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Abstract

Thesis title: Jordan homomorphisms and derivations on algebras of mea-

surable operators.

Name: Martin Weigt.

Date: 11 February 2008.

A few decades ago, Kaplansky raised the question whether unital linear

invertibility preserving maps between unital algebras are Jordan homomor-

phisms. This question is still unanswered, and the progress that has been

made has mainly been in the context of Banach algebras, including C∗-

algebras and von Neumann algebras.

Let M be a von Neumann algebra with a faithful semifinite normal trace

τ , and M̃ the algebra of τ -measurable operators (measurable for short) affil-

iated with M. The algebra M̃ can be endowed with a topology γcm, called

the topology of convergence in measure, such that M̃ becomes a complete

metrizable topological ∗-algebra in which M is dense. One of the aims of

this thesis is to find answers to Kaplansky’s question in the context of alge-

bras of measurable operators. We prove, amongst other things, that every

self-adjoint Jordan homomorphism between algebras of measurable opera-

tors is γcm − γcm continuous and can be expressed as a sum of a self-adjoint

algebra homomorphism and a self-adjoint algebra anti-homomorphism.

Derivations between algebras of measurable operators are also considered.

It is well known that every derivation on a C∗-algebra is continuous and that

every derivation on a von Neumann algebra is inner. We investigate whether

these results carry over to algebras of measurable operators. Motivated by

the Singer-Wermer theorem for commutative Banach algebras as well as the

non-commutative Singer-Wermer conjecture for Banach algebras, we also ask

whether primitive ideals of M̃ are invariant under derivations on M̃.

The thesis ends with finding answers to Kaplansky’s question when the

algebras involved are locally C∗-algebras and locally W∗-algebras. We also

investigate derivations on locally C∗-algebras and locally W∗-algebras.
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Introduction
Let A and B be unital algebras. A Jordan homomorphism φ : A → B is

a linear map with the property that φ(xy + yx) = φ(x)φ(y) + φ(y)φ(x) for

every x, y ∈ A. A derivation on A is a linear map D : A → A such that

D(xy) = xD(y) + D(x)y for every x, y ∈ A. We say that the derivation D

is inner if there exists a ∈ A such that D(x) = ax− xa for every x ∈ A. In

this thesis, we investigate aspects of the theory of Jordan homomorphisms

and derivations, concentrating mainly on algebras of unbounded operators.

Jordan homomorphisms between C∗-algebras have a special significance

in quantum mechanics ([28]) which we will briefly explain. The most suit-

able interpretation of the observables of a quantum mechanical system is that

they are self-adjoint operators in a von Neumann algebra A ([28]). In 1932-

1933, von Neumann and Jordan proposed that the observables of a quantum

mechanical system also form a Jordan algebra in A, i.e. a non-associative

algebra with multiplication defined as (x, y) 7→ 1
2
(xy + yx) ([28]). Bijective

Jordan homomorphisms are algebra isomorphisms between Jordan algebras.

Hence bijective Jordan homomorphisms serve as “quantum mechanical iso-

morphisms” between quantum mechanical systems ([28]). Motivated by this,

one can ask the following question: If one knows all spectral values of the ob-

servables of a quantum mechanical system, can one determine the algebraic

model of our quantum mechanical system uniquely up to Jordan isomorphism

([75])? A satisfactory answer was given by Aupetit in [11]: If A and B are

von Neumann algebras and φ : A → B is a surjective spectrum preserving

linear map, then φ is a Jordan isomorphism.

We call a linear map φ : A → B invertibility preserving if φ(x) is invertible

in B whenever x is invertible in A. Motivated by a result of Marcus and

Purves as well as the famous Gleason-Kahane-Żelazko theorem, Kaplansky

asked when unital linear invertibility preserving maps between unital algebras

are Jordan homomorphisms ([29]). This problem is currently still open. Some

affirmative answers to this question include the above result of Aupetit as

well as the following result of Choi et al. ([32]): If A and B are C∗ algebras,

vii
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then every unital surjective self-adjoint invertibility preserving linear map

φ : A → B is a Jordan homomorphism.

It is known that every self-adjoint Jordan homomorphism between von

Neumann algebras is continuous ([62], [92]) and can be expressed as a sum of a

self-adjoint algebra homomorphism and a self-adjoint algebra anti-homomor-

phism ([9], [92]). By an algebra anti-homomorphism φ : A → B, we mean a

linear map φ : A → B satisfying φ(xy) = φ(y)φ(x) for every x, y ∈ A.

The theory of non-commutative integration was initiated by Segal in [89].

The setting for this theory is the unital ∗-algebra S(M) consisting of all

measurable operators affiliated with a von Neumann algebra M. When

M is commutative, M ∼= L∞(X,Σ, µ) for some localizable measure space

(X,Σ, µ), and S(M) ∼= L0(X,Σ, µ). If M is a semifinite von Neumann al-

gebra, it can be equipped with a faithful semifinite normal trace τ . In this

context, we consider the algebra M̃ of τ -measurable operators affiliated with

M. One can equip M̃ with a topology γcm, called the topology of convergence

in measure, with respect to which M̃ is a complete metrizable topological
∗-algebra ([78]). When M = L∞(X,Σ, µ) for some localizable measure space

(X,Σ, µ) and the trace τ on M is defined by τ(f) =
∫

X
f dµ, M̃ is the

algebra L̃∞(X,Σ, µ) of all equivalence classes of complex-valued measurable

functions on X that are bounded except possibly on a subset of X having fi-

nite measure, and γcm is the usual measure theoretic topology of convergence

in measure.

It is natural to ask to what extent results for Jordan homomorphisms

between von Neumann algebras extend to algebras of measurable operators,

here “measurable” meaning measurable with respect to a faithful semifinite

normal trace on M. In chapter 3, we show, amongst other things, that every

self-adjoint Jordan homomorphism between algebras of measurable operators

is γcm − γcm continuous and can be expressed as a sum of a self-adjoint

algebra homomorphism and a self-adjoint algebra anti-homomorphism. In

Section 3.3, we prove results for Jordan homomorphisms between locally

convex GB∗-algebras. These are generalizations of C∗-algebras. We also

viii
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provide conditions under which a Jordan homomorphism between algebras

of measurable operators is an algebra homomorphism. In chapter 4, we give

conditions conditions under which unital invertibility preserving linear maps

between algebras of measurable operators are Jordan homomorphisms.

In the second part of the thesis, we look at derivations on algebras of τ -

measurable operators. Recall that the observables of a quantum mechanical

system are regarded as self-adjoint operators in a von Neumann algebra.

The symmetries of the given quantum mechanical system are realized as ∗-

automorphisms of A ([28]). We say that the derivation D is a generator of an

automorphism group {αt : t ∈ R} if αt = exp(tD) for every t ∈ R. If A is a

C∗-algebra and D : A → A a linear map, then D is a self-adjoint derivation if

and only if D is the generator of a one-parameter group of ∗-automorphisms

of A ([28]). More generally, if A is a Banach algebra and D is a derivation

on A, then D is the generator of a one-parameter group of automorphisms of

A. In the early fifties, it was established that all automorphisms of a semi-

simple Banach algebra are continuous ([36]). The automatic continuity of

derivations on semi-simple Banach algebras was then conjectured and proved

([36]).

It is well known that every derivation on a C∗-algebra is continuous and

that every derivation on a von Neumann algebra is inner. An interesting

problem is therefore whether these results can be extended to algebras of

τ -measurable operators and even measurable operators (in Segal’s sense).

Recently, in [19] and [20], Ber, Chilin, and Sukochev proved that if M is

commutative, then S(M) admits only inner derivations if and only if the

projection lattice of M is atomic, i.e. every nonzero projection in M ma-

jorizes an atomic projection in M. Motivated by their result, we prove

generally in chapter 5 that if the projection lattice of M is atomic, then

M̃ has the property that all its derivations are γcm − γcm continuous. After

proving this result, the author collaborated briefly with Sh. A. Ayupov, who

then strengthened the last mentioned result in [2]. We also investigate the

problem of determining whether the projection lattice of M is atomic if all

ix
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derivations on M̃ are γcm − γcm continuous.

It is still an open problem as to whether every γcm − γcm continuous

derivation on M̃ is inner ([13]). In the commutative case, a derivation D is

γcm− γcm continuous if and only if D is the zero derivation. In chapter 5, we

give other results along these lines.

In chapter 6, we discuss issues related to the Singer-Wermer theorem for

commutative Banach algebras. Recall that this theorem states that the range

of any continuous derivation on a commutative Banach algebra is contained

in the (Jacobson) radical of A ([36]). Since this result appeared in 1955, it

has been conjectured that the continuity assumption can be dropped. That

this is the case was proved by Thomas in 1988 ([36]). A positive answer to

the following conjecture, known as the Singer-Wermer conjecture, would be

a non-commutative analogue of Thomas’s result ([36]): If D is a derivation

on a Banach algebra A, then D(I) ⊂ I for every primitive ideal I of A. In

chapter 6, we ask when derivations on M̃ have the property that D(I) ⊂ I
for all primitive ideals I of M̃. We prove this in the separate cases where M
is commutative and τ(1) <∞. Some results are also provided when neither

of the latter conditions are imposed.

Recall that M̃ is a generally non-normed topological ∗-algebra and there-

fore, results which are known to hold for Banach algebras do not necessarily

remain valid for M̃. In proving some of our results about Jordan homomor-

phisms and derivations, we found it necessary to prove several results about

M̃ as a topological ∗-algebra, and these are scattered throughout the thesis.

The most important is that M̃ is a generalized B∗-algebra (GB∗-algebra for

short), a class of topological ∗-algebras first studied by Allan ([6]) and later

by Dixon ([40], [41]).

