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Abstract 

 

Intellectual disability/developmental delay (ID/DD) is a significant problem in child health 

affecting 2 to 3% of the population worldwide. While the underlying aetiology of ID/DD in a 

large proportion (about 50%) of these patients is unknown, 15 to 20% of the internationally 

reported cases detected using microarray technologies are due to copy number variants 

(CNVs), whereas only 3 to 5% of ID/DD can be identified with conventional cytogenetics.  

The Affymetrix® Cytoscan™ High Density (HD) Array (Affymetrix, Santa Clara, CA) 

containing over 2.4 million markers for copy number (CN) was used to detect genome-wide 

high resolution CN and single nucleotide polymorphisms (SNPs) in a cohort of 27 carefully 

selected patient samples. The patient selection was done based on relevant phenotypes, 

which included dysmorphism, ID/DD, suspected syndromes, and family history. Data 

analysis was performed using the Affymetrix Chromosome Analysis Suite (ChAS) 

(Affymetrix, Santa Clara, CA, USA software).          

Seven of the patients demonstrated pathogenic CNVs. Diagnoses included Kleefstra 

syndrome, Mowat-Wilson syndrome, Wolf-Hirschhorn syndrome, tetrasomy 9p, and a 

susceptibility locus for neurodevelopmental disorders due to a deletion of chromosome 

1q21.1. This indicated a 26% detection rate in this cohort. In addition, three variants of 

unknown significance (VOUS) were detected.  

The aim of this study was to determine the potential relevance and applicability of microarray 

technologies for the detection of CNVs in the Western Cape ID/DD population of South 

Africa (SA) and in so doing, to introduce and develop molecular cytogenetics skills in the 

routine diagnostic cytogenetic environment. The results obtained in this study confirmed the 

significant improvement in the detection rate of CNVs in patients with ID/DD and thus the 

diagnostic utility of this technology for the detection of CNVs in ID/DD patients was 

confirmed. 
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Plan of Dissertation 

This dissertation consists of five chapters. Chapter One presents the background of 

intellectual disability and cytogenomic microarrays. This chapter also outlines the aim and 

the study approach. Chapter Two includes the patient selection, molecular methodology, 

and description of the analysis of the data. Chapter Three is a detailed presentation of the 

findings of this study. In Chapter Four, the study and the resulting findings are discussed 

within the SA context. Chapter Five concludes the study with specific recommendations for 

the introduction of this technology into the diagnostic setting in SA. Source referencing 

according to the Harvard system was used throughout this dissertation. Although an attempt 

has been made to use terms ID and/or DD interchangeably, there are instances where each 

distinguishable phenotype may be referred to specifically. The terms „array comparative 

genomic hybridization (aCGH)‟ and „cytogenomic microarray analysis (CMA)‟ have been 

used interchangeably in keeping with the applicable referenced information source. 
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CHAPTER 1 INTRODUCTION 

 

1.1 BACKGROUND 

Cytogenetics is a component of genetics and involves the study of the structure and function 

of cells, specifically the chromosomes. Cytogenetic analysis is mainly concerned with the 

detection of gains and losses of chromosomal material, as well as structural abberations 

such as translocations. Conventional cytogenetics i.e. karyotyping has traditionally been the 

gold standard cytogenetic methodology but gradual introduction of molecular techniques for 

the detection of genomic copy number variations (CNVs) has created a new subdiscipline of 

cytogenetics i.e. molecular cytogenetics. 

Standard cytogenetic techniques, such as Giemsa banding (G-banding) (Figure 1), can 

identify large aberrations including deletions, duplications, amplifications and unbalanced 

translocations, but limited resolution makes these tools unreliable for the detection of CNVs 

less than 5 Megabases (Mb) in size. Conventional cytogenetic methods are capable of 

detecting chromosome abnormalities in 10 to 15% of ID/DD patients depending on selection 

of the patient cohort (Ropers, 2008), though Shevell et al. (2003) reported a detection rate of 

only 3.7% a few years earlier. Nonetheless, a large number of patients with ID show an 

apparently „normal‟ Karyogram.  

      

Figure 1: Depiction of a Karyogram ('normal' male - 46,XY) http://carolguze.com/text/102-14-

humangenetics2.shtml 
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Despite the low detection rate however, chromosome analysis is still important for the 

detection of mosaicism and chromosomal structural rearrangements (Bi et al., 2013). 

Inherited balanced translocations are seen in 1 in 500 ID patients and de novo balanced 

translocations are seen in 1 in 12 000 ID patients (Jacobs et al., 1992). Chromosome 

analysis has further limitations: cell culture is required, an extended turnaround time (TAT), 

and only large abnormalities can be detected depending on the chromosome morphology. 

Other limitations include the labour-intensive nature of chromosome analysis, which 

increases staffing requirements, and work space area. Chromosome analysis is subjective 

and even large abnormalities can be missed, depending on the location of the abnormality 

and the skill of the cytogeneticist (Miller et al., 2010).  

The sub-discipline of molecular cytogenetics target the actual DNA molecule to detect CNVs. 

These techniques include the Fluorescence in situ Hybridization (FISH), Multiplex Ligation-

Dependent Probe Amplification (MLPA), and microarray technologies. While FISH has the 

advantage of a higher resolution, it is however best suited for the confirmation of known 

microdeletion and microduplication syndromes in patients presenting with a suggestive 

phenotype due to the limited number of chromosomal loci that can be analysed 

simultaneously (Bar-Shira et al., 2006).  

Submicroscopic subtelomeric rearrangements account for approximately 5% of unexplained 

ID and/or Multiple congenital abnormalities (MCA) (Bar-Shira et al., 2006). These can be 

detected using the MLPA analysis which targets multiple sites in one test (Ahn et al., 2007). 

MLPA is a quick, robust and recognized method for the detection of microdeletions and 

microduplications (Hills et al., 2010) including in the gene-rich subtelomeric regions prone to 

rearrangements (Ahn et al., 2007). Cho et al. (2009) reported that MLPA can accurately 

assess the size of a deletion and can be used as confirmatory tests for abnormalities 

detected on CMA. MLPA findings can be further elucidated with the help of the available 

CNV databases. Detection rates vary across studies with Ahn et al. (2007) reporting a range 

between 0% (idiopathic ID without dysmorphism) and 10.7% (severe idiopathic ID). 

Limitations of the MLPA include the possibility of misinterpretation of polymorphisms which 

could be present in the probe annealing site as a deletion (Cho et al., 2008). The sensitivity 

and the incidence of false-negative results are unknown. In addition, MLPA techniques are 

targeted and cannot detect genome-wide alterations. The MLPA does however bridge the 

gap between microdeletion/subtelomeric FISH and CMA. Another molecular cytogenetic 

technique is Quantitative Fluorescence-Polymerase Chain Reaction (QF-PCR) which is used 

for the rapid determination of the common chromosomal aneuploidies. Short tandem repeats 

(STR) are highly polymorphic DNA regions, which are targeted using fluorescently labelled 
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primers, and are analysed quantitatively following capillary electrophoresis to determine the 

copy number of the STR markers (Mansfield, 1993; Schmidt et al., 2000). This technique 

has largely replaced aneuploidy FISH as it is less labour-intensive and targets more loci than 

FISH. 

The advent of array technologies has improved the detection of submicroscopic gains and 

losses of the genome with Miller et al. (2010) reporting a CNV detection rate of between 15 

and 20%. CNVs consist of deletions, insertions and duplications, which forms part of the 

genetic variation in the human genome and are implicated in ID, global developmental delay 

(GDD), Autism Spectrum Disorder (ASD) and MCA (Cho et al., 2008; Riggs et al., 2014).  

There are several reasons for the need for a genetic diagnosis in patients with ID, GDD, 

ASD and MCA. These include accurate diagnostic and prognostic information to ensure 

appropriate genetic counselling, clinical care and educational needs, the introduction of 

preventative and therapeutic regimes, and the elimination of unnecessary procedures. A 

diagnosis may provide answers to parents‟ questions, and elucidating the genetic risk for the 

family may be of importance for future reproductive choices. This is important in the case of 

recurrence risk for a parent carrying a chromosomal rearrangement, where a positive 

molecular or cytogenetic result could allow for the option of prenatal or preimplantation 

testing (Battaglia et al., 2013; Moeschler & Shevell, 2014). 

Microarray requires pre-test and post-test counselling (Darilek et al., 2008). Prenatal 

microarray would need extensive pre- and post-test counselling. Counselling will be 

supplemented with a written informed consent document, which would include a summary of 

the test procedure, the expected benefits, limitations and possible outcomes, and would 

require a signature from the patient. Pretest counselling would require discussion of the 

objective of the test (more detailed analysis of chromosomes than karyotyping), testing 

methodology (targeted vs whole genome screen and the resolution), the type of sample 

required and the expected results. The counsellor therefore has to prepare the patient 

thoroughly with regards to the range of possible findings and the resulting implications, and 

obtain informed consent. The possibility of testing parental samples to elucidate the 

microarray findings also needs to be discussed. Results of known clinical significance may 

provide information for recurrence risks for couples and for the extended family. A positive 

result can be counselled as with other types of genetic testing. Novel findings may require 

further testing. A negative result will be obtained in the majority of patients and may require 

additional testing. Counselling issues may also arise when a presymptomatic disorder is 

found due to the size of the genome interrogated, and patients should be informed of this 
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prior to testing. A VOUS, which is not present in the parents, would require a detailed 

discussion as this may be clinically significant to the phenotype. 

 

1.2 ID/DD  

 

ID/DD comprises of a „heterogeneous group of disorders‟ (van Bokhoven, 2011) and 

includes below average intellectual function and the lack of the necessary skills to perform 

the daily tasks of living (Rauch et al., 2006). This may involve disabilities in motor function, 

cognitive ability and language skills as well as a combination of these. ID/DD may be 

detected in infancy or early childhood but is more likely to manifest during the school years 

and is usually diagnosed before the age of 18 years. A formal diagnosis of ID requires more 

maturity in the patient to assess the intelligence quotient (IQ) accurately.  

 

IQ continues to be used in certain classifications of ID but this focus has changed in the 

revision of The American Association on Intellectual and Developmental Disabilities (AAIDD) 

to include everyday skills (Leonard & Wen, 2002; Shevell, 2008). It should be noted that 

there are discrepancies in the cut-off IQ points used in different studies to define ID. The 

term „Intellectual Disability‟ (ID) has largely replaced the term „Mental Retardation‟ (MR) as 

the latter is perceived to have a negative association. Despite this change, the World Health 

Organization (WHO) still uses the term „mental retardation‟ in its „International Statistical 

Classification of Diseases and Related Health Problems 10th Revision (ICD-10)‟ 

classification system (2016) as shown in Table 1 

(http://apps.who.int/classifications/icd10/browse/2016/en# ).  

 

Table 1 WHO ICD-10 Classification of Mental Retardation (2016 version) 

Degree of ID Intelligence Quotient range 

Mild 50 – 69 

Moderate 35 – 49 

Severe 20 – 34 

Profound <20 
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The term DD is typically used in patients before the age of five years whereby development 

is compared between peers with regards to learning skills and adaptation, whereas global 

developmental delay (GDD) is characterized by a significant delay in two or more of the 

following areas: cognition, speech/language, gross/fine motor skills, social/personal skills 

and daily living (Shaffer, 2005; Moeschler & Shevell, 2014). Several conditions may cause 

DD but with no effect on intelligence.  

 

Syndromic ID has been definitively linked to more than 400 genes, whereas approximately 

50 genes have been implicated in nonsyndromic ID (van Bokhoven, 2011). van Bokhoven 

(2011) estimated that 90 genes could be implicated in X-linked ID (XLID). XLID can also be 

categorised as syndromic and non-syndromic (Ropers & Hamel, 2005), with syndromic XLID 

(S-XLID) patients having additional features or abnormalities. Examples of S-XLID include: 

(i) Fragile-X (FRAXA) syndrome which is the most common S-XLID in male patients (Chelly 

et al., 2006) and is due to a trinucleotide expansion in the FMR1 gene, and (ii) Rett 

syndrome (RS) which is due to mutations in the MECP2 gene or deletions/duplications of 

segments of chromosome Xp28 and which is the second most common cause of severe ID 

in females after Down syndrome (DS) (Weaving et al., 2005).  

Long contiguous stretches of homozygosity (LCSH) are also implicated in ID and consist of 

regions of allelic homozygosity (Iourov et al., 2015). These regions are also known as 

regions of homozygosity (ROH) or loss of heterozygosity (LOH). Although healthy individuals 

can demonstrate ROH, it may be suggestive of consanguinity, Uniparental Disomy (UPD) 

and homozygosity in single gene recessive conditions (Gijsbers et al., 2009). Iourov et al. 

(2015) proved that ROH is a frequent occurrence in patients with ID, autism, congenital 

malformations and/or epilepsy. McQuillan et al. (2008) found that these regions were usually 

less than 4 Mb in size in their study of a European population, although ROHs of over 10 Mb 

have been reported in rare cases (Gibson et al., 2006). Grote et al. (2012) noted the 

variability in reporting of ROH, which was subsequently highlighted by Wang et al. (2015) 

stating that no consensus had been reached on a set threshold for ROH reporting by the 

time of their writing. Also, it is possible that ROH may make a larger contribution to ID in 

populations other than Europeans as reported by McQuillan et al. (2008).  

 

ID/DD are conditions which not only affect the patient, but also their family members and 

care givers. The prevalence rate of DD in the general population is between 1 and 3% 

(Shaffer, 2005; Moeschler & Shevell, 2014). In a study on patients seen in general practice 
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in England, Allgar et al. (2008) reported a prevalence of ID/DD between 0.83 and 1.14%. In 

1997, the WHO reported that industrialised countries have an ID prevalence rate of 3 to 4%.  

 

Robertson et al. (2009) have noted that industrialised countries ensure detection and 

management of ID/DD, from an early age, by using surveillance programs. This identifies 

children at high-risk and the relevant support and/or treatment can be offered and therefore 

resources can be optimized. This is more problematic in developing countries as the 

resources for a screening programme may not be available and support and treatment may 

not be accessible to these patients. Calculating the ID prevalence rate is more complicated 

as reporting is not representative of all ID patients and therefore not accurate (Roeleveld et 

al., 1997). Furthermore, the tools used for the identification of ID in patients in industrialised 

countries are not always appropriate for application in the developing countries.  

 

1.2.1 Clinical diagnosis and management 

 
Coulter et al. (2011) reported that 55% of positive CMA cases in their retrospective study of 

1 792 patients were clinically actionable. In a survey conducted by Riggs et al. (2014), in 

collaboration with various diagnostic laboratories which included 28 526 patients, showed 

hat at least 7% of cases are clinically actionable which is still higher than the detection rate  

that at least 7% of cases are clinically actionable. This is still higher than the detection rate of 

less than 1% of FRAXA in ASD patients and approximately 3.5% of FRAXA in DD/ID 

patients. In the study by Riggs et al. (2014), where they considered CNVs detected by a 

lower resolution array (ISCA Consortium 180K), 49 phenotypes were excluded as these 

would be unlikely to be diagnosed using CMA; only diagnoses linked to established clinical 

management were considered, which may account for the low detection rate. Ellison et al. 

(2013) calculated that 35% of abnormalities found in a study of 46 298 patients could be 

acted upon clinically. Henderson et al. (2014) performed CMA on 1 780 patients with 

neurodevelopmental disorders (DD, learning disabilities, behavioural/psychiatric disorders, 

seizures, ID, ASD), congenital anomalies (single or multiple), dysmorphic features, abnormal 

growth (failure to thrive, short stature) and hypotonia and detected positive CMA findings in 

187 patients. A total of 54.5% (102/187) of these patients received medical 

recommendations following CMA analysis thereby verifying the clinical utility of CMA 

technologies. 
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1.3 GENETIC AETIOLOGY 

 

The aetiology of ID/DD is complex as multiple factors such as genetic abnormalities 

including Mendelian disorders and chromosomal abnormalities, biochemical abnormalities 

and environmental factors can contribute to this phenotype (Ellison et al., 2013). Each factor 

may occur singly or in combination with one or more of the others. Of the genetic 

abnormalities, chromosomal abnormalities are the most common cause of ID, GDD, ASD 

and MCA (Cho et al., 2008; Riggs et al., 2014) with DS being one of the most prevalent 

causes with an incidence of 1 in 732 live-born infants in the United States (Sherman et al., 

2007). van Bokhoven (2011) noticed that chromosomal abnormalities (structural and 

numerical), genomic disorders and monogenic diseases, cause up to 65% of severe ID 

cases.  

 

Common genetic causes of and contributors to ID include DS, known microdeletion 

syndromes (for example Prader-Willi syndrome, Williams syndrome, and Angelman 

syndrome), and single gene mutations such as RS and Tuberous Sclerosis (Leonard & Wen, 

2002). Comorbidity with ID and ASD, Attention Deficit Hyperactivity Disorder (ADHD), 

schizophrenia, depression and behavioural problems is common. It is reported that up to 

40% of ID patients have ASD and between 50 and 80% of patients with autism/ASD have ID 

(van Bokhoven, 2011). Epidemiological surveys conducted in several countries found that 

approximately 70% of patients with autism have ID (Fombonne, 2003). van Bokhoven (2011) 

also stated that this adds to the evidence that ID, autism and a range of other cognitive 

disorders have a similar or shared molecular genetic aetiology. Betancur (2011) reported 

that genes and loci implicated in patients with epilepsy have also been identified in patients 

with ASD, indicating a shared genetic component between these two groups of neurological 

disorders. Several microdeletion syndromes have a combination of neurobehavioural 

features for example ASD, ADHD, and epilepsy, which are associated with ID (Mefford et al., 

2012). The prevalence of ID due to CNVs has been reported as between 5 and 15% by Fan 

et al. (2007). Cooper et al. (2011) reported CNVs to be the causative factor of ID in 13.7% of 

patients.  

CNVs can cause disease by revealing dosage-sensitive genes, disrupting genes or alter 

gene dosage, gene fusion or position effects, thereby impacting gene expression and 

phenotypic variation (Cooper et al., 2011; Zhang et al., 2009). This can lead to disorders 

such as microdeletion/duplication syndromes or they may contribute to risk in complex 
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disease. CNVs can also, through positional effects, affect gene expression or provide 

evolutionary chromosomal change (Redon et al., 2006). Such CNVs could cause a 

disruption of a coding sequence or a sequence change in a promoter region which would 

affect transcription and translation (Gijsbers et al., 2010). Ellison et al. (2013) stated that 

CNVs may be flanked by duplications which cause unequal crossing over resulting in 

increased mutation rates in genetic conditions which modify several varied cellular functions 

such as transcriptional and translational control, chromatin remodelling, protein modification, 

differentiation of neural and supporting cells of the nervous system and centrosome function. 

Understanding the different physiological pathways and interacting proteins can assist in the 

identification of additional contributing, potentially pathogenic, genes (Ellison et al., 2013). 

van Bokhoven (2011) hypothesized that between 1,500 and 2,000 genes could be 

implicated in ID.  

 

A number of mechanisms have been proposed for the generation of CNVs. Homologous and 

non-homologous recombination mechanisms being most common. Non-allelic homologous 

recombination (NAHR) has a DNA repair function in dividing cells (meiosis). During NAHR a 

200-300 bp segment and a RAD51 protein is required. The 3` end of ssDNA is catalysed to 

a duplex sequence on the sister chromatid of the homolog. The repair mechanism may 

however cause structural rearrangements due to low-copy repeats (LCR) (Hastings et al, 

2009). LCRs are large blocks of duplicated sequence of 100 Kilobases (Kb) or more, and 

have been implicated in CNV regions. These repeat sequences cause instability, as in the 

22q11.21 region involved with Di George syndrome (Shaikh et al., 2000). The authors 

postulated that recombination between LCRs cause deletions, duplications and inversions. 

Deletions and duplications are caused by two LCRs which are positioned in direct genomic 

orientation allowing for interchromatid and interchromosome exchanges. Deletions are due 

to interchromatid NAHR, and inversions are due to the LCRs on the same chromosome but 

in opposite orientation. In the same way, translocations are due to LCRs on different 

chromosomes (Lupski, 1998). Shaffer et al. (2007) reported 73% of the microdeletions and 

82% of the microduplications in their cohort of 8 789 patients, with ID, DD, seizures and 

other congenital abnormalities, were caused by LCRs.  

 

1.3.1 CNVs  

 

A CNV is defined as „a Deoxyribonucleic acid (DNA) segment that is 1 kilobase (Kb) or 

larger and present in a variable copy number in comparison with a reference genome‟ 
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(Redon et al., 2006). The authors further explained that a CNV can be simple in structure, 

such as a tandem duplication or may involve complex gains or losses of homologous 

sequences at multiple sites in the genome. CNVs are common in apparently healthy 

individuals, which complicates interpretation of these findings, and adds to the challenge of 

foreseeing the clinical outcome in unique disease-causing CNVs (Koolen et al., 2009). It has 

been estimated that CNVs cover approximately 12% of the human genome (Redon et al., 

2006). Manning & Hudgins (2010) stated that 800 or more benign CNVs could be detected in 

a healthy person, indicating that not all CNVs are pathogenic. Pathogenic CNVs are not only 

found in patients with ID/DD, ASD and MCA but also in other commonly seen conditions 

such as epilepsy and other neuropsychiatric disorders (Coulter et al., 2011). Frequency of 

detection of a CNV does not necessarily indicate whether it is pathogenic or benign 

(Manning & Hudgins, 2010). There is still limited knowledge concerning the pathogenicity of 

many CNVs with many more still continuously being discovered (Riggs et al., 2014). The 

reason for the variability in the phenotype of patients carrying known pathogenic CNVs is 

unknown but may be due to modifying alleles in the individual‟s genetic background, somatic 

mutations, epigenetic events and environmental exposures (Ellison et al., 2013). The 

implication of the effects of a CNV throughout a patient‟s lifetime is also not yet fully 

understood (Ellison et al., 2013). Many CNVs can lead to susceptibility and predisposition to 

various diseases e.g. HIV, lupus etc. (Canales & Walz, 2011). This is also true for a number 

of neurodevelopmental disorders such as ID, ASD, schizophrenia, whereby not all carrier 

individuals within an affected famly will present with the phenotype. Ermakova et al. (2011) 

proposed a “second hit” hypothesis, which can be genetic or environmental, by using a 

mouse model. Sahoo et al. (2011) postulated CNVs could be influenced by environmental 

factors and other loci which may have modifying effects. The available control population 

data refers to the European population, no reference is currently available for the South 

African population. 

Despite this uncertainty, accurate diagnoses are generate which ensures appropriate 

genetic counselling, clinical care and educational needs, the introduction of preventative and 

therapeutic regimes, and the elimination of unnecessary investigative procedures. A 

diagnosis may provide answers to parents‟ questions, and elucidating the genetic risk for the 

family may be of importance for future reproductive choices. This is important in the case of 

recurrence risk for a parent carrying a chromosomal rearrangement, where a positive 

molecular or cytogenetic result could allow for the option of prenatal or preimplantation 

testing (Battaglia et al., 2013; Moeschler & Shevell, 2014). 
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The most common group of polymorphisms in the human genome is SNPs which are DNA 

sequence variations of single nucleotides. A SNP consists of a single base change, 

generally defined as occurring in a population at a frequency of >1%. At a frequency of <1%, 

it may likely be considered a mutation (especially if it is associated with a phenotype) 

(Human Genome Project, 1990 - 2003).  

 

1.4 CNV DETECTION 
 

CMA has been rapidly translated into the diagnostic setting due to the high sensitivity, 

specificity and reliability of the detection of CNVs in patients with DD/ID, MCA and ASD 

(Miller et al., 2010). CMA has also been proven to demonstrate considerable advances over 

conventional cytogenetics, G-banded chromosome analysis and FISH studies, by 

interrogating the entire genome at once. This is done by using specific probes to cover the 

whole genome (Shen et al., 2011). Bi et al. (2013) confirmed that nearly all the abnormalities 

observed on chromosome analysis in their study were also found using CMA studies and 

therefore supported the consensus statement by Miller et al. (2010) recommending CMA as 

a first tier test. Historically, chromosome analysis was the first-tier cytogenetic test for 

patients with ID. Since 2010, with the release of the consensus statement by Miller et al. 

(2010) CMA has become the first-tier test in many countries. 

 

Bruno et al. (2012) reported that CNVs of 50 Kb in size ought to be reported, although 

software settings may be lowered for example on Affymetrix ChAS (Affymetrix, Santa Clara, 

CA, USA software). As an example of the speed of development and the subsequent 

introduction of this technology into routine diagnostic practice, in 2006, Moeschler & Shevell 

reported on aCGH as an „emerging technology‟, at that stage identifying subtelomeric FISH 

studies as being the most effective diagnostic tool for ID (Moeschler & Shevell, 2006). Two 

years later, Moeschler conceded to the effectiveness of array technologies with the 

increased detection of chromosomal abnormalities as multiple loci are interrogated in one 

reaction (Moeschler, 2008). The diagnostic capability of clinical cytogenetic laboratories has 

been significantly improved through the application of these technologies. The benefits of 

using CMA for CN detec-tion include: use of DNA, detection of cryptic abnormalities which 

would have been missed using routine chromosome analysis, customization of probes for 

targeting specific regions of interest, higher resolution providing a better quality result, 

objective data interpretation, ROH detection and the ability for data to be interfaced with 
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public databases. Manning & Hudgins (2010) suggested that 20% of apparently balanced 

translocations have a loss or gain of material which can be identified using CMA. Further 

advantages of using CMA in apparently balanced chromosomal rearrangements are in 

elucidating breakpoints, which could be disrupting genes. The detection of CNVs near the 

breakpoints, the detection of complex chromosomal rearrangements which cannot be 

detected on chromosome analysis and identification of other submicroscopic CNVs that are 

the cause of the phenotype, are all positive aspects of this technology (Gijsbers et al., 2010). 

CMA can be employed in the routine diagnostic environment as there appear to be few 

technical limitations (Koolen et al., 2008). Interpretation of CNVs can, however, be 

challenging. 

 

Shaffer et al. (2007) tested 8 789 patients with ID, DD, seizures and other congenital 

abnormalities which did not reveal abnormalities with extant technologies (chromosome 

analysis, FISH - subtelomeric and locus specific, and/or FRAXA or other single-gene 

disorders). Using aCGH, abnormalities were detected in approximately 12% (1 049/8 789) of 

the cases: almost 7% showed CNVs with clear clinical significance, 1.2% had a benign CNV 

and 3.9% had VOUS. Of the VOUS, 2.5% (218) of the CNVs were detected in recurrent 

regions, and 1.4% (124) were single incidents. The authors postulated that the majority of 

the VOUS are most likely to be polymorphisms.  

 

The diagnostic capability of clinical cytogenetic laboratories has been significantly improved 

through the application of these technologies. Consequently, this has resulted in the 

escalated discovery of novel genetic syndromes. The application of this technology for 

patients presenting with an ID/DD and/or MCA phenotype, has already become routine in 

many developed countries in patients presenting with an ID/DD and/or MCA phenotype and 

it has been shown that the use of high resolution microarray has increased the average 

diagnostic yield of genomic aberrations to between 15 and 20% (Miller et al., 2010). These 

authors therefore recommended that microarray analysis be performed instead of routine 

chromosome analysis in patients with ID/DD, ASD or MCA as a diagnostically significant 

yield as high as 20% (Ming et al., 2006) is possible whereas routine chromosome analysis 

has a diagnostic yield of approximately 3.7% (Shevell et al., 2003) and FISH has a 

diagnostic yield of approximately 2.6% (Ravnan et al., 2006).  
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Edelmann & Hirschhorn (2009) stated that „Genome-wide studies of large cohorts of patients 

with ID/MCA have led to the identification of chromosomal aberrations that delineate novel 

syndromes, some of which occur at frequencies comparable to known recurrent 

rearrangement disorders.‟ The diagnosis of submicroscopic CNVs in ID/DD patients has thus 

been transformed with the introduction of genome-wide techniques (Mefford et al., 2012). 

The prevalence of ID due to CNVs has been reported as between 5 and 15% by Fan et al. 

(2007). Aston et al. (2008) reported an even higher detection rate, finding CNVs using SNP 

array analysis in 24% of ID patients. Therefore, introducing microarray analysis as a routine 

diagnostic test in ID/DD has launched new possibilities for identifying the cause of this 

„condition‟. With the rapid development in high-throughput technologies, it is now possible to 

make a genetic diagnosis in up to 65% of patients with moderate to severe ID (van 

Bokhoven, 2011).   

 

1.4.1 Types of arrays 

Genome-wide arrays allow for the detection of CN changes of approximately 100 Kb in size 

(Friedman et al., 2006). These technologies have developed rapidly with a substantial 

improvement in resolution which is dependent on the size of the probes and the density of 

the probes covering the genome (Moeschler, 2008). It is important that a microarray chip 

design has adequate coverage to detect different breakpoints for well documented 

microdeletion and duplication syndromes as atypical deletion sizes have been reported in 

Angelman/Prader-Willi, Williams and Smith-Magenis syndromes (Shaffer et al., 2007). To 

this end different array designs are available: targeted arrays which have loci of known 

clinical significance, whole-genome arrays which cover the whole genome and targeted 

arrays with probes in loci associated with chromosomal instability/rearrangements, for 

example pericentromeric regions (Slavotinek, 2008; Miller et al., 2010). 

