − t

∫ T

t
B2(s, T )2ds

+
C̄

2

1

T − t

∫ T

t
B3(s, T )2ds

+ D̄
1

T − t

∫ T

t
B1(s, T )B2(s, T )ds

+ Ē
1

T − t

∫ T

t
B1(s, T )B3(s, T )ds

+ F̄
1

T − t

∫ T

t
B2(s, T )B3(s, T )ds

where

Ā = σ2
11 + σ2

12 + σ2
13,

B̄ = σ2
21 + σ2

22 + σ2
33,

C̄ = σ2
31 + σ2

32 + σ2
33,

D̄ = σ11σ21 + σ12σ22 + σ13σ23,

Ē = σ11σ31 + σ12σ32 + σ13σ33,

F̄ = σ21σ31 + σ22σ32 + σ23σ33.
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The six integrals above can further be evaluated as

I1 =
Ā

2

1

T − t

∫ T

t
B1(s, T )2ds

=
Ā

2

1

T − t

∫ T

t
(T − s)2ds =

Ā

6
(T − t)2

I2 =
B̄

2

1

T − t

∫ T

t
B2(s, T )2ds

=
B̄

2

1

T − t

∫ T

t

[
−

1− e−λ(T−s)

λ

]2

ds

= B̄

[
1

2λ2
−

1

λ3

1− e−λ(T−t)

T − t
+

1

4λ3

1− e−2λ(T−t)

T − t

]
I3 =

C̄

2

1

T − t

∫ T

t
B3(s, T )2ds

=
C̄

2

1

T − t

∫ T

t

[
(T − s)e−λ(T−s) −

1− e−λ(T−s)

λ

]
ds

= C̄

[
1

2λ2
+

1

λ2
e−λ(T−t) −

1

4λ
(T − t)e2λ(T−t) −

3

4λ2
(T − t)e2λ(T−t) −

2

λ3

1− e−λ(T−t)

T − t

−
5

8λ3

1− e−2λ(T−t)

T − t

]
I4 =

D̄

T − t

∫ T

t
B1(s, T )B2(s, T )ds

=
D̄

T − t

∫ T

t
(T − s)

1− e−λ(T−s)

λ
ds

D̄

[
1

2λ
(T − t) +

1

λ2
e−λ(T−t) −

1

λ3

1− e−λ(T−t)

T − t

]
I5 = Ē

1

T − t

∫ T

t
B1(s, T )B3(s, T )ds

= Ē
1

T − t

∫ T

t
−(T − s)

[
(T − s)e−λ(T−s) −

1− e−λ(T−s)

λ

]
ds

= Ē

[
3

λ2
e−λ(T−1) +

1

2λ
(T − t) +

1

λ
(T − t)e−λ(t−t) −

3

λ3

1− e−λ(T−t)

T − t

]
I6 = F̄

1

T − t

∫ T

t
B2(s, T )B3(s, T )ds

= F̄
1

T − t

∫ T

t

[
−

1− e−λ(T−t)

T − t

][
(T − s)e−λ(T−s) −

1− e−λ(T−s)

λ

]
ds

= F̄

[
1

λ2
+

1

λ2
e−λ(T−t) −

2

2λ2
e−2λ(T−t) −

3

λ3

1− e−λ(T−t)

T − t
+

3

4λ3

1− e−2λ(T−t)

T − t

]
.
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