An important example of a GB∗-algebra is a locally C∗-algebra, i.e. a

complete Hausdorff topological ∗-algebra A such that the topology of A is

defined by a family of seminorms (pα) on A satisfying pα(x∗x) = pα(x)2 for

every α and every x ∈ A. Notice that such seminorms automatically satisfy

the conditions pα(xy) ≤ pα(x)pα(y) for every α and every x, y ∈ A ([18],

x
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Theorem 38.1). Such algebras are inverse limits of C∗-algebras ([88]). A

locally W∗-algebra, a class of algebras first studied in [49], is a locally C∗-

algebra which is an inverse limit of W∗-algebras. It is natural to ask if some

of the well known results about Jordan homomorphisms and derivations on

C∗-algebras and von Neumann algebras carry over to locally C∗-algebras and

locally W∗-algebras. This is the subject of chapter 7. We investigate the

problem of Kaplansky mentioned earlier in the context of these algebras. We

also give an alternative proof of the known result that every derivation on

a locally C∗-algebra is continuous ([16], Proposition 2). Next we provide

a sufficient condition that a derivation must have for it to be inner. The

chapter ends with the result that every derivation on a locally C∗-subalgebra

A of L(H), with H a locally Hilbert space, can be extended to a derivation

on the locally von Neumann algebra generated by A.

The thesis starts with two chapters summarizing material that will be

needed in the remaining chapters. Chapter 1 is mainly a reminder of standard

results from measure theory, von Neumann algebras, unbounded operators

and topological algebras, which is dealt with in the first four sections. Section

1.5 is an introduction to the algebra M̃ and it also contains some new results

about M̃ as a topological ∗-algebra.

Chapter 2 is a summary of some of the well known results on invert-

ibility preserving linear maps, Jordan homomorphisms and derivations on

C∗-algebras and von Neumann algebras, which will be needed throughout

the thesis.

xi
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Chapter 1

Preliminaries

In this chapter, we present, without proofs, results from measure theory,

and the theory of von Neumann algebras, topological algebras, unbounded

operators and the algebra M̃. A familiarity with basic functional analysis,

including topological vector spaces and Banach algebras, as can be found in

[45], [70], [84], [69], [27] and [36], is assumed. All unexplained terms and

concepts in measure theory and von Neumann algebras can be found in [23],

[33], [52], [63], [86] and [95].

1.1 Measure theory

Lemma 1.1.1 ([99], Lemma 1.7) If (X,Σ, µ) is a semifinite measure space

which is not finite, then there exists a sequence of disjoint measurable subsets

(Fn) of X such that 1 < µ(Fn) <∞ for every n.

We say that a measure space (X,Σ, µ) is localizable if there exists a col-

lection (Aα) of disjoint measurable subsets of X each having finite measure

and such that X = ∪αAα. If the above collection of sets can be chosen to

be countable, then we call (X,Σ, µ) a σ-finite measure space. It is clear

that every localizable measure space is semifinite. We call a measure space

(X,Σ, µ) atomic if for every nonempty A ∈ Σ, there exists an atom B ∈ Σ

such that B ⊂ A and µ(B) > 0. For a given measure space (X,Σ, µ), we use

1
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the notation L0(X,Σ, µ) to denote the algebra of all equivalence classes of

complex-valued measurable functions on X. We denote the algebra of equiv-

alence classes of essentially bounded measurable functions by L∞(X,Σ, µ),

and the algebra of equivalence classes of measurable functions, which are

bounded except possibly on a subset of finite measure, will be denoted by

L̃∞(X,Σ, µ).

Proposition 1.1.2 ([99], Theorem 1.4) Let (X,Σ, µ) be a measure space.

For every ε, δ > 0, let

N(ε, δ) = {f ∈ L̃∞(X,Σ, µ) : µ({x ∈ X : |f(x)| > ε}) ≤ δ}.

(i) The class of sets {N(ε, δ) : ε, δ > 0} forms a basic neighbourhood system

at zero defining a vector topology γcu on L̃∞(X,Σ, µ), called the topology

of convergence in measure. The class of sets {N(ε, ε) : ε > 0} is another

basic neighbourhood system at zero defining γcu. We write N(ε) for

N(ε, ε).

(ii) Let (fn) be a sequence in L̃∞(X,Σ, µ) and let f ∈ L̃∞(X,Σ, µ). Then

fn → f with respect to γcu if and only if for every ε > 0,

µ({x ∈ X : |(fn − f)(x)| > ε}) → 0

as n→∞.

(iii) Equipped with the topology γcu, L̃∞(X,Σ, µ) is a complete metrizable

topological algebra.

(iv) The completion of L∞(X,Σ, µ) under γcu is L̃∞(X,Σ, µ) ([99], Theo-

rem 1.15).

Definition 1.1.3 ([17], Definition 1.1, p. 36) Let (X,Σ, µ) be a measure

space and let f ∈ L0(X,Σ, µ). Define the function

d : R → [0,∞], t 7→ µ({x ∈ X : |f(x)| > t}).

The function d is called the distribution function of f . The notation dt(f) is

used to indicate the dependence on the function f .

2
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Proposition 1.1.4 ([99], Proposition 2.2) Let (X,Σ, µ) be a measure space

and f ∈ L0(X,Σ, µ). The following statements are equivalent.

(i) f ∈ L̃∞(X,Σ, µ).

(ii) dt(f) → 0 as t→∞.

(iii) dt(f) is eventually finite.

Definition 1.1.5 ([17], Definition 1.5, p. 39) Let (X,Σ, µ) be a measure

space and f ∈ L̃∞(X,Σ, µ). The decreasing rearrangement of f is defined by

the formula

µ : (0,∞) → [0,∞] : t 7→ inf{θ ≥ 0 : dθ(f) ≤ t}.

We use the notation µt(f) to indicate the dependence on the function f .

The rearrangement of f ∈ L̃∞(X,Σ, µ) is decreasing and right continuous

([17], Proposition 1.7, p. 41).

1.2 Von Neumann algebras and traces

Let B(H) denote the algebra of all bounded linear operators from a Hilbert

space H into itself, and B(H)h the set of self-adjoint elements in B(H).

A self-adjoint element x ∈ B(H) is called positive if 〈xξ, ξ〉 ≥ 0 for all

ξ ∈ H; we write x ≥ 0. A partial order is defined on B(H)h by x ≤ y if

and only if y − x ≥ 0. We use the notation xα ↑ x to mean that (xα) is an

increasing net in B(H)h with supremum x ∈ B(H). The notation xα ↓ x is

defined in a similar manner.

The strong-operator topology (respectively weak-operator topology ) on

B(H) is the locally convex topology on B(H) defined by the family of semi-

norms x 7→ ‖xξ‖ (respectively x 7→ 〈xξ, ξ〉), where ξ ∈ H. The ultraweak

topology on B(H) is the σ(B(H),B(H)∗) topology. A von Neumann algebra

M is a ∗-subalgebra of B(H) which is closed under the strong-operator topol-

ogy and contains the identity operator of B(H). A factor is a von Neumann

3
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algebra with its centre consisting only of scalar multiples of the identity op-

erator. A ∗-subalgebra M of B(H) containing the identity operator of B(H)

is a von Neumann algebra if and only if M = M′′, the bicommutant of M
in B(H) ([63], Theorem 5.3.1). We denote by Mh and M+ respectively the

set of self-adjoint and positive elements in a von Neumann algebra M. With

the partial order inherited from B(H), Mh is a partially ordered set. We use

the symbol Z(M) to denote the centre of the von Neumann algebra M.

Theorem 1.2.1 ([86], Proposition 1.18.1; [39], Theorem 2, p. 132) Let

(X,Σ, µ) be a localizable measure space, let H = L2(X,Σ, µ) and, for a given

f ∈ L∞(X,Σ, µ), let Mf be the bounded linear operator on H defined by

Mf (g) = fg for all g ∈ L∞(X,Σ, µ). Then the mapping f 7→ Mf is an

isometric ∗-isomorphism of L∞(X,Σ, µ) onto the ∗-subalgebra {Mf : f ∈
L∞(X,Σ, µ)} of B(H). If M is a commutative von Neumann algebra, there

is a localizable measure space (X,Σ, µ) such that M is ∗-isomorphic to {Mf :

f ∈ L∞(X,Σ, µ)}, and hence to L∞(X,Σ, µ).

We can think of von Neumann algebra theory as “non-commutative mea-

sure theory”, as Theorem 1.2.1 confirms. We refer to the operator Mf in

Theorem 1.2.1 as the operator of multiplication by f .

Let M be a von Neumann algebra. Then the set of projections Mp in M
forms a complete lattice, i.e. the supremum and infimum of each family of

projections in M are projections and lie in M ([63], Proposition 5.1.8). An

atomic (or minimal) projection of M is a nonzero projection in M having

no nonzero proper subprojections in M. We say that Mp is atomic if for

every nonzero p ∈Mp, there exists an atom q ∈Mp such that q ≤ p.

Two projections p and q are said to be equivalent, written p ∼ q, if and

only if there exists a partial isometry v ∈M such that v∗v = p and vv∗ = q.

We will write p � q to mean that there exists p1 ∈ Mp with p ∼ p1 ≤ q. In

B(H), p ∼ q if and only if the dimension of the range p is the same as the

dimension of the range of q ([63], p. 402).

We say that a projection p ∈ M is finite if p ∼ q ≤ p implies p = q. A

projection p is called infinite if it is not finite. A von Neumann algebra is
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called finite (respectively semifinite ) if the identity operator in M is finite

(respectively, if for every nonzero q ∈Mp, there exists a nonzero p ∈Mp such

that p is finite and p ≤ q). Every finite von Neumann algebra is semifinite

([63], Proposition 6.3.2).

For an explanation of types, type decomposition and tensor products of

von Neumann algebras, the reader is referred to [95], [63] and [86]. The

tensor product of two von Neumann algebras A and B will be denoted by

A ⊗ B.