 

Two types of arrays have been developed: aCGH and SNP arrays. aCGH uses test DNA 

and control DNA which is differentially labelled, whereas SNP arrays use patient DNA which 

is directly hybridized to the array (Figure 2) and compared to a pool of normal individuals 

using specialised computational software. Both methods compare patient DNA to reference 

DNA whereby CN anomalies can be detected (Schaffer et al., 2013). CGH arrays produce 

better data quality with less variation and better signal-to-noise ratios when compared to 

SNP arrays (Shen et al., 2011). CGH platforms usually have longer probe lengths. SNP 

probes only bind to an exact copy of complementary DNA, and in so doing are also able to 
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detect UPD and LOH. SNP array analysis is considered to be the most advanced method in 

the assessment of genomic imbalances associated with genetic disease (Bruno et al., 2012). 

Array platforms which combine CN and SNP (CN+SNP) array analysis are considered to be 

the most advanced technologies in the assessment of genomic imbalances associated with 

genetic disease as it is possible to assess both CNV and copy-neutral aberrations 

simultaneously in one reaction (Mason-Suares et al., 2013). With the introduction of CMA 

into the clinical setting, arrays have been designed to be more specific for this application. 

Shen et al. (2011) argued that the advantages of this were: reaching a balance between 

sensitivity and specificity, achieving a uniform hybridization for a larger number of probes, 

reducing the variation in signal-to-noise ratio as experienced in higher-density arrays, testing 

multiple patients on a single slide when utilizing well-designed clinical arrays, and eliminating 

CNV fragmentation due to increased probe density. Adjacent CNVs can be merged which 

are then efficiently detected by lower-resolution arrays. 

   Figure 2 A presentation of the probe hybridization in microarray technology       
(https://en.wikipedia.org/wiki/DNA_microarray) 

Important considerations for choosing a relevant array include the amount of genomic DNA 

required, the overall time taken to perform the assay, the amount of hands-on time required, 

scanner resolution, and the volume and ease of analysis of data (Huang & Crolla, 2010). 

The higher the resolution of the array the more difficult and time consuming the analysis 

becomes. Huang & Crolla (2010) reported in their array platform comparison document that 
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total analytical time per case is approximately 30 to 45 minutes. Each platform also has 

different filter settings depending on the resolution of the required analysis.  

 

Mason-Suares et al. (2013) compared three types of array: high SNP density, mid SNP 

density and low SNP density. These platforms were Affymetrix Cytoscan HD (Affymetrix, 

Santa Clara, CA), a custom Agilent array (Agilent, Santa Clara, CA) and Oxford Gene 

Technology Cytosure ISCA UPD (OGT, Begbroke, Oxfordshire, UK). The aim of the study 

was to compare the detection rate of CNVs, mosaicism, UPD and long stretches of absence 

of heterozygosity (AOH) as shown in Table 2. All three platforms were able to detect the nine 

known CNVs. The software of the low-density platform did not calculate the percentage 

mosaicism. The low-density platform also detected false-positive AOH; which was resolved 

by adjusting the LOH score in the low-density software from 50 to 400. The authors 

concluded that the combination of CN and SNP arrays were able to detect CNVs larger than 

100 Kb. This was more sensitive than the 400 Kb which was recommended by the American 

College of Medical Genetics and Genomics (ACMG) (Kearney et al., 2011). Only the high 

density platform was able to detect and confirm CNV calls as CNVs and SNPs were 

interpreted independantly, whereas the low density array software interpreted the SNP and 

CNV data in combination. The medium-density array also combined the oligonucleotide and 

SNP data for interpretation (Mason-Suares et al., 2013).  

 

Table 2 Comparison of high SNP density, mid SNP density and low SNP density array platforms (Mason-    
Suares et al., 2013) 

      
AFFY CYTOSCAN HD 

 
AGILENT TECH 
(CUSTOMISED) 
 

 
OXFORD GENE 
TECHNOLOGY 

SNP density High Medium Low 

Probes: 1 X 2.6 million 4 x 180 000 4 x 180 000 

 Oligo 1.9 million 150 000 137 000 

 SNP 750 000 30 000 (/60 000) 6 186 

Backbone 
spacing 

 1 oligo every  2 Kb 
 1 oligo every 400   
     bp (targeted) 
 200 SNP  
     probes/Mb 
 Each SNP = 6   
     Probes (3/allele) 

 1 oligo every 20 Kb 
 10 SNP probes/Mb 
 1 probe/SNP 

  1 probe every 25   
   Kb 
  Higher oligo   

density in ISCA  regions 
  3 SNP probe/Mb 
  Each SNP = 3  
   identical probes/allele 

Probe length 25 bp 60 bp 60 bp 

DNA 250 ng 1-1.5 ug 900 ng (pt + ctrl) 

bp = basepair, ctrl = control, ng = nanogram, ISCA = International Standards for Cytogenomic Arrays,  oligo =    
oligonucleotide,  pt = patient, ug = microgram 
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1.4.2 Detection rates of arrays 

 

Reported detection rates vary widely between different reports (Rauch et al., 2006). In three 

studies of patients with ID and dysmorphism, who had normal karyotypes, genome wide 

array detection rates were reported as 15%, 24% and 10%, respectively (Schoumans et al.; 

2005, Shaw-Smith et al., 2004; Vissers et al., 2003). Gijsbers et al. (2010) reported on 

detection rates of approximately 17% in an ID cohort of 13 patients. Shoukier et al. (2013) 

reported a detection rate of 21.1% in a cohort of 342 ID patients which had no abnormalities 

detected by karyotyping and subtelomeric screening. Pathogenic CNVs were detected in 

13.2% of the patients and VOUS were found in 6.4%. Bi et al. (2012) reported a detection 

rate of 14.5% using whole-genome arrays and 10.9% using targeted arrays in a cohort of 3 

710 consecutive cases. This represented a 67% improvement when compared to the 

detection of abnormalities in only 8.8% of those patients on chromosomal analysis. 

Michelson et al. (2011) reviewed 27 studies which collectively included 6 559 GDD/ID 

patients, tested with whole genome arrays and found the detection rate to be between 0% 

and 70%, with an average of 7.8%. Syndromic and non-syndromic patients were included in 

these studies which may account for the lower detection rate. Coulter et al. (2011) did a 

retrospective chart review on 1 792 patients with ID/DD, ASD and congenital abnormalities. 

Abnormal variants were found in 7.3% and „variants of possible significance‟ were found in 

5.8% of the patients tested, indicating a total detection rate of 13.1%. These authors also 

reported that 88% (170/194) of their cohort had had a total of 356 other tests (genetic, 

metabolic or neurological) which might have been unnecessary if CMA testing was 

performed at the outset. 

A high-resolution array, with probe resolution settings at 400 Kb or lower, is appropriate for 

postnatal applications to maximise the detection of potentially relevant smaller CNVs, when 

there is a clinical phenotype to assist in assigning relevance. In the prenatal setting however, 

a lower resolution (500 to 1000 Kb) is recommended for CNV detection to detect pathogenic 

CNVs while reducing the likelihood of VOUS (Stravropoulos & Shago, 2010). Each 

laboratory sets their own criteria for reporting within international guidelines while 

considering the patient population. 
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1.4.3 Mosaicism 

 

Mosaicism is not a frequent finding as the cause of ID/DD, ASD and MCA. Affymetrix 

Cytoscan HD claims to detect mosaicism levels of between 30 and 70%. Bi et al. (2013) 

showed that a case of a two cell mosaicism resulted in a balanced net effect and a normal 

microarray analysis using a 180K oligonucleotide array. They also determined that 

mosaicism of less than 30% cannot be confidently determined using CMA. However, using a 

combination microarray which detects CNVs and SNPs simultaneously, mosaicism at levels 

as low as 5% can be detected (Mason-Suares et al., 2013). There is an increased sensitivity 

and detection of mosaicism when using a combination of SNP probes and CN (CN+SNP) 

arrays.  

 

1.4.4 Novel genetic syndromes 

 

The use of microarray technologies has resulted in the escalated discovery of novel genetic 

syndromes (Weise et al., 2012). With the improved resolution of microarray technologies, 

microdeletion/duplication syndromes can be delineated more accurately. As reported by 

Weise et  al. (2012), 211 microdeletion syndromes and 79 microduplication syndromes have 

been found to be associated with ID and related disorders, which included 1p36 (deletion), 

1q21.1 (deletion and duplication), 3q29 (deletion and duplication), 10q22-q23 (deletion), 

15q11.2 (deletion and duplication), 15q13.3 (deletion and duplication), 15q24 (deletion and 

duplication), 16p11.2 (deletion and duplication), 16p12 (deletion), 16p13.11 (deletion and 

duplication), 17q12 (deletion) and 17q21.3 (deletion).  

 

1.4.5 Limitations of arrays 

 

Array technologies will not detect structural rearrangements such as inversions and 

translocations (Gijsbers et al., 2010). CMA cannot differentiate between a free trisomy and a 

Robertsonian translocation and is also not suitable for the urgent detection of aneuploidy as 

chromosome analysis and/or FISH have a shorter turnaround time (Manning & Hudgins, 

2010). CMA may seem to be a short technical process but the analysis of the results can be 

time consuming, thereby potentially extending the turnaround time. Depending on the 

platform used, some aneuploidies for example XYY, some marker chromosomes, mosaicism 
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and triploidy may not be detected. As only CNVs are detected, the mechanism underlying 

the CNVs may not be clear, and only CNVs covered by the probes on the microarray will be 

detected (South et al., 2013). The length of the probes and the spacing in-between such as 

genome coverage, will affect the resolution and yield of the array used as well as the 

algorithms for the analysis of the data (Manning & Hudgins, 2010). Shen et al. (2011) 

reported that the algorithms for CNV calling were not satisfactory. The problems with the 

algorithms were that they were developed for specific array platforms, that probe- and locus-

level variation was not considered and that difficult regions were not managed differently. 

South et al. (2013) stated that the inability to detect a specific defect does not exclude the 

diagnosis of that disorder. 

 

1.4.6 Confirmatory testing 

 

As multiple DNA samples are run simultaneously, confirmatory tests are a consideration for 

abnormal results. MLPA is an excellent assay for this purpose. It is more cost-effective than 

repeating the actual microarray. The TAT is also short. FISH can also be performed 

especially to determine the inheritance of translocations (Hills et al., 2010). Using CNV+SNP 

arrays, confirmatory testing is not always necessary as the SNP acts as a control and 

confirms the CNV detected (Mason-Suares et al., 2013), especially in the case of well-known 

microdeletion and microduplication syndrome which occur de novo such as Williams 

syndrome and Prader-Willi syndrome (CCMG Position Statement, 2009). However, to 

determine if a CNV is de novo or inherited, FISH or MLPA can be useful. If the CNV is 

inherited, it is important to assess recurrence risk for which chromosome analysis or FISH 

can be used for the detection of structural rearrangements (Best Practice Microarray 

Analysis Guidelines, HGSA, 2011). 

 

1.5 DATA ANALYSIS AND INTERPRETATION 

 

The technological advancement in CMA progressed at a tremendous pace with the result 

that data was available before laboratory staff and clinicians had the skills to interpret this 

information. This created a challenge for the interpretation of results and counselling of 

patients (Tsuchiya et al., 2009).  
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There are more than 15 000 CNV regions reported in the Database of Genomic Variants 

(DGV, http://dgv.tcag.ca/dgv/app/home). This number has been increasing continuously with 

time, as array technology resolution improves. Cancer research, clinical diagnostics and 

genome-wide association studies are some of the areas of study of CNV detection (Pinto et 

al., 2011). Some CNVs pose a challenge during interpretation of results, socalled VOUS and 

include CNVs which do not completely overlap a known genomic abnormality, CNVs which 

have not been previously described in the region, an abnormality of less than 1 Mb, inherited 

changes occurring in patients and in normal parents, a small abnormality present in an 

affected patient and affected parent, and a large abnormality inherited from a normal parent 

(Shaffer et al., 2007). Increasing the probe coverage increases the detection of VOUS 

adding to the complexities of result interpretation. Some sizable CNVs have been identified 

as benign, such as the inherited 2.7 Mb duplication at chromosomal region 14q32.32 and the 

inherited 1p44 duplication. Another factor to consider in CNV analysis and interpretation is 

imprinting effects which can have a direct effect on the genome (Shaffer et al., 2007).  

Duplications of chromosome X bear special consideration. The majority of the genes on the 

X chromosome are involved in brain functions. As males only have one X chromosome, they 

are more prone to X-linked ID. The mother is often a carrier of the causal CNV on the X 

chromosome which may cause pathogenicity due to skewed X-inactivation. Isrie et al. (2012) 

proposed a workflow for the interpretation of X chromosome CNVs by using retrospective 

data of 2222 male patients screened over a 6-year period (see Table 3). A total of 68 

patients (3.1%) had X chromosome CNVs of which 23.5% were deletions and 72.1% were 

duplications. Three of these patients had triplications. The severity of ID was found to be 

variable with some indication that environmental factors contributed. The authors conceded 

to the difficulty in interpretation of chromosome X duplications and emphasised that after 7 

years of performing microarray assays new CNVs are still being discovered on the X 

chromosome. Although some of the duplications corresponded with CNVs reported by other 

studies, these CNVs were not recurrent in their series. Genotype-phenotype correlation was 

also not possible in a number of the patients as the CNVs varied in sizes and gene content 

and the severity of ID and contribution of environmental factors was inconsistent. A 

compounding factor is X-inactivation as reported by Li et al. (2010) reported on eight 

phenotypically normal females who had random or preferential inactivation of the X 

duplication CNVs while two out of seven phenotypically abnormal females showed the 

duplicated chromosome to be preferentially active. The authors postulated that X inactivation 

patterns correlated with the outcome. 
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Table 3: Evaluation of array results as recommended by Isrie et al. (2012) 

  

Pathogenic 1. CNV associated with ID previously reported 

2. CNV (deletion) containing known ID genes 

3. CNV (duplication) containing known dosage-sensitive ID genes 

Likely 
pathogenic 

Duplication that meets all three or deletion that meets two or more of:  

1. Brain expressed genes present 

2. De novo CNV or skewed X-activation in mother 

3. Large gene-rich region 

Benign CNV Reported in DGV or in healthy individuals 

Unclassified 
CNV 

Duplication that meets less than three of:  

1. Brain expressed genes present 

2. De novo CNV or skewed X-activation in mother 

3. Large gene-rich region 

 

 

1.5.1 Reporting  

 

Tsuchiya et al. (2009) noted that even though different laboratories may use a similar 

approach when analysing a CNV, there can be discrepancies in whether it is termed benign 

or pathogenic. De novo CNVs would be considered more likely to be pathogenic while 

inherited CNVs would be considered benign when inherited from a normal parent. Miller et 

al. (2010) confirmed both the challenge in analysing the resulting data and the interpretation 

of VOUS. Tsuchiya et al. (2009) understood that it is not always possible to assess the 

pathogenicity of CNVs through inheritance as one or both parents are not always available 

for testing. The authors suggested evaluating results as set out in Table 4. 

 

Buysse et al. (2009) stated that a common CNV should occur at least twice in the DGV with 

a 100% overlap, with rare CNVs having no or only one entry, as noted in Table 5. The 

interpretation of CNVs in this way is still a challenge, for example susceptibility loci may be 

present in the DGV as normal variants, and there is the possibility of unmasking recessive 

genes. Some approaches to the interpretation of detected CNVs are illustrated in Tables 4-6 

below. 

 

 



Page 20 of 185 
 

Table 4 Evaluation of array results as recommended by Tsuchiya et al. (2009)  

 

‘likely 
pathogenic’ 

1. De novo inheritance is more likely to be pathogenic 
2. Evidence of an abnormal phenotype or known  

syndrome 
3. Known variability in expression of phenotype 
4. Large CNVs with evidence of pathogenicity in rare case 

reports 
‘uncertain’ 1. Any CNV which falls between the „likely pathogenic‟    

            and „likely benign‟ categories 
‘likely 
benign’ 

1. Small CNVs which lack of known genes 
2. Lack of pathogenic evidence in databases 

 

 

Table 5 Evaluation of array results as recommended by Buysse et al. (2009)  

1. Relate findings to known pathogenic/susceptibility loci to determine    
            clinical  significance 
2. Exclude common CNVs but apply caution as normal variants and   
            pathogenic  CNVs may be merged 

          
     
 
 
    Table 6 Evaluation of array results as recommended by Poot & Hochstenbach (2010) 

 

1. Evaluate each CNC using the available databases for example  
            ECARUCA, DECIPHER  
2. Correlate the protein-encoding gene within CNCs with the phenotype 
3. Establish if the CNC is de novo or inherited 

            CNC = copy number change, DECIPHER = DatabasE of Chromosomal Imbalance and Phenotype in Humans  
            using Ensembl Resources, ECARUCA = European Cytogeneticists Association Register of Unbalanced 
           Chromosome Aberrations  

 

The opinion of Lee et al. (2007) is that all of a patient‟s CNVs should be tabulated and the 

normal CNVs be removed in order to only analyse the remaining potentially pathogenic 

CNVs. This may simplify the analysis process to a certain extent but caution should still be 

exercised to confirm a true pathogenic CNV with relevant and reliable evidence. The authors 

further state that „the potential clinical relevance of a CNV increases with respect to the 

number of genes within the region of genomic imbalance.‟ It is important to analyse any 

genes within a CNV especially if they are implicated in disease for example Online 

Mendelian Inheritance in Man (OMIM) genes, or if there may be dosage effects. Another 

point to take into account is that duplications appear to be less severe than deletions even 

though normal individuals may also carry deletions. Deletions may however uncover a 
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recessive mutation leading to a disease phenotype. The gene content is more relevant than 

the size of the CNV (Lee et al., 2007). Koolen et al. (2009) suggested a method of validation 

of a true CNV using the DGV and their own database. A common CNV should be described 

at least three times, in different databases if possible, and be similar to the patient studied. In 

addition, the CNV should overlap a known CNV by at least 50% and the unique segment 

should be less than 100 Kb in size. A large majority of their patients fell within the normal 

CNV category.  

 

Riggs et al. (2012a) reported on the need for a systematic process of data analysis. 

Assessing the clinical significance of a specific gene can be subjective. The authors also 

stated that „Peer-reviewed literature is considered the gold standard for the primary evidence 

needed to effectively assess a particular genomic region.‟ There are several factors to 

consider when assessing literature: the quality of the paper, the quality of the technology 

used, the control population used (this is especially important in the South African context), 

confirmatory studies performed, and whether the CNV compares with published data with 

regard to size and associated phenotype? Other questions to ask include whether the mode 

of inheritance and the degree of phenotype presentation correlate with published data and if 

the patient has more than one CNV which may contribute to the specific phenotype.  

 

These authors developed a rating system to quantify published data to standardize 

interpretation of results as set out in Table 7. Each genomic region would have either a 

rating of, (1) haploinsufficiency or (2) triplosensitivity and interpreted accordingly. 

Haploinsufficiency includes deletions and loss of function mutations which cause a decrease 

in gene dosage leading to a specific phenotype. It also includes deletions, nonsense 

mutations, frame-shift mutations or splicing defects causing a haploinsufficiency in a 

particular gene. This mutation pathogenicity must be evidence-based. Missense, silent and 

intronic changes should only be considered with evidence-based reported pathogenicity. 

Triplosensitivity includes whole gene duplications causing increased gene dosage resulting 

in a specific phenotype. This does not include gain of function. 
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Table 7: Rating scale for the interpretation of detected CNVs based on available 
evidence (adapted from Riggs et al., 2012a) 

 

3 Sufficient 
evidence 

Regions with sufficient evidence where 
the clinical phenotype can be due to 
dosage sensitivity. At least three 
unrelated patients would have been 
previously reported and in at least two 
different articles. 

Potential clinical 
interpretation: 
Pathogenic 
 

2 Emerging 
evidence 

Cases where mutations are inherited 
from parents with an apparently normal 
phenotype. Penetrance and expressivity 
of loss of function mutations are not fully 
understood. 

Potential clinical 
interpretation: 
 
Uncertain, likely 
pathogenic 
OR 
Uncertain 

1 Little 
evidence 

No clear phenotype-genotype 
correlation exists 

Potential clinical 
interpretation:  
 
Uncertain 

0 No evidence  No evidence to prove phenotype 
genotype correlation exists 

 There is evidence that the gene is 
NOT involved in dosage sensitivity 
anomalies. 

Potential clinical 
interpretation: 
 
Uncertain, likely 
benign 
OR 
Benign 

 

X-linked conditions should only be considered with regard to dosage sensitivity in male 

patients. Riggs et al. (2012a) stated „the haploinsufficiency and triplosensitivity ratings for 

genes on the X chromosome are made in the context of a male genome to account for the 

effects of hemizygous duplications or nullizygous deletions‟. Y chromosome gene 

duplications are not associated with specific clinical phenotypes. Y chromosome gene 

deletions are however pathogenic, for example, as with the genes SRY and DAZ (Riggs et 

al., 2012a). Another point to consider is that one CNV may include more than one gene, all 

of which have to be assessed. Clinical correlation which includes phenotype and 

penetrance, and expressivity is of extreme importance (Riggs et al., 2012a). Large-scale 

case-control series can be used for both assessing the frequency of CNVs and case-control 

population comparisons (Cooper et al., 2011; Kaminsky et al., 2011). Case-studies can also 

be valuable when assessing rare CNVs. Another consideration is that some CNVs do not 

have any clinical relevance to the cohort being tested and would be considered „benign‟ as 

the CNV would not add value to the diagnosis in patients with DD, MCA and/or ASD.  

Two meetings were held to discuss the analysis, reporting and interpretation of microarray 

results: 
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A forum called „Microarray Reporting Best Practice Workshop‟ was organized by the 

Genetics Advisory Committee of the Royal College of Pathologists of Australasia and was 

reported on by Bruno et al. (2012). Due to the increased detection rate of chromosomal 

abnormalities using CMA, a „reverse dysmorphology‟ or „genotype-to-phenotype‟ 

phenomenon was noted. The rapid rate of development of the microarray technology and 

the amount of data generated has been vast, inevitably producing inconsistencies in 

processing of samples, analysis, interpretation and reporting between different centres due 

to the incomplete knowledge of the variome (Bruno et al., 2012). The following key areas (in 

italics) were considered:  

Reporting terminology - the „pathogenic‟ (well established CNVs published in peer reviewed 

literature), and „benign‟ (commonly occurring CNVs in the general population) classifications 

are straightforward. There should however be a clear distinction when using „unknown 

significance‟ and „uncertain significance‟. Patients with neurodevelopmental conditions are 

more likely to have so-called „susceptibility CNVs‟ with 2 to 4% of patients with DD, ID, ASD 

and MCA having been found to have „susceptibility factors‟ as more than one element can 

be involved. 

Evidence-based reporting: „Critical review of literature cited in reports is a requisite 

competency skill for any laboratory geneticist.‟ Interpretation of findings should be done by 

evaluating peer-reviewed literature with careful consideration of the cohort (size, phenotypic 

data, ethnicity, control samples) and the CNV calling as the interpretation of the detected 

CNVs is influenced by the type of array and the software used.  

Comprehensive clinical information to aid analysis and interpretation: good laboratory-

clinician relationships should be cultivated to ensure reliable communication with regard to 

patient information as phenotype information is extremely important in the interpretation of 

patient data.  

Analysis of CNV flanking and agenic regions: as arrays offer adequate probe coverage and 

target relevant regions, various laboratories do not extend their analysis beyond the 

breakpoints whereas others may include genes upstream or downstream from the region 

being analysed. The same is true for agenic regions. Each laboratory has its own protocols 

to deal with these.  

Challenges of interpretation: rare and novel CNVs are a challenge as not enough evidence 

is available to differentiate between pathogenic and benign variants. At present, 

interpretation is accomplished using case-control frequency data, CNV size and the gene 

content of the CNV. CN state (heterozygous vs homozygous and their respective likelihood 

of pathogenicity) and possible known polymorphisms should also be considered during data 



Page 24 of 185 
 

interpretation. Another consideration is the overlap of a detected CNV with a potentially 

pathogenic gene region. Phenotypic correlation is essential. Gene function may also be 

disrupted by rearrangements such as duplications of a gene or insertions. 

Genomic load: neurodevelopmental disorders may be caused by the aggregate effects of 

multiple clinically significant alleles and it is thus not always possible to arrive at a complete 

diagnosis. Overinterpretation in VOUS and susceptibility CNVs remain a challenge.   

Homozygosity: this may indicate consanguinity, UPD or an unmasked Mendelian disorder.  

Interpretation of CNV inheritance: de novo CNVs are not always pathogenic and inherited 

CNVs are not necessarily benign. Other factors such as imprinting and epigenetics also play 

a role. Also, susceptibility loci should be taken into account.  

Reporting CNVs: some laboratories report all CNVs, whereas others only report clinically 

relevant CNVs. Consistency in reporting within each laboratory should however be 

maintained.  

Incidental findings: including these in reports should have clinical validity and relate to 

treatment options.  

Consanguinity: a policy should be put in place to communicate these results directly to the 

clinician.  

Carrier status: ACMG Guidelines (Kearney et al., 2011) state that carrier status testing is 

beyond the scope of CMA testing.  

 

The second meeting was an international symposium which was held by the Genetics 

Services Quality Committee of the European Society of Human Genetics in Amsterdam in 

2011 (Sikkema-Raddatz & Sijmons, 2012). The theme was „Array in daily Practice‟ and five 

articles were published in 2012, illustrating the findings and opening further discussion. De 

Leeuw et al. (2012) discussed the classification and interpretation of CNVs for constitutional 

diagnostics. The point was made that all CNVs detected should be interpreted, although it 

was recognised that rare CNVs are difficult to interpret and categorize. CNVs can be 

classified as the following according to these authors: 1) Benign CNV/Normal genomic 

variant, 2) Likely benign CNV, VOUS, 3) CNV of possible clinical relevance/High-

susceptibility locus or risk factor or likely pathogenic variant, and 4) Clinically relevant 

CNV/Pathogenic variant. These terms underscore the importance of the Genetics Advisory 

Committee of the Royal College of Pathologists of Australasia standardization of reporting 

terminology (Bruno et al., 2012). Gains (typically represented in blue) and losses (typically 

represented in red) give rise to considerable differences in clinical effect and should be 
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interpreted accordingly. De Leeuw et al. (2012) recommended that analysis of the data 

should involve the following steps: comparison of similarities between the CNV to in-house 

and national/international control datasets, comparison of similarities with affected individual 

datasets and comparison of gene content to literature. The more commonly consulted 

databases and resources are DECIPHER (https://decipher.sanger.ac.uk/), DGV 

http://dgv.tcag.ca/dgv/app/home, University of California, Santa Cruz Genome Browser 

(https://genome.ucsc.edu, UCSC), Ensembl (http://www.ensembl.org/index.html), 

ECARUCA (http://umcecaruca01.extern.umcn.nl:8080/ecaruca/ecaruca.jsp), ISCA 

(http://www.iscaconsortium.org/?viajml=1), OMIM (http://www.ncbi.nlm.nih.gov/omim), 

National Center for Biotechnology Information and  U.S. National Library of Medicine 

(http://www.ncbi.nlm.nih.gov/pubmed/,PubMed) and UNIQUE 

(http://www.rarechromo.org/html/home.asp).  

 

Microarray platform software offers visualization tools which demonstrate the array data, the 

most recent human genome reference sequence, the specific probe coverage and links the 

data with a number of public databases and browsers. PubMed, OMIM, UCSC and Ensembl 

offer genome-orientated data. DECIPHER, ECARUCA and ISCA offer a collection of 

individual cases. DGV offers control information with genetic and phenotypic details on the 

specific region studied. Cartagenia BENCH (https://cartagenia.com/cartagenia-bench-lab) is 

both a database and analytical platform for routine laboratory workflow and has the following 

components: 1) Interpretation: this involves automation of the entire work process from data 

retrieval, CNV interpretation to the completed report and incorporates all the commonly used 

databases and gene browsers, 2) phenotype database, and 3) international collaborations 

as well as integration with DECIPHER, ISCA and ECARUCA. A few important points to bear 

in mind when interpreting CNVs: it is crucial to use up-to-date sources as there is such a 

large amount of genetic and clinical information rapidly becoming available, databases 

should include the ethnicity of patients in addition to the usual demographics as population-

specific genomic variants occur and there are a variety of databases, each with a different 

genome build according to the National Centre of Biotechnology Information (NCBI) and 

Genome Reference Consortium - human assembly (GRCh): for example NCBI35 [hg17], 

NCBI36 [hg18] and GRCh [hg19] which may cause problems when comparing data. De 

Leeuw et al. (2012) concluded that a single search engine (data aggregator) is needed to 

ensure quick and simple interpretation of data with all relevant information sourced from 

different platforms. At the moment UCSC Genomic Browser fulfils some of these criteria. 

Ideally, all data, both from research and diagnostics, should be made freely available. This 

data must meet strict quality criteria for submission to the relevant database. However, the 
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biggest challenge is still the interpretation of the data. It is of the utmost importance to link 

clinical information with the genetic output. De Leeuw et al. (2012) further reported that 

apparently normal or benign CNVs may cause or contribute to pathogenicity and should be 

reported. Examples of this include one allele with a deletion while the other allele carries a 

mutation of the gene, two identical deletions present on both alleles indicating a benign 

homozygous deletion, a patient inheriting two different deletions in the same gene from each 

parent, imprinting affecting pathogenicity, an X chromosomal CNV inherited by a male 

offspring, a CNV inherited from a mosaic carrier (non-affected or mildly affected), and a 

combination of CNVs giving rise to pathogenicity. In spite of this, the majority of CNVs must 

still be analysed individually for accurate interpretation as the size of the detected CNV does 

not necessarily correspond to the size of other reported CNVs. 

There are special considerations which should be taken into account when compiling an 

abnormal diagnostic report. A clear, unambiguous description of the genomic imbalance, 

which includes the clinical interpretation, must be provided. The size, start and end positions 

of the probes, the gene content and references used must be reported. Follow-up studies 

could be recommended to elucidate or confirm the findings.  

1.5.2 Incidental findings 

 

Boone et al. (2013) demonstrated that microarray technologies not only detect disease-

causing CNVs related to the patient‟s phenotype but also CNVs which involve late-onset 

disease-causing genes such as those predisposing to certain malignancies. The authors 

also suggested the inclusion of incidental findings in pre-test counselling. Coulter et al. 

(2011) reported on two cases referred for CMA. One was a 15-year old female who was 

referred for learning difficulties and behavioural problems. CMA identified a 3.8 Mb deletion 

on chromosome 2 which included the PROC gene which is involved in hereditary 

thrombophilia due to protein C deficiency. Follow-up testing revealed a low level of functional 

protein C in the patient which could aid in future medical treatment. The second patient was 

a nine year old female with multiple abnormalities including heart defects. CMA identified a 

244 Kb deletion on chromosome 22 which included the CHEK2 gene which is implicated in 

Li-Fraumeni Syndrome 2, and which is associated with an increased risk of different types of 

cancer. This patient was therefore referred to an oncologist and her clinical management 

changed completely as a result of this finding.  
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1.5.3 Nomenclature 

 

Karl Wilhelm von Nageli first discovered chromosomes in plants in 1842 (Kannan & Zilfalil, 

2009). By 1956, optimal preparation techniques for chromosome analysis were achieved. 

These improvements lead to the identification of the aneuploidic basis of Down, Turner and 

Klinefelter syndromes, amongst others (Kannan & Zilfalil, 2009). In 1960 an international 

standardized nomenclature for chromosome abnormalities was adopted (Shaffer et al., 

2013). Pinkel et al. (1986) reported on the use of fluorescence in situ hybridization (FISH) for 

the detection of microdeletion syndromes. In 1986, imaging systems for karyotyping were 

introduced (Kannan & Zilfalil, 2009). Even though the Philadelphia chromosome was first 

reported in 1960, the International System for Human Cytogenetic Nomenclature (ISCN) 

Guidelines for Cancer Cytogenetics was only released in 1991 (Shaffer et al., 2013). Shortly 

thereafter, Kallioniemi et al. (1992) used Comparative Genomic Hybridization (CGH) for the 

analysis of solid tumours and in 1998 Pinkel and colleagues used this technology for CN 

analysis (Pinkel et al., 1998). By 2002, Veltman and colleagues were using CGH 

microarrays for the detection of CNVs of telomeres in patients with ID representing a major 

shift from chromosome analysis, which had been the gold standard for „gross‟ CNV detection 

for decades (Veltman et al., 2003). In 2010, Miller et al. released the consensus statement 

stating that microarrays should be the first-tier test in patients with ID/DD, MCA and ASD. 

The ISCN was subsequently updated in 2013 with the removal of unused nomenclature, the 

addition of genome builds for microarray results, and the replacement of the MLPA section 

with Region-Specific Assay (RSA) which can be used for targeted arrays, MLPA, QF-PCR, 

etc. (Shaffer et al., 2013). 

 

1.6 COST BENEFIT ANALYSIS 

 

Regier et al. (2010) reported the high cost of microarray testing as compared to conventional 

cytogenetic analysis. They were also unsure if microarray testing was actually „good value 

for money‟. Trakadis & Shevell (2011) argued that karyotyping is labour-intensive and time-

consuming and not always informative, thereby justifying the extra cost of aCGH with a 

significantly increased diagnostic yield. Even though microarray testing is recommended as 

first-tier testing for GDD and autism, this had not always been the case in practice, in part 

due to the perception that array testing is more expensive than traditional cytogenetics 

methods (such as karyotyping, FISH and MLPA).The authors concluded that with microarray 

testing there may be an overall decrease in TAT providing an earlier diagnosis with resulting 
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treatment/management, reducing parental anxiety and cutting down on additional tests and 

consultations which increase the overall cost (Wordsworth et al., 2007; Trakadis & Shevell, 

2011). Wordsworth et al. (2007) found that the average cost of aCGH was £442 per patient 

(based on 25 tests per week) with the average cost of karyotyping £117 per patient (based 

on 61 tests per week). However if an additional multi-telomere FISH test was performed 

when no abnormality was detected on karyotyping, the cost rose to £400. The cost 

difference when compared to microarray testing is therefore negligible, with the testing yield 

being significantly much more extensive.  

Palmer et al. (2012) in their review article, discussed the costing of CMA in Australia. In 

2010, the Medicare Benefits Scheme charged the following fees: chromosome analysis: 

Aus$361.95, MLPA/FISH: Aus$230.95 and CMA: Aus$593.85. Performing chromosome and 

MLPA/FISH analysis on a sample would result in almost the same cost but with a reduced 

resolution than performing microarray testing. 

 
 
1.7 STANDARDS AND GUIDELINES 

 

This discussion focuses on the revolution in cytogenetic testing in patients with DD/ID, ASD 

and MCA with CMA superseding chromosome analysis as the gold standard. These 

guidelines make recommendations for technical processes and the analysis and 

interpretation of CNVs. 

 1.7.1 American College of Medical Genetics guideline on the cytogenetic  
                     evaluation of the individual with developmental delay or mental  
                     retardation (Shaffer, 2005) 

 
In 2005 routine chromosome analysis (minimum 550 G-band resolution) was still 

recommended for children with unexplained MR/DD, even in the absence of other clinical 

features or a positive family history. Routine chromosome analysis was also recommended 

for children with clinical features of known chromosomal disorders such as DS as it is 

important to detect a possible translocation to calculate the recurrence risk. High-resolution 

chromosome analysis was only performed when FISH was not available. Subtelomeric FISH 

was only considered if chromosome analysis was normal at the 550 G-band level. 
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1.7.2 Microarray analysis for constitutional cytogenetic abnormalities      
         (Shaffer et al., 2007b) – as proposed by A Working Group of the   
         Laboratory Quality Assurance Committee of the American College of  
         Medical Genetics 

 
These guidelines recommended the use of 30 patient samples, in which chromosomal 

abnormalities had previously been identified, and which should ideally include a range of 

abnormalities, for the validation of a microarray platform. To establish controls, male and/or 

female or pooled DNA from both or opposite sex controls could be used depending on the 

clinical relevance. Each laboratory was meant to determine the particular platform‟s 

mosaicism detection rate. „The possibility that a clinically significant abnormality can occur in 

known variant regions‟ should be kept in mind during analysis. They recommended that each 

laboratory establish an in-house database.  

 

1.7.3 International Standards for Cytogenomic Arrays (ISCA) 

ISCA was established as an independent group in 2007/2008 to ensure all patients receive 

the same quality of care by standardizing array design and by enhancing the standard of 

CMA testing. This group consisted of international experts in CMA from more than 75 

laboratories (Manning & Hudgins, 2010). ISCA recognized the need for CNV interpretation 

using whole-genome analysis. It was important to interpret these results within the context of 

the relevant phenotype to ensure an accurate diagnosis. Many targeted regions could 

however not be linked to clinical evidence, contributing to challenges in data 

analysis/interpretation. The ISCA Consortium established a database which incorporated 

both phenotypic data for the interpretation of genomic variants and genomic data for the 

development of phenotypic profiles. Accurate and detailed phenotypic information is 

fundamental to clarify genotype-phenotype relationships (Riggs et al., 2012b). The ISCA 

Consortium formed an Evidence-based Review (EBR) Work Group which would ultimately 

evaluate each gene in the human genome with input from other medical geneticists. This 

tool could be used for the interpretation of CNVs in diagnostic laboratories (Riggs et al., 

2012b).  

 

1.7.4 Consensus statement by Miller et al. (2010) on the use of Chromosomal  
          Microarrays on behalf of ISCA 
 

ISCA reviewed 33 original publications which included the analysis of 21 698 patients with 

unexplained DD/ID, ASD or MCA using microarray technologies. At the time, guidelines still 

promoted G-banded karyotyping and testing for FRAXA and other single-gene disorders for 
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patients with these indications. At the conclusion of this review, Miller et al. (2010) released 

the Consensus statement „Chromosomal Microarrays:  A First-Tier Clinical Diagnostic Test 

for Individuals with Developmental Disabilities or Congenital Anomalies‟. The diagnostic yield 

of CMA was much higher at 15 to 20% when compared to 3.7% with routine chromosome 

analysis (Shevell et al., 2003). Microarray therefore had a much higher sensitivity for the 

diagnosis of submicroscopic deletions and duplications. The improved resolution did 

however add new challenges to the interpretation of CNVs. G-banded karyotyping were still 

useful for the detection of low-level mosaicism and the detection of apparently balanced 

rearrangements. Multiple miscarriages would also still require G-banded karyotyping as the 

first tier test. This also holds true for suspected trisomy 13, 18 and 21, and in Turner and 

Klinefelter syndromes. G-banded karyotyping and/or FISH would have a shorter turnaround 

time, and distinguish between free trisomy and translocation. CMA was recommended as 

the first-tier test for patients with unexplained DD/ID, ASD or MCA instead of G-banded 

karyotyping, even though there is a cost consideration. G-banded karyotyping, followed by 

FISH (specific and subtelomeric), would be more expensive than an array which has a 

significantly increased yield. The clinical algorithm as shown in Figure 3 was proposed by 

Miller et al. (2010). 

 

qPCR = Quantitative Polymerase Chain Reaction 

Figure 3 CMA testing in patients with unexplained DD/ID, ASD and MCA (adapted from Miller et al., 2010)  
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Page 31 of 185 
 

1.7.5 Array-based technology and recommendations for utilization in medical  
         genetics practice for detection of chromosomal abnormalities (Manning 
         & Hudgins, 2010) – for the Professional Practice and Guidelines 
         Committee of the ACMG 

 

The ACMG updated the guidelines to advise on the use of CMA as the first-tier diagnostic 

test for patients with multiple abnormalities which do not fit into a specific syndrome and for 

nonsyndromic DD/ID and ASD.  

Further recommendations included using a resolution level which is both specific and 

sensitive, sharing data on the established databases and performing parental studies to 

establish inheritance of detected CNVs. Continuous training and educational tools should be 

established for clinical and laboratory staff. 

 

1.7.6 American College of Medical Genetics and Genomics recommendations  
          for the design and performance expectations for clinical genomic copy

          number microarrays intended for use in the postnatal setting for  
         detection of constitutional abnormalities (Kearney et al., 2011) 

 
It was recommended that probes be placed at regular intervals of 400 Kb thereby covering 

the whole genome. Probe density of dosage-sensitive regions should be higher than in less 

relevant regions. The probe coverage should be equal or better than the technology which is 

replaced by the microarray to ensure the same or better quality results. CNV + SNP arrays 

are preferred even though SNP coverage is not a requirement as yet. Microarray 

manufacturers should specify which regions are less densely covered by probes. 

Furthermore, the underlying mechanisms must be well understood, for example, a deletion 

phenotype-associated gene may have no clinical phenotype with CN gain. Gain of function 

mutations resulting in dominant disorders may not be due to dosage imbalance which could 

give rise to a different phenotype/condition. CN gains may cause a gene disruption which 

should be investigated. Dominant negative mutations act antagonistically to the wild-type 

allele due to an altered gene product often resulting in an inactive function giving rise to a 

dominant or semi-dominant phenotype (Veitia et al., 2013). In a recessive disease, a single 

copy deletion may infer carrier status. Gene function may not be altered in the case of small 

intronic CNVs. 

 
1.7.7 Best Practice Microarray Analysis Guidelines – Human Genetics Society  
         of Australasia (2011) 

 
CMA was recommended as best practice for patients with MCA, DD and ASD. A statistical 

analysis is performed as opposed to the subjective analysis of chromosomes. Appropriate 
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training, competence and expertise should be obtained. An external quality control (EQA) 

system should be subscribed to. An initial research and developmental phase must be 

completed before a full diagnostic service can be offered. Standard Operating Procedures 

must be in place and Internal Quality Assurance procedures must be applied. All processes 

and parameters must be validated using 20 abnormal and 10 normal samples. The quality of 

the DNA is crucial to the success of the CMA assay. Hardware and software must be 

suitable with computer, applied mathematics or bioinformatics skills being required for the 

understanding of the software to be able to assess the statistics and for troubleshooting. 

Clear reports must be written with all relevant information included: normal or abnormal, 

ISCN nomenclature, location and size of aberration, clinical interpretation, genome build 

used for analysis, confirmatory tests used, limitations of the test, if parental studies are 

needed, referral to or recommendation for genetic counselling services and the relevant 

publications or databases used for interpretation. Care should be taken not to over-interpret 

novel CNCs. The TAT must be between six to eight weeks from receipt of the sample. 

 

1.7.8 ACMG Standards and Guidelines for constitutional cytogenomic  
         microarray analysis, including postnatal and prenatal applications: 
         revision 2013 (South et al., 2013)   
 

Additional points were made for the introduction of microarray technology into the diagnostic 

laboratory. Acceptable parameters should be put in place for interpreting CNVs. Accuracy of 

the microarray results can be achieved by assessing 30 previously characterized samples if 

possible. CMA should not be used to exclude mosaicism. 

 

 

1.8 THE SOUTH AFRICAN CONTEXT 
 

The first National Disability Survey was conducted in 1999 and a 1.1% prevalence for ID was 

reported (Adnams, 2010). In 2001, during the national census, the prevalence of ID was 

reported as 0.5%. The census did not include institutionalised patients thus excluding a large 

portion of the affected population. Christianson et al. (2002) published the first report on the 

prevalence of ID in rural SA children and found the prevalence in rural SA (3.6%) to be 

comparable with that in Zambia. In a study in Kwazulu-Natal, Couper (2002) reported a 

prevalence of 1.7% for ID, 0.6% of moderate to severe perceptual disability and 0.4% of 

seizures. Kleintjes et al. (2006) conducted a literature review of 37 epidemiological studies to 

determine the prevalence of mental disorders among children, adolescents and adults in the 
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Western Cape Province during 2002 and 2003. This study showed that in children and 

adolescents, 2.5% had an IQ of 50 - 70, 0.4% an IQ between 30 and 50 and 0.1% had an IQ 

of below 30. ADHD was reported at a prevalence of 5%. ASD patients were not included in 

this study. A second National Disability Survey in 2007 reported a prevalence of 0.3% for 

severe intellectual or learning disability (Statistics South Africa, 2007). Kromberg et al. 

(2008) studied 6 692 children, between two and nine years of age, from eight rural villages in 

the Bushbuckridge area of Mpumalanga. The prevalence rate of ID was 3.6%. Severe ID 

was seen in 0.6% and mild ID was seen in 2.9% of cases. Approximately 50% of the African 

population consists of children below the age of 14 years and provision should be made for 

their future health care needs. Even though SA has an all-inclusive constitution and special 

policies for disabilities, including ID, these are not always taken up by or accessible to 

patients. Patients are entitled to grants and free primary health care. Specialized schooling is 

also available. Individuals living in rural areas, however, do not have ready access to these 

facilities. Patients with severe and profound ID are not included in the government‟s 

education benefits. ID is still not seen as a priority in the SA health and education systems 

(Adnams, 2010). Socio-economic factors, education level and racial segregation have a 

negative effect on IQ (Leonard & Wen, 2002).  

 

SA also has the highest prevalence of fetal alcohol spectrum disorders (FASD) in the world 

(Bateman, 2012) which is a further contributing factor to the prevalence of ID in SA. Allison & 

Strydom (2009) noticed that the negative attitudes of health care workers in several studies 

impacted on patients with ID which resulted in their segregation from society. This attitude 

was described as pervasive by Njenga (2009). Cultural beliefs can also add to this negative 

attitude, for example in Southern Africa many traditional healers believe that ID may be 

caused by witchcraft. This also influences the uptake of Westernized medical care. Health 

care options should be designed to accommodate cultural beliefs. Njenga (2009) discussed 

the lack of study of ID in Africa which also highlights the lack of specially trained staff and 

financial and infrastructural resources, adding to the challenge of coping with large numbers 

of patients. The lack of resources to rectify these challenges seems to be a challenge in 

itself. 
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1.9 AIM AND OBJECTIVES OF THIS STUDY 

1.9.1 Aim 

The aim of this study is to investigate the relevance of CNVs in the Western Cape ID/DD 

population (of SA) and in so doing, to introduce and develop molecular cytogenetics skills in 

the routine cytogenetic environment.  

1.9.2 Objectives 

This aim was accomplished with the following objectives: 

 to identify CNVs implicated in ID/DD  

 to describe the implicated CNVs and correlate with the clinical phenotype 

 to assess the diagnostic yield of CMA as compared to the current diagnostic repertoire  

 available in SA  

 to assist in planning implementation of CMA into the diagnostic laboratory in order to  

offer improved management and counselling of ID/DD patients and their families 
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Chapter 2:  Methodology 

 

2.1 STUDY SAMPLE 

 

The study cohort comprised of patients who had been diagnosed with ID/DD and 

dysmorphic features, with or without structural congenital abnormalities, and had previous 

negative cytogenetic diagnostic tests. As part of their diagnostic work-up, the majority of 

these patients previously had conventional chromosome analysis and a few had 

microdeletion FISH and subtelomeric/microdeletion MLPA and FRAXA testing (Table 7 

includes a summary of all diagnostic findings in the study cohort). One patient had a large 

supernumerary marker chromosome of unknown origin detected on routine karyotyping. The 

final cohort included 15 male and 12 female patients representing three of the four main 

population groups (Black, Mixed Ancestry and White) in South Africa. 

Ethics approval was obtained from the Human Research Ethics Committee (HREC), 

University of Cape Town with annual renewal (HREC REF Number 490/2010), (Addendum 

I). Initially, a total of 30 patient DNA samples, which had already been stored in the DNA 

Registry (HREC REF Number 217/2010),  in the Division of Human Genetics, University of 

Cape Town, were selected. Genomic DNA (gDNA) was used which was previously extracted 

from blood samples using various DNA isolation methods including the salting out method 

and using Qiagen DNA Isolation kits (Qiagen, Minneapolis, MN) and those from Gentra® 

and Puregene® and Maxwell® (Promega, Madison, WI, USA). 

Affymetrix (Affymetrix, Santa Clara, CA, USA) made 30 Affymetrix® Cytoscan™ HD Arrays 

available for this study. A volume of 250 ng of double-stranded genomic DNA was required 

at a concentration of 50ng/ul. Due to the stringent DNA quality requirements for this array, 

three of the samples were excluded. The final cohort consisted of 27 patients. The small kit 

size excluded any follow-up parental testing with findings of VOUS. Signed consent for the 

use of DNA for this study was obtained from 13 of the patients. However, the remaining 

patients were either not contactable or the samples had been stored before consent was 

required for DNA banking. The latter samples were anonymised according to the 

requirements of the HREC.  
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2.2 ARRAY SPECIFICATIONS 

 

Affymetrix® Cytoscan™ HD Arrays have been designed for the detection of genome-wide 

CNVs and SNPs. This platform is routinely used in various centres internationally and the 

array contains approximately 2.6 million markers for CN analysis which consists of 

approximately 750 000 SNPs and 1.9 million oligonucleotide probes. This is a targeted array 

with backbone spacing which covers the whole genome with a higher density of probes in 

regions of particular interest such as known microdeletion regions. The probe spacing 

consists of one oligonucleotide every 2 Kb, and one oligonucleotide probe every 400 bp in 

targeted regions. There are 200 SNP probes per Mb. All probes are 25 bp long. Each SNP is 

targeted by six probes, in other words three probes per allele (Mason-Suares et al., 2013).  

 

2.3 PROCEDURE 

The protocol using Affymetrix® Cytoscan™ HD Arrays (Affymetrix, Santa Clara, CA, USA) 

usually runs over a period of four days (Figure 2). 

 

  

                      PCR = Polymerase chain reaction, QC = Quality control 

     Figure 4 Affymetrix Cytoscan HD Workflow (adapted) 

 

The array was run according to the manufacturer‟s instructions which consist of nine stages. 

The integrity of the DNA is of vital importance and should therefore not be degraded. The 
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average size of the gDNA was determined by electrophoresis through a 1% agarose gel. 

The object was to get approximately 90% of the DNA greater than 10 Kb in size; 250 ng of 

double-stranded genomic DNA was required and diluted to a concentration of 50ng/ul. The 

DNA was of a high quality and purity with the OD260/OD280 measuring 1.8 to 2.0 and the 

OD260/OD230 measuring >1.5. 

 

All samples were taken through each step simultaneously (batched). During Digestion 

(Stage 1) the restriction enzyme cuts the gDNA segments within a specific nucleotide 

sequence (restriction site). The genomic fragments measured between 200 and 2 000 bp in 

length. This left overhanging nucleotides on all the fragments. The digested samples were 

then ligated (Stage 2) to the Nsp I Adaptor which recognizes the 4-bp nucleotide overhang. 

A unique primer sequence, which is not present elsewhere in the genome, was attached to 

the overhang, in the presence of the enzyme (Ligase).  During the PCR step (Stage 3), 

which was done in quadruple, a primer which is recognized by the sequence in the adaptor 

(which has an artificial sequence) was used. All the fragments with different GC content and 

lengths were amplified equally. A QC gel was run before the PCR product was pooled to 

ensure optimal amplification of the DNA. The PCR magnetic bead purification step (Stage 4) 

eliminates salts, enzymes and buffers while concentrating the DNA. During Stage 5, the 

purified DNA was quantified using the NanoDrop instrument (NanoDrop Technologies, 

Wilmington, Delaware, USA). The acceptance criteria should be: a DNA concentration of 

more than 300ng/ul, the 260/280 ratio should be between 1.8 and 2.0 and the A320 should 

be very close to „0‟ (0.1). The fragmentation (Stage 6), which is critical, involved subjecting 

the purified samples to DNAse which fragments the DNA, which is in the size range of 200 to 

2000 Kb at this stage, to approximately 50 Kb in size. The probes on the array were 

approximately 25 bp in size.  

 

A second QC gel was run at this stage to assess the size of the DNA fragments. During 

Stage 7, the fragmented samples were labeled with Biotin, which is not fluorescent. During 

the hybridization step (Stage 8), the samples were denatured. The hybridization buffers 

ensured continued DNA denaturation, while the Oligo Control Reagent ensured successful 

hybridization, washing, staining and scanning of the array (Stage 9). On the GeneChip 

Fluidics station (Affymetrix), the fluorescently labelled stain buffer recognized the Biotin label 

resulting in hybridization. The non-specific bound probe was removed during several 

stringency washes. The fluorescent signal was scanned on the GeneChip Scanner 

(Affymetrix, Santa Clara, CA, USA). 
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For the purpose of this study, reagents for 30 samples were used. Three of the DNA 

samples were withdrawn from the run after the second QC gel step as DNA fragmentation 

was not successful. 

 

2.4 QUALITY CONTROL 

 

QC is imperative to the success of microarray assays. During the microarray assay QC gels 

were run once the DNA had been amplified to ensure optimal DNA product. Another QC gel 

was run after the fragmentation step to assess the size of the DNA fragments. 

 

Before data analysis using the ChAS software, the QC of each sample was checked by 

assessing the following parameters: SNPQC (SNP Quality Control), Median Absolute 

Pairwise Difference (MAPD) and Waviness Standard Deviation (Waviness SD) metrics. 

These parameters are available within the ChAS software for each patient sample. The 

SNPQC indicated how well the genotype alleles were resolved in the data. A subset of 

probes measured differences in the contrast distributions for homozygote and heterozygote 

genotypes. The MAPD measured the variation/noise of all the probes across the genome 

and was reflected in the Log2 Ratio. The median of the log2 distance between adjacent 

marker pairs was calculated. A high MAPD calculation represents more noise between the 

array and the reference set. The Waviness SD measured the degree of waviness of the log2 

ratios among autosomal probe sets thereby capturing longer spans of variation which would 

not be detected in pair-wise differences. The SNPQC should be >15, the MAPD should be 

<0.25 and the Waviness SD should be <0.12. 

 

 

2.5 ANALYSIS 

 

Affymetrix CEL files were generated by the Affymetrix GeneChip® Command Console 

software (AGCC, (Affymetrix, Santa Clara, CA, USA) and analysed using the Affymetrix 

ChAS software program. The software compares the hybridization of patient DNA to 

oligonucleotide and SNP probes of normal samples. The CNVs were mapped to genome 

build GRCh37/hg19 for analysis and interpretation.  

 



Page 39 of 185 
 

Initial analysis of the CNV data during 2014 used the set Standard setting filters in the ChAS 

software. The filters were set at a 50 marker count and a 400 kilobasepair (Kbp) CNV size 

which would indicate that at least 50 consecutive markers are required for a CNV call and 

the CNV would be larger than 400 Kbp in size. If no large gain or loss was observed, the 

High Resolution setting was used with the same marker count of 50 and the CNV size 

reduced to 100 Kbp for higher resolution detection.  

 

The Track Files were selected for Genes, OMIM Genes, Cytobands and the ISCA 

Constitutional Regions library file. The data was first analysed using the Standard resolution 

setting and if no abnormality was found, the High Resolution setting was used. The Trak 

Data Types for the Standard and the High resolution analysis were CN state (Gain, Loss), 

Weighted Log2 Ratio, Mosaic Copy number state (Gain, Loss) and Allele peaks. The CN 

state indicates a gain or a loss, the Weighted Log2 Ratio would indicate no loss or gain at 

„0‟, a loss at „1‟ and a gain at „2‟, and Mosaic Copy number state  would indicate a gain or a 

loss in a mosaic form.  

 

The X chromosome detail view served as a control to ensure the correct patient was 

analysed as the sex of the patient is the only check which can be used at this stage. The X 

chromosome was checked for normalization. The shared X and Y markers were represented 

in the pink telomeric regions on the X chromosome. The X chromosome would show 3n in 

the pink telomeric region on the short arm of chromosome X in a male profile. A segment 

report was generated on each sample which contained all the CNVs detected. Each 

chromosome was then individually checked for gains and losses, especially on the 

telomeres as imbalances, for example from unbalanced translocations, will be detected on 

the telomeres. Telomeric regions are repetitive nucleotide regions which are more unstable 

(lengthening and shortening) than other chromosomal regions.  

 

Subsequent to the initial CNV analysis, all the samples were reanalysed during a training 

period at the Laboratory of Diagnostic Genomic Analysis (LDGA) in Leiden, The 

Netherlands, in 2015. The filters for the ChAS software were set as follows: for a Gain the 

marker count was set at 10 and the CNV size at 20 Kbp, with a 85% confidence; for a Loss 

the marker count was set at 10 and the CNV size at 10 Kbp, with a 85% confidence; LOH 

was set at a marker count of 1,000 and a size of 2 000 Kbp. The Track Files were selected 

for Genes, OMIM and Cytobands. The Track Data Types selected were CN state (Gain, 

Loss), Weighted Log2 Ratio, Copy number change, Filter LOH, Allele peaks, Smooth signal 

and Genotype calls. The same checks were done for X chromosome normalization as in the 

initial CNV analysis.  
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Next the Segment Report was saved as a text file. This report contains all the CNVs 

detected on the sample. The Segment Report information was loaded into the Cartegenia 

software program. This program has been set up to the Leiden laboratory‟s custom 

specifications an example of which take into account frequently reported benign variants 

reported in the DGV, as well as known population and artefactual variants detected in 

routine diagnostic analysis. This program also served as the in-house CNV database. The 

size, gene content and location were assessed in the interpretation of each genomic 

imbalance. DECIPHER, DGV, PubMed, OMIM and ENSEMBL were used to evaluate the 

detected CNVs and to assess their potential significance. Only syndromes and protein 

coding genes relevant to the indication for ID/DD, and the relevant clinical phenotype were 

reported. Variants larger than 1 Mb in size but containing no genes were also reported as 

this may be considered to have a structural effect leading to the phenotype. It is useful to be 

able to classify the detected CNVs according to known abnormalities, benign CNVs and 

variants of unknown significance. 

 

The classification of CNVs was done using the following criteria as used routinely by the 

Leiden laboratory: 

1. A known syndrome or microdeletion/duplication syndrome was reported as such 

2. Susceptibility regions and a genetic abnormality associated with a clinical phenotype, 

not described in DGV at time of analysis, but containing the region or part of coding 

exon will be reported. Examples of these include the chromosome 15q11.2 

abnormality which falls within the breakpoint BPI to BPII containing the genes 

TUBGCP5, CYF1P1, NIPA2 and the chromosome 6 deletion of exon 3 of gene 

PARK2 which is not implicated in ID. 

3. Regions smaller than 150 Kb in prenatal samples, and/or inherited susceptibility 

regions would not be reported. This criterion was not used as all samples in this 

study were postnatal. 

4. A genetic abnormality possibly associated with a clinical phenotype, but containing 

no coding genes or only containing one intron of a protein-coding gene, and which 

was described as a variant in DGV at the time of analysis, would not be reported.  

5. If the variant is known in three or more normal controls but not associated with a 

known clinical phenotype (DGV excluding BAC studies), it may be classified as a 

polymorphism without clinical significance. The breakpoints can be within 300 Kb of a 

reported variant or overlapping with one probe arm area. If the variant is small, there 

has to be a 90% or more overlap with the patient‟s CNV. 

6. A genetic variant with a relevant OMIM gene for the ID/DD indication would be 

reported. 
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7. VOUS will be reported. 

8. LOH with a CN of two, covered by a 1 000 probes and larger than 2 000 Kb, except 

chromosome X, will be reported.  