Theorem 1.2.2 ([86], Theorem 2.3.2 and Theorem 2.3.3) If M is a type I

von Neumann algebra, then there exists a family of orthogonal central pro-

jections (pα) in M such that M = ⊕αpαMpα. For each α, there exists a

Hilbert space Hα such that pαMpα
∼= Z(pαMpα) ⊗ B(Hα). If M is finite,

then the above family of projections can be chosen to be countable and the

Hilbert spaces Hα finite-dimensional.

A trace on a von Neumann algebra M is a function τ : M+ → [0,∞]

such that

(i) τ(x+ y) = τ(x) + τ(y) for all x, y ∈M+,

(ii) τ(λx) = λτ(x) for every λ ∈ R+ and for all x ∈M+,

(iii) τ(x∗x) = τ(xx∗) for all x ∈M.

A trace τ on M is called

(i) faithful if τ(x) = 0, x ∈M+, implies x = 0;

(ii) normal if xα ↑ x, with (xα) a net in M+ and x ∈M+, implies τ(xα) ↑
τ(x);

(iii) semifinite if for every x ∈ M+, there exists 0 6= y ∈ M+ such that

y ≤ x and τ(y) <∞;

(iv) finite if τ(1) <∞.
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If p ∈Mp has the property that τ(p) <∞, then p is finite.

Motivated by Example 1.2.3(i) below, the trace may be thought of as a

“non-commutative integral” on a von Neumann algebra.

Example 1.2.3 ([99], Theorems 4:3.1 and 4:6.2)

(i) Let M = L∞(X,Σ, µ). One can define a trace τ on L∞(X,Σ, µ) as

follows:

τ(f) =

∫
f dµ

for every f in L∞(X,Σ, µ). It can be shown that τ is a faithful semifinite

normal trace on M.

(ii) Let M = B(H) and let (ξα) be an orthonormal basis for H. The

diagonal trace τ on B(H) is defined by the formula

τ(x) = Σα〈xξα, ξα〉

for every x ∈ B(H). One can prove that τ is independent of the or-

thonormal basis (ξα) and is a faithful semifinite normal trace on B(H).

Proposition 1.2.4 ([99], Proposition 3.2) Let τ be a trace on a von Neu-

mann algebra M and let x, y ∈M.

(i) If 0 ≤ x ≤ y, then τ(x) ≤ τ(y).

(ii) If 0 ≤ x ≤ y and τ(x) <∞, then τ(y − x) = τ(y)− τ(x).

(iii) If p, q ∈Mp and p ∧ q = 0, then τ(p) ≤ τ(1− q).

(iv) A trace τ is semifinite if and only if for every x ∈ M+, there exists a

net (xα) in M+ with xα ↑ x, where x ∈M+, and τ(xα) <∞ for every

α.

A von Neumann algebraM is semifinite if and only ifM admits a faithful

semifinite normal trace ([95], Theorem V.2.15). A von Neumann algebra M
is said to be countably decomposable if every family of mutually orthogonal

nonzero projections in M is at most countable.

6
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Theorem 1.2.5 ([39], Proposition 9, p. 211) A von Neumann algebra M
admits a faithful finite normal trace if and only if M is finite and countably

decomposable.

Theorem 1.2.6 ([95], Corollary V.2.9) Any finite factor is countably de-

composable.

Theorem 1.2.7 ([63], Theorem 8.5.7) Any factor of type I or II admits a

faithful semifinite normal trace. A factor of type III does not admit a faithful

semifinite normal trace.

Proposition 1.2.8 ([95], Corollary V.2.32) Any two traces on a semifinite

factor are proportional.

Let M be a von Neumann algebra. A p-ideal of Mp ([101], Definition

2.1) is a subset P of Mp having the following properties.

(i) p, q ∈ P implies p ∨ q ∈ P .

(ii) p, q ∈ P implies p ∧ q ∈ P .

(iii) If p ∈ P and q ∈M with q ∼ p, then q ∈ P .

Theorem 1.2.9 ([101], Theorem 2.4) The mapping I 7→ I ∩Mp is a one-

one correspondence between the norm closed two-sided ideals in M and the

p-ideals in Mp.

Theorem 1.2.9 immediately implies that every norm closed two-sided ideal

of a von Neumann algebra M is the norm-closure of the two-sided ideal

generated by its projections.

Proposition 1.2.10 ([63], Theorem 6.8.8) If M is a von Neumann algebra,

then every weak-operator closed left (respectively right) ideal I of M contains

a unique projection p such that I = Mp (respectively I = pM). If I is a

two-sided ideal of M, then p is a central projection in M.

7
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Proposition 1.2.11 ([63], Proposition 6.8.9) Every two-sided ideal of a von

Neumann algebra is self-adjoint.

Theorem 1.2.12 ([63], Theorem 6.8.3) The set I of operators in a von

Neumann algebra having finite range projections, is a two-sided ideal in M.

Every nonzero two-sided ideal in a factor contains this ideal.

Corollary 1.2.13 ([63], Corollary 6.8.4) Every finite factor is simple.

Theorem 1.2.14 ([63], Theorem 6.8.7) If A is a countably decomposable

factor of type I∞ or II∞, then the norm-closure of the two-sided ideal of

operators with finite range projection is the only proper norm closed two-

sided ideal of A.

A W∗-algebra A is a C∗-algebra for which there exists a faithful represen-

tation π : A → B(H), H a Hilbert space, such that π(A) is a von Neumann

algebra on H ([95], Definition III.3.1). A C∗-algebra A is a W∗-algebra if and

only if A is the dual of a Banach space A∗, called the predual of A, which is

uniquely determined by the C∗-algebra structure of A ([95], Theorem III.3.5

and Corollary III.3.9).

Let π : A → B(H) be a representation of a W∗-algebra A on a Hilbert

space H. We say that π is normal if for every increasing net (xα) in A+ with

xα ↑ x ∈ A+, we have π(xα) ↑ π(x).

Theorem 1.2.15 ([95], Proposition III.3.12) If A is a W∗-algebra and π :

A → B(H) is a normal representation of A on a Hilbert space H, then π(A)

is a von Neumann algebra on H.

A representation π : A → B(H) of a C∗-algebra A on a Hilbert space H
is called irreducible if and only if {0} and H are the only invariant subspaces

of H under π(A).

Proposition 1.2.16 ([95], Proposition I.9.20) Let A be a C∗-algebra and

π : A → B(H) a ∗-representation of A on a Hilbert space H. The following

statements are equivalent.

8
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(i) π is irreducible.

(ii) The only operators in B(H) commuting with all operators in π(A) are

scalar multiples of the identity operator on H.

Theorem 1.2.17 ([95], Theorem I.9.23) If A is a C∗-algebra and x ∈ A
is nonzero, then there exists an irreducible ∗-representation π of A on some

Hilbert space H such that π(x) 6= 0.

It is an obvious consequence of Theorem 1.2.17 that every C∗-algebra A
is semi-simple ([37], Corollary I.9.13).

1.3 Unbounded operators and the spectral

theorem

By an unbounded operator on H, we mean a linear operator which is not

necessarily bounded and everywhere defined. We say that a linear operator

x from a Hilbert space H into itself is densely defined if the domain of x,

denoted by D(x), is a dense subspace of H. The operator is said to be closed

if the graph of x, i.e. the set

G(x) = {(ξ, η) ∈ H ×H : ξ ∈ D(x), η = xξ},

is a closed subspace of H × H. If x and y are unbounded operators, we

write x ⊂ y (respectively x = y) to mean that G(x) ⊂ G(y) (respectively

G(x) = G(y)), and we say that the operator y is an extension of the operator

x (respectively, x and y are equal). The closure of x is defined to be the

smallest closed extension of x, if it exists, and is denoted by x. Care must be

taken when defining sums and products of unbounded operators, since the

domains of unbounded operators generally differ.

Let x, y be unbounded operators from H into itself. Then the sum of x

and y is the operator x+ y, where D(x+ y) = D(x)∩D(y), and (x+ y)(ξ) =

xξ + yξ for all ξ ∈ D(x) ∩ D(y). If λ ∈ C, then λx is the operator with

9
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D(λx) = D(x) and (λx)(ξ) = λ(xξ) for every ξ ∈ D(x). If λ = 0, we define

λx to be the everywhere defined zero operator in B(H). Lastly, we define the

product of x and y to be the operator xy, where D(xy) = {ξ ∈ D(y) : yξ ∈
D(x)}, and xy(ξ) = x(yξ) for every ξ ∈ D(y).

If x is a densely defined operator from H into itself, we define a linear

operator x∗, the adjoint of x, as follows:

D(x∗) = {η ∈ H : there exists ψ ∈ H such that 〈ξ, ψ〉 = 〈xξ, η〉 for all ξ ∈
D(x)}.

For such η, x∗η = ψ. We note that x∗ is well defined since D(x) is a dense

subspace of H ([84], p. 330). Therefore we only consider adjoints of densely

defined operators.

If x = x∗, we say that x is self-adjoint. We say that an unbounded

operator x is normal if x∗x = xx∗. An unbounded operator x is said to be

positive if x is self-adjoint and 〈xξ, ξ〉 ≥ 0 for all ξ ∈ D(x). In some references,

such as [93], positive operators are defined without the requirement of self-

adjointness. Every self-adjoint operator is closed ([84], Theorem 13.9).

Proposition 1.3.1 ([84], Theorem 13.13) Let x be a closed densely defined

operator on a Hilbert space H. Then x∗x is self-adjoint and thus closed. Let

y = 1 + x∗x. Then there exists z ∈ B(H) such that zy ⊂ yz = 1 and such

that xz is bounded.

We say that a closed densely defined operator x is affiliated with a von

Neumann algebra M whenever u∗xu = x for all unitary operators u in the

commutant of M ([63], Definition 5.6.2). We write xηM to indicate that

x is affiliated with M. We emphasize that the equality u∗xu = x is to be

understood in the usual sense that u∗xu and x have the same graphs, in

particular the same domains.