     

 As the analysis of ROH can be time-consuming, Wierenga et al. (2013) devised an analysis 

tool, the Genomic Oligonucleotide and SNP Array Evaluation Tool 

(http://firefly.ccs.miami.edu/cgi-bin/ROH/ROH_analysis_tool.cgi), which searches through 

OMIM, UCSC and NCBI databases, thus identifying genes and their associated recessive 

disorders and phenotypes. An Excel report is generated which includes the relevant OMIM 

genes, and disorder; the coefficient of inbreeding and consanguinity is provided as well. The 

coefficient of inbreeding measures the possible genetic effects due to homozygosity as a 

result of „breeding‟ between related individuals. For example, the coefficient of inbreeding is 

1/16 in the offspring of first cousins, with these individuals having an increased risk for 

autosomal recessive disorders – these homozygous loci are typically found within the ROH 

(Wierenga et al., 2013). The coefficient of consanguinity measures the probability of an 

individual having two identical alleles at a particular locus which originate from the same 

ancestor‟s gene – the parents therefore share the same ancestor. All the genes are then 

individually scrutinized for correlation to the patient‟s phenotype. 
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Chapter 3 Results  

 

3.1 SUMMARY OF ANALYSIS AND FINDINGS 

 

Initial analyses during 2014 revealed large gains and losses in eight patients. However, 

during a follow-up training period (March – April 2015) at the LDGA in Leiden, The 

Netherlands, all the samples were reanalysed using the routine procedure in use in that 

laboratory (see section 2.4) resulting in a further five patients showing small CNVs. A 

summation of all of the results is provided in Table 8. Further detailed analysis of all patients 

in whom positive findings had been identified/detected on the arrays are provided in this 

section. Patients in whom no discernible rearrangements could be identified are further 

detailed in Appendix VIII. 

In 17 of the patients (namely: 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 21, 22, 25, 26 and 27) 

only benign CNVs were detected. Seven of the patients had pathogenic CNVs: these were 

patients 1, 8, 9, 11, 18, 20 and 23. Three of the patients (10, 19 and 24) revealed VOUS.  
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Table 8: Copy number variants detected in this study using the Affymetrix Cytoscan HD microarray. 

 
SEX CHROMOSOME  

ANALYSIS 
MICRO- 

DELETION 
FISH 

MLPA FRAXA INITIAL CLINICAL 
INFORMATION INITIAL RESULTS CONFIRMED 

RESULTS, LEIDEN 
SIZE 
(Kbp) COMMENT 

1 F 46,XX 
(performed at 
another 
laboratory) 

PARENTS: no 
abnormalities 
detected 

 Not 
performed 

del 9q34 
(performed 
subsequent 
to this 
study) 

 Not 
performed 

Microbrachycephaly, 
upslanted palpebral 
fissures, straight 
eyebrows, strabismus, 
downturned corners of 
the mouth, hypotonia,  
epilepsy, severe DD 
with no ambulation or 
speech at the age of 8 
years, a small atrial 
and ventricular septal 
defect, gastro-
oesophageal reflux 
disease 

arr[hg19] 
9q34.3(139,135,215-
141,020,389)x1 

arr[hg19] 
9q34.3(139,135,215-
141,020,389)x1 

1 885 Deletion: 
Kleefstra 
Syndrome 

2 M 46,XY  Not 
performed 

No del/dupl 
subtel/micro
-del 

 Not 
performed 

DD, dysm, cleft palate, 
hypotonia,  low set 
posteriorly rotated ears 
with a prominent crus, 
flat nasal bridge, a 
smooth philtrum with 
downturned corners of 
the mouth, long 
palpebral fissures, 
brachydactyly with one 
dystropic nail and 
rockerbottom feet with 
hallux valgus, 
overweight, able to sit 
at 13 months, could not 
walk or speak by 2 
years of age. 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

 - No 
abnormality 
detected 
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Table 8:  Copy number variants detected in this study using the Affymetrix Cytoscan HD microarray (continued). 

 
SEX CHROMOSOME  

ANALYSIS 
MICRO- 

DELETION 
FISH 

MLPA FRAXA INITIAL CLINICAL 
INFORMATION INITIAL RESULTS 

CONFIRMED 
RESULTS, 

LEIDEN 
SIZE 
(Kbp) COMMENT 

3 M 46,XY  Not 
performed 

 Not 
performed 

 Not 
performed 

DD, hypotonia, cleft 
palate, seizures, large 
posteriorly rotated 
ears, anteverted nares, 
large palpebral 
fissures, a broad nasal 
root, hypertelorism and 
micrognathia. 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

 - No 
abnormality 
detected 

4 M 46,XY  Not 
performed 

 Not 
performed 

NEG DD, dysm, 
brachycephaly, 
prominent ears, 
hypertelorism with mild 
ptosis, intermittent 
strabismus, a narrow 
nose, thin lips, smooth 
philtrum, pointed chin, 
sacral dimple, 
clinodactyly, single 
palmar creases with 
small nails, 
ligamentous laxity, 
vesicoureteral reflux 
(VUR) and 
hydronephrosis, 
agenesis of the corpus 
callosum. His mother 
has mild ID with similar 
physical signs. 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

 - No 
abnormality 
detected 
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Table 8:  Copy number variants detected in this study using the Affymetrix Cytoscan HD microarray (continued). 

 
SEX CHROMOSOME  

ANALYSIS 
MICRO- 

DELETION 
FISH 

MLPA FRAXA INITIAL CLINICAL 
INFORMATION INITIAL RESULTS 

CONFIRMED 
RESULTS, 

LEIDEN 
SIZE 
(Kbp) COMMENT 

5 F 46,XX Not 
performed 

Not 
performed 

Not 
performed 

DD, ADHD, coarse 
facies, external eyebrow 
flare, prognathism, a 
large mouth with thick 
lips, no speech. 

 Arr[hg19](1-
22,X)x2 

 Arr[hg19](1-
22,X)x2 

 - No 
abnormality 
detected 

6 M Not performed Not 
performed 

Not 
performed 

Not 
performed 

VACTERL association 
including truncus 
arteriosus and a 
horseshoe kidney, no 
fam hx 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

 - No 
abnormality 
detected 

7 F Not performed Not 
performed 

Not 
performed 

Not 
performed 

Epilepsy, learning 
disabilities. She has two 
DD children. Female 
child: small for age with 
DD. Younger male child: 
short stature, ptosis, 
micropthalmia, 
downslanting palpebral 
fissures, strabismus, 
retrognathia, pointed 
ears, cryptorchidism, 
periventricular 
calcification. 

Arr[hg19](1-22,X)x2 Arr[hg19](1-
22,X)x2 

 -  No 
abnormality 
detected 
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Table 8:  Copy number variants detected in this study using the Affymetrix Cytoscan HD microarray (continued). 

 
SEX CHROMOSOME  

ANALYSIS 
MICRO- 

DELETION 
FISH 

MLPA FRAXA INITIAL CLINICAL 
INFORMATION INITIAL RESULTS CONFIRMED 

RESULTS, LEIDEN 
SIZE 
(Kbp) COMMENT 

8 F 46,XX Not 
performed 

Not 
performed 

Not 
performed 

Severe ID, dysm, 
colobomatous 
micropthalmia, 
microcornea, 
cataracts, 
microcephaly, 
bifrontal narrowing, 
micrognathia, 
clenched hands with 
broad distal 
phalanges and 
hypoplastic nails, 
Agenesis of the 
corpus callosum 
(ACC).  

arr[hg19] 
2q22.2q22.3(143,571,
114-145,663,819)x1 

arr[hg19] 
2q22.2q22.3(143,57
1,114-
145,663,819)x1 

2 093 Deletion: 
Mowat-
Wilson 
syndrome 

9 M 46,XY  Not 
performed 

No 
del/dupl 
subtel/mic
-rodel 

NEG GDD, fam hx of ID, 
psychiatric disease 
(schizophrenia, 
depression) 

arr[hg19] 
1q21.1q21.2(146,101,
790-147,897,962)x1 

arr[hg19] 
1q21.1q21.2(146,10
1,790-
147,897,962)x1 

1 796 Deletion: 
1q21 
susceptibility 
region 

10 M 46,XY DG NEG No 
del/dupl 
subtel 

 Not 
performed 

ID, dysm, juvenile 
myoclonic epilepsy, 
speech and hearing 
loss, 
blepharophimosis, 
broad nasal root with 
a long nose, a high 
arched palate, broad 
thumbs and tapered 
fingers. 

arr[hg19] 
1p35.2p35.1(30,476,8
67-33,054,650)x1 

arr[hg19] 
1p35.2p35.1(30,476
,867-33,054,650)x1 

2 578 Deletion: 
VOUS 
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Table 8:  Copy number variants detected in this study using the Affymetrix Cytoscan HD microarray (continued). 

 
SEX CHROMOSOME  

ANALYSIS 
MICRO- 

DELETION 
FISH 

MLPA FRAXA INITIAL CLINICAL 
INFORMATION INITIAL RESULTS CONFIRMED 

RESULTS, LEIDEN 
SIZE 
(Kbp) COMMENT 

11 F 46,XX Not 
performed 

No 
del/dupl 
subtel 

Not 
performed 

Dysm, severe DD, no 
speech by age 8, 
macrocephaly, arched 
eyebrows, strabismus, 
midface hypoplasia, 
upturned nares, full 
lower lip, lifted ear 
lobules, clinodactyly, 
broad great toes. 

arr[hg19] 
5q14.3q21.1(89,738,5
98-98,856,874)x1 

arr[hg19] 
5q14.3q21.1(89,738,
598-98,856,874)x1 

9 118 Deletion: 
VOUS 

12 F 46,XX Not 
performed 

No 
del/dupl 
subtel 

Not 
performed 

Short stature, 
macrocephaly, DD, 
prognathism, widely 
spaced nipples, 
maxillary hypoplasia, 
furled eyebrows, narrow 
forehead, isolated 
growth hormone 
deficiency. 

Arr[hg19](1-22,X)x2 Arr[hg19](1-22,X)x2  - No 
abnormality 
detected 

13 F 46,XX Not 
performed 

 Not 
performed 

Not 
performed 

Severe DD, short 
stature, microcephaly, 
posteriorly rotated ears 
with unfolded helices, 
strabismus, shallow 
orbits, almond-shaped 
palpebral fissures, a 
tented upper lip, slightly 
tapered fingers, 2-3 toe 
syndactyly 

Arr[hg19](1-22,X)x2 Arr[hg19](1-22,X)x2  - No 
abnormality 
detected 
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Table 8:  Copy number variants detected in this study using the Affymetrix Cytoscan HD microarray (continued). 

 
SEX CHROMOSOME  

ANALYSIS 
MICRO- 

DELETION 
FISH 

MLPA FRAXA INITIAL CLINICAL 
INFORMATION INITIAL RESULTS CONFIRMED 

RESULTS, LEIDEN 
SIZE 
(Kbp) COMMENT 

14 M 46,XY Not 
performed 

Not 
performed 

Not 
performed 

Dysm, DD, multiple 
arterial aneurysms, 
cataract, prematurely 
aged and wasted 
appearance. A 
connective tissue 
disorder was suspected. 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

 - No 
abnormality 
detected 

15 M 46,XY Not 
performed 

Not 
performed 

NEG ASD, no dysm. A brother 
with autism, 2 paternal 
nephews with ID. 
Paternal family history of 
psychiatric illness and 
bipolar disorder, 
maternal fam hx of 
pregnancy and neonatal 
loss. 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

 - No 
abnormality 
detected 

16 M Not performed Not 
performed 

Not 
performed 

Not 
performed 

ID, dysm, deafness, 
Duane anomaly (cranial 
nerve palsies). 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

- No 
abnormality 
detected 

17 M Not performed Not 
performed 

Not 
performed 

Not 
performed 

ID, deafness,  
? dominant anaemia 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

- No 
abnormality 
detected 
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Table 8:  Copy number variants detected in this study using the Affymetrix Cytoscan HD microarray (continued). 

 
SEX CHROMOSOME  

ANALYSIS 
MICRO- 

DELETION 
FISH 

MLPA FRAXA INITIAL CLINICAL 
INFORMATION INITIAL RESULTS CONFIRMED 

RESULTS, LEIDEN 
SIZE 
(Kbp) COMMENT 

18 F Not performed Not 
performed 

Not 
performed 

Not 
performed 

Autosomal recessive 
deafness, partial 
sightedness, 
microcephaly, fam hx of 
ID. 

 Arr[hg19](1-
22,X)x2 

arr[hg19] 
15q15.3(43,888,261-
43,976,406)x1 

88 Deletion: 
VOUS 

19 M Not performed Not 
performed 

Not 
performed 

Not 
performed 

ID and Variegate 
Porphyria, 
consanguineous parents 

Arr[hg19](1-
22)x2,(XY)x1 

arr[hg19] 
22q11.21(19,231,636-
19,300,915)x1 

69 Deletion: 
VOUS 

20 F 46,XX Not 
performed 

Not 
performed 

Not 
performed 

Dysm, DD, epilepsy, 
microcephaly, midface 
hypoplasia, low set ears, 
flat nasal tip, low 
columella, epicanthic 
folds, posteriorly rotated 
ears, wide mouth. 

arr[hg19] 
4p16.3(68,345-
2,172,555)x1 

arr[hg19] 
4p16.3(68,345-
2,172,555)x1 

2 104 Deletion: 
Wolf-
Hirschhorn 
syndrome 

21 M 46,XY PWS NEG Not 
performed 

Not 
performed 

Dysm, DD, almond 
shaped eyes, 
hypotelorism, a flat nasal 
bridge, tapering fingers, 
genu varum, 
subependymal grey 
matter heterotopia, 
cervical spine 
asymmetry, suspected 
mild hemimegal-
encephaly. 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

- No 
abnormality 
detected 
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Table 8:  Copy number variants detected in this study using the Affymetrix Cytoscan HD microarray (continued). 

 
SEX CHROMOSOM

E  ANALYSIS 
MICRO- 

DELETION 
FISH 

MLPA FRAXA INITIAL CLINICAL 
INFORMATION INITIAL RESULTS 

CONFIRMED 
RESULTS, 

LEIDEN 
SIZE 
(Kbp) COMMENT 

22 F Not performed Not 
performed 

Not 
performed 

Not 
performed 

ID, midface hypoplasia, 
hypertelorism, telecanthus, 
epicanthus, cupped ears with 
preauricular tags, upslanted 
palbebral fissures, hypotonia 
and hypermobility. Fam hx 
ID: mother, maternal 
grandmother, great 
grandmother, maternal 
cousin with mild ID.  

Arr[hg19](1-22,X)x2 Arr[hg19](1-
22,X)x2 

 - No 
abnormality 
detected 

23 M 47,XY,+mar Not 
performed 

Not 
performed 

Not 
performed 

Dysm, growth restriction, 
unilateral cleft lip and palate, 
hypertelorism, strabismus, 
broad nasal root, prominent 
ears and unilateral 
camptodactyly of all fingers, 
congenital heart disease with 
an unbalanced 
atrioventricular septal defect 
and a double outlet right 
ventricle. 

arr[hg19] 
9p24.3q13(203,861
-68,330,127)x4 

arr[hg19] 
9p24.3q13(203,86
1-68,330,127)x4 

68 126 Tetrasomy 
9p 

24 M 46,XY Not 
performed 

Not 
performed 

Not 
performed 

Learning difficulties, dysm, 
hypertelorism, epicanthus, 
broad nose, flat nasal bridge, 
palmar hyperkeratosis, skin 
papules, multiple café au lait 
spots, hypopigmentation. 
Father and sister have similar 
dermatological features with 
no ID, no dysm. 

arr[hg19] 
13q33.3(109,771,5
48-110,072,888)x3 

arr[hg19] 
13q33.3(109,771,
548-
110,072,888)x3 

301 Duplication: 
VOUS 
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Table 8:  Copy number variants detected in this study using the Affymetrix Cytoscan HD microarray (continued). 

 
SEX CHROMOSOME  

ANALYSIS 
MICRO- 

DELETION 
FISH 

MLPA FRAXA INITIAL CLINICAL 
INFORMATION INITIAL RESULTS 

CONFIRMED 
RESULTS, 

LEIDEN 
SIZE 
(Kbp) COMMENT 

25 F 46,XX  Not 
performed 

No 
microdel/ 

dupl 

 Not 
performed 

Severe DD, epilepsy, 
coarse face, prominent 
ears, retrognathia, 
scoliosis, bilateral 
sensorineural hearing 
loss, microcephaly, low 
tone at birth with mild 
spastic cerebral palsy, 
able to sit at 9 months. 

Arr[hg19](1-22,X)x2 Arr[hg19](1-
22,X)x2 

 - No 
abnormality 
detected 

26 M 46,XY  Not 
performed 

 Not 
performed 

NEG ID, ASD, no dysm, 
seizures, absent speech. 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

 - No 
abnormality 
detected 

27 F 46,XX DG NEG Not 
performed 

Not 
performed 

DD, moderate ID, dysm, 
short stature, 
macrocephaly, cupped 
pointed ears with 
unfolded helices, 
hypertelorism, 
telecanthus, strabismus, 
broad nasal root with 
hypoplastic alae nasi, 
low columella, 
microstomia, 
brachydactyly, brain 
white matter loss. 
Mother - mild ID. 

Arr[hg19](1-
22)x2,(XY)x1 

Arr[hg19](1-
22)x2,(XY)x1 

-  No 
abnormality 
detected 

Abn = abnormality, DD = developmental delay, Del = deletion, DG = Di George syndrome, Dupl = duplication, Dysm = dysmorphic, Fam hx= family history, Microdel = microdeletion, Misc = 
miscarriage, NEG = Negative, Pregn = pregnancy, PWS = Prader-Willi syndrome, Subtel = subtelomeric, T13 = trisomy 13, VACTERL  = Vertebral anomalies, Anal atresia, Cardiac defects, 
Tracheoesophageal fistula and/or Oesophageal atresia, Renal and Radial anomalies and Limb defects, VOUS = Variant of Unknown Significance 
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3.2 PATIENT 1  

 

3.2.1 Clinical features 

A two-year old female patient presented with dysmorphic features and DD. Antenatally, intra-

uterine growth restriction (IUGR) and polyhydramnios were detected. She was born during the 

third trimester with a birth weight of 2.4 kg, a head circumference of 31 cm and had to be 

ventilated for respiratory distress. This patient has the following clinical features: normal height 

and weight for age, microbrachycephaly, upslanted palpebral fissures, straight eyebrows, 

strabismus, pixie ears, a low nasal bridge with upturned nares and downturned corners of the 

mouth. She has clinodactyly with single palmar creases. Neurological features include 

hypotonia and epilepsy and she has severe DD with no ambulation or speech at the age of 

eight years. She has small atrial and ventricular septal defects and gastro-oesophageal reflux 

disease with recurrent chest infections. She had middle ear disease requiring ventilation tubes. 

Kleefstra syndrome was suspected. 

 

3.2.2 Genetic testing 

This patient had a normal karyotype done at another laboratory. Both parents had a normal 

karyotype. No microdeletion FISH studies were performed. Subtelomeric MLPA analysis 

identified a deletion at the 9q34.3 telomeric region targeted by the EHMT1 gene probes with 

MLPA Analysis. FRAXA analysis was not performed. 

 

3.2.3 CMA Analysis 

CMA testing showed a submicroscopic telomeric deletion of 1.8 Mb on chromosome 9 at band 

q34.3 as shown in the Karyoview (Figure 5) and the detail view as depicted in Figure 6. This 

region was covered by 1 454 markers.  

arr[hg19] 9q34.3(139,135,215-141,020,389)x1 
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3.2.3.1 Karyoview 

 
 
Figure 5 Karyoview of Patient 1: a terminal deletion of 1.88 Mb was detected on the long arm of         
chromosome 9, as shown in the red square. (Chromosomes are not numbered but are aligned  
conventionally: that is chromosomes 1 – 12 in the first row, and chromosomes 13 – 22, X and Y in the 
second row). The blue lines to the left of the chromosomes represent the ROH and CN tracks respectively. 
 
 

         
Figure 6 Detail view of Chromosome 9 of Patient 1 showing: 1) the copy number state: deletion (Red),  

  2) the Weighted Log2 Ratio, 3) LOH, 4) allele peak deletion demonstrating the SNP markers in this  
  region, 5) the extent of the deletion in the Smooth Signal, 6) RefSeq genes (Pink) in this region,  
  7) OMIM disease genes (Green), 8) coordinates and chromosome bands. 
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3.2.3.2 Database search  

The chromosome coordinates were entered into the interactive UCSC (Figure 7) and 
DECIPHER (Figure 8) Genome Browsers. A deletion of 1.8 Mb in size was noted on 
chromosome 9 in the recurrent 9q34 microdeletion region. A total of 87 genes are included in 
this region.  
 
 

 
 
Figure 7 UCSC Browser of chromosome 9 of patient 1 (disease genes are represented in dark green, deletions            
in red and duplications in blue): The EHMT1 (Euchromatic Histone Methyltransferase 1, OMIM*607001) disease- 
causing gene is located in the 9q34.3 region (ringed in red).   
 
 
 

 
 
Figure 8 The 9q deletion region (DECIPHER) - the largest morbid gene in this region is EHMT1 (ringed in red) 
which overlaps with the 9q subtelomeric deletion syndrome. 
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 3.2.4 Review  

Although a large number of genes (87) were involved in this 9q34 deletion region only 

phenotypically relevant genes were discussed in this patient, which consisted of EHMT1, 

CACNA1B, ARRDC1, NOTCH1, TRAF2, COBRA1, NELF, ZMYND19 and ARRDC1. 

EHMT1 (Euchromatic Histone Methyltransferase 1, OMIM*607001), (Genomic coordinates 

(GRCh37): 9:140,513,443 - 140,730,578) is the second gene from the terminal end of the 

long arm of chromosome 9 and is associated with Kleefstra syndrome. Kleefstra syndrome is 

a recognized ID syndrome. Any rearrangement, deletions (interstitial or complete) and point 

mutations (for example nonsense or frameshift mutations) of EHMT1 results in Kleefstra 

syndrome (Kleefstra et al., 2012). Deletions account for 75% and point mutations account for 

25% of cases of Kleefstra syndrome (Kleefstra et al., 2012). The EHMT1 gene contains 28 

exons with the initiation ATG codon occurring in exon 1 (Kleefstra et al., 2012). 

Haploinsufficiency of the EHMT1 gene has been proven to be the basis of the 9q 

subtelomeric deletion syndrome (Kleefstra et al., 2006). Kleefstra et al. (2006) originally 

suggested the terminal deletion of chromosome 9q34.3 is a relatively common occurrence at 

approximately 6% of all subtelomeric deletions in their study. 

The core clinical features seen in Kleefstra syndrome include severe ID without speech 

development, hypotonia, and characteristic facial features which include microcephaly, 

brachycephaly, hypertelorism, synophrys, midface hypoplasia, protruding tongue, eversion 

of the lower lip, and prognathism. Seizures are also a feature of this syndrome in about 30% 

of cases and these can include tonic-clonic seizures, absence seizures, and complex partial 

epilepsy (Kleefstra et al., 2009, Verhoeven et al., 2011; Willemsen et al., 2011).  

Yatsenko et al. (2009) suggested the acronym „CHOMS‟ for the characteristic clinical 

features of „craniofacial features, hypotonia, childhood obesity, microcephaly and substantial 

speech delay and mental retardation‟. Kleefstra et al. (2006) did not agree with this acronym 

for patients with a deletion encompassing only the EHMT1 and CACNA1B genes. Childhood 

obesity is common in Kleefstra syndrome. Motor function is usually delayed with children 

starting to walk between the ages of 2 and 3 years. Patients may have congenital heart 

defects (50%) which include atrial or ventricular septal defects, tetralogy of Fallot, aortic 

coarctation, bicuspid aortic valve, and pulmonic stenosis (Kleefstra et al., 2012). Further 

features include micropenis (30%), cryptorchidism, vesicoureteral reflux, tracheo-

/bronchomalacia, and gastroesophageal reflux – these are, however, less frequent. Brain 

abnormalities can be seen in some individuals. Behavioural changes may be observed 

during adolescence including apathy, aggressive periods, psychosis, autistic features, 
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catatonia, bipolar mood disorder, and regression in daily function and cognitive abilities 

(Verhoeven et al., 2011).  

No genotype/phenotype association has been found due to the size of the deletion or 

between patients with deletions as compared to patients with point mutations (Kleefstra et 

al., 2009). The Affymetrix 500 K SNP array (Affymetrix, Santa Clara, CA) and a customised 

oligonucleotide array, EmArrayCyto6000_version2, FISH, MLPA and direct sequencing of 

the EHMT1 gene were used to detect these deletions and mutations. However, Kleefstra et 

al. (2012) reported that patients with larger genomic deletions, that is greater than or equal 

to three Mb at 9q34, seem to experience more severe pulmonary infections and aspiration 

problems when compared to patients with smaller deletions or defects in EHMT1 only. The 

extent and severity of clinical findings vary among individuals although penetrance seems to 

be 100%. There is a worldwide prevalence of this syndrome across all ethnic groups. Males 

and females are equally affected (Kleefstra et al., 2012). The majority of cases are de novo 

mutations. Willemsen et al. (2011) did, however, report on two unrelated families where the 

mothers carried deletions of the 9q34.3 region, with only mild learning difficulties and minor 

facial features, which were passed on to their affected offspring. Both mothers were found to 

have somatic mosaicism, detected using the Affymetrix SNP 6.0 (Affymetrix, Santa Clara, 

CA) in the one instance and the Agilent 105 K (Agilent Technologies, Palo Alto, CA) in the 

other. 

Verhoeven et al. (2011) reviewed three female patients with Kleefstra syndrome. Two of 

these patients had a heterozygous intragenic loss-of-function mutation in the EHMT1 gene 

and the other patient had a heterozygous 9q34.3 microdeletion, which included the EHMT1 

gene. All three were severely disabled and had features of neurodegenerative or regressive 

neurologic processes. Yatsenko et al. (2009) compared the genotype-phenotype data of 15 

patients using the 44 K Agilent array (Agilent Technologies, Inc., Santa Clara, CA). They 

were able to define four distinct categories according to genomic rearrangements: terminal 

deletions (50%), interstitial deletions (25%), derivative chromosomes and complex 

rearrangements (25%). The distinctive characteristic features of this syndrome were present 

in all the patients and could not be correlated with deletion size. They were able to describe 

a „minimal critical region‟ of ~700 Kb. Two genes, EHMT1 and CACNA1B, overlap in this 

region which extends proximally from ARRDC1. Both these genes are highly expressed in 

the brain. The authors hypothesized that both genes are dosage-sensitive and may 

contribute to this syndrome. This region of overlap seems to correlate with the food seeking 

behaviour and obesity phenotype. The core clinical features, craniofacial dysmorphism, 

obesity, hypotonia, microcephaly and speech impairment, map to this minimal critical region. 

Larger deletions are seen in patients with cardiac defects, seizures, limb and brain 
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abnormalities, recurrent respiratory infections, hypothyroidism and abnormal genitalia. These 

abnormalities can be mapped to six critical genes/regions – NOTCH1, TRAF2, COBRA1, 

NELF, ZMYND19 and ARRDC1. Patients with deletions larger than 1.4 Mb had features of 

prenatal growth retardation and frequent upper respiratory and ear infections. These 

deletions involved TRAF2. The NELF gene is mapped to the deleted region in patients with 

genital abnormalities. The most severe phenotype was noted in patients with a deletion 

larger than 1.6 Mb involving the NOTCH1 gene. Yatsenko et al. (2009) suggest the 9q34.3 

microdeletion syndrome to be a contiguous gene syndrome. Consequently, the size of the 

deletion gives rise to the complexity of the phenotype. The deletion in patient 1 is larger than 

1.6 Mb (1.8 Mb) and includes all of these six critical genes as shown in see Figure 9.  

   

  Figure 9 A depiction of the gene positions and the phenotypic effect in patients with Kleefstra syndrome:  
  Orange – 9q telomeric region, Yellow – the critical region which includes the EHMT1 and CACNA1B genes  
  (~700 Kb in size), Blue – the 1.4 – 1.6 Mb deletion and Green – 1.6 Mb and larger deletions which are the  
  most severe. 
 

 

3.2.5 Clinical correlation 

As discussed, several of the clinical features in this patient correlate with the features of 

Kleefstra syndrome. The main features being: IUGR, Atrial Septal Defect/Ventricular Septal 

Defect (ASD/VSD), brachycephaly and microcephaly, hypotonia, recurrent infections, gastro-
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oesophageal reflux disease, epilepsy and severe DD, not walking or talking by the age of 

eight years. The deletion in this patient correlates with the most severe form of the 

syndrome, as it is larger than 1.6 Mb in size. 

3.2.6 Conclusion 

This patient‟s result is consistent with a diagnosis of Kleefstra Syndrome. The large deletion 

involving additional genes may explain the severity of her phenotype. 

 

3.3 PATIENT 8  

3.3.1 Clinical features 

This female patient presented with severe ID, dysmorphism and opthalmological 

abnormalities including colobomatous micropthalmia, microcornea and cataract. Further 

dysmorphic features included microcephaly, bifrontal narrowing, small dysplastic ears, a flat 

nasal bridge with low columella, micrognathia and clenched hands with broad distal 

phalanges and hypoplastic nails and broad great toes and thumbs. Antenatally, 

polyhydramnios was detected and dysmorphism was suspected. She was born with a birth 

weight of 3.5 kg and a head circumference of 36 cm. Brain CT scan revealed agenesis of the 

corpus callosum (ACC). Renal ultrasound was normal. There is a maternal niece with 

learning difficulties.   

3.3.2 Genetic testing 

Chromosome analysis demonstrated a normal female karyotype. No microdeletion FISH 

studies were performed. MLPA Analysis was not performed. FRAXA analysis was not 

performed. 