Proposition 1.3.2 ([93], Corollary 9:14 and p. 199) Let M be a von Neu-

mann algebra and let xηM be a positive operator. Then there exists a unique

positive operator y such that x = y2. Furthermore, yηM.

10
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We denote the element y in Proposition 1.3.2 by x
1
2 .

Theorem 1.3.3 ([63], Theorem 6.1.11) Suppose that x is a closed densely

defined operator on H. Then there exists a partial isometry v with initial

space the closure of the range of (x∗x)
1
2 and final space the closure of the

range of x such that

x = v(x∗x)
1
2 = (xx∗)

1
2v.

We write |x| = (x∗x)
1
2 . This decomposition is unique and is called the polar

decomposition of x. If xηM, then v ∈M and |x|ηM.

Proposition 1.3.4 ([63], Exercise 10.5.11, p. 562) Let A be a concrete C∗-

algebra and let x ∈ A. If x = v|x| is the polar decomposition of x, then

v|x| 12 ∈ A (observe that v need not be in A).

Proposition 1.3.5 ([93], Corollary 9:31 and p. 230) Let M be a von Neu-

mann algebra and let xηM be self-adjoint. Then there exist positive operators

x1 and x2 such that x = x1 − x2. Furthermore, x1ηM and x2ηM.

Let x, y be closed densely defined operators. The operators x+ y and xy

are called the strong sum and strong product of x and y respectively.

If M is a von Neumann algebra, we use the notation U(M) to denote

the set of closed, densely defined operators affiliated with M. Under strong

sum, ordinary scalar multiplication and strong product, U(M) is a unital
∗-algebra, provided that M is finite ([48], Theorem 2). If x ∈ U(M) and M
is finite, then the spectrum of x relative to the algebra U(M) will be denoted

by Sp (x,U(M)).

Theorem 1.3.6 ([63], Theorem 5.6.15(iv)) If M is a commutative von Neu-

mann algebra and x, y ηM, then xy = yx. Furthermore, x∗x = xx∗ = x∗x.

The following proposition was proved in [25] for the case where A is a

commutative von Neumann algebra ([25], Lemma 2) and n = 2. The same

proof as in [25] can be used to show that the result holds in the more general

case where A is a finite von Neumann algebra.

11
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Proposition 1.3.7 If A is a finite von Neumann algebra on a Hilbert space

H, then, for every n, Mn(A) is a finite von Neumann algebra on the Hilbert

space ⊕n
k=1Hk, where Hk = H for every 1 ≤ k ≤ n, and U(Mn(A)) ∼=

Mn(U(A)), where Mn(A) (respectively Mn(U(A))) denotes the algebra of n×
n matrices over A (respectively U(A)).

The spectrum of a closed densely defined operator x on a Hilbert space

H, denoted by Sp (x), is defined to be the set of all λ ∈ C such that x− λ1

is not an injective linear mapping from D(x) onto H ([63], p. 357). If

λ /∈ Sp (x), then x − λ1 is an injective linear mapping from D(x) onto H
and has a bounded linear inverse y which maps H onto D(x) ([63], p. 357).

Conversely, if x − λ1 has a bounded (everywhere defined) inverse y, then

λ /∈ Sp (x) ([63], p. 357).

If xηM, where M is a commutative von Neumann algebra, and λ /∈
Sp (x), then it can be shown that the bounded (everywhere defined) inverse

y of x−λ1 lies in M ([63], p. 357). Since x−λ1 is closed and y is bounded, it

follows that (x− λ1)y is closed, and therefore it follows from Theorem 1.3.6

that 1 = (x− λ1)y = (x− λ1)y = y(x− λ1) ([63], p. 357).

Lemma 1.3.8 ([63], p. 357) Suppose that xηM, where M is a commutative

von Neumann algebra. Then Sp (x,U(M)) coincides with the point spectrum

of x, i.e. the set of eigenvalues of x.

Theorem 1.3.9 ([63], Theorem 5.6.18) A linear operator x on a Hilbert

space H is normal if and only if x is affiliated with a commutative von Neu-

mann algebra. Furthermore, if x is normal, there is a smallest von Neumann

algebra A such that xηA. The von Neumann algebra A is commutative.

Theorem 1.3.10 ([63], Proposition 5.6.35) If xηM, where M is a commu-

tative von Neumann algebra, then
∑n

k=1 λkx
k, with λk ∈ C for every k, is a

closed linear operator.

Theorem 1.3.11 (Spectral theorem) ([45], Theorem XII.2.3; [63], Lem-

ma 5.6.7, Theorem 5.2.2) Let x be a self-adjoint (possibly unbounded) oper-

12
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ator on a Hilbert space H. Then there is a right continuous family of pro-

jections {et(x) : t ∈ R}, called the spectral resolution of x, which has the

following properties.

(i) If t ≤ s, then et(x) ≤ es(x).

(ii) et(x) ↑ 1 as t→∞.

(iii) et(x) ↓ 0 as t→ −∞.

(iv) xet(x) ≤ tet(x) for all t ∈ R.

(v) t(1− et(x)) ≤ x(1− et(x)) for all t ∈ R.

The family {et(x) : t ∈ R} is uniquely determined such that

D(x) = {ξ ∈ H :

∫
Sp (x)

t2 d〈et(x)ξ, ξ〉 is finite}

and

〈xξ, η〉 =

∫ ∞
−∞

t d〈et(x)ξ, η〉

for all ξ ∈ D(x), η ∈ H.

If x is a bounded self-adjoint operator on H, then et(x) = 0 for all t ≤
−‖x‖, and et(x) = 1 for all t ≥ ‖x‖. In this case,

x =

∫ ‖x‖
−‖x‖

t det(x)

in the sense of norm convergence of approximating Riemann sums.

If x is a self-adjoint linear operator in a von Neumann algebra M, then

x can be expressed as a limit of a sequence of finite linear combinations of

mutually orthogonal projections in M.

Proposition 1.3.12 ([63], Lemma 6.8.1) Let x be a self-adjoint linear oper-

ator in a (not necessarily closed) two-sided ideal I of a von Neumann algebra

M. Also, let {et(x) : t ∈ R} be the spectral resolution of x, as defined in

Theorem 1.3.11. Then et(x) ∈ I for all t < 0 and 1− et(x) ∈ I for all t > 0.

13
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1.4 Topological algebras

A topological algebra is an algebra A which is a topological vector space such

that multiplication is separately continuous in each variable. If, in addition,

A has continuous involution, then A is called a topological ∗-algebra. Let A
be a topological algebra with identity, denoted by 1. For x ∈ A, we define

the spectrum of x in A, written Sp (x,A), by

Sp (x,A) = {λ ∈ C : x− λ1 is not invertible in A}.

Theorem 1.4.1 ([104], Theorem 7.2) If A is a complete metrizable topolog-

ical algebra, then the multiplication on A is jointly continuous.

We say that a topological algebra A is a Q-algebra if the group of invert-

ible elements of A is open. A topological algebra A is said to have continuous

inversion if the map x 7→ x−1 is continuous on the group of invertible ele-

ments of A. For a ∗-algebra A, the notions of normal, self-adjoint and unitary

elements are defined in the same way as for (abstract) C∗-algebras. An el-

ement x in a ∗-algebra A is called positive if there exits a y ∈ A such that

x = y∗y. A positive linear form on a ∗-algebra A is a linear functional f on

A such that f(x) ≥ 0 for every positive x ∈ A.

Theorem 1.4.2 ([35], Theorem 11.1) Every positive linear form on a com-

plete metrizable topological ∗-algebra is continuous.

1.4.1 Locally C∗-algebras

Definition 1.4.3 ([73], Definition III.2.1) Let Λ be a directed set. An in-

verse system (Eα, fαβ) of topological algebras is a family of topological algebras

{Eα : α ∈ Λ} along with continuous algebra homomorphisms fαβ : Eβ → Eα,

with α ≤ β, which satisfy fαβ ◦ fβγ = fαγ (for α ≤ β ≤ γ) and fαα = iα,

where iα : Eα → Eα denotes the identity map of Eα. The inverse limit

algebra E of (Eα, fαβ) is defined to be

E = {x = (xα) ∈
∏
α

Eα : fαβ(xβ) = xα for every α ≤ β}

14
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(it is easily verified that E is an algebra). The algebra E is further endowed

with the initial topology defined on it by the projection maps fα : E → Eα,

i.e. the weakest topology making each fα continuous. This turns E into a

topological algebra. We write E = lim←Eα.

In some references, such as [73], an inverse system (respectively inverse

limit) of topological algebras is called a projective system (respectively projec-

tive limit) of topological algebras. From here on, the algebra homomorphisms

fαβ in Definition 1.4.3 are called connecting maps of the inverse system. It is

easy to verify that the projection maps fα in Definition 1.4.3 are continuous

algebra homomorphisms.

Lemma 1.4.4 ([73], Lemma III.3.2) Let E = lim←Eα be the inverse limit

of topological algebras Eα, and let B be a subalgebra of E. Then

B = ∩f−1
α (fα(B)) = lim

←
fα(B),

where the maps fα are defined as in Definition 1.4.3. In particular, if B is

closed,

B = lim
←
fα(B) = lim

←
fα(B).

We say that a topological algebra A is locally m-convex if its topology can

be defined by a family of sub-multiplicative seminorms {pα} which separate

the points ofA. Observe that a locally m-convex topological algebra is always

locally convex. If, in addition, A is a complete ∗-algebra and pα(x∗x) =

pα(x)2 for every α and x ∈ A, we refer to the seminorms pα as C∗-seminorms

and we call A a locally C∗-algebra. Obviously, all C∗-algebras are locally

C∗-algebras. An example of a non-commutative locally C∗-algebra can be

found in Chapter 7.

Theorem 1.4.5 ([73], Proposition I.1.6) If A is a locally m-convex topolog-

ical algebra, then the multiplication on A is jointly continuous.