3.3.3 CMA Analysis 

CMA testing showed a submicroscopic interstitial deletion of 2.1 Mb on chromosome 2 at 

band q22.2 to q22.3 as shown in the Karyoview (Figure 10) and detail view depicted in 

Figure 11. This region is covered by 2 019 markers.   

arr[hg19] 2q22.2q22.3(143,571,114-145,663,819)x1 
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3.3.3.1 Karyoview  

Figure 10 Karyoview of Patient 8: an interstitial deletion of 2.09 Mb was detected on the long arm of    
chromosome 2 as indicated in the red square. (Chromosomes are not numbered but are aligned 
conventionally: that is chromosomes 1 – 12 in the first row, and chromosomes 13 – 22, X and Y in the second 
row). The blue lines to the left of the chromosomes represent the ROH and CN tracks respectively. 
 

 

Figure 11 Detail view of Chromosome 2 of Patient 8 showing: 1) the copy number state: deletion (Red), 2) the 
Weighted Log2 Ratio, 3) LOH, 4) allele peak deletion demonstrating the SNP markers in this region, 5) the extent 
of the deletion in the Smooth Signal, 6) RefSeq genes (Pink) in this region, 7) OMIM disease genes (Green), 8) 
coordinates and chromosome bands. 
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3.3.3.2 Database search 

The chromosome coordinates were entered into the interactive UCSC (Figure 12) and 

DECIPHER (Figure 13) Genome Browsers. A deletion of 2.1 Mb in size was noted on 

chromosome 2 which spans the recurrent 2q22 microdeletion region. Four genes are 

included in this region: KYNU, ARHGAP15, GTDC1 and ZEB2. ZEB2 is the suspected 

morbid gene in this deletion region.  

       
 
Figure 12 UCSC Browser of chromosome 2 of patient 8 (disease genes are represented in dark  
green, deletions in red and duplications in blue): The ZEB2 (Zinc Finger E Box-Binding Homeobox 2) 
disease-causing gene is located in the 2q22.2q22.3 region. 

 

      

    Figure 13 The 2q22 deletion region - the morbid gene in this region is ZEB2 (as depicted in DECIPHER),     
    ringed in black. 
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3.3.4 Review  

ZEB2 (Zinc Finger E Box-Binding Homeobox 2, OMIM*605802) has genomic coordinates at 

(GRCh37): 2:145,141,941 - 145,277,957), and has alternative titles and symbols: ZFHX1b 

(Zinc Finger Homeobox 1b), SMADIP1 (Smad interacting protein 1) and SIP1 (Smad 

interacting protein 1). This gene consists of ten exons and nine introns and spans about 70Kb 

of DNA. ZEB2 mRNA is expressed in nearly all tissues and it encodes the protein product, 

SIP1. A deletion of this gene was first described by Mowat et al. (1998) in six patients, who 

presented with ID and were characterised by specific facial features. Four of the patients also 

presented with Hirschsprung disease. This syndrome was named Mowat-Wilson syndrome 

(MWS). MWS has been reported in patients from Europe, Australia, the USA and Korea with 

the size of deletion varying from 300 Kb to 11 Mb (Park et al., 2013). Park et al. (2013) 

supported the ZEB2 haplo-insufficiency hypothesis as the cause of MWS rather than this 

being a contiguous gene syndrome.  

Espinosa-Parrilla et al. (2002) reported on the ZEB2 gene in the neural retina and expression 

in the anterior epithelium of the lens, in a patient with clinical features of strabismus. By 2003, 

45 patients had been reported with either a de novo deletion or intragenic heterozygous 

mutations of the ZEB2 gene (Mowat et al., 2003). The male to female ratio of MWS was 

31/14. Garavelli & Mainhardi (2007) also reported an increased male to female ratio of 1,42:1 

and a prevalence across ethnic groups. All 45 patients reported by Mowat et al. (2003) had 

the typical facies and moderate to severe ID, with seizures or an abnormal 

electroencephalogram (EEG) in 90% of the patients and microcephaly in 84% of the patients. 

Milestones were delayed with children walking at about four years of age while a number of 

patients did not achieve walking. Speech was absent or consisted of a few words, 50% of the 

patients had short stature and 47% had a congenital heart anomaly. Interestingly, 62% of 

patients had Hirschsprung disease although this may have been underdiagnosed. ACC and 

renal anomalies were seen in 42% and 38% of patients, respectively. Male genitourinary 

anomalies were reported in 60% of patients.  

The distinctive facies in MWS change from infancy through childhood, adolescence and 

adulthood (Mowat et al., 2003). In infancy, the patient generally presents with a prominent chin 

which appears narrow and triangular resulting in an angular shaped face, hypertelorism, deep 

set large eyes, broad nasal bridge, saddle nose, prominent rounded nasal tip, open mouth, full 

or everted lower lip, posteriorly rotated ears which are uplifted with a central depression. In 

childhood, the face elongates with the chin being more prominent. These patients often have 

wide, horizontal eyebrows. The upper lip often has an „M‟ shape tapering to the sides. 

Prognathism with a long chin is evident in adulthood. The nasal tip overhangs the philtrum. It 

was subsequently recognised that this condition can occur with or without Hirschsprung 

disease in the presence of the distinctive syndromic features (Wilson et al., 2003).  
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Dastot-Le Moal et al. (2007) discussed different mutations found in patients with MWS. These 

ranged from whole gene deletions to truncating mutations (nonsense or frameshift). The 

authors postulated that haploinsufficiency of the ZEB2 was responsible for MWS. Even though 

more than 100 mutations of ZEB2 had been identified by 2007, no clear genotype-phenotype 

correlation could be established for the less common abnormalities. The disparity in size and 

breakpoints of the reported deletions is also not consistent with a specific phenotype. Dastot-

Le Moal et al. (2007) further suggested that some, for example ocular abnormalities are 

underreported. Tantales et al. (2013) reported on two Cypriot patients with structural ocular 

abnormalities: iris and chorioretinal colobomata and partial aniridia. One patient had an exonic 

deletion and the other had a point mutation. The authors suggest that structural ocular 

abnormalities be included in the MWS features even though the pathogenesis is unclear. They 

also proposed that ocular abnormalities are underreported in MWS. In addition, during their 

literature review they found the following eye abnormalities: iris, choroidal, chorioretinal and 

optic disc colobomata, microphthalmia, an Axenfeld anomaly, strasbismus, cataracts and 

ptosis. 

Zweier et al. (2005) recommended the inclusion of structural eye anomalies in the clinical 

features of MWS. In their study of 28 patients, 14.3% were found to have eye abnormalities. 

These most commonly included microphthalmia, with iris coloboma and cataract in one patient 

and an Axenfeld anomaly in another patient. They also reported that many patients have a 

strabismus even though this is not necessarily reported by parents. Ariss et al. (2012) did a 

literature review of 170 MWS cases of which seven had an eye abnormality. The 

abnormalities included microphthalmia iris, retinal and optic disc colobomata, cataracts, ptosis, 

strabismus, iris heterochromia and an Axenfeld anomaly. The authors further reported on a 

nine month old female patient who had no light perception, microphthalmia (right eye), optic 

nerve hypoplasia (left eye), severe optic nerve pallor, retina and choroid colobomas, extensive 

chorioretinal and retinal pigment epithelium atrophy and extensive retinal atrophy. The right 

eye had extensive lens opacities and korectopia. This patient was found to have a deletion 

mutation. The authors postulated the ZEB2/SIP1 protein is implicated in neural patterning, and 

mutations affecting this gene result in ocular abnormalities. Ariss et al. (2012) concurred with 

Dastot-Le Moal et al. (2007) and Zweier et al. (2005) that eye abnormalities were 

underreported in MWS. Espinosa-Parrilla et al. (2002) demonstrated ZEB2 gene expression in 

human embryos in the eye, specifically in the neural retina and the anterior epithelium of the 

lens, indicating a pleiotropic role in embryogenesis. Bassez et al. (2004) postulated that MWS 

does not fit the contiguous gene syndrome hypothesis as the phenotype may vary significantly 

from patient to patient. 
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3.3.5 Clinical correlation 

This patient has severe ID and GDD, microcephaly, bifrontal narrowing, a flat nasal bridge 

with low columella, and agenesis of the corpus callosum which correlates with features 

described in MWS. She has severe abnormalities of the eyes including cataracts, coloboma 

and micropthalmia, resulting in blindness. All of these clinical features have been reported in 

MWS. This patient did not, however, have some of the other well-described features of MWS 

such as seizures detected in a large number of MWS patients [90% described by Mowat et al. 

(2003)], Hirschsprung disease or cardiac abnormalities.  

3.3.6 Conclusion  

This patient‟s phenotype is consistent with the diagnosis of MWS. The deletion encompassing 

the ZEB2 gene contributes to the clinical presentation in this child.  

 

3.4 PATIENT 9  

3.4.1 Clinical features 

A male patient presented with GDD, and a family history of ID and psychiatric disease 

(schizophrenia, depression). 

3.4.2 Genetic testing 

Chromosome analysis demonstrated a normal male karyotype. No microdeletion FISH studies 

were performed. No chromosomal microdeletion/duplication was identified with MLPA 

Analysis. No expansion mutation was detected on FRAXA analysis. 

3.4.3 CMA Analysis 

CMA testing revealed a submicroscopic interstitial deletion of 1.8 Mb on chromosome 1 at 

band q21.1 to q21.2 as shown in the Karyoview (Figure 14) and the detail view as depicted in 

Figure 15. This region is covered by 1 358 markers. 

arr[hg19] 1q21.1q21.2(146,101,790-147,897,962)x1 

 
 
 



Page 64 of 185 
 

3.4.3.1 Karyoview 

 
Figure 14 Karyoview of Patient 9: an interstitial deletion of 1.8 Mb was detected on the long arm of      
chromosome 1 as indicated in the red square. (Chromosomes are not numbered but are aligned conventionally: 
that is chromosomes 1 – 12 in the first row, and chromosomes 13 – 22, X and Y in the second row). The blue 
lines to the left of the chromosomes represent the ROH and CN tracks respectively. 

 

 
Figure 15 Detail view of Chromosome 1 of Patient 9 showing: 1) the copy number state: deletion (Red), 2) the 
Weighted Log2 Ratio, 3) the copy number state, 4) LOH, 5) allele peak deletion demonstrating the SNP 
markers in this region, 6) the extent of the deletion in the Smooth Signal, 7) RefSeq genes (Pink) in this region, 
8) OMIM disease genes (Green), 9) coordinates and chromosome bands 
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3.4.3.2 Database search 

The chromosome coordinates were entered into the interactive UCSC (Figure 16) and 

DECIPHER (Figure 17) Genome Browsers. A deletion of 1.8 Mb was noted on chromosome 1 

which spans the recurrent 1q21.1 microdeletion region.  A total of 14 genes are included in 

this region.  

   

Figure 16 UCSC Browser of chromosome 1 of patient 9 (disease genes are represented in dark green,       
deletions in red and duplications in blue). 

 
 

     

   Figure 17 Illustration of the1q21.1 deletion region containing the GJA8 Morbid gene (DECIPHER) 
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                 3.4.4 Review  

The location of the recurrent 1q21.1 microdeletion region is 146,533,376-147,883,376 on the 

distal chromosome 1q21.1 deletion region, and measures approximately 1.35 Mb (Stefansson 

et al., 2008). The deletion in patient 9 (146,101,790-147,897,962) spans this entire deletion 

region, and is larger in size (1.8 Mb). Stefansson et al. (2008) described the prevalence of this 

deletion to be approximately 11 in 4 718 (0.23%) in patients with DD, ID and/or congenital 

abnormalities, and most of whom had schizophrenia or related neuropsychiatric disorders. 

The authors reported that the GJA8 gene is associated with schizophrenia. Brunetti-Pierri et 

al. (2008) identified 27 patients with this microdeletion using targeted BAC aCGH. The clinical 

features noted were facial dysmorphism such as frontal bossing, deep-set eyes and a bulbous 

nose. DD and/or learning disabilities were noted in most cases. Behavioural abnormalities for 

example ADHD, autism, anxiety/depression, antisocial behaviour and aggression were 

observed in some cases. Another finding was that some unaffected parents carried the same 

CNV and the authors speculated that this may be due to these CNVs being benign or 

pathogenic with incomplete penetrance. However, this deletion was not found in large 

population studies and is seen more commonly in patients referred for CMA, and is therefore 

unlikely to be benign. Mefford et al. (2008) showed that the clinical features in patients with 

1q21.1 deletions are variable. They identified CNVs in 25 patients with features of mild to 

moderate ID, microcephaly, cardiac abnormalities and cataracts using BAC aCGH, a 

customised NimbleGen Systems oligonucleotide array and the HumanHap 300, the 

HumanHap 550 and HumanHap 650Y Beadchips (Illumina) to assess the patients.  

Rodriquez-Murillo et al. (2012) reported in their review article that deletions of 1q21.1 have 

been reported in other neurodevelopmental and neurological disorders for example ID, autism 

and seizure disorders. More recently, Luo et al. (2014) identified CNVs which affect genes 

which are implicated in schizophrenia. Eight genes were identified of which three are within 

the 1q21.1 microdeletion susceptibility region: BCL9, GJA5, GJA8. These genes are 

expressed in the central nervous system. 

 

3.4.5 Clinical correlation 

Unfortunately there is limited clinical information available for patient 9 but GDD is consistent 

with the finding that most patients with this deletion have ID. The family history of ID and 

psychiatric illness including schizophrenia would suggest that the deletion may be present in 

other family members.  
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3.4.6 Conclusion 

In light of this patient‟s result and the strong family history of psychiatric disease a diagnosis of 

the 1q21.1 recurrent microdeletion (susceptibility locus for neurodevelopmental disorders) is 

most likely the cause of the phenotype. It is recommended that family studies should be 

performed. 

 

3.5 PATIENT 10  

3.5.1 Clinical features 

This 12-year old male patient presented with ID, juvenile myoclonic epilepsy, speech delay 

and hearing loss and dysmorphic features. The dysmorphic features included 

blepharophimosis, a broad nasal root with a long nose, a high arched palate, broad thumbs 

and tapered fingers. There is no family history of neurodevelopmental disorders or epilepsy. 

This patient had a birth weight of 2.8 kg with a height on the 50th percentile and head 

circumference on the 25th percentile. 

3.5.2 Genetic testing 

This patient had a normal karyotype. Microdeletion FISH for Di George syndrome was 

negative. No microdeletion or duplication was noted using subtelomeric MLPA analysis. 

FRAXA analysis was not performed. 

3.5.3 CMA Analysis 

CMA testing showed a submicroscopic interstitial deletion of 2.6 Mb on chromosome 1 at 

band p35.2 as shown in the Karyoview (Figure 18) and the detail view depicted in Figure 19. 

This region is covered by 1 934 markers.   

arr[hg19] 1p35.2p35.1(30,476,867-33,054,650)x1 
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3.5.3.1 Karyoview 

          
Figure 18 Karyoview of Patient 10: an interstitial deletion of 2.5 Mb was detected on the short arm of 
chromosome 1 as indicated by the red square. (Chromosomes are not numbered but are aligned  
conventionally: that is chromosomes 1 – 12 in the first row, and chromosomes 13 – 22, X and Y in the 
second row.) The blue lines to the left of the chromosomes represent the ROH and CN tracks 
respectively. 

 
 

 
Figure 19 Detail view of Chromosome 1 of Patient 10 showing: 1) the copy number state: deletion (Red),  
2) the Weighted Log2 Ratio, 3) LOH, 4) allele peak deletion demonstrating the SNP markers in this 
region, 5) the extent of the deletion in the Smooth Signal, 6) RefSeq genes (Pink) in this region, 
7) OMIM disease genes (Green), 8) coordinates and chromosome bands 
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3.5.3.2 Database search 

The chromosome coordinates were entered into the interactive UCSC (Figure 20) and 

DECIPHER (Figure 21) Genome Browsers. A deletion of 2.5 Mb was noted on chromosome 1. 

A total of 44 genes are included in this region of which EPB41, CCDC28B and LCK are the 

reported morbid genes. 

Figure 20 UCSC Browser of chromosome 1 of patient 10 (disease genes are in dark green, deletions in 
red and duplications in blue): EPB41 (Erythrocyte Membrane Protein Band 4.1, OMIM*130500), CCDC28B (Coiled-
Coil domain-Containing Protein 28B, OMIM*610162) and LCK (Lymphocyte-Specific Protein-Tyrosine 
Kinase*153390) are morbid genes in this region. 

 

 
Figure 21 The 1p35.1 deletion region - the largest morbid gene in this region is the EPB41 gene (DECIPHER). 
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3.5.4 Review   

EPB41 (Erythrocyte Membrane Protein Band 4.1, OMIM*130500), CCDC28B (Coiled-Coil 

domain-Containing Protein 28B, OMIM*610162) and LCK (Lymphocyte-Specific Protein-

Tyrosine Kinase*153390) are morbid genes in this region, as seen in Figure 4 (DECIPHER). 

These genes have not previously been reported to be associated with any phenotype relevant 

to this patient. 

The DGV did not report a CNV in this region. However, during a DECIPHER database search, 

this patient‟s deletion corresponded with a previously reported patient (258365). The reported 

patient‟s phenotype included behavioural/psychiatric abnormality, cryptorchidism, 

hypertelorism, ID, slender build, tapered finger and widely spaced teeth. A Pubmed search did 

not yield any articles relevant to this region. 

3.5.5 Clinical correlation 

Two clinical features overlapped between this patient and the patient described in DECIPHER: 

ID and tapered fingers.  

3.5.6 Conclusion  

Although no previously reported disease-causing genes could be identified in this region, the 

size of the deletion (2.5 Mb) should be considered significant. This variant is classified as a 

VOUS at the time of reporting. Parental studies may be useful to further elucidate this finding. 

 

3.6 PATIENT 11  

 

3.6.1 Clinical features 

A female patient presented with dysmorphism and severe DD with no speech at the age of 

eight years. There is a background history of early failure to thrive and gastroesophageal 

reflux. Dysmorphic features included a relative macrocephaly, arched eyebrows and 

strabismus with midface hypoplasia. She has upturned nares with a full lower lip and lifted ear 

lobules. Skeletal features include clinodactyly and broad great toes. Central nervous system 

(CNS) imaging was done, however no definite abnormality was reported.  

3.6.2 Genetic testing 

Chromosome analysis demonstrated a normal karyotype. No microdeletion FISH studies were 

performed. No subtelomeric deletions or duplications were detected on MLPA Analysis. 

FRAXA analysis was not performed.  
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3.6.3 CMA Analysis 

CMA testing revealed a submicroscopic interstitial deletion of 9.1 Mb on chromosome 5 at 

band q14.3 to q21.1 as shown in the Karyoview (Figure 22) and the detail view in Figure 23. 

This region is covered by 7 092 markers. 

arr[hg19] 5q14.3q21.1(89,738,598-98,856,874)x1  

3.6.3.1 Karyoview  

 

      Figure 22 Karyoview of Patient 11: an interstitial deletion (red) of 9.1 Mb was detected on the long arm 
      of chromosome 5 as indicated by the red square. An artefactual region of homozygosity (purple) was  
      also reported in the analysis software. (Chromosomes are not numbered but are aligned conventionally: that is                  
      chromosomes 1 – 12 in the first row, and chromosomes 13 – 22, X and Y in the second row). The blue lines      
      to the left of the chromosomes represent the ROH and CN tracks respectively. 
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     Figure 23 Detail view of Chromosome 5 of Patient 11 showing: 1) the copy number state: deletion (Red),  
2) the Weighted Log2 Ratio, 3) the copy number state, 4) allele peak deletion demonstrating the SNP markers   
in this region, 5) the extent of the deletion in the Smooth Signal, 6) RefSeq genes (Pink) in this region, 7) OMIM 
disease genes (Green), 8) coordinates and chromosome bands. 

 

 

3.6.3.2 Database search  

The chromosome coordinates were entered into the interactive UCSC (Figure 24) and 

DECIPHER (Figure 25) Genome Browsers. A submicroscopic interstitial deletion of 9.1 Mb in 

size was noted on chromosome 5. A total of 37 genes are included in this region.   

  

    Figure 24 UCSC Browser of chromosome 5 of patient 11 
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   Figure 25 5q14.3q21.1 deletion region – a representation of the genes in the deleted region on  
    chromosome 5 (DECIPHER). 
 

3.6.4 Review   

This is a large interstitial deletion of 9.1 Mb on chromosome 5q14.3 to q21.1. This deletion is 

distal to the previously described 5q14 deletion syndrome region which includes the MEFC2 

gene. 

Cardoso et al. (2009) reported on three patients with interstitial deletions in the 5q14 to q21.1 

region. All three patients had features of periventricular heterotopia (PH), ID and epilepsy. 

Further features, which overlapped with patient 11, included: minor facial dysmorphism (high 

arched eyebrows), delayed ability to walk (at five years, five years and three years of age 

respectively) and no language skills by five years of age in all three patients. The authors 

further proposed a 5.8 Mb critical region for PH containing the following genes: CETN3, 

POLR3G, LYSMD3, GPR98, ARRDC3, NR2F1, C5ORF21, POU5F2, KIAA0825, C5ORF36, 

ANKRD32, MCTP1, FAM81B and KIAA0372. Four of these genes are thought to be the most 

likely cause of PH: GPR98 which has an important role in brain development, CETN3 which 

may have a role in neuronal migration, MCTP1 which plays a role in controlling neuronal 

motility and NR2F1 which plays a role neurogenesis, cellular differentiation and migration 

during embryonic development (Cardoso et al., 2009). These authors postulated that a loss of 

a combination of these genes may lead to this phenotype as single gene haploinsufficiency 

may not lead to this phenotype. A total of ten genes overlapped with the deletion in patient 11: 

namely POLR3G, LYSMD3, GPR98, ARRDC3, NR2F1, POU5F2, C5ORF36, ANKRD32, 
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MCTP1, FAM81B (See Figure 26). Al-Khateb et al. (2013) reported on a patient with a 582 Kb 

deletion which overlaps with the genomic coordinates in patient 11 extending from 92,742,875 

to 93,324,350 bp. Included in this region are the following genes: FLJ42709, NR2F1, 

FAM172A, MIR2277, POU5F2.   

Cardoso et al. (2009) noted the association with PH, but drew attention to the variability in 

onset and extent of epilepsy in their three patients. Patient 11 and the patient reported by Al-

Khateb et al. (2013) both do not have epilepsy or PH. The lack of speech in these patients 

may indicate widespread cortical impairment (Cardoso et al., 2009). Of the nine clinical 

features assessed in Table 10, the majority were seen in two or more of the five patients. 

Although CNS imaging was previously done in this patient, careful review for PH is indicated 

in the light of these findings. 

 

88 89 90 91 92 93 94 95 96 97 98 99 

5q14.3 5q15 5q21.1 

PATIENT 1 Cardoso (17 Mb) 

PATIENT 2 Cardoso (8.4 Mb)     

PATIENT 3 Cardoso (6.3 Mb)      

    Al-Khateb (582 Kb)      

PH critical region Cardoso (5.8 Mb)      

PATIENT 11 (9.1 Mb) 
 
 
Figure 26 A comparison of the chromosome 5q14.3 to 5q21.1 deletion sizes of patients reported in the   
literature: Grey – base pair positions, Green – chromosome bands, Peach – Patient 1, Cardoso et al. (2009), 
Blue - Patient 2, Cardoso et al. (2009), Purple – Patient 3, Cardoso et al. (2009), Pink – Patient reported by Al-
Khateb et al. (2013), Yellow – PH critical region reported by Cardoso et al. (2009), Red – Patient 11. 
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3.6.5 Clinical correlation 

Patient 11 has the following clinical features in common with the reported patients: 

      Table 9 Comparison of the clinical features of Patient 11 and patients reported in the     
        literature. 

 Present 
study 

Cardoso et al (2009) Al-Khateb et 
al. (2013) 

 Patient 
11 

Patient 1 Patient 2 Patient 3  

Feeding difficulties, 
gastroesophageal 
reflux as infants 

Yes 

 

No No No Yes 

 

Flaring nares Yes No Yes 

 

No Yes 

Strabismus Yes 

 

Yes 

(exotropia) 

No No Yes 

 

Arched eyebrows Yes Yes Yes No Yes 

Developmental 
delay 

Yes Yes Yes Yes Yes 

Late onset walking Yes Yes Yes Yes Yes 

No speech Yes Yes Yes Yes Single words 
by age 3 
years 

PH Not 
reported  

Yes Yes Yes No 

Epilepsy No Yes Yes Yes No 

Macrocephaly Yes 

 

No No Yes 

 

No 

 

3.6.6 Conclusion 

This patient‟s result is partially consistent with the cases reported in the literature by Cardoso 

et al. (2009) and Al-Khateb et al. (2013). It seems likely that the large deletion of 9.1 Mb 

containing 37 genes contributes to the clinical presentation in this child.  
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3.7 PATIENT 18  

3.7.1 Clinical features 

A female patient presented with presumed autosomal recessive deafness, partial sightedness, 

microcephaly and craniosynostosis. A family history of ID was reported. This patient has an 

affected brother with similar features. 

3.7.2 Genetic testing 

Chromosome analysis and microdeletion FISH studies were not performed; neither MLPA nor 

FRAXA analysis were performed. 

3.7.3 CMA Analysis 

CMA testing revealed a submicroscopic interstitial deletion of 88 Kb on chromosome 15 at 

band q15.3 as shown in the Karyoview (Figure 27) and the detail view in Figure 28. This 

region is covered by 68 markers. 

arr[hg19] 15q15.3(43,888,261- 43,976,406)x1 

3.7.3.1 Karyoview  

 

 
Figure 27 Karyoview of Patient 18: an interstitial deletion of 88 Kb was detected on the long arm of       
chromosome 15 as indicated in the red square. (Chromosomes are not numbered but are aligned conventionally: 
that is chromosomes 1 – 12 in the first row, and chromosomes 13 – 22, X and Y in the second row). The blue lines 
to the left of the chromosomes represent the ROH and CN tracks respectively. 
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    Figure 28 Detail view of Chromosome 15 of Patient 18 showing: 1) the copy number state: deletion 
    (Red), 2) the Weighted Log2 Ratio, 3) LOH, 4) allele peak deletion demonstrating the SNP markers 
    in this region, 5) the extent of the deletion in the Smooth Signal, 6) RefSeq genes (Pink) in this region,  
    7) OMIM disease genes (Green), 8) coordinates and chromosome bands 
 

3.7.3.2 Database search  

The chromosome coordinates were entered into the interactive UCSC (Figure 29) and 

DECIPHER (Figure 30) Genome Browsers.  A deletion of 88 Kb was noted on chromosome 

15. Three genes are included in this region of which STRC has been listed as a morbid gene. 

 

 
Figure 29 UCSC Browser of chromosome 15 of patient 18 (OMIM disease genes are represented in dark green, 
deletions in red and duplications in blue): The STRC (Stereocilin, OMIM*606440) disease-causing gene is located 
in the 15q15.3 region.   
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        Figure 30 The 15q15.3 deletion region- the largest morbid gene in this region is the STRC 
         gene (DECIPHER). The CATSPER2 gene also intersects this region. 

 

3.7.4 Review  

Three genes were included in this region - CKMT1B, STRC, CATSPER2. STRC is the largest 

reported morbid gene in this region, as shown in Figure 30 (DECIPHER). CKMT1B and 

CATSPER2 partially overlap the deleted region.  

STRC (Stereocilin, OMIM*606440), genomic coordinates (GRCh37): 15:43,891,684-

44,002,285 is about 19 Kb in size and contains 29 exons (Verpy et al., 2001). The gene is 

expressed in the outer hair cells of the inner ear. Stereocilin is a large extracellular structural 

protein and is important for the proper functioning of the stereociliary tips (Verpy et al., 2001). 

The stereocilin (STRC) gene is implicated in nonsyndromic autosomal recessive sensorineural 

hearing loss (Francey et al., 2012; Zhang et al., 2007). 

CATSPER2 (Cation Channel, Sperm-Associated, 2, OMIM*607249), Genomic coordinates 

(GRCh37):  15:43,922,771-43,941,038 is only expressed in sperm (Zhang et al., 2007).  

CKMT1B (Creatine Kinase, Mitochondrial 1B, OMIM*123290), genomic coordinates 

(GRCh38):  15:43,592,856-43,599,405, catalyzes the reversible transfer of high-energy 

phosphate from Adenosine triphosphate (ATP) to creatine and is observed in patient serum 

with profound shock. Although this gene overlaps the deleted region, its contribution to this 

phenotype is unclear. 
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Genetic deafness is estimated to occur at 1 in 200 patients in developed countries. Hearing 

loss is genetically heterogeneous and can be classified as either syndromic or non-syndromic. 

(Francey et al., 2012). Syndromic deafness has other phenotypic features in addition to the 

deafness (Zhang et al., 2007). Contiguous gene deletions are only rarely the cause of 

syndromic hearing loss (Zhang et al., 2007). Up to 80% of non-syndromic hereditary deafness 

is due to recessive genes (Knijnenburg et al., 2009). More than 1% of mixed deafness 

populations are due to STRC deletions (Hoppman et al., 2013; Francey et al., 2012). 

Knijnenburg et al. (2009) reported that the incidence of hearing loss caused by STRC 

deletions is 1 in 16 000.  

Avidan et al. (2003) described the Deafness Infertility Syndrome (DIS), a contiguous gene 

deletion syndrome, with the CATSPER2 gene implicated in infertility and the STRC gene 

implicated in deafness in male patients. Female patients homozygous for this deletion have 

hearing loss but are fertile (Hoppman et al., 2013). 

3.7.5 Clinical correlation 

The deletion of the STRC gene and the clinical feature of hearing loss may indicate a further 

putative mutation on the second STRC allele in this patient. The other clinical features could 

not be readily explained. The CATSPER2 gene deletion will not affect this female patient as it 

is only expressed in sperm cells. 

3.7.6 Conclusion 

It seems likely that the deletion encompassing the STRC gene in this patient could contribute 

to the clinical presentation. Family studies may be useful to establish inheritance of this 

deletion. Sequencing for STRC gene mutations may reveal the putative mutation on the 

second STRC allele. Nevertheless, it is important to bear in mind that the other deleted genes 

in the region may well be contributing to the phenotype and require further investigation or 

following up on emerging genotype/phenotype correlations in the various databases. 

Furthermore, it should also be noted that there could be variants in other parts of the genome 

that may be contributing to the complex phenotype. 

 

3.8 PATIENT 19 

3.8.1 Clinical features  

A male patient presented with ID and variegate porphyria (VP). This patient had two male 

siblings with ID, of whom one also had porphyria. One of his sisters, who had sapphire blue 

eyes, had a son who was deaf. The parents of these siblings were related. As only male 

siblings seemed to be affected with ID, FRAXA was initially considered as the ID could be X-

linked. Waardenburg syndrome was considered the likely diagnosis in the abovementioned 

sister and her child. 
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Figure 31 Pedigree for patient 19 

 

3.8.2 Genetic testing 

No previous genetic testing was performed. 

3.8.3 CMA Analysis 

CMA testing revealed a submicroscopic interstitial deletion of 69 Kb on chromosome 22 at 

band q11.21 as shown in the Karyoview (Figure 32) and the detail view in Figure 33. This 

region is covered by 140 markers. In addition, seven regions of homozygosity were noted, as 

listed in Table 10. 

 

arr[hg19] 22q11.21(19,231,636-19,300,915)x1 
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3.8.3.1 Karyoview 

 

   
   Figure 32 Karyoview of Patient 19: Seven regions of homozygosity were detected in this patient as indicated  

 by the red squares. The deletion on chromosome 22 is indicated with the ROH in the red square.  
(Chromosomes are not numbered but are aligned conventionally: that is chromosomes 1 – 12 in the first row,  
 and chromosomes 13 – 22, X and Y in the second row.) The blue lines to the left of the chromosomes  
 represent the ROH and CN tracks respectively. 
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Figure 33 Detail view of Chromosome 22 of Patient 19 showing: 1) the copy number state: deletion (Red),  

    2) the Weighted Log2 Ratio, 3) LOH, 4) the allele peak deletion demonstrating the SNP markers in this  
    region, the extent of the deletion in the Smooth Signal, 6) RefSeq genes (Pink) in this region, 7) OMIM  
    disease genes (Green), 8) coordinates and chromosome bands. 
 
 

 

 

 
    Table 10 The regions of homozygosity detected in Patient 19 

 Chromosomal region Number of genes Length (bp) 

1. Chr 1:163833566-192259492 112 28,425,927 

2. Chr 8:46913605-57659691 26 10,746,087 

3. Chr 11:90152430-112341574 79 22,189,145 

4. Chr 13:59835620-70527825 5 10,692,206 

5. Chr 15:23107347-26811301 15 3,703,955 

6. Chr 15:38799586-55846849 121 17,047,264 

7. Chr 22:20950327-33886848 121 12,936,522 
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3.8.3.2 Database search 

The chromosome coordinates of the deletion were entered into the interactive UCSC Genome 

Browser (Figure 34). One gene was included in this region.  

 

           
      Figure 34 UCSC Browser of chromosome 22 of patient 19 

 

The seven ROH were run through the Genomic Oligonucleotide and SNP Array Evaluation 

Tool and the genes scrutinised for phenotypic effect. A total of 497 genes were found in these 

regions which were subsequently filtered to include only autosomal recessive phenotypes (76 

genes). 

3.8.4 Review  

The deleted region at 22q11.21 is covered by 140 markers on the Affymetrix Cytoscan HD. 

One gene, CLTCL1, was included in this region, which is highly expressed in skeletal muscle. 

This gene has been classed as a VOUS by the OMIM database but a report by Nahorski et al. 

(2015) identified a homozygous c.988G-A transition in exon 7 of the CLTCL1 gene in a 

consanguineous family with children affected with severe DD and pain insensitivity, with five 

ROH detected using the Affymetrix GeneChip® Human Mapping 250 K Nsp Array. These 

authors proved that the CLTCL1 gene is involved in early prenatal neurodevelopment. 

A total ROH of 106 Mb was found in patient 19. The coefficient of consanguinity was 1/16 and 

the coefficient of inbreeding was 1/32. The following genes of interest were found in the ROH: 

Homozygous mutation in the TMCO1 gene (Genomic coordinates (GRCh38): 1:165,724,290-

165,768,921, OMIM*614123) on chromosome 1q24 cause Craniofacial dysmorphism, Skeletal 

anomalies, and Mental retardation syndrome (CFSMR, OMIM#213980). This condition has 
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autosomal recessive inheritance and has been reported in consanguineous families (Xin et al., 

2010).  

Two genes implicated in autosomal recessive deafness were detected in the ROH, the STRC 

gene (OMIM*606440) on chromosome 5q15.3 which is implicated in Autosomal Recessive 

Deafness 16 (OMIM#603720), and the RDX gene (OMIM*611022) on chromosome 11q23 

which is implicated in Autosomal Recessive Deafness 24 (OMIM#611022).  

Another ROH, at chromosome 8q11, contained the gene implicated in Waardenburg 

syndrome Type 2D (WS2D), SNAI2. WS is characterised by piebaldism and deafness (Read 

& Newton, 1997). WS most frequently occurs in a dominant inheritance pattern (Read & 

Newton, 1997), although the authors postulated that it may also occur in a recessive form. 

Sanchez-Martin et al. (2002) suggested that a recessive form of the WS2 syndrome is caused 

by a homozygous deletion of the SNAI2 gene. 

 

 3.8.5 Clinical correlation 

The number and extent of ROHs is consistent with an individual from a consanguineous 

mating. The phenotype of CFSMR patients is more severe than that described in patient 19 

with significant skeletal abnormalities not present in this patient. Despite his positive family 

history, this patient also has none of the features of Waardenburg syndrome or deafness. 

 

3.8.6 Conclusion 

The deletion on chromosome 22q is a VOUS (OMIM database). Due to the large total size of 

the ROH many genes may each be implicated in the phenotype of this patient. Additional 

phenotype information would be valuable. Molecular PPOX gene testing starting with common 

SA/Afrikaner R59W mutation could be considered to assist in cascade screening and 

counselling in this family. 

 

3.9 PATIENT 20  

3.9.1 Clinical features 

A female patient presented with dysmorphic features and DD with no family history of note. 

Epilepsy developed at the age of one year. This patient had the following additional clinical 

features: microcephaly, midface hypoplasia, low set ears, a flat nasal tip, low columella, 

epicanthic folds, posteriorly rotated ears and a wide mouth. A brain Computed Tomography 

(CT) scan and renal ultrasound were both normal. 
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3.9.2 Genetic testing 

Chromosome analysis demonstrated a normal karyotype. No microdeletion FISH studies were 

performed. MLPA Analysis was not performed. FRAXA analysis was not performed. 

3.9.3 CMA Analysis 

CMA testing revealed a submicroscopic subtelomeric deletion of 2.1 Mb on chromosome 4 at 

band p16.3 as shown in the Karyoview (Figure 35) and the detail view in Figure 36. This 

region is covered by 2 436 markers. A region of homozygosity of 4.87 Mb was noted on 

chromosome 10 at band q25.1 to q25.3. 

arr[hg19] 4p16.3 (68,345-2,172,555)x1 

 

3.9.3.1 Karyoview  

 
Figure 35 Karyoview of Patient 20: a terminal deletion of 2.1 Mb was detected on the short arm of chromosome 4 
as indicated in red. A ROH of 4.87 Mb was detected on the long arm of chromosome 10, as shown in the red 
square. (Chromosomes are not numbered but are aligned conventionally: that is chromosomes 1 – 12 in the first 
row, and chromosomes 13 – 22, X and Y in the second row). The blue lines to the left of the chromosomes 
represent the ROH and CN tracks respectively. 
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      Figure 36 Detail view of Chromosome 4 of Patient 20 showing: 1) the copy number state: deletion (Red),  
       2) the Weighted Log2 Ratio, 3) the copy number state, 4) 4) LOH, 5) allele peak deletion demonstrating 
       the SNP markers in this region, 6) the extent of the deletion in the Smooth Signal, 7) RefSeq genes  
       (Pink) in this region, 8) OMIM disease genes (Green), 9) coordinates and chromosome bands 
 

3.9.3.2 Database search  

The chromosome coordinates were entered into the interactive UCSC (Figure 37) and 

DECIPHER (Figure 38) Genome Browsers. A deletion of 2.5 Mb in size was noted on 

chromosome 4 which spans the Wolf-Hirschhorn (WHS) syndrome region. A total of 44 

genes are included in this region of which LETM1, WHSC1, and WHSC2 are morbid genes.  
 

 
Figure 37 Illustration of the UCSC Browser of chromosome 4 of patient 20 (disease genes are represented in 
dark green, deletions in red and duplications in blue): The WHSC1, WHSC2 (OMIM*606026), and LETM1 
disease-causing genes are located in the 4p16.3 region. 
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Figure 38 The 4p16.3 deletion region - the morbid genes in this region are the WHSC1, WHSC2 (not depicted), 
and LETM1 genes WHS critical region (DECIPHER). 

 

3.9.4 Review   

WHS is a contiguous gene deletion syndrome (OMIM#194190), Genomic coordinates 

(GRCh37): 4:0–4,500,000. This syndrome was first described by Cooper & Hirschhorn in 1961 

(Battaglia & Carey, 1998). It is characterized by a hemizygous deletion on the short arm of 

chromosome 4 at band 16.3. Three genes have been found to be involved in WHS: WHSC1 

(Wolf-Hirschhorn Syndrome Candidate 1 gene, OMIM*602952), WHSC2 (Wolf-Hirschhorn 

Syndrome Candidate 2 gene, OMIM*606026), and LETM1 (Leucine Zipper/EF-Hand-

Containing Transmembrane Protein 1, OMIM*604407). See Figure 39 below. 

 

Wright et al. (1997) described the WHS critical region, WHSCR1, with a size of 165 Kb which 

is approximately 2 Mb from the telomere. This region is gene dense. Van Buggenhout et al. 

(2003) identified the WHS critical region further using a high resolution chromosome 4p16 

oligonucleotide array and found that the typical WHS facial appearance is due to hemizygosity 

of the WHSC1 gene. The other features may be the result of haploinsufficiency of more than 

one gene in the region. Zollino et al. (2003) described a new, more distal, WHS critical region 

(WHSCR2) which falls entirely within the greater WHS critical region (WHSCR). This was 

found to be a 300- to 600-Kb interstitial deletion on 4p16.3. The WHSC1 gene overlaps both 

the WHSCR and WHSCR2 regions. LETM1, which is a calcium channel gene, flanks the 

WHSCR and is believed to be involved with the „seizures‟ phenotype (van Buggenhout, 2004).  
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Endele et al. (2011) demonstrated that C4orf48 (Chromosome 4 Open Reading Frame 48, 

OMIM*614690) is expressed in cortical and cerebellar development. The authors therefore 

postulated that C4orf48 encodes a novel neuropeptide which may be involved in the 

neurological features of WHS if deleted. 

 

Kerzendorfer et al. (2012) implicated the SLBP (Stem-Loop Binding Protein, OMIM*602422) 

gene in impaired DNA replication which may contribute to the growth retardation and 

microcephaly in WHS. 

 

WHS has been subclassified into a „classical‟ and „mild‟ form. Clinical features of WHS include 

severe growth deficiency (both pre- and postnatal), variable developmental disability, severe 

intellectual disability, microcephaly, characteristic cranio-facial features known as the „Greek 

warrior helmet‟ appearance (broad bridge of the nose, high forehead, prominent glabella, 

hypertelorism, high-arched eyebrows, protruding eyes, epicanthal folds, short philtrum, distinct 

mouth with downturned corners and micrognathia), closure defects (cleft lip or palate, cardiac 

septal defects), poorly formed ears with pits/tags and seizures (Battaglia et al., 2008). 

Seizures occur in 50 to 100% of children. The seizures may lessen with age. Skeletal 

abnormalities, other congenital heart defects, hearing loss, urinary tract malformations and 

structural brain abnormalities may also be seen in WHS.  

 

It has been reported that 50 to 60% of WHS is ascribed to a de novo deletion with the rest 

being due to a more complex rearrangement such as an unbalanced translocation or a 

structural rearrangement (Zollino et al., 2003). Zollino et al. (2003) found the deletions of the 

patients they studied varied in size and breakpoint positions. A deletion of less than 3 Mb 

resulted in a milder phenotype and the absence of malformations (Zollino et al., 2003). WHS is 

also frequently due to abnormal segregation from a reciprocal translocation carried by a 

parent. Giglio et al. (2002) suggested that this kind of translocation may be the second most 

common translocation after t(11;22) which may cause Emanuel syndrome and is the most 

common reciprocal translocation in humans. Translocations, mosaicism and unbalanced 

translocations resulting in a derivative chromosome 4 had also been described as the cause 

of WHS by Wieczorek (2000). Battaglia et al. (1999) reported the incidence of WHS as 1 in 20 

000 to 1 in 50 000 births with a female predominance of 2 to 1. 
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      Figure 39 A depiction of the gene positions and the phenotypic effect in patients with WHS:   
       White – 4p telomeric region, and chromosome 4 centromere, Peach – WHSCR, Purple – WHSCR2. 
 

 

3.9.5 Clinical correlation 

Three of the clinical features in this patient specifically correlated with the features of WHS - 

DD, microcephaly and epilepsy with some possible overlap of craniofacial dysmorphism. The 

lack of more severe clinical features may correlate with the findings of Zollino et al. (2003) 

which indicated a milder phenotype when the deletion is less than 3 Mb in size. 

3.9.6 Conclusion 

This patient‟s result is consistent with a diagnosis of WHS. The deletion size may explain the 

milder phenotype in this patient. 

 

3.10 PATIENT 23  

3.10.1 Clinical features 

A newborn male patient presented with dysmorphic features and structural congenital 

abnormalities. Trisomy 13 was suspected. Clinical findings included growth restriction, 

unilateral cleft lip and palate, hypertelorism, strabismus, a broad nasal root, prominent ears 

and unilateral camptodactyly of all fingers. Congenital heart disease with an unbalanced 

atrioventricular septal defect and a double outlet right ventricle was confirmed on 

echocardiography.  
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3.10.2 Genetic testing 

Chromosome analysis demonstrated a male patient with a supernumerary marker. The 

marker was the size of an E group chromosome (Figure 40). Neither microdeletion FISH nor 

MLPA analyses were performed.  

 

Figure 40 Karyogram of patient 23 depicting the marker chromosome detected (A). 

 

3.10.3 CMA Analysis 

CMA testing was performed. Four copies of a segment of chromosome 9, from band p24.3 to 

band q13, and which was 68.1 Mb in size, were detected as shown in the Karyoview (Figure 

41) and the detail view in Figure 42. This segment included the entire short arm and extended 

into the long arm of chromosome 9. This region was covered by 37 168 markers.   

arr[hg19] 9p24.3q13(203,861-68,330,127)x4 
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3.10.3.1 Karyoview  

 

 
      Figure 41 Karyoview of Patient 23: 4 copies of a segment of chromosome 9 were detected, as indicated  
       in red. (Chromosomes are not numbered but are aligned conventionally: that is chromosomes 1 – 12 in the  
       first row, and chromosomes 13 – 22, X and Y in the second row). The blue lines to the left of the 
       chromosomes   represent the ROH and CN tracks respectively. 
 
 

            
Figure 42 Detail view of Chromosome 9 of Patient 23 showing: 1) the copy number state: tetrasomy (Blue),  
 2) the Weighted Log2 Ratio, 3) LOH, 4) the allele peak increase demonstrating the SNP markers in this 
 region, 5) the extent of the tetrasomy in the Smooth Signal, 6) RefSeq genes (Pink) in this region,  
 7) OMIM disease  genes (Green), 8) coordinates and chromosome bands. 
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3.10.3.2 Database search  

The chromosome coordinates were entered into the interactive UCSC (Figure 43) and 

DECIPHER (Figure 44) Genome Browsers. Four copies of a segment of chromosome 9, 68.1 

Mb in size, were noted. A total of 252 genes is included in this region. 

 
 
Figure 43 Illustration of the UCSC Browser of chromosome 9 of patient 23 (disease genes are 
represented in dark green, deletions in red and duplications in blue) 
 
 

 
   Figure 44 A representation of the genes in the duplicated region of chromosome 9, as seen through  
    DECIPHER. 
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3.10.4 Review  

The first case of tetrasomy 9p was described in 1973 (Ghymers et al., 1973 cited in Dhandha 

et al., 2002). Dhandha and colleagues (2002) reported on three tetrasomy 9p cases and did a 

literature review. Variable survival rates were reported, with mosaic cases having a longer 

survival rate. Mosaicism could only be excluded if more than one type of tissue is analysed, 

typically lymphocyte culture would not detect mosaicism. Dhandha et al. (2002) found the 

following clinical features in the literature: hypertelorism, broad nasal root or bulbous nose, 

cleft lip or palate, ear abnormalities and micrognathia. Further clinical features included DD, 

central nervous system abnormalities, limb defects, pre and postnatal growth retardation, 

congenital heart disease, IUGR, renal abnormalities, large fontanelle, abnormal genitalia in 

male patients, and a short neck with an excess of nuchal skin. Less common findings were 

downturned corners of the mouth, gastrointestinal abnormalities, epicanthal folds, early death, 

vertebral abnormalities and brachycephaly. These authors also stated „this pattern of 

ultrasound findings is also suggestive of trisomy 13‟ as these diagnoses are usually made 

prenatally (Dhandha et al., 2002). Cazorla Calleja et al. (2003) described an infant with 

tetrasomy 9p at the breakpoint q13. This patient had a Dandy-Walker malformation, 

ventricular septal defect, global delay and other congenital abnormalities. El Khattabi et al. 

(2015) reported a further 12 cases of tetrasomy 9p, who were diagnosed using microarray 

technology. Tetrasomy 9p is the second most common supernumerary isochromosome and is 

usually seen in lymphocytes and occasionally in fibroblasts (El Khattabi et al., 2015). 

Tetrasomy 9p is usually seen in mosaic form although a low-level mosaicism can be missed. 

The most common associated abnormalities are Dandy-Walker malformation, cleft lip/palate 

and intra-uterine growth restriction. El Khattabi et al. (2015) found a correlation between 

involvement of the 9q region and cardiac malformations, ID and survival period.  

3.10.5 Clinical correlation 

The following features noted in this patient corresponded with the findings in the literature: 

Growth restriction, unilateral cleft lip and palate, hypertelorism, strabismus, a broad nasal root, 

limb defects (unilateral camptodactyly of all fingers) and congenital heart disease (an 

unbalanced atrioventricular septal defect and a double outlet right ventricle). In addition the 

suspicion of Trisomy 13 in these patients on clinical grounds has also been described. 

Although this abnormality is called tetrasomy 9p, the abnormality extended into the long arm 

of chromosome 9 as in the case described by Cazorla Calleja et al. (2003). 

3.10.6 Conclusion 

This patient‟s result is consistent with a diagnosis of tetrasomy 9p and is the cause of the 

clinical presentation in this child.  
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3.11 PATIENT 24  

3.11.1 Clinical features 

This male patient presented at 13 years of age with learning difficulties, dysmorphic features 

and dermatological abnormalities. The dysmorphic features noted were hypertelorism, 

epicanthus and a broad nose with a flat nasal bridge. The skin findings included palmar 

hyperkeratosis, skin papules, multiple café au lait spots and areas of hypopigmentation. The 

boy‟s father and sister had similar dermatological features but were of normal intellect and did 

not have dysmorphic features.  

3.11.2 Genetic testing 

Chromosome analysis demonstrated a normal male karyotype. Microdeletion FISH studies, 

MLPA, and FRAXA analysis were not performed. 

3.11.3 CMA Analysis 

CMA testing was performed and a submicroscopic interstitial duplication of 301 Kb was noted 

on chromosome 13 at band q33.3 as shown in the Karyoview (Figure 45) and the detail view 

in Figure 46. This region is covered by 336 markers.   

arr[hg19] 13q33.3(109,771,548-110,072,888)x3 

3.11.3.1 Karyoview  

 

 
Figure 45 Karyoview of Patient 24: duplication on the long arm of chromosome 13 was detected as indicated in the 
red square. (Chromosomes are not numbered but are aligned conventionally: that is chromosomes 1 – 12 in the 
first row, and chromosomes 13 – 22, X and Y in the second row). The blue lines to the left of the chromosomes 
represent the ROH and CN tracks respectively.  
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   Figure 46 Detail view of Chromosome 13 of Patient 24 showing: 1) the copy number state: duplication (Blue), 
   2) the Weighted Log2 Ratio, 3) the extent of the copy number duplication, 4) LOH, 5) the allele peak  
   duplication demonstrating the SNP markers in this region, 6) the extent of the deletion in the Smooth Sign, 
   7) RefSeq genes in this region, 8) coordinates and chromosome bands. 
 
 
 

3.11.3.2 Database search  

The chromosome coordinates were entered into the interactive UCSC (Figure 47) and 

DECIPHER (Figure 48) Genome Browsers. A duplication of 301 Kb was noted on 

chromosome 13. The MYO16 gene was included in this region. 

 

 
Figure 47 Illustration of the UCSC Browser showing a section of chromosome 13 of patient 24 (disease 
genes are represented in dark green, deletions in red and duplications in blue) 

 



Page 96 of 185 
 

 
        Figure 48 Illustration of the location of the MYO16 gene on chromosome 13q33 (DECIPHER) 

 

3.11.4 Review   

Faletra et al. (2012) described a patient with a duplication of chromosome 13q in the form of a 

marker chromosome. This duplication of 44 Mb was much larger in size than the duplication 

seen in patient 24 which was 301 Kb in size. The duplication in Patient 24 does however fall 

within the reported region and involves band q33.3 (109,771,548-110,072,888). The 

duplication of the patient in the case report of Faletra et al. (2012) involved bands q21.22-q34 

(71,024,411-115,103,529). Their patient had features of hypopigmentation (phylloid 

hypomelanosis) and moderate ID. Liu et al. (2015) found an association of the MYO16 gene 

with ID/DD suggesting it plays a role in neurodevelopment. 

3.11.5 Clinical correlation 

Patient 24 had generalised pigmentary abnormalities with multiple café au lait spots as 

compared to the phylloid hypomelanosis reported by Faletra et al. (2012). The duplication of 

the MYO16 gene may explain the milder phenotype in this patient as compared to deletion of 

this gene which is associated with ID/DD. 

3.11.6 Conclusion 

It seems possible that the duplication of 301 Kb containing the MYO16 gene could contribute 

to the clinical presentation of learning disability in this child as the deletion of this gene has 

been associated with ID; this may pertain to dosage sensitivity (Froyen et al., 2007). The skin 

disturbances can however not be readily explained. At this stage, however, this duplication 
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should be considered a VOUS, and it would be worth considering family studies to further 

elucidate the finding.  
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CHAPTER 4 DISCUSSION 
 

ID/DD comprises of a „heterogeneous group of disorders‟ (van Bokhoven, 2011) characterised 

by below average intellectual function and the lack of the necessary skills to perform the daily 

tasks of living. Conventional chromosome analysis (karyotyping) has been the gold standard 

for the detection of chromosomal abnormalities in patients with ID/DD, ASD and MCA. 

Microarray technologies are a high-resolution technology which interrogates the whole 

genome and is used for the detection of CNVs. Microarray has largely replaced karyotyping, 

which can only detect chromosomal abnormalities larger than 5 Mb in size, as microarray, with 

its increased resolution, can detect CNVs as small as 50 Kb in size. Although karyotyping can 

still be useful for the detection of balanced translocations and low-level mosaicism, CMA is the 

recommended first-tier test for the detection of submicroscopic aberrations in patients with 

ID/DD, ASD and MCA since the release of the consensus statement by Miller et al. (2010) 

who reported on a CNV detection rate of between 15 and 20% in 21 698 patients with 

ID/DD/MCA across 33 studies. This is a significant improvement on the 3.7% chromosome 

analysis detection rate in a review of six studies which included 3 672 patients with GDD or 

mild to moderate ID, some of which had DS, sex chromosome abnormalities and unbalanced 

translocations (Shevell et al., 2003). 

In South Africa, chromosome analysis, microdeletion and/or subtelomeric FISH and MLPA are 

still the only tests available for the detection of CNVs in the public sector. The current testing 

repertoire for ID/DD/MCA/ASD in the NHLS Groote Schuur Hospital Human Genetics 

diagnostic laboratory includes Fragile X testing and MLPA (subtelomere, 

microdeletion/duplication and X-linked assays), karyotyping/chromosome analysis and 

microdeletion/duplication FISH for CNV detection. Over a recent 18 month period (January 

2015 to June 2016), the detection rates using these technologies were 5%, 7%, 1% and 11%, 

respectively. The cost of sequential testing can approximate the total cost of microarray CNV 

analysis. 

CMA is not performed routinely in SA despite it being in routine diagnostic use in the majority 

of developed countries. This gap in technical expertise and analytical knowledge was 

identified at the outset of the current study. This study was initiated to investigate the 

relevance of CNV detection in a small cohort of ID/DD patients in SA. Upon successful 

completion of the project the CMA technology would be introduced into the routine diagnostic 

laboratory. Included in the study were 30 patients diagnosed with ID/DD who had a high 

likelihood of CNV-related pathogenesis and from whom blood/DNA was readily available. The 

workplan was developed with the Affymetrix representatives and the Centre for Proteomic and 

Genomic Research (CPGR), who host the platform and are a service provider for genomic 
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and proteomic technologies. This service included QC of samples, running of arrays and data 

processing. Three samples had to be excluded due to poor DNA quality. A total of 27 patient 

samples were ultimately used for CMA and further analysis. The samples were assayed at the 

CPGR and the CEL files were released for analysis. The Cytoscan HD process was run over 

four days as per the manufacturer‟s instructions. This is a long workflow but consists of basic 

molecular techniques. As mentioned previously, QC is crucial for the success of this assay. 

The DNA was therefore initially scrutinized for quality, and QC gels were run after the PCR 

step to assess adequate amplification and again after the fragmentation step to assess 

adequate fragmentation.  

The CEL files were imported into the Affymetrix ChAS software for analysis. Training in data 

analysis with the Affymetrix product specialist in Cape Town provided a valuable introduction 

to the use of the software. Data analysis and interpretation proved to be a challenge as a large 

number of CNVs were detected on each patient sample and a workflow for analysis had to be 

established. Microarray data analysis is time-consuming even to trained scientists. No local 

diagnostic support was available as microarray work is not routinely done in SA. An 

„internship‟ at the Laboratory of Diagnostic Genomic Analysis (LDGA) in Leiden, with high 

throughput CMA competency and data analysis was undertaken. This not only facilitated 

confirmation of the initial findings and assisted in the detection of further CNVs but also 

provided hands-on training in a centre of excellence for CMA. 

Personal correspondence with three international laboratories gave further insight into data 

analysis in other centres. Two laboratories, in Cardiff (Wales) and in Sydney (Australia) used 

the Agilent Cytochip microarray platform routinely and the third laboratory in Manchester (UK) 

used the OGT ISCA platform routinely. Both these platforms are medium resolution arrays 

which have the seeming advantage of detecting fewer CNVs (than the Cytoscan HD arrays 

used in the present study) and thus less „noise‟. This is an important consideration when 

implementing CMA into routine diagnostic use. Although the Affymetrix Cytoscan HD has the 

best resolution at 2.6 million probes, it generates a large amount of CNV data as 

demonstrated in this study. This said, the Affymetrix Cytoscan HD is in routine diagnostic use 

in the Leiden laboratory and is used for prenatal and postnatal samples. The filter settings in 

the Affymetrix ChAS software are important, as this can eliminate some of the noise as CNVs 

as small as 10 Kb in size can be detected. Although each laboratory had their designated 

workflow for analysis, all the laboratories used the same CNV databases and genome 

browsers such as DGV, DECIPHER and UCSC, and literature searches for the analysis and 

interpretation of the CNVs detected. 

This pilot investigation successfully identified large well-delineated CNVs, as well as other 

significant CNVs, with a detection rate of 26%. This high detection rate in a small cohort was 

also an indication of accurate phenotyping and patient selection. During analysis, causative 
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CNVs of well-known microdeletion syndromes such as Kleefstra, Wolf-Hirschhorn and Mowat-

Wilson syndrome were detected. One susceptibility region, the 1q21 recurrent microdeletion 

(susceptibility locus for neurodevelopmental disorders), was also identified. Other significant 

CNVs such as a 9.1 Mb deletion on the long arm of chromosome 5 which corresponds with 

previously reported cases, and an 88 Kb deletion on chromosome 15 containing a significant 

gene, were revealed. An OMIM described VOUS on chromosome 22 was detected in one 

patient who also demonstrated seven ROHs indicating consanguinity as seen in the family 

pedigree. Another two VOUS were a 2.5 Mb deletion on the short arm of chromosome 1 and a 

duplication of 301 Kb containing a gene involved in ID, previously reported with a deletion. A 

large supernumerary marker chromosome, which was previously detected on chromosome 

analysis, was identified as a tetrasomy of the short arm of chromosome 9. The majority of the 

CNVs detected corresponded with CNVs in the Leiden laboratory‟s Cartagenia database. 