Theorem 1.4.6 ([88], p. 169, Folgerung 5.4) Let A be a locally C∗-algebra

with a family (pα) of C∗-seminorms defining the topology of A. Then A =

15
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lim←(A/Nα) within a topological-algebraic ∗-isomorphism, where Nα = {x ∈
A : pα(x) = 0} for each α, and the connecting map fαβ : A/Nβ → A/Nα is

defined by fαβ(x+Nβ) = x+Nα whenever α ≤ β. Furthermore, every A/Nα

is a C∗-algebra with respect to the norm defined by ṗα(x + Nα) = pα(x) for

every x.

The representation A = lim←(A/Nα) of Theorem 1.4.6 is sometimes re-

ferred to as the Arens-Michael decomposition of A (for example, as in [49]

and [73]).

If (pα) is a family of C∗-seminorms defining the topology of a locally

C∗-algebra A, then we put As = {x ∈ A : supα pα(x) <∞}.

Theorem 1.4.7 ([88], Satz 3.1) Let A be a locally C∗-algebra and let (pα) be

a family of C∗-seminorms defining the topology of A, and As the set defined

above. The following statements are equivalent:

(i) x ∈ As,

(ii) if x1 = 1
2
(x + x∗) and x2 = 1

2i
(x − x∗), then Sp (xi,A) is a bounded

subset of R for i = 1, 2.

Theorem 1.4.7 clearly implies that As is independent of the choice of

family of C∗-seminorms defining the topology of A.

Theorem 1.4.8 ([8], Theorem 2.3, or [88], Satz 3.1) If A is a locally C∗-

algebra with As as above, then As is a C∗-algebra with norm ‖.‖ defined as

‖x‖ = supα pα(x) for every x ∈ As. Furthermore, As is dense in A.

Proposition 1.4.9 ([81], Proposition 1.11(5)) If A is a locally C∗-algebra,

then Sp (x,As) = Sp (x,A) for every x ∈ As.

Theorem 1.4.10 ([81], Corollary 1.13) If A and B are ∗-isomorphic locally

C∗-algebras, then As and Bs are ∗-isomorphic as C∗-algebras.
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Recall that a character on a topological algebra A is a nonzero algebra

homomorphism of A into the complex field. Any commutative complete

locally m-convex topological algebra A has at least one continuous character:

Take a ∈ A with a = 1. Since

Sp (x,A) = {f(x) : f a continuous character on A}

for every x ∈ A ([15], 4:10-8), and Sp (a,A) = {1}, it follows that A has at

least one continuous character.

1.4.2 GB∗-algebras

The following definition appears in [40] and [41]. For a unital topological
∗-algebra A, define C to be the collection of all subsets B of A such that

(i) B is closed and bounded, and

(ii) 1 ∈ B, B2 ⊂ B, B∗ = B.

Now let C0 denote the collection of all those B ∈ C which are absolutely

convex ([5], [6]). If, for each B ∈ C0, A(B) = {λx : λ ∈ C, x ∈ B} is a

Banach algebra with respect to the Minkowski functional of B, and A is

locally convex, we say that A is pseudo-complete ([5], Definition 2.5). An

element x of A is bounded if there exists a nonzero λ ∈ C such that the set

{(λx)n : n = 1, 2, . . .} is a bounded subset of A ([5], Definition 2.1, and [40],

p. 694).

Definition 1.4.11 ([41], Definition 7.1) Let A be a topological ∗-algebra with

identity 1. Suppose that there is a subalgebra Ab of A which is a C∗-algebra

in some norm, and such that (1 + x∗x)−1 ∈ Ab for every x ∈ A. If the unit

ball B0 of Ab is the greatest member of C with respect to set inclusion, then

A is called a GB∗-algebra.

Observe that the C∗-algebra Ab in Definition 1.4.11 is unique. For if A′b
were another C∗-algebra with the properties in Definition 1.4.11, then the
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largest member B0 of C is the unit ball of A′b. Hence Ab = A′b since every

Banach algebra is the linear span of its unit ball.

The C∗-algebra Ab in Definition 1.4.11 will often be called the underlying

C∗-algebra of the GB∗-algebra A.

Another notion of GB∗-algebra is [40], Definition 2.5. It can be shown

that this definition coincides with that of Definition 1.4.11. A more restricted

type of GB∗-algebra was considered by Allan in [6].

Since Ab is the linear span of its unit ball B0, i.e. Ab = A(B0), the

Minkowski functional ‖.‖ on Ab defines a norm on Ab in such a way that

(Ab, ‖.‖) is a C∗-algebra ([40], p. 694-695). Since B0 is a bounded subset of

A, it is easily seen that the GB∗-topology restricted to Ab is weaker than the

topology on Ab defined by ‖.‖.

Lemma 1.4.12 ([6], p. 95) Every locally C∗-algebra A is a GB∗-algebra

with Ab = As.

Examples of GB∗-algebras which are not locally C∗-algebras is Example

3.3.3. Another example of a GB∗-algebra which is not generally a locally C∗

algebra can be found in Section 1.5 of this chapter (see Theorem 1.5.29).

We denote the one point compactification of C by C∗. In [40], Defini-

tion 4.7, Dixon calls a collection F of continuous C∗-valued functions on a

topological space X a ∗-algebra of functions if the following conditions are

satisfied:

(i) each f ∈ F takes the value ∞ on at most a nowhere dense subset of

X;

(ii) F is a ∗-algebra of functions under the operations λf, f + g, fg and f ∗

(f, g ∈ F, λ ∈ C). These operations are defined pointwise on a dense

subset of X where all the values involved are finite, and extending to

obtain continuous C∗-valued functions on M .

Theorem 1.4.13 ([40], Theorem 4.6) If A is a GB∗-algebra and M0 is the

set of all characters on Ab, then the Gelfand isomorphism of Ab onto C(M0)
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extends uniquely to an isomorphism of A onto a ∗-algebra of functions on

M0.

Lemma 1.4.14 ([40], Lemma 4.10) Let A be a GB∗-algebra and x a normal

element of A. If C is a maximal commutative ∗-subalgebra of A containing

x, then C, with the induced subspace topology, is a GB∗-algebra.

Lemma 1.4.15 If A is GB∗-algebra and p is a projection in A, then p ∈ Ab.

Proof. Let p ∈ A be a projection. Since p is normal, it follows from

Lemma 1.4.14 that p generates a commutative GB∗-algebra B. Let M0 de-

note the set of all characters on Bb. By Theorem 1.4.13, B is ∗-isomorphic

to a ∗-algebra of functions on M0 and Bb is ∗-isomorphic to C(M0). Since

(1 + p)−1 = (1 + p∗p)−1 ∈ Bb, it follows from standard arguments that

p ∈ Bb ⊂ Ab. ∇

The following proposition is known to hold for commutative locally convex

GB∗-algebras ([6], Lemma 3.2), and, by Theorem 1.4.13, carries over to all

commutative GB∗-algebras with exactly the same proof.

Proposition 1.4.16 If A is a commutative GB∗-algebra, then x(1+x∗x)−1 ∈
Ab for every x ∈ A.

Theorem 1.4.17 ([26], Theorem 2) If A is a GB∗-algebra, then Ab is se-

quentially dense in A.

Theorem 1.4.18 ([26], Proposition 3) If A is a complete locally m-convex

algebra which is a GB∗-algebra, then A is a locally C∗-algebra.

Lemma 1.4.19 ([5], Proposition 2.6) If A is a sequentially complete locally

convex topological algebra, then A is pseudo-complete.

Lemma 1.4.20 ([5], Corollary 4.2) If A is a pseudo-complete locally convex

topological algebra with continuous inversion, then x ∈ A is bounded if and

only if Sp (x,A) is a bounded subset of C.
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Proposition 1.4.21 ([40], Proposition 5.1) If x is a positive element of a

GB∗-algebra A, then there exists a unique positive element y ∈ A such that

x = y2.

Proposition 1.4.22 ([40], Theorem 6.7 and Corollary 6.8) If x is a nonzero

positive element of a locally convex GB∗-algebra A, then there exists a positive

linear form f on A such that f(x) > 0. If 0 6= x ∈ A is not positive, then

there is a positive linear form f on A such that f(x) < 0.

1.5 The algebra M̃

The study of non-commutative integration was initiated by Segal in [89].

Definition 1.5.1 ([89], Definition 2.1) Let H be a Hilbert space. A subspace

E of H is strongly dense in H if uE = E for all unitary operators u ∈ M′,

and there exists a sequence of projections (pn) in M such that pn(H) ⊂ E

for every n, 1− pn is finite for every n, and 1− pn ↓ 0.

An (unbounded) operator x is called measurable if x is affiliated with M
and has a strongly dense domain. Let S(M) denote the set of measurable

operators affiliated with M.

Proposition 1.5.2 ([89], Corollary 5.2) S(M) is a ∗-algebra under strong

sum, strong product, the usual adjunction and scalar multiplication, except

that if λ = 0 and x ∈ S(M), then λx is defined to be the everywhere defined

zero operator on the underlying Hilbert space H.

Theorem 1.5.3 ([89], Theorem 2) Let M be a commutative von Neumann

algebra. Then, by Theorem 1.2.1, M ∼= L∞(X,Σ, µ) for some localizable

measure space (X,Σ, µ), and x ∈ S(M) if and only if x can be identified

with a multiplication operator Mf for some f ∈ L0(X,Σ, µ).

We now introduce the notion of measurability which is most important

to us in this thesis, namely that of measurability with respect to a trace.
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For the remainder of this section, M will denote a semifinite von Neu-

mann algebra equipped with a faithful semifinite normal trace τ , and H will

denote the underlying Hilbert space of M.

Definition 1.5.4 ([47], Definition 2.1) Let E be a subspace of H. We say

that E is τ -dense in H if for every δ > 0, there exists a projection p ∈ M
such that pH ⊂ E and τ(1− p) < δ.