Numerous benign polymorphisms and known Cytoscan variants, such as the well-known 

duplication 14q32.33, were also identified. Three of the benign CNVs were detected in this 

cohort which were not previously reported in the Leiden database: an 18 Kb deletion at 

6q14.3q15, a 31 Kb duplication at Xq13.1 and a 10 Kb deletion at 2q32.3. These CNVs may 

be specific to the SA population and it is likely that more population specific CNVs would be 

detected in routine testing as well as pathogenic CNVs and VOUS. All the benign and 

pathogenic CNV regions detected had a dense probe coverage including the duplication 

region of patient 24 (13q33.3) which has a previously described deletion syndrome associated 

with the same region. Family studies and other modes of analysis, for example in exploring 

ROH, may also be needed. VOUS require careful clinical follow-up and consultation with the 

clinical geneticist for interpretation.  

Despite the proven utility of microarray it is costly. Cost is a problem in all settings with the 

majority of laboratories providing CMA on a cost neutral basis. An increase in probe resolution 

is directly related to an increase in the cost of the array. A balance between cost and utility is 

crucial in the resource-constrained public sector in SA. It would therefore be important to 

ensure that clinicians are educated in the appropriate use of this technology and work with 

medical genetic services to set up appropriate referral pathways for patients with ID/DD. An 

important limiting factor of performing microarray testing in South Africa is that all costs are 

dependent on the currency exchange rate. In 2011, the Cytoscan HD array was priced at R4 

031 per (array) chip and consumables. By 2013, this price had increased to R7 846. The price 

stabilized in 2015 to R7 798 per array. Referral to laboratories in the United Kingdom (UK) for 

microarray CNV testing cost between £350 and £550. This is between R7 000 - R11 000 with 

the August 2016 exchange rate (R1 = £20). 

Subsequently to commencing this study, Affymetrix released two additional arrays (see Table 

AT 2 in Addendum V for comparison): the 750 K which is a medium density array and 

developed for routine diagnostic use for patients with ID/DD, and the Optima array which has 
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a lower resolution at approximately 315 000 probes (which was developed for prenatal 

samples).  

Table 11 lists the estimated cost per microarray per patient, as per the prices quoted in 

February 2016 for each of the microarrays offered by Affymetrix® Cytoscan™ HD Array 

(Affymetrix, Santa Clara, CA, USA). 

Table 11 Comparison of the cost of Affymetrix array kits available (February 2016) 

 Affymetrix  HD Affymetrix  750K Affymetrix  OPTIMA 
ARRAY R7 790 R4 592 R3 187 
TAQ R323 R323 Not required 
CPGR SERVICE FEE R1 400 R1 400 R1 400 
TOTAL R9 513 R6 315 R4 587 

 

The cost in Table 11 only includes consumables and the outsourced service provider fee. It 

does not include the cost of time required to analyse, interpret and report the result by fully 

trained professionally registered laboratory staff. A realistic price estimate must take into 

account the cost of labour and other laboratory overheads. A price proposal received from the 

CPGR in June 2016 for the Affymetrix Optima option included R4 172.54 for reagents and 

consumables and a service fee of R1 047.46, amounting to a total of R5 220 per sample 
(excluding VAT). This price is based on a minimum batch of 12 samples. A final charge of R7 

000 would need to be raised in a local diagnostic environment in order to cover expenses if 

the lowest resolution array is used. Microarray is an expensive diagnostic test in developed 

countries, and is even more so in the resource-limited SA public sector health care system; 

however, the improved CNV detection rate, with improved health care management of the 

patient, should offset this cost. 

These advantages may not always be perceived as worthwhile and there are doctors, 

hospitals and governments in certain countries who are doubtful about using CMA as a first-

tier test or second-tier test, taking into account that additional follow-up investigations may still 

be needed, as is the case with the additional testing of parental samples to determine the 

disease association of VOUS in probands (Wordsworth et al., 2007). Despite the higher 

diagnostic yield, direct clinical utility of CMA may be viewed as limited, since many patients 

still need on-going support and hospital care. It is true that the majority of patients will test 

CMA negative and further testing will be required. However, the benefits of a diagnosis remain 

important to clinicians and patients/parents and there is a clearly established role for CMA 

testing in the investigation of ID/DD. One might argue that FRAXA testing which is generally 

accepted as a routine diagnostic test has a small diagnostic yield of less than 3.5% in patients 

with ID/DD/ASD, compared to the diagnostic yield of CMA at between 15 to 20% for the same 

indications (Riggs et al., 2014).  
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Lynch (2011) stated that the benefits of array testing outweigh its cost as „array testing has 

such a huge diagnostic yield that its introduction is inevitable whether or not the economics 

make sense.‟ Doctors are motivated to give their patients specific results, which will be of 

„emotional benefit‟ to the family (Lynch, 2011). The switch from conventional cytogenetics to 

CMA is inevitable and protocols should be established to ensure the most appropriate 

diagnostic service is available for patients. Lenhard et al. (2005) observed that „the value of 

genetic diagnosis of infantile disabilities encompasses significant and long-lasting emotional 

relief for the parents‟. Earlier diagnosis may eliminate the necessity of further follow-up tests 

such as neuroimaging and invasive tests, like muscle biopsies (Wordsworth et al., 2007). 

Lynch (2011) also stated that there are „hidden benefits‟ which are difficult to cost and include 

accurate diagnosis which may lead to customized treatment regimes, appropriate genetic 

counselling, clinical care and educational aspects required for the understanding of the 

recurrence risk for future reproductive choices.  

The way forward 

This pilot study was initiated in collaboration with the CPGR to investigate the 750 K array and 

the feasibility of using the Optima array for routine postnatal samples. It proved the value of 

both the Affymetrix 750 K and the Optima arrays for use in our diagnostic setting as it 

confirmed the results obtained on the Affymetrix Cytoscan HD, subtelomeric/microdeletion 

MLPA results, the OGT array and revealed a new finding. The new finding was made using 

the Optima and 750 K arrays (the HD was not performed); this finding revealed a 7.9 Mb gain 

on chromosome 11p15 and a 4.49 Mb loss on chromosome 14q32 indicating a possible 

unbalanced translocation. The parent did not show any aberration. Both these arrays have 

suitable probe coverage of the subtelomeric regions to detect gains and losses, which may be 

due to unbalanced translocations. 

In establishing a CMA diagnostic service, a stepwise approach should be considered. 

Although an increase in CMA referrals will increase the DNA extraction workload, CMA will 

largely replace the currently used MLPA assays, microdeletion FISH assays and a sizable 

amount of the conventional chromosome analysis requests. The role of microdeletion for 

confirmation of CMA findings would need consideration. It is expensive to keep FISH probes 

on hand in the laboratory, especially if these are infrequently used.  

A referral process to the CPGR for sample processing will initially be established. This will 

allow the NHLS diagnostic laboratory staff to focus on training and interpretation of the data 

analysis. Once staff competency is established, and depending on resources and referral 

numbers, a dedicated instrument for the diagnostic environment will be considered, with NHLS 

laboratory staff performing all steps in processing CMA samples.  
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After consultation with the local Medical Geneticists, the consensus was that the Optima array 

was compatible, with regard to coverage and cost, with the currently available testing 

repertoire (karyotyping, microdeletion and subtelomeric MLPA). The Optima array offers a 

minimum resolution of 1 Mb for losses, 2 Mb for gains and 5 Mb for AOH/LOH. This resolution 

will be used for the diagnostic reporting of postnatal results, thereby also accounting for 

VOUS, which would be reported in line with the Leiden laboratory criteria (> 1 Mb in size). The 

750 K array would be the preferred array for patients with ID/DD. However, in order to 

establish the microarray diagnostic service within the NHLS, a tiered approach will be 

necessary. The recommendation for the introduction of microarray is therefore to implement 

the Optima microarray assay and once this has been successfully established, the 750 K 

array will be introduced. Strict gatekeeping criteria of this costly test will be instituted to 

prevent test requests for inappropriate phenotypes and to direct the requests to carefully 

selected patients.  

Diagnostic analysis and reporting criteria need to be established according to international 

guidelines but taking into account the local context. These criteria will include the size of CNVs 

reported, reporting of VOUS and incidental findings such as cancer predisposition genes, 

when and which follow-up studies should be recommended, and when parental studies will be 

required. These criteria will be set in consultation with the relevant clinicians.  

As the laboratory is in close contact with the clinicians referring the samples (and with resident 

Medical Geneticists within the Division of Human Genetics), requests for additional information 

and the discussion of recommendations should be easily facilitated. The reporting structure 

will be set according to international guidelines and recommendations set by external quality 

control programs.  
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CHAPTER 5 CONCLUSION 
 

ID adds a significant burden to the family of an affected individual. This burden also extends to 

society as a whole. Performing CMA as the first-tier diagnostic test in patients with ID/DD, 

MCA and ASD would increase diagnostic yield and contributes to improved management in a 

number of patients. Receiving a diagnosis is of value to the patient/family, and contributes to 

treatment options, prognosis and allows for accurate recurrence risks counselling in both the 

index family and the extended family. 

This study of CMA in a selected group of ID/DD patients showed a high diagnostic yield (26%) 

and confirmed that CNVs is a significant cause of ID/DD in the SA population. In addition, the 

skills and experience gained during this study will facilitate the introduction of microarray 

technologies in the routine diagnostic laboratory for the investigation of ID/DD, ASD and MCA 

in SA. In selected patients CMA should be offered as the first tier test replacing conventional 

cytogenetics. 

 

5.1 Recommendations 

1. Further research into ID to establish the incidence in SA as well identifying CNVs     

            relevant to the SA population. 

2. Training of laboratory staff on the processing, analysis and reporting of CMA data is  

required. 

3. Training of clinical staff on the advantages and limitations of CMA, and in the clinical  

            relevance of CMA results is required. 

4. A referral service should be established with a partner such as the CPGR for the   

routine processing of samples. The raw data can then be analysed and reported on by 

trained staff in the relevant laboratories. 

5. A national SA database should be established to reveal population specific CNVs and  

for consensus of reporting. Data from the current study can be used initially. 

6. Communication through platforms reaching the entire SA genetic community such as  

the Genetics Expert Committee (GEC), that has been established within the NHLS  

should drive the implementation of CMA in the public health sector in SA. 

7. Referral pathways and strict gate-keeping criteria should be defined to optimise access  

to CMA testing through Genetic clinics in the larger centres. 
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INTERNET RESOURCES  
Affymetrix   http://www.affymetrix.com/estore/ 

Cartagenia BENCH (https://cartagenia.com/cartagenia-bench-lab 

DECIPHER   https://decipher.sanger.ac.uk/ 

DGV   http://dgv.tcag.ca/dgv/app/home 

DNA Microarray – Wikipedia https://en.wikipedia.org/wiki/DNA_microarray 

Ensembl       http://www.ensembl.org/index.html 

ECARUCA  http://umcecaruca01.extern.umcn.nl:8080/ecaruca/ecaruca.jsp 

Genetics Home Reference http://www.ghr.nlm.nih.gov/ 

Genomic Oligonucleotide and SNP Array Evaluation Tool  

http://firefly.ccs.miami.edu/cgi-bin/ROH/ROH_analysis_tool.cgi 

Human Genetics II – Biology 102 Course  

http://carolguze.com/text/102-14-humangenetics2.shtml 

ICD-10 Version:2016 http://apps.who.int/classifications/icd10/browse/2016/en# 

ISCA/ICCG  http://www.iscaconsortium.org/?viajml=1 

Karger Medical and Scientific Publishers http://www.karger.com/Book/Home/257302 

OMIM   http://www.ncbi.nlm.nih.gov/omim 

PubMed   http://www.ncbi.nlm.nih.gov/pubmed/ 

UCSC   https://genome.ucsc.edu/ 

UKNEQAS       http://www.ukneqas.org.uk/ 

UNIQUE          http://www.rarechromo.org/html/home.asp 
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ADDENDUM II GENETICS REQUEST FORM WITH CONSENT 
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ADDENDUM II GENETICS REQUEST FORM WITH CONSENT (CONTINUED) 
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ADDENDUM III QUALITY CONTROL 

 

Figure A1 Gel electrophoresis QC of a subset of the cohort 

 

Figure A2 Gel electrophoresis QC of a second subset of the cohort 
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Figure A3 Gel electrophoresis QC of a third subset of the cohort 
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AT1 DNA QUALITY OF COHORT 

 

ng/ul  A260  A280  260/280  260/230  

1 266.49 5.33 2.858 1.87 1.9 

2 150.72 0.754 0.4 1.89 1.6 

3 175.64 3.513 1.904 1.85 2.29 

4 162.02 3.24 1.697 1.91 1.72 

5 123.14 2.463 1.285 1.92 1.58 

6 273.79 5.476 2.901 1.89 1.58 

7 592.4 11.848 6.547 1.81 2.32 

8 350.69 7.014 3.871 1.81 1.57 

9 287.83 5.757 3.06 1.88 2.21 

10 372.15 7.443 4.131 1.8 1.67 

11 405.54 8.111 4.417 1.84 1.94 

12 93.16 1.863 0.997 1.87 1.74 

13 312.14 6.243 3.337 1.87 1.98 

14 532.64 10.653 5.844 1.82 2.13 

15 1465.24 29.305 15.925 1.84 2.04 

16 61.13 1.223 0.672 1.82 2.02 

17 118.49 2.37 1.266 1.87 1.5 

18 1381.67 27.633 c 1.86 2.32 

19 860.77 17.215 9.153 1.88 2.28 

20 60.91 1.218 0.651 1.87 2.22 

21 287.79 5.756 3.219 1.79 1.59 

22 346.02 6.92 3.717 1.86 1.99 

23 152.47 3.049 1.614 1.89 1.52 

24 201.85 4.037 2.159 1.87 2.36 

25 108.14 2.163 1.146 1.89 1.48 

26 172.93 3.459 1.862 1.86 1.76 

27 159.24 3.185 1.734 1.84 2.39 
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ADDENDUM IV Standard Operating Procedure: METHODOLOGY 

Detailed methodology 

The Affymetrix® Cytoscan™ HD Array (Affymetrix, Santa Clara, CA, USA) was used to 

perform genome-wide high resolution copy number and SNPs detection in this cohort. This 

array contains approximately 2.6 million markers for CN consisting of approximately 750 000 

SNP and 1.9 million oligonucleotide probes. This is a targeted array with backbone spacing of 

one oligonucleotide every 2 Kb and one oligonucleotide probe every 400 bp in targeted 

regions. There are 200 SNP probes per Mb. All probes are 25 bp long. Each SNP is targeted 

by 6 probes, 3 per allele (Mason-Suares et al., 2013).  

Data analysis software specifically for this analysis is available. The ChAS software requires a 

25-probe call for CNVs and uses the Bayesian robust linear modeling with Mahalanobis 

distance perfect match algorithm to call SNPs (Mason-Suares et al., 2013). The Cytoscan HD 

provides information on sample heterogeneity and UPD.  

Affymetrix Cytoscan™ HD Procedure 

This array consisted of a square glass substrate mounted in a plastic cartridge. The 

oligonucleotides were contained on the inner glass surface of the array. Washing and 

hybridization occurs in a chamber reservoir directly under the glass.  

GENERAL REQUIREMENTS: 
 
CONTROLS 
Positive and negative controls should be used in each run – control DNA is supplied in the kit 

and TR Buffer can be used for the negative control in the PCR gel QC stage. 

 
EQUIPMENT 
1. Only calibrated equipment should be used.  

2. The equipment should be maintained according to recommended schedules. 

3. One-directional flow should be maintained to avoid contamination. 

4. Use filtered pipette tips throughout. 

5. Heat the thermal cycler lid before each step. 

 

DNA REQUIREMENTS 

1. The DNA must be of a high purity: 

 

OD260/OD280 1.8 – 2.0  

OD260/OD230  >1.5 
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2.  DNA should not be degraded. Using 1% agarose gel the average size of the gDNA can 

be determined. Approximately 90% of the DNA must be greater than 10 Kb in size.  

2. 250 ng of double-stranded genomic DNA is required. 

3. DNA dilutions must be made to a concentration of 50ng/ul. 

4. Defrost the gDNA when needed, mix before use. 

 

REAGENTS AND PLATES 
1. All reagents were kept on ice throughout. 
2. The plates were covered with adhesive film to prevent sample loss and cross- 

contamination during vortexing. 

3. The plates were spun at room temperature at 1500 revolutions per minute (rpm) for 1 

minute. 

4. The reagent vials were spun for 3 seconds. 

5. The reagents were vortexed 3 times for 1 second each. 

6. The plates were vortexed for 1 to 2 seconds in each of the 5 sectors (Figure 45). 

 

 

             Figure A4 5-Sector vortex scheme 

7. Scratches and contamination on the outside of the array may lead to inaccurate 

results.  

8. Oils and other substances from skin can fluoresce giving inaccurate results.  

9. The array were stored at 2° to 8°C.  
10. All work was done on an aluminium cooler throughout. 
11. The enzyme was kept in the freezer until needed, and placed on a -20°C cooler once  

out of the freezer. 
12. Samples can be stored after each stage of the procedure. 
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       Affymetrix Cytoscan HD Workflow (adapted) 

DAY 1 

STAGE 1 - RESTRICTION DIGEST 

Required time: 3 hours including 30 minutes hands-on 

1.1 In the Pre-PCR area, the cycler lid was preheated. 

1.2 5ul of the diluted gDNA (see DNA Step 4) was aliquoted into the tubes in a tray. 

1.3 The buffer and BSA were thawed, vortexed, spun and stored on ice.  

1.4 The Digestion Master Mix was prepared: 

REAGENT 1 SAMPLE 30 SAMPLES 

Chilled Affymetrix® Nuclease-Free Water 11.55ul 346.6ul 

10 x Nsp I buffer 2.00ul 60.0ul 

100 x BSA 0.20ul 6.0ul 

Nsp I 1.00ul 30.0ul 

Total 14.75ul 442.5ul 

1.5 The Digestion Master Mix was vortexed and spun down. 

1.6 The Digestion Master Mix was added to each gDNA sample: 

•Genomic DNA 
•Stage 1: Digestion 
•Stage 2: Ligation 
•Stage 3A: PCR Setup 

Day 1 

•Stage 3B: PCR x 4 
•GEL QC 
•Stage 4: PCR Purification 
•Stage 5: Quantitation 

Day 2 

•Stage 6: Fragmentation 
•GEL QC 
•Stage 7: Labeling 
•Stage 8: Hybridization 

Day 3 

•Stage 9: Wash, Stain, Scan Day 4 

Pre-PCR Room 
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Reagent Volume 

gDNA (50ng/ul) 5ul 

Digestion Master Mix 14.75ul 

Total 19.75ul 

1.7 The plate was covered, vortexed and spun. 

1.8 The following Digest program was run on the thermal cycler: 

Digest Thermocycler program: 

Temperature Time 

37°C 2 hours 

65°C 20 minutes 

4°C Hold 

1.9 The plate was covered, vortexed and spun. 

1.10    The samples were placed on an aluminium cooler on ice in preparation for Stage 2. 

STAGE 2 – LIGATION 

Required time: 4 hours including 30 minutes hands-on 

1.1 The T4 DNA Ligase Buffer and 50uM Adaptor, Nsp I were thawed at room 

temperature. 

1.2 The T4 DNA Ligase Buffer was vortexed to suspend any precipitate. 

1.3 The T4 DNA Ligase was kept frozen until needed. 

1.4 The Ligation Master Mix was prepared: 

REAGENT 1 SAMPLE 30 SAMPLES 

10 x T4 DNA Ligase Buffer 2.50ul 75.0ul 

50uM Adaptor, Nsp I 0.75ul 22.5ul 

T4 DNA Ligase 2.00ul 60ul 
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Total 5.25ul 157.5ul 

1.5 The Ligation Master Mix was vortexed and spun down.  

1.6 The Ligation Master Mix was added to each sample: 

Reagent Volume 

Digested DNA  19.75ul 

Ligation Master Mix  5.25ul 

Total 25.0ul 

1.7 The plate was covered, vortexed and spun. 

1.8 The following Ligate program was run on the thermal cycler: 

Ligate Thermocycler program: 

Temperature Time 

16°C 3 hours 

70°C 20 minutes 

4°C Hold 

1.9 The plate was closed, vortexed and spun. 

1.10    The samples were placed on an aluminium cooler on ice in preparation for Stage 3. 

DAY 2 

STAGE 3A – PCR SETUP 

Required time: 1 hour hands-on 

1.1 The plate was covered and spun. 

1.2 The ligated sample was diluted: 

Reagent Volume 

Ligated DNA 25ul 

Nuclease-Free Water 75ul 
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Total 100ul 

1.3 The plate was covered, vortexed and spun. 

1.4 The samples were placed on an aluminum cooler on ice. 

1.5 Four PCR reactions were required: four times 10ul of each sample was aliquot to the  

PCR plate. The remaining sample was kept in the freezer.  

1.6 The Titanium Taq PCR Buffer, dNTP Mixture and PCR Primer 002 were thawed. 

1.7 The Nuclease-free water and GC-Melt Reagent were kept on ice. 

1.8 The 50 x Titanium™ Taq DNA Polymerase was kept frozen until needed. 

1.9 The PCR Master mix was prepared: 

REAGENT 1 SAMPLE 30 SAMPLES 

Chilled Affymetrix® Nuclease-free water 39.5ul 1,185.0ul 

10 x Titanium™ Taq PCR Buffer 10.0ul 300.0ul 

GC-Melt Reagent 20.0ul 600.0ul 

dNTP Mixture (2.5 Millimole (mM) each) 14.0ul 420.0ul 

PCR Primer 002 4.5ul 135.0ul 

50 x Titanium™ Taq DNA Polymerase 2.0ul 60.0ul 

TOTAL 90.0ul 2,700.0ul 

1.10 The PCR Master Mix was vortexed. 

1.11 The PCR Master Mix was poured into a reservoir. 

1.12 90ul of the PCR Master Mix was added to the samples: 

Reagent Volume 

Diluted Ligated DNA 10ul 

PCR Master Mix 90ul 

Total 100ul 

1.13 The samples were vortexed twice and spun. 
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1.14 The plate was kept on ice and loaded on a preheated thermal cycler in the Post-PCR 

        room. 

1.15 The following PCR program was run: 

PCR Thermocycler program: 

Temperature Time 

94°C 3 minutes    X 1 

94°C 30 seconds 

 

 

 

   X 30 
60°C 45 seconds 

68°C 15 seconds 

 

68°C 7 minutes    X 1 

4°C Hold 

STAGE 3B – PCR SETUP 

1.1 5ml nuclease-free water and 2ul loading dye were loaded Into 24 new well gel strip 

tubes. 

1.2 3ul of the PCR product was added to the gel strip tubes. 

1.3 The tubes were sealed, vortexed and spun. 

1.4 8ul of the sample mix was loaded on a 2.5% agarose gel using a 100 bp ladder and  

run at 120V for 90 to 210 minutes. 

1.5 The majority of the product should be between 150 and 2000 bp. 

STAGE 4 – PCR PURIFICATION 

Required time: 4 hours hands-on 

1.1 All 4 PCR products for each sample were pooled into a 1.5ml Eppendorf tube.  

1.2 45ml absolute ethanol was added to the Purification Wash Buffer. 
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1.3 The Purification Beads were inverted to ensure a homogeneous mixture. 

1.4 720ul of the Purification Beads were added to each pooled sample. The mixture was  

 inverted 10 times.  

1.5       The mixture was left at room temperature for 10 minutes. 

1.6      After centrifuging for 3 minutes at maximum speed the tube hinges were opened to  

 face outward and placed on a magnetic stand. 

1.7      Once the pellet had moved to the magnet, the supernatant was carefully pipetted  

 without disturbing the pellet and discarded. 

1.8      1ml of Purification Wash Buffer was added to each tube. 

1.9     The tubes were vortexed at maximum for 2 minutes, followed by 3 minute spinning with  

 the hinges facing out. 

1.10  The tubes on placed on the magnetic stand, all of the Purification Wash Buffer was  

 removed and the tubes were left uncapped at room temperature for 10 minutes. 

1.11  52ul Elution Buffer was dispensed onto the beads using a 200ul pipette 

1.12 The tubes were vortexed for 10 minutes at maximum speed to resuspend the beads. 

1.13 The tubes were centrifuged with the hinges facing outward. 

1.14 The tubes were returned to the magnetic stand. 47ul of the eluted sample was  

 transferred to a new 96-well plate once the beads formed again. 

1.15 The plate was vortexed and spun. 

STAGE 5 – QUANTITATION 

Required time: 30 minutes hands-on 

1.1 18ul aliquots of Affymetrix® Nuclease-free water was aliquoted into new Eppendorf 

tubes. 

1.2 2ul of each purified sample was added to each of the Eppendorf tubes, vortexed and  

spun. 

1.3 The NanoDrop was used to determine the concentration (ng/ul), 260/280 ratio and the 

A320 of each sample. The acceptance criteria should be: 
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DNA Concentration >300ng/ul 

260/280 ratio 1.8 – 2.0 

A320 Very close to „0‟ (0.1) 

1.4 The remainder of the samples were transferred to the aluminum cooler block on ice. 

DAY 3 

STAGE 6 – FRAGMENTATION 

Required time: 1.5 hours including 30 minutes hands-on 

 This is a critical step – work quickly and cold at all times. 

 The enzyme is very sensitive to temperatures. 

1. The thermal cycler lid was heated. 

2. The sample plate was cooled on ice prior to use. 

3. The centrifuge was cooled to 4°C before use. 

4. All the reagents were kept on ice while making up the Fragmentation Master Mix. 

5. The Fragmentation Master Mix was prepared according to the Fragmentation Reagent: 

REAGENT 2.0U/ul 2.25U/ul 2.5U/ul 2.75/ul 3.0U/ul 

Chilled Affymetrix® 
Nuclease-free water 

122.4ul 123.2ul 123.8ul 124.4ul 124.8ul 

10 x Fragmentation Buffer 158.4ul 158.4ul 158.4ul 158.4ul 158.4ul 

Fragmentation Reagent 7.2ul 6.4ul 5.8ul 5.2ul 4.8ul 

TOTAL 288.0ul 288.0ul 288.0ul 288.0ul 288.0ul 

 

6. 10ul of the Fragmentation Master Mix was added to the Purified PCR product: 

Reagent Volume 

Purified PCR Product 45ul 

Fragmentation Master Mix 10ul 
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Total 55ul 

7. The Fragmentation Master Mix was vortexed at high speed in the 5 sector format, 1 second  

     per sector. 

8. The mixture was spun in a pre-cooled centrifuge at 2000 rpm for 1 minute. 

9. The plate was loaded on a preheated thermal cycler and the following PCR program was  

     run: 

Fragment Thermocycler program: 

Temperature Time 

37°C 35 minutes 

95°C 15 minutes 

4°C Hold 

10. The plate was vortexed and spun. 

11. The samples were kept on ice. 

12.  4ul of the fragmented sample was added to new Eppendorf tubes. 

13. 28ul nuclease-free water was added to each tube. 

14. The tubes were sealed, vortexed and spun. 

15. 2ul of loading dye was added to 8ul of sample. 

16. 8ul of the sample mix was loaded on a 2.5% agarose gel using a 25 bp ladder and run at    

     120V for 90 to 180 minutes. 

17. The average fragment distribution should be between 25 and 125 bp. 

18. The remaining aliquots were stored in the freezer. 

19. Once the QC was within range, Stage 8 could be initiated. 

STAGE 7 – LABELING 

Required time: 5 hours including 30 minutes hands-on 
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1. The thermal cycler lid was preheated. 

2. The 5 x TdT Buffer and 30mM DNA Labeling Reagent was thawed. 

3. The TdT enzyme was kept in the freezer until use. 

4. The Labeling Master Mix was prepared on ice: 

REAGENT 1 SAMPLE 30 SAMPLES 

5 x TdT Buffer 14.0ul 420.0ul 

30mM DNA Labeling Reagent 2.0ul 60.0ul 

TdT 3.5ul 105.0ul 

TOTAL 19.5ul 585.0ul 

5. The samples were vortexed and spun. 

6. 19.5ul of the Labeling Master Mix was added to each sample: 

Reagent Volume 

Fragmented DNA 51ul 

Labeling Master Mix 19.5ul 

Total 70.5ul 

7. The tubes were vortexed in 5 sector format and spun. 

8. The samples were placed in the thermal cycler and run: 

Labeling Thermocycler program: 

Temperature Time 

37°C 4 hours 

95°C 15 minutes 

4°C Hold 

9.       The samples were vortexed and spun. 

10.       The samples were place on ice. 

 



Page 148 of 185 
 

STAGE 8 – HYBRIDIZATION 

Required time: 16 to 19 hours including 45 minutes hands-on 

1. The arrays were allowed to reach room temperature. 

2. The hybridization ovens were heated with the rotation turned on at 50°C for 1 hour. 

3. The arrays were labelled with the sample identifiers. 

4. The Hybridization Master Mix was prepared in a 15ml conical tube: 

REAGENT 1 SAMPLE 30 SAMPLES 

Hyb Buffer Part 1 165.0ul 4,950.0ul 

Hyb Buffer Part 2 15.0ul 450.0ul 

Hyb Buffer Part 3 7.0ul 210.0ul 

Hyb Buffer Part 4 1.0ul 30.0ul 

Oligo Control Reagent 0100 2.0ul 60.0ul 

TOTAL 190.0ul 5,700ul 

5. The mixture was vortex after the addition of each reagent (viscous). 

6. 190ul of Hybridization Master Mix was added to each sample: 

Reagent Volume 

Labeled DNA 70.5ul 

Hybridization Master Mix 190ul 

Total 260.5ul 

7. The plate was sealed, vortexed and spun. 

8. The following program was run on the thermal cycler: 

 

Hybridization Thermocycler program: 

Temperature Time 
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95°C 10 minutes 

49°C 1 minute 

49°C Hold 

9. 200ul of sample (leave on the cycler) using a P200 pipette was loaded onto the array.  

Only 4 arrays can be hybridized at a time. 

10. Any excess fluid must be cleared off and the septa sealed. 

11. The array was placed in the hybridization tray.  

12. The arrays were loaded immediately onto the hybridization oven at 50°C and 60 rpm  

for 16 to 18 hours. 

13.  A work list was created in order to register the arrays on the scanner. 

DAY 4 

STAGE 9 – WASH, STAIN, SCAN 

Required time: Wash and stain: 3 hours including 30 minutes hands-on 

    Scan: 15 minutes hands-on, ~32 minutes on the scanner per array 

1. Samples must remain in the hybridization oven until the fluidics station is ready. 

2. The following reagents were prepared:  

Position Reagent Volume  Tube Colour 

1 Stain Buffer 1 500ul Amber 

2 Stain Buffer 2 500ul Clear 

3 Array Holding Buffer 800ul Blue 

 

3. The Fluidics Station was primed with the Wash buffers. 

4. The stain solutions were loaded. 

5. The Fluidics Protocol was started with the cartridge lever down. 

6. The septa on the arrays were opened and placed in the Fluidics Station. 

7. Check for bubbles during the process. 
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8. The septa were covered before scanning. 

9. Once all the washes had been completed, the Shutdown protocol was run. 

10. The scanner was warmed up for 20 minutes. 

11. The array window was cleaned and placed in the autoloader. 

12. Scanning was started. 
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ADDENDUM V STANDARD OPERATING PROCEDURE:  ANALYSIS 

The Affymetrix Chromosome Analysis Suite (ChAS) used the following specifications: 

 Affymetrix Chromosome Analysis Suite (ChAS) 2.0 User Manual Rev 6 

 The GRCh37/hg19 genome build was used for the analysis in this study 

 Algorithm: CytoScanHD_Array.single_sample.def.NA32.3.v1.chasparam 

 CytoScanHD_Array.na32.3.annot.db, CytoScanHD_Array.na32.3.v1.REF_MODEL 

Initial analysis 

In 2014, the initial analysis of the CNV data generated using the ChAS software was 

performed as follows: 

1. The filters were set to the Standard setting:  
Marker count 50 

Size (Kbp)  400 

 

2. If no large gain or loss was observed, the High Resolution setting was used:  
Marker count 50 

Size (Kbp)  100 

 

Large gains and losses were observed in 8 patients. However, during a training period (March 

– April 2015) at the Laboratory of Diagnostic Genomic Analysis (LDGA) in Leiden, 

Netherlands, all the samples were reanalyzed using the routine procedure in use in this 

laboratory using the following criteria: 

1. The Standard filters were set as follow: 

Gain 

Marker count : 10 

Size (Kbp) : 20 

Confidence      : 85 

Loss 

Marker count : 10 

Size (Kbp) : 10 

Confidence : 85 

LOH 

Marker count : 1,000 

Size (Kbp) : 2,000 
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2. The Tracks were set as follow: 

a) Files 

i. Genes 

ii.   OMIM 

iii.  Cytobands 

b) Data types 

i. CN state (Gain, Loss) 

ii. Weighted Log2 Ratio 

iii. Copy number change 

iv. Filter LOH 

v. Allele peaks 

vi. Smooth signal 

vii. Genotype calls 

3. Check the QC and save as a text file: 

SNPQC  > 15 

MAPD <0.25 

Waviness SD < 0.12 

 

If the waviness SD >0.12, adjust the confidence to 90%. Assess if analysis is possible taking 

into account the type of sample and the clinical indication.  

4. Save X chromosome Detail View which includes the complete chromosome X. This  

representation acts as a control to ensure the correct patient is being analysed.  

5. Save Segment Report as a text file. This report contains all the CNVs detected on the  

sample. If there are more than 100 segments, adjust the confidence to 90%. This is  

due to poor QC. A result can still be obtained in the case of large rearrangements. 

6. Check each chromosome individually for gains and losses, especially on the 

telomeres. 

7. Check the X chromosome normalization. The shared X and Y markers are represented  

in the pink telomeric regions on the X chromosome. The X chromosome will show 3n 

in the pink telomeric region on the short arm of chromosome X. 

8. The segment report information is loaded into the Cartegenia software program. This  

program has been set up to the Leiden laboratory‟s specifications for example 

frequently reported benign variants reported in DGV, known Cytoscan variants. This 

program also serves as the in-house CNV database.  

9. The size, gene content and location are assessed in the interpretation of each 
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imbalance. 

10. Use the DECIPHER Genome Browser, Database of Genomic Variants (DGV),  

PubMed, OMIM and ENSEMBLE to evaluate the detected CNVs and their significance. 

An in-house database can also be used if available. 

11. Only syndromes and protein coding genes relevant to the indication such as   

intellectual disability, and the clinical phenotype is reported. 

12. Variants larger than 1 Mb in size but containing no genes should be reported as this  

may have a structural effect leading to the phenotype. 

13.      The classification of CNVs was done using the following criteria: 

a) A known syndrome or microdeletion/duplication syndrome was reported as such 

b) Susceptibility regions and a genetic abnormality associated with clinical phenotype, not 

described in DGV at time of analysis, but containing the region or part of coding exon 

would be reported. Examples of these include the chromosome 15q11.2 abnormality 

which falls within the breakpoint BPI to BPII containing the genes TUBGCP5, CYF1P1, 

NIPA2 and the chromosome 6 of deletion exon 3 of gene PARK2 which is not 

implicated in ID. 

c) Regions smaller than 150Kb in prenatal samples, and/or inherited susceptibility 

regions would not be reported. This criterion was not used as all samples in this study 

were postnatal. 

d) A genetic abnormality possibly associated with a clinical phenotype, but containing no 

coding genes or only containing one intron of a protein coding gene, and which was 

described as a variant in DGV at the time of analysis, would not be reported.  

e) If the variant is known in 3 or more normal controls but not associated with a known 

clinical phenotype (DGV excluding BAC studies), it may be classified as a 

polymorphism without clinical significance.  The breakpoints can be within 300 Kb of a 

reported variant or overlapping with 1 probe arm area. If the variant is small, there has 

to be a 90% or more overlap with the patient‟s CNV. 

f) A genetic variant with a relevant OMIM gene for the ID/DD indication would be 

reported. 

g) LOH with a CN of 2, covered by a 1000 probes and larger than 2000 Kb, except 

chromosome X, would be reported. 

h) Variants of unknown significance (VOUS) will be reported. 

14.       Regions of homozygosity/loss of heterozygosity can be entered into a web-based SNP  

array evaluation tool (www.ccs.miami.edu/ROH). This tool correlates these regions  

with OMIM, UCSC and NCBI databases reporting on relevant candidate disorders.  
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REPORT WRITING 

There are minor differences in the reporting criteria of the external quality control (EQA) 

scheme and the Association of Clinical Cytogenetics (ACC) Guidelines.  

1. United Kingdom National External Quality Assessment (UKNEQAS - EQA scheme)  

Requirements. 

Reports should include the following information: 

 Patient identifiers 

 Sample type 

 Referral reason  

 ISCN nomenclature 

 Written description including male or female profile 

 Report criteria – platform, type, version, practical resolution and genome build 

 Clinical interpretation 

 Confirmation or follow up including testing parental samples 

 Referral to genetic counselling services if applicable 

 Limitations of the test 

 

2. Association of Clinical Cytogenetics (ACC) Guidelines 

a. A report where no significant imbalance was observed should include the summary  

statement and the karyotype using ISCN nomenclature, a description of the array 

which would include the manufacturer, array version, analysis software used, minimum 

resolution reported, and the limitations of the test. 

b. An abnormal report should include the following: 

 the summary statement and the karyotype using ISCN nomenclature including the    

genome build 

 a description of the array which would include the manufacturer, array version,  

analysis software used, minimum resolution reported 

 a clear explanation of the imbalance detected 

 the start and end positions of the informative markers of the imbalance 

 the size of the imbalance 

 references substantiating and correlating with the finding, including databases used 

 recommendations for specific follow-up studies for example subtelomeric FISH,  

chromosome analysis 

 

 the clinical interpretation of the result should include the gene content of the imbalance  

or the specific gene relevant to the syndrome/phenotype, correlation between the  

findings and the clinical features 
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 follow-up studies which would include future risk of recurrence in the family and referral  

for genetic counselling 

 limitations of the test 
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Appendix VI Comparison of available Affymetrix arrays according to probe resolution 

Affymetrix, of which the Affymetrix Cytoscan HD (Affymetrix, Santa Clara, CA) was used for 

the current study, subsequently released the Affymetrix 750 K and the Affymetrix Optima. The 

750 K is intended for routine diagnostic use in postnatal ID/DD patients but at a much lower 

resolution than the Affymetrix cytoscan HD. The 750 K array offers a medium probe resolution 

but will eliminate the amount of variants, benign and VOUS, detected, thereby reducing the 

„noise‟ of the higher resolution Cytoscan HD array. Low-level mosaicism may not be 

detectable with the 750 K array. The Affymetrix Optima is for the use in Prenatal and Product 

of Conception samples for the detection of aneuploidy, submicroscopic aberrations, 

mosaicism, maternal cell contamination (MCC), triploidy and copy neutral regions such as 

AOH and UPD. 

AT 2 Comparison of available Affymetrix arrays according to probe resolution 

  
CYTOSCAN HD 

 
CYTOSCAN 750K 

 
OPTIMA 
 

 
SNP density 

 
High 

 
Medium 

 
Low 

 
Probes: 

 
1 X 2.6 million 

 
1 X 750,436 

 
1 X 315,608 

 

• Oligo 

 
1.9 million 

 
550,000 

 
18,018 

 

• SNP 

 
750,000 

 
200,436 

 
148,450 

 
Application 

 CNV 

 Copy-neutral LOH 

 UPD 

 Low-level mosaicism 

 CNV 

 Copy-neutral LOH 

 UPD 

 

PRENATAL AND POC:  

 Aneuploidy 
 Submicroscopic aberrations 
 Mosiacism 
 Maternal cell contamination   

(MCC)  
 Triploidy 
 Copy neutral events e.g. AOH  

and UPD 
 

 
Coverage 
 
• ISCA Constitutional  
(340) 
 
• Cancer genes (526) 
 
• OMIM Morbid 
genes (2,640) 
 
• X Chromosome 
OMIM Morbid genes 
(177) 
 
• RefSeq genes 
(31,121) 

 

 
 100% 

 
 100% 

 
  98% 

 
  100% 

 
 
  96% 

 

 

 
 100% 

 
 100% 

 
  83% 

 
  93% 

 
 
  80% 
 

 

 
 
 
 396 regions of prenatal interest 
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Addendum VII Reportable CNVs detected 

Summary of the relevant CNVs found in this study cohort: 

Patient 1 is a female patient diagnosed with Kleefstra Syndrome as she had a submicroscopic 

telomeric deletion of 1.8 Mb on chromosome 9 at band q34.3 - arr[hg19] 9q34.3 (139,135,215-

141,020,389)x1. The deletion in this patient correlated with the most severe form of the 

syndrome as it is larger than 1.6 Mb in size. The additional genes involved may explain the 

severity of her phenotype. 

Patient 8 is a female patient diagnosed with MWS as she had a submicroscopic interstitial 

deletion of 2.09 Mb on chromosome 2 at band q22.2 to q22.3 - arr[hg19] 

2q22.2q22.3(143,571,114-145,663,819)x1. This patient had severe ID and GDD, 

microcephaly, bifrontal narrowing, a flat nasal bridge with low columella, and agenesis of the 

corpus callosum which correlates with features described in MWS. This patient did not 

however have some of the other well-described features of MWS such as seizures (detected 

in 90% of Mowat et al., (2003) patients), Hirschsprung disease or cardiac abnormalities. 

Patient 8 has structural eye abnormalities including cataracts, coloboma and microphthalmia 

leaving her blind. These have been reported in MWS.  

Patient 9 is a male patient with a deletion in the 1q21.1 microdeletion susceptibility region 

(susceptibility locus for neurodevelopmental disorders). A submicroscopic interstitial deletion 

of 1,79 Mb was noted on chromosome 1 at band q21.1 to q21.2 - arr[hg19] 

1q21.1q21.2(146,101,790-147,897,962)x1. This patient‟s deletion (146,101,790-147,897,962) 

was larger in size at 1.76 Mb than the typical 1.35 Mb size of the deletion syndrome region. 

The 1q21.1 recurrent microdeletion (susceptibility locus for neurodevelopmental disorders) is 

most likely the cause for the ID phenotype in this patient and possibly the psychiatric illness in 

his family. It is recommended that family studies should be done to confirm this. 

Patient 11 is a female patient with a submicroscopic interstitial deletion of 9.1 Mb on 

chromosome 5 at band q14.3 to q21.1 - arr[hg19] 5q14.3q21.1(89,738,598-98,856,874)x1. 

This patient‟s result was partially consistent with the cases reported in the literature by 

Cardoso et al. (2009) and Al-Khateb et al. (2013). A 5.8 Mb critical region for PH was 

proposed. Although PH was reported in the other patients, it has not been reported in this 

patient.  Follow-up should be done to establish a possible diagnosis of PH. It seems likely that 

the large deletion of 9.1 Mb containing 37 genes contributes to the clinical presentation in this 

child.  

Patient 18 is a female patient with a submicroscopic interstitial deletion of 88 Kb on 

chromosome 15 at band q15.3 - arr[hg19] 15q15.3(43,888,261- 43,976,406)x1. Three genes 

are included in this region of which the STRC gene encodes stereocilin which is located in the 

outer hair cells in the inner ear. The STRC gene is implicated in nonsyndromic autosomal 
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recessive sensorineural hearing loss (Francey et al., 2012; Zhang et al., 2007). The deletion of 

the STRC gene and the clinical feature of hearing loss may indicate a further putative mutation 

on the second STRC allele in this patient. Although the other clinical features could not be 

readily explained, it seems likely that the deletion encompassing the STRC gene in this patient 

contributes to the clinical presentation.  

Patient 20 is a female patient was diagnosed with WHS. A submicroscopic subtelomeric 

deletion of 2.1 Mb on chromosome 4 at band p16.3 - arr[hg19] 4p16.3(68,345-2,172,555)x1. 

Only three of the clinical features in this patient specifically correlated with the features of 

WHS - DD, microcephaly and epilepsy with some possible overlap in craniofacial 

dysmorphism. Zollino et al. (2003) described a milder phenotype when the deletion is less 

than 3 Mb in size and may explain the milder phenotype in this patient. 

Patient 23 is a male patient with a supernumerary marker on chromosome analysis. The 

marker was the size of an E group chromosome. Four (4) copies of a segment of chromosome 

9 from band p24.3 to band q13, and which was 68.1 Mb in size, was detected. This segment 

included the entire short arm and extended into the long arm of chromosome 9 - arr[hg19] 

9p24.3q13(203,861-68,330,127)x4. This patient‟s result is consistent with a diagnosis of 

tetrasomy 9p and is the cause of the clinical presentation in this child. 

Patient 19 is a male patient with ID and VP who demonstrated a submicroscopic interstitial 

deletion of 69 Kb on chromosome 22 at band q11.21 - arr[hg19] 22q11.21(19,231,636-

19,300,915)x1. One gene, CLTCL1, was included in this region. This gene has been classed 

as a VOUS by the OMIM database although Nahorski et al. (2015) identified a homozygous 

c.988G-A transition in exon 7 of the CLTCL1 gene in a consanguineous family with children 

affected with severe DD and pain insensitivity. Seven ROH totally 106 Mb in size were 

detected in this patient. The Genomic Oligonucleotide and SNP Array Evaluation Tool was 

used for the analysis and interpretation of ROH (Iourov et al., 2015; Wierenga et al., 2012). 

Upon analysis genes involved in the CFSMR syndrome, two genes involved in autosomal 

recessive deafness and a gene implicated in WS2D was found. The ROH confirmed the 

consanguinity in the family. Despite these findings it is not clear that this explains the patient‟s 

phenotype. 

Patient 10 is a 12-year old male patient with a submicroscopic interstitial deletion of 2.5 Mb on 

chromosome 1 at band p35.2 - arr[hg19] 1p35.2p35.1(30,476,867-33,054,650)x1. EPB41, 

CCDC28B and LCK are morbid genes in this region which did not seem to contribute to this 

patient‟s phenotype. The DECIPHER genomic database reported a patient (258365) with a 

similar-sized deletion to patient 10. Two of the clinical features overlapped between this 

patient and the patient described in DECIPHER: intellectual disability and tapered fingers. 

Although no relevant disease-causing genes could be identified in this region, the size of the 

deletion (2.5 Mb) may be considered significant. This variant was classified as a VOUS. 
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Patient 24 is a male patient with a submicroscopic interstitial duplication on chromosome 13 

at band q33.3 which was 301 Kb in size - arr[hg19] 13q33.3(109,771,548-110,072,888)x3. 
One gene (MYO16) was included in this region. It seems possible that the duplication of 301 

Kb containing the MYO16 gene could contribute to the clinical presentation in this child as the 

deletion of this gene has been associated with ID. This duplication should be considered a 

VOUS. Family studies may be useful to elucidate the finding. 

Patients 15, 21 and 22 demonstrated a benign CNV of between 17 and 19 Kb in size on 

chromosome 6 at bands q14.3 to q15 (genomic coordinates: 6:87,998,958-88,016,639). 

Patients 12 and 22 demonstrated a benign CNV of 31 Kb in size on chromosome X at band 

q13.1 (genomic coordinates: 69,111,882-69,143,094). Patients 12 and 25 demonstrated a 

benign CNV of 10 Kb in size on chromosome 2 at band q32.3 (genomic coordinates: 

192,880,111-192,891,920). These CNVs were classified as benign as they were small and did 

not contain any relevant genes. 

A total of 10 patients revealed ROH with patient 19 demonstrating seven such regions. 

Another observation was a ROH call which was in fact an artifact due to a deletion in the same 

region (chromosome 6 in patient 11). 
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Addendum VIII Patients with normal CMA results 

 

1. PATIENT 2 

1.1 Clinical features 

A male patient presented with dysmorphic features and developmental delay. This patient was 

born at term with a birth weight of 3.65 kg. There was no family history of significance. This 

patient has the following craniofacial features: cleft palate, hypotonia, low hairline, low set 

posteriorly rotated ears with a prominent crus, flat nasal bridge, gum hypertrophy, full nasal 

tip, a smooth philtrum with downturned corners of the mouth and long palpebral fissures. 

Skeletal features included brachydactyly with one dystropic nail and rockerbottom feet with 

hallux valgus. He is overweight with weight on the 90th centile but height just above the 3rd 

centile for age. He was able to sit at 13 months but could not walk or speak by 2 years of age. 

A CT brain scan was normal.  

1.2 Genetic testing 

This patient had a normal karyotype and no microdeletion FISH studies were performed. No 

microdeletion/microduplication or subtelomeric rearrangement was detected on MLPA 

analysis. FRAXA analysis was not performed. 

1.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22)x2,(XY)x1 

1.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. One LOH was detected 

although no disease-related genes relevant to the patient‟s phenotype were found.  

 

2. PATIENT 3 

2.1 Clinical features 

A male patient presented with developmental delay, hypotonia, cleft palate and seizures. He 

also had large posteriorly rotated ears, anteverted nares, large palpebral fissures, a broad 

nasal root, hypertelorism and micrognathia. A female sibling with similar features including 

cleft palate and epilepsy died at 18 months. His mother had one miscarriage.  
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2.2 Genetic testing  

This patient had a normal karyotype. No microdeletion FISH studies, MLPA or FRAXA 

analysis were performed. 

2.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22)x2,(XY)x1 

2.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. One LOH was detected 

although no disease-related genes relevant to the patient‟s phenotype were found.  

3. PATIENT 4   

3.1. Clinical features 

A male patient presented with developmental delay and dysmorphic features including 

brachycephaly, prominent ears, hypertelorism with mild ptosis and intermittent strabismus. He 

also had a narrow nose, thin lips with a smooth philtrum and a pointed chin. Further features 

include a sacral dimple, clinodactyly and single palmar creases with small nails. He also had 

ligamentous laxity, vesicoureteral reflux (VUR) and hydronephrosis. This patient had a birth 

weight of 2.26 kg and a head circumference of 33 cm. An magnetic resonance imaging 

(MRI) detected agenesis of the corpus callosum. His mother has mild intellectual disability with 

similar physical signs.  

3.2 Genetic testing 

This patient had a normal karyotype. No microdeletion FISH studies or MLPA analysis were 

performed. Negative for FRAXA.  

3.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22)x2,(XY)x1 

3.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

4. PATIENT 5  

4.1 Clinical features 

A female patient presented with moderate developmental delay and ADHD. Clinical features 

reveal a coarse facies, external eyebrow flare, prognathism and a large mouth with thick lips. 

She has no speech. She had tuberculous meningitis at 6 months. There is no family history of 

note.  
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4.2 Genetic testing 

This patient had a normal karyotype. No other genetics tests were performed.  

4.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22,X)x2  

4.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. One LOH was detected 

although no disease-related genes relevant to the patient‟s phenotype were found.  

5. PATIENT 6 

5.1 Clinical features 

A male patient presented with features suggestive of Vertebral anomalies, Anal atresia, 

Cardiac defects, Tracheoesophageal fistula and/or Oesophageal atresia, Renal and Radial 

anomalies and Limb defects (VACTERL) association including truncus arteriosus and a 

horseshoe kidney with no significant family history.  

5.2 Genetic testing 

This patient had a normal karyotype. No microdeletion FISH studies, MLPA or FRAXA 

analysis were performed. 

5.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22)x2,(XY)x1 

5.4 Conclusion 

The result is normal. Only benign CNVs were detected in this patient. However, a ROH was 

noted on chromosome 5 and chromosome 6. The ROH on chromosome 6 does however 

contain the APC gene which is implicated in Familial Adenomatous Polyposis. This gene is 

listed in Boone et al. (2013) as relevant to CNVs involved in dominant cancer predisposition 

genes. It is unlikely to be of relevance in a dominant cancer phenotype. 

6. PATIENT 7 

6.1 Clinical features 

This patient has epilepsy and learning disabilities. She had a child which was stillborn at term 

and has two developmentally delayed children. The female child is small for her age and has 

developmental delay. The younger male child also has short stature but with the following 

additional findings. Facial dysmorphic features include ptosis, micropthalmia, downslanting 
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palpebral fissures, and strabismus together with retrognathia and pointed ears. He has 

cryptorchidism and CNS imaging shows periventricular calcification.  

6.2 Genetic testing 

This patient had a normal karyotype. No microdeletion FISH studies or FRAXA analysis were 

performed. No microdeletion/microduplication or subtelomeric rearrangement was detected 

with MLPA Analysis. 

6.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22,X)x2  

6.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

7. PATIENT 12 

7.1 Clinical features 

A female patient presented with short stature, prenatal onset of macrocephaly and 

developmental delay. Other clinical features included prognathism, widely spaced nipples, 

maxillary hypoplasia, furled eyebrows and a narrow forehead. She also had a choledochal 

cyst. She has isolated growth hormone deficiency.  

7.2 Genetic testing 

This patient had a normal karyotype. No microdeletion FISH studies or FRAXA analysis were 

performed. No microdeletion/microduplication or subtelomeric rearrangement was detected 

with MLPA Analysis.  

7.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22,X)x2  

7.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

8. PATIENT 13 

8.1 Clinical features 

A female patient presented with severe developmental delay. She has the following clinical 

features: short stature, microcephaly, posteriorly rotated ears with unfolded helices, 

strabismus, shallow orbits, almond-shaped palpebral fissures, upturned nares and a tented 

upper lip. She has a narrow chest, hypoplastic labia majora, clinodactyly, with slightly tapered 
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fingers and 2-3 toe syndactyly. A brain MRI showed deep cortical sulci. There was no family 

history of note. 

8.2 Genetic testing 

This patient had a normal karyotype. No microdeletion FISH studies, MLPA or FRAXA 

analysis were performed. 

8.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22,X)x2 

8.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. One LOH was detected 

although no disease-related genes relevant to the patient‟s phenotype were found.  

9. PATIENT 14  

9.1 Clinical features 

A male patient presented with dysmorphism, DD, multiple arterial aneurysms, cataract and a 

prematurely aged and wasted appearance. A connective tissue disorder was suspected.  

9.2 Genetic testing 

This patient had a normal karyotype. No microdeletion FISH studies, MLPA or FRAXA 

analysis were performed. 

9.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22,X)x2 

9.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

10. PATIENT 15 

10.1 Clinical features 

A male patient presented with ASD. He had no dysmorphic features and a head 

circumference on the 50th percentile. He has a brother with autism and 2 paternal nephews 

with ID. There is a paternal family history of psychiatric illness and bipolar disorder and a 

maternal family history of pregnancy and neonatal loss.  

10.2 Genetic testing 

This patient had a normal karyotype. No microdeletion FISH studies or MLPA analysis were 

performed.  No expansion mutation was detected with FRAXA analysis.  
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10.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22)x2,(XY)x1 

10.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

11. PATIENT 16 

11.1 Clinical features 

This male patient presented with intellectual disability, dysmorphism and deafness. He had 

Duane anomaly (cranial nerve palsies).  

11.2 Genetic testing 

Chromosome analysis demonstrated a normal karyotype. No microdeletion FISH studies, 

MLPA or FRAXA analysis were performed. 

11.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22)x2,(XY)x1 

11.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

12. PATIENT 17   

12.1 Clinical features 

A male patient presented with intellectual disability, deafness and possible dominant anaemia. 

12.2 Genetic testing 

Chromosome analysis was not performed. No microdeletion FISH studies, MLPA or FRAXA 

analysis were performed. 

12.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22)x2,(XY)x1 

12.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

13. PATIENT 21 

13.1 Clinical features 
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A male patient presented with dysmorphic features and developmental delay. This patient has 

the following craniofacial features: a low posterior hairline, his ears appear to have „cleft 

lobules‟ with an unusual crus, almond shaped eyes, hypotelorism and a flat nasal bridge. 

Skeletal features included tapering fingers and genu varum. The patient had a brain MRI at 3 

years of age which showed subependymal grey matter heterotopia, normal occipital lobe 

morphology, cervical spine asymmetry and a suspected mild hemimegalencephaly. He was 

obese with a height on the 50th percentile and a head circumference on the 75th percentile. 

13 .2 Genetic testing 

Chromosome analysis demonstrated a normal male karyotype. Microdeletion FISH studies for 

Prader-Willi syndrome were negative. No MLPA or FRAXA analysis were performed. 

13.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22)x2,(XY)x1 

13.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

14. PATIENT 22  

14.1 Clinical features 

A female patient presented with ID. The following craniofacial features were observed: 

midface hypoplasia, hypertelorism, telecanthus, epicanthus, cupped ears with preauricular 

tags and upslanted palbebral fissures. She also had hypotonia and hypermobility. She had a 

low birth weight. Her growth was around the 3rd percentile. There is a family history of ID: her 

mother, maternal grandmother and great grandmother and a maternal cousin had features of 

mild ID. Two maternal uncles had features of FASD. 

14.2 Genetic testing  

Chromosome analysis, microdeletion FISH studies and MLPA analysis were not performed.  

No expansion mutation was detected with FRAXA analysis. 

14.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22,X)x2 

14.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. Two LOH was detected 

although no disease-related genes relevant to the patient‟s phenotype were found.  

15. PATIENT 25 
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15.1 Clinical features 

A female patient presented with severe developmental delay and epilepsy. She had the 

following clinical features: coarse face, prominent ears, retrognathia, scoliosis, bilateral 

sensorineural hearing loss, microcephaly and thin corpus callosum with white matter loss on 

MRI. This patient had placental insufficiency in utero and was born between 34 and 36 weeks 

with a birth weight of 1.5 kg. She also had an inguinal hernia and low tone at birth with mild 

spastic cerebral palsy but was able to sit at 9 months. There was no family history of note. 

15.2 Genetic testing 

This patient had a normal karyotype. No microdeletion FISH studies or FRAXA analysis were 

performed. No microdeletion or duplication was detected with MLPA Analysis.  

15.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22,X)x2 

15.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

16. PATIENT 26  

16.1 Clinical features 

A male patient presented with intellectual disability and autism spectrum disorder. He did not 

have obvious dysmorphology but had seizures and absent speech. There was no family 

history of note. 

16.2 Genetic testing 

This patient had a normal karyotype. No microdeletion FISH studies or MLPA analysis were 

performed.  No expansion mutation was detected with FRAXA analysis. 

16.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22)x2,(XY)x1 

16.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. No LOH was detected.  

17. PATIENT 27 

17.1 Clinical features 

This female patient has developmental delay and moderate intellectual disability with multiple 

dysmorphic features. She is short with her height on the 3rd centile with macrocephaly, a 
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widow‟s peak, a low anterior hairline, cupped pointed ears with unfolded helices as well as 

hypertelorism and telecanthus with strabismus. Additional dysmorphic features include a 

broad nasal root with hypoplastic alae nasi, a low columella, microstomia and brachydactyly. 

Brain CT scan showed non-specific white matter loss. Her mother was mildly intellectually 

disabled. 

17.2 Genetic testing 

Chromosome analysis demonstrated a normal female karyotype. Di George microdeletion 

FISH using the TUPLE (HIRA) probe was performed and no microdeletion was detected. 

MLPA and FRAXA analysis was not performed.  

17.3 CMA analysis 

CMA testing showed only benign CNVs in this patient. 

arr[hg19](1-22,X)x2 

17.4 Conclusion 

Only benign CNVs were detected in this patient. The result is normal. One LOH was detected 

although no disease-related genes relevant to the patient‟s phenotype were found.  

 

 

 

 

 

 