An unbounded operator x is said to be τ -measurable if x ∈ U(M) and

D(x) is τ -dense in H.

The set of τ -measurable operators affiliated with M will be denoted by

M̃.

Proposition 1.5.5 ([47], p. 271; [89], Corollary 4.1) If τ(1) < ∞, then

M̃ = U(M). For any finite von Neumann algebra M, one has S(M) =

U(M).

Theorem 1.5.6 ([47], p. 272) Let ε, δ > 0 and let M̃(ε, δ) denote the set

{x ∈ M̃ : there is a p ∈Mp such that pH ⊂ D(x), ‖xp‖ ≤ ε, τ(1− p) < δ}

The sets {M̃(ε, δ) : ε, δ > 0} form a system of basic neighbourhoods of

zero for a topology on M̃, called the topology of convergence in measure on

M̃.

Theorem 1.5.7 ([47], p. 272) M̃ is a ∗-algebra under strong sum, strong

product, scalar multiplication and ordinary adjunction. Furthermore, when

equipped with the topology of convergence in measure, M̃ is a complete metriz-

able topological ∗-algebra. Lastly, M is dense in M̃ with respect to the topol-

ogy of convergence in measure.

It is now immediate from Theorem 1.4.1 that the multiplication on M̃ is

jointly continuous.

Throughout this thesis, we will denote the topology of convergence in

measure on M̃ by γcm. In the sequel, unless stated otherwise, if x, y ∈ M̃, we

will write x+y and xy to mean the strong sum and strong product respectively

of x and y.
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Example 1.5.8 Let M be a commutative von Neumann algebra. Then,

by Theorem 1.2.1, M ∼= L∞(X,Σ, µ) for some localizable measure space

(X,Σ, µ). One can easily verify that the restriction of the topology of con-

vergence in measure to M is the familiar topology of convergence in measure

on L∞(X,Σ, µ). By taking completions, we find that M̃ is topologically
∗-isomorphic to L̃∞(X,Σ, µ).

Example 1.5.9 ([47], p. 271) Let M = B(H), where H is a Hilbert space,

and let τ denote the diagonal trace on B(H) (Example 1.2.3(ii)). Then

M̃ = M.

Another name for the topology of convergence in measure is the measure

topology. We will use these two terms interchangeably.

Theorem 1.5.10 ([94], Theorem 2.3(i)) Let p ∈ Mp and τp = τ |(pMp)+.

Then τp is a faithful semifinite normal trace on pMp. Furthermore, p̃Mp =

pM̃p, where p̃Mp is the algebra of τp-measurable operators affiliated with

pMp.

Proposition 1.5.11 ([94], Examples 2.2(3)) The following statements are

equivalent.

(i) M̃ = M.

(ii) inf{τ(p) : 0 6= p ∈Mp} > 0.

(iii) The topology of convergence in measure coincides with the norm topol-

ogy.

Proposition 1.5.12 ([43], Proposition 1.4) The set of positive elements in

M̃ is closed with respect to the topology of convergence in measure.

The following concept is an extension of the decreasing rearrangement of

a measurable function (Definition 1.1.5).
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Definition 1.5.13 ([47], Definition 2.1) Let x ∈ M̃ and t > 0. The gener-

alized singular function of x, denoted by µt(x), is defined by

µt(x) = inf{‖xp‖ : p ∈Mp, pH ⊂ D(x), and τ(1− p) ≤ t}

= inf{θ ≥ 0 : dθ(|x|) ≤ t}.

Observe that µt(x) is decreasing as a function of t, so that limt→∞ µt(x)

exists, it is denoted by µ∞(x) ([94], p. 74).

Proposition 1.5.14 ([47], Lemma 2.5) Let x, y, z ∈ M̃. The following

statements hold for every t > 0.

(i) µt(x) ≤ ‖x‖.

(ii) µt(x) = 0 if and only if x = 0.

(iii) µt(αx) = |α|µt(x) for all α ∈ C.

(iv) 0 ≤ x ≤ y implies that µt(x) ≤ µt(y).

(v) µt1+t2(x+ y) ≤ µt1(x) + µt2(y) for all t1, t2 > 0.

(vi) µt1+t2(xy) ≤ µt1(x)µt2(y) for all t1, t2 > 0.

(vii) µt(xyz) ≤ ‖x‖µt(y)‖z‖, where the cases ‖x‖ = ∞ and ‖y‖ = ∞ are

allowed.

(viii) µt(x
∗) = µt(x).

The following result can be found in the proof of [94], Theorem 2.3.

Lemma 1.5.15 ([94], p. 77) Let x ∈ M̃ and p ∈ Mp. If we denote the

generalized singular function of pxp in pM̃p (respectively x in M̃) by µt(pxp)

(respectively µt(x)), then µt(pxp) = µt(x) for every t > 0.

Lemma 1.5.16 ([47], Lemma 3.1)

M̃(ε, ε) = {x ∈ M̃ : µε(x) ≤ ε}.

Consequently, if (xn) is a sequence in M̃ and x ∈ M̃, then xn → x(γcm) if

and only if for every t > 0, µt(xn − x) → 0 as n→∞.
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By Proposition 1.5.14(i) and Lemma 1.5.16, the measure topology of M̃
restricted to M is weaker than the norm topology of M.

Definition 1.5.17 ([94], p. 75) Let x ∈ M̃. We say that x is τ -compact if

µ∞(x) = limt→∞ µt(x) = 0. The set of τ -compact operators will be denoted

by M̃0.

If M = B(H), then M̃0 is the ideal of compact operators of B(H) ([94],

Examples 2.2).

Lemma 1.5.18 ([94], p. 75)

(i) The set M̃0 is a γcm-closed two-sided ideal of M̃.

(ii) If p ∈Mp, then p ∈ M̃0 if and only if τ(p) <∞.

Theorem 1.5.19 ([94], Theorem 3.5) Let M0 = M̃0∩M. Then, if M/M0

is equipped with the quotient norm, it is a C∗-algebra. If M̃/M̃0 is equipped

with the norm µ̇∞ defined by µ̇∞(x+ M̃0) = µ∞(x), x ∈ M̃, then M̃/M̃0 is

isometrically ∗-isomorphic to M/M0, and hence M̃/M̃0 is a C∗-algebra.

Theorem 1.5.20 ([44], Theorem 1.1) The map x 7→ x
1
2 is γcm−γcm contin-

uous on the positive cone of M̃. Consequently, the map x 7→ |x| is γcm−γcm

continuous on M̃.

Theorem 1.5.21 ([100], Theorem 2.1) Let I be a γcm-closed two-sided ideal

of M̃. Then I∩M is a norm closed two-sided ideal of M and I = I ∩Mγcm
.

Our discussion will now turn to M̃ as a topological ∗-algebra.

Theorem 1.5.22 ([34], Theorem 1.5.1) If the measure topology on M̃ is

locally convex, then Mp is atomic.

Theorem 1.5.23 ([34], Corollary 1.5.7) Let (X,Σ, µ) be a localizable mea-

sure space. The following statements are equivalent.
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(i) The topology of convergence in measure on L̃∞(X,Σ, µ) is locally con-

vex.

(ii) (X,Σ, µ) is an atomic measure space and

inf{µ(A) : A ∈ Σ, µ(A) 6= 0} > 0, or

(X,Σ, µ) is an atomic measure space,

inf{µ(A) : A ∈ Σ, µ(A) 6= 0} = 0,

and there exists K > 0 such that∑
µ(A) <∞,

where the summation is taken over all atoms A ∈ Σ with µ(A) < K.

Let (X,Σ, µ) be a localizable atomic measure space with inf{µ(A) : A ∈
Σ, µ(A) 6= 0} = 0 such that there exists K > 0 with

∑
µ(A) < ∞, where

the summation is taken over all atoms A with µ(A) < K. There are at most

countably many atoms A with µ(A) < K. The set of all such atoms can be

written as a sequence (An) with µ(An) ↓ 0 ([34], p. 29). Let E = ∪∞n=1An.

Define ΣE = {A ∈ Σ : µ(A) < K} and µE = µ|E. We define ΣX\E and µX\E

is a similar manner ([34], p. 29).

Theorem 1.5.24 ([34], Theorem 1.7.1) Let (X,Σ, µ) be a localizable atomic

measure space with

inf{µ(A) : A ∈ Σ, µ(A) 6= 0} = 0

such that there exists K > 0 with
∑
µ(A) < ∞, where the summation is

taken over all atoms A with µ(A) < K. Then(
L̃∞(X,Σ, µ), γcm

)
=
(
L0(E,ΣE, µE), γp

)
⊕
(
L∞(X\E,ΣX\E, µX\E), ‖·‖∞

)
,

where γp denotes the pointwise topology on L0(E,ΣE, µE) and ‖.‖∞ the es-

sential supremum norm.
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Theorem 1.5.25 ([34], Theorem 4.3.1) If Mp is non-atomic, then the dual

of M̃0 is trivial.

Theorem 1.5.26 If M̃ is commutative and locally convex with respect to the

measure topology, then M̃ is a locally C∗-algebra with respect to the measure

topology.

Proof. We can identify M̃ with L̃∞(X,Σ, µ) for some localizable measure

space (X,Σ, µ) (Example 1.5.8). If L̃∞(X,Σ, µ) = L∞(X,Σ, µ), then it is

obvious that L̃∞(X,Σ, µ) is a (locally) C∗-algebra.

Consider the case L̃∞(X,Σ, µ) 6= L∞(X,Σ, µ). Then, since L̃∞(X,Σ, µ)

is locally convex, it follows from Proposition 1.5.11, Corollary 1.5.23 and

Theorem 1.5.24 that(
L̃∞(X,Σ, µ), γcm

)
=
(
L0(E,ΣE, µE), γp

)
⊕
(
L∞(X\E,ΣX\E, µX\E), ‖.‖∞

)
.

For each n, let pn(f) = |f(An)| + ‖fχX\E‖ for every f ∈ L̃∞(X,Σ, µ). It

can be shown that the pn are a family of C∗-seminorms defining the measure

topology of L̃∞(X,Σ, µ). ∇

Lemma 1.5.27 If x ∈ M̃, then 1 + x∗x is invertible in M̃.

Proof. For the purposes of this proof only, we distinguish between the

ordinary sum x+ y, the strong sum x+ y, the ordinary product xy and the

strong product xy of x and y, where x, y ∈ M̃.

Let y = 1 + x∗x with x ∈ M̃. Recall that x∗x is self-adjoint and thus

closed (see Proposition 1.3.1). So x∗x ∈ M̃ and y is closed, since the sum of

a bounded operator and a closed operator is closed. Therefore y ∈ M̃ since

x∗x and 1 are in M̃. It is easily verified that y is self-adjoint.

By Proposition 1.3.1, there exists z ∈ B(H) such that zy ⊂ yz = 1. Since

y is self-adjoint, there is a smallest von Neumann algebra A with which y

is affiliated, and A is commutative (Theorem 1.3.9). Hence A ⊂ M ⊂ M̃.

Therefore, by [63], p.357, z ∈ A and thus z ∈ M̃. It follows from Theorem

1.3.6 that zy = yz. So zy = yz = 1 = 1, and so y is invertible in M̃. ∇
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The next lemma is needed in the proof of Theorem 1.5.29 below, and

appears in the proof of [41], Theorem 7.3. We give the proof for completeness.

Lemma 1.5.28 Let x ∈ M̃ such that x∗x is not in the unit ball of M.

Then there exists k > 1 and q ∈ Mp such that ‖(x∗x)nψ‖ ≥ kn‖ψ‖ for all

ψ ∈ q(H) and for all n ∈ N.

Proof. By the spectral theorem, we may write x∗x =
∫
λdeλ. Let k > 0

and q = 1 − ek, where eλ = eλ(x
∗x) for every λ ≥ 0. If λ ≤ k, then

eλq = eλ(1 − ek) = 0. Clearly, λn > kn if λ > k. Therefore, if ψ ∈ q(H), it

follows that, for n ∈ N,

‖(x∗x)nψ‖2 =

∫
R
λ2nd〈eλψ, ψ〉

=

∫ ∞
k

λ2nd〈eλψ, ψ〉

≥ k2n

∫ ∞
k

d〈eλψ, ψ〉

= k2n(〈ψ, ψ〉 − 〈ekψ, ψ〉)

= k2n‖ψ‖2.

Thus ‖(x∗x)nψ‖ ≥ kn‖ψ‖ for all ψ ∈ q(H). Since x∗x is not in the unit ball

of M, we can choose k > 1. ∇

The proof of Theorem 1.5.29 below is a slight modification of part of the

proof of [41], Theorem 7.3, in that Dixon’s proof uses the dimension function

and we use the trace. We use the same notation as in Section 1.4.

Theorem 1.5.29 M̃ is a GB∗-algebra with (M̃)b = M.

Proof. By Lemma 1.5.27, (1 + x∗x)−1 ∈M for every x ∈ M̃. We will show

that the unit ball B0 of M is the greatest member of the corresponding class

of sets C defined in Section 1.4.

Let B ∈ C. We show first that if x ∈ B, then x ∈ B0. Suppose that

x /∈ B0. Then, by considering the polar decomposition x = v(x∗x)
1
2 of x, it

follows that x∗x /∈ B0. By Lemma 1.5.28, there exists k > 1 and q ∈Mp such
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that ‖(x∗x)nψ‖ ≥ kn‖ψ‖ for all ψ ∈ q(H) and for all n ∈ N. Since τ is faithful

and q 6= 0, we have τ(q) > 0, say τ(q) > r > 0. Let ε = r
2
. Since x ∈ B ∈ C,

it follows that {(x∗x)n : n = 1, 2, . . .} ⊂ B. By the γcm-boundedness of B,

there exists α > 0 such that {(x∗x)n : n = 1, 2, . . .} ⊂ αM̃(ε, ε) = M̃(αε, ε).

Hence, for each n = 1, 2, . . ., there exists a projection pn ∈ M such that

‖(x∗x)npn‖ < αε and τ(1− pn) < ε.

Suppose that pn(H) ∩ q(H) = {0} for some n. Then, by Proposition

1.2.4(iii), τ(q) ≤ τ(1 − pn) < ε = r
2
< r < τ(q). This is a contradiction.

Hence pn(H) ∩ q(H) 6= {0} for every n = 1, 2, . . ..

Therefore for each n, there exists 0 6= ψn ∈ pn(H) ∩ q(H). Without

loss of generality, ‖ψn‖ = 1. Since ψn ∈ pn(H), ψn = pn(ψn) and thus

‖(x∗x)n(ψn)‖ = ‖(x∗x)n(pn(ψn))‖ ≤ ‖(x∗x)npn‖ < αε for all n. Since

ψn ∈ q(H), it follows that ‖(x∗x)n(ψn)‖ ≥ kn. A contradiction results for

sufficiently large n. Hence x ∈ B0. Hence B ⊂ B0 for every B ∈ C.

It remains to show that B0 ∈ C. Certainly, B0
γcm

is γcm-closed. Let

δ > 0. Then M̃(δ, δ) ∩ M is a γcm-neighbourhood of 0 ∈ M. Since the

restriction of the measure topology to M is weaker than the norm topology

on M, M̃(δ, δ) ∩M is a neighbourhood of zero with respect to the norm

topology on M. Since B0 is a bounded subset of M with respect to the

norm topology of M, it follows that there exists λ > 0 such that B0 ⊂
λ(M̃(δ, δ) ∩M) ⊂ λ(M̃(δ, δ). Hence B0, and thus B0

γcm
, is γcm-bounded.

Since 1 ∈ B0, B
2
0 ⊂ B0 and B∗0 = B0, the same holds for B0

γcm
. It follows

that B0
γcm ∈ C. From what we have proved in the previous paragraph,

B0
γcm ⊂ B0. Thus B0

γcm
= B0. Hence B0 ∈ C. ∇

Theorem 1.5.30 M̃ is semi-simple, i.e. the (Jacobson) radical Rad(M̃) of

M̃ is zero.

Proof. Since Rad(M̃) ∩ M is a two-sided ideal of M, it follows from

Proposition 1.2.11 that Rad(M̃) ∩M is self-adjoint. Assume that 0 6= x ∈
Rad(M̃) ∩M. Then 0 6= x∗ ∈ Rad(M̃) ∩M. Therefore y1 = 1

2
(x + x∗) ∈

Rad(M̃) ∩M and y2 = 1
2i

(x − x∗) ∈ Rad(M̃) ∩M. Since x 6= 0, it follows
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that at least one of y1 and y2 are nonzero, implying that Rad(M̃) ∩M has

at least one nonzero self-adjoint element.

Let a be a nonzero self-adjoint element of Rad(M̃) ∩M. Then, by the

spectral theorem, a has a spectral resolution {eλ(a) : λ ∈ R}.
Suppose that eλ(a) = 0 for every λ < 0, and 1−eλ(a) = 0 for every λ > 0,

i.e. eλ(a) = 1 for every λ > 0. By the spectral theorem, e0(a) = ∧λ>0eλ(a) =

1. Hence, for every λ ∈ R, eλ(a) = 0 or eλ(a) = 1. It follows from the

spectral theorem that a = 0 or a = λ1 for some 0 6= λ ∈ R. But a 6= 0 by

assumption. So a = λ1 for some 0 6= λ ∈ R. Since a ∈ Rad(M̃) ∩M and

λ 6= 0, it follows that 1 ∈ Rad(M̃)∩M, which is a contradiction. Therefore,

either there exists λ < 0 such that eλ(a) 6= 0, or there exists λ > 0 such that

1− eλ(a) 6= 0.

By Proposition 1.3.12, it follows that eλ(a) ∈ Rad(M̃)∩M for every λ <

0 and 1−eλ(a) ∈ Rad(M̃)∩M for every λ > 0. Thus Rad(M̃)∩M contains

at least one nonzero projection. But Rad(M̃) has no nonzero projections.

This is a contradiction, implying that Rad(M̃) ∩M = {0}.
Now let x ∈ Rad(M̃). By Proposition 1.3.1, x(1 + x∗x)−1 is a bounded

everywhere defined operator. Recall that (1 + x∗x)−1 ∈M. Therefore, since

x(1 + x∗x)−1 is affiliated with M, x(1 + x∗x)−1 ∈ Rad(M̃) ∩ M. Hence

x(1 + x∗x)−1 = 0 from what we have proved above. Thus x = 0, implying

that Rad(M̃) = {0}. ∇
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Chapter 2

Jordan homomorphisms and

derivations on operator

algebras

In this chapter, we give a brief survey of known results on Jordan homo-

morphisms and derivations on C∗-algebras and von Neumann algebras. No

proofs will therefore be given. All algebras are assumed to have a unit element

unless otherwise stated.

2.1 Jordan homomorphisms and invertibility

preserving linear maps of algebras

Definition 2.1.1 Let A and B be algebras, and φ : A → B a linear map. We

say that φ is an algebra homomorphism (respectively algebra anti-homomor-

phism ) if φ(xy) = φ(x)φ(y) (respectively φ(xy) = φ(y)φ(x)) for every x, y ∈
A. The map φ is called a Jordan homomorphism if φ(x2) = φ(x)2 for every

x ∈ A.

If φ is a bijective algebra homomorphism (respectively bijective algebra

anti-homomorphism), then φ will be called an algebra isomorphism (respec-

tively algebra anti-isomorphism). We call φ a Jordan isomorphism if φ is a
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bijective Jordan homomorphism.

Lemma 2.1.2 ([91], p. 13) Let A and B be algebras. Then a linear map

φ : A → B is a Jordan homomorphism if and only if φ(xy+yx) = φ(x)φ(y)+

φ(y)φ(x) for all x, y ∈ A.

Proposition 2.1.3 ([59], p. 50) If R1 and R2 are rings and φ : R1 → R2

is a Jordan homomorphism, then φ
(
(xy− yx)2

)
=
(
φ(x)φ(y)− φ(y)φ(x)

)2

.

The proofs of the following two propositions are contained in the proof

of the corollary on p. 190 in [29].

Proposition 2.1.4 ([29], p. 190) Let A and B be algebras and suppose that

φ : A → B is an idempotent preserving linear map. If x = Σn
i=1λipi, where λi

(i = 1, . . . , n) are complex scalars and pi (i = 1, . . . , n) are idempotents in A
such that pipj = pjpi = 0 for all i 6= j (i, j = 1, . . . , n), then φ(x2) = φ(x)2.

Proposition 2.1.5 ([29], p. 190) Let A be a ∗-algebra, B an algebra and

φ : A → B a linear map. If φ(x2) = φ(x)2 for all self-adjoint elements of A,

then φ is a Jordan homomorphism.

We say that a linear map φ : A → B between algebras A and B preserves

commutativity if we have that φ(x)φ(y) = φ(y)φ(x) whenever xy = yx with

x, y ∈ A. For example, every algebra homomorphism and algebra anti-

homomorphism between algebras preserves commutativity.

Theorem 2.1.6 ([59], Corollary 1) Let R1 and R2 be rings and φ : R1 →
R2 a Jordan homomorphism. Then φ preserves commutativity provided that

the ring generated by φ(R1) has no nonzero nilpotent elements in its centre.

It should be emphasized that Jordan homomorphisms need not be algebra

homomorphisms nor algebra anti-homomorphisms. This will be illustrated

in the following example.
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Example 2.1.7 ([11], p. 918) Let A = B = M2(C)⊕M2(C) and φ : A → B
a linear map defined by φ(x, y) = φ(x, yt) for every x, y ∈ A, where yt de-

notes the transpose of y. Then it can be shown that φ is a Jordan homo-

morphism and that φ is neither an algebra homomorphism nor an algebra

anti-homomorphism.

Theorem 2.1.8 ([54], Theorem 3.1) Let R1 be a ring and R2 a prime ring.

Then every Jordan homomorphism of R1 onto R2 is an algebra homomor-

phism or an algebra anti-homomorphism.

We say that a nonzero linear functional f on an algebra A is a Jordan

functional if f is a Jordan homomorphism. A linear functional f on an

algebra A will be called a character if f is a nonzero multiplicative linear

functional on A, i.e. f(xy) = f(x)f(y) for every x, y ∈ A.

Proposition 2.1.9 ([27], Proposition 16.6) Every Jordan functional on an

algebra is a character.

Definition 2.1.10 Let A and B be algebras with unit elements 1 and 1′

respectively. A linear map φ : A → B is called unital if φ(1) = 1′.

Definition 2.1.11 If A and B are unital algebras, then a linear map φ :

A → B is said to be invertibility preserving if φ(x) is an invertible element

of B whenever x is an invertible element of A.

Proposition 2.1.12 ([91], Proposition 1.3) Let A and B be algebras. If

φ : A → B is a Jordan homomorphism whose range contains the unit element

of B, then φ is invertibility preserving.

In particular, any surjective Jordan homomorphism between algebras is

invertibility preserving.

Lemma 2.1.13 ([29], p. 187) Let A and B be algebras. A unital linear map

φ : A → B is invertibility preserving if and only if Sp (φ(x),B) ⊂ Sp (x,A)

for all x ∈ A.
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Definition 2.1.14 A linear map φ : A → B between algebras A and B is

spectrum preserving if and only if Sp (φ(x),B) = Sp (x,A) for every x ∈ A.

Proposition 2.1.15 ([75], p. 266) Let φ : A → B be a surjective linear map

between Banach algebras A and B. The following statements are equivalent.

(i) φ is spectrum preserving.

(ii) φ is unital and φ(x) is an invertible element of B if and only if x is an

invertible element of A.

2.2 Jordan homomorphisms of operator alge-

bras

It follows from Proposition 2.1.12 that every unital Jordan homomorphism

between algebras is invertibility preserving. This motivated I. Kaplansky

to raise the question as to when unital linear invertibility preserving maps

between unital algebras are Jordan homomorphisms ([29]). Kaplansky’s orig-

inal question was also motivated by the following results of Gleason, Kahane

and Żelazko as well as of Marcus and Purves given below.

Theorem 2.2.1 (Gleason-Kahane-Żelazko) ([10], Theorem 4.1.1, [64])

Let A be a Banach algebra and f a nonzero continuous linear functional on

A. Then f is a character on A if and only if f(x) ∈ Sp (x,A) for each

x ∈ A.

It follows from Theorem 2.2.1 and Lemma 2.1.13 that if f is a unital

invertibility preserving linear functional on a Banach algebra A, then f is a

character on A.

Theorem 2.2.2 (Marcus-Purves) ([74], Theorem 2.1) Suppose that φ :

Mn(C) → Mn(C) is a unital invertibility preserving linear map. Then φ is

either of the form φ(x) = axa−1 or φ(x) = axta−1 for some invertible matrix

a, where xt denotes the transpose of the matrix x.
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With the additional help of all known counter examples, the following

conjecture seems to be reasonable ([29]):

Conjecture: Let φ : A → B be a unital bijective invertibility preserving

linear map between semi-simple Banach algebras A and B. Then φ is a Jor-

dan isomorphism.

One can ask an easier question than that which the conjecture raises: Let

A and B be semi-simple Banach algebras, and let φ : A → B be a surjective

unital linear map having the property that φ(x) is an invertible element of B
exactly when x is an invertible element of A. Is it true that φ is a Jordan

isomorphism?

In light of Proposition 2.1.15, we can rephrase this question as follows: Let

A and B be semi-simple Banach algebras, and let φ : A → B be a surjective

spectrum preserving linear map. Is it true that φ is a Jordan isomorphism?

Theorem 2.2.3 ([64], Theorem 4) Let A be a Banach algebra and B a com-

mutative semi-simple Banach algebra. If φ : A → B is a unital linear invert-

ibility preserving linear map, then φ is an algebra homomorphism.

The above conjecture can now be rephrased as asking whether the com-

mutativity assumption in Theorem 2.2.3 can be dropped if one makes the

additional assumption that A, in Theorem 2.2.3, be semi-simple.

We now give some affirmative answers to the above conjecture in the

context of C∗-algebras and von Neumann algebras.

Theorem 2.2.4 ([32], Theorem 6) Let A and B be C∗-algebras. Every unital

surjective self-adjoint invertibility preserving linear map φ : A → B is a

Jordan homomorphism.

In light of the conjecture, it would be interesting to know if the self-

adjointness of φ in Theorem 2.2.4 can be removed if one makes the additional

assumption that φ is injective. In 2000, B. Aupetit provided an answer to
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the above question regarding spectrum preserving linear mappings, which is

the following result.

Theorem 2.2.5 ([11], Theorem 1.3 and Remark 2.7) Let A be a von Neu-

mann algebra and B a semi-simple Banach algebra. If φ : A → B is a unital

bijective invertibility preserving linear map, then φ is a Jordan isomorphism.

Theorem 2.2.6 ([46], Corollory 2) Let φ be a unital linear map of a C∗-

algebra A into another C∗-algebra B such that φ maps unitary elements of A
to unitary elements of B. Then φ is a Jordan homomorphism.

There is an interesting link between Jordan homomorphisms and the

Banach-Stone theorem, as pointed out by R. V. Kadison in [62]. First, recall

a version of the classical Banach-Stone theorem which says that a linear map

φ : C(X) → C(Y ) is an isometry of C(X) onto C(Y ) if and only if φ is a

self-adjoint algebra isomorphism of C(X) onto C(Y ). Here, C(X) and C(Y )

denote the algebras of complex-valued continuous functions on X and Y re-

spectively, where X and Y are compact Hausdorff spaces. In 1951, bearing

in mind that commutative C∗-algebras are up to ∗-isomorphism simply just

the C(X)’s, Kadison extended the Banach-Stone result to generally noncom-

mutative C∗-algebras, thereby obtaining a ”noncommutative Banach-Stone

theorem” ([62]). This is the following result.

Theorem 2.2.7 ([62], Theorem 5 and Theorem 7) Let A and B be C∗-

algebras and φ : A → B a unital surjective self-adjoint linear map. Then

φ is a Jordan isomorphism if and only if φ is an isometry.

Later, it was shown more generally by E. Stφrmer that every injective self-

adjoint Jordan homomorphism of one C∗-algebra into another is an isometry

([92], Corollary 3.5).

Theorem 2.2.8 ([92], Lemma 3.2) Let φ be a self-adjoint Jordan homo-

morphism of a von Neumann algebra A into a C∗-algebra B. Then there

exist orthogonal projections p and q in B with p + q = 1 such that the map
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φ1 : A → φ(A)p, defined by x 7→ φ(x)p, and the map φ2 : A → φ(A)q, de-

fined by x 7→ φ(x)q, is a self-adjoint algebra homomorphism and a self-adjoint

algebra anti-homomorphism respectively. Furthermore, φ = φ1 + φ2.

Theorem 2.2.9 ([92], Corollary 3.6) Let A and B be C∗-algebras and φ :

A → B a self-adjoint Jordan homomorphism. Then φ is an algebra homo-

morphism if and only if there exists α > 0 such that φ(a∗a) ≥ αφ(a∗)φ(a)

for all a ∈ A.

2.3 Derivations on operator algebras

We begin by defining the key concept of this section, namely that of a deriva-

tion.

Definition 2.3.1 Let A be an algebra. A linear map D : A → A is called

a derivation on A if D(xy) = xD(y) + D(x)y for every x, y ∈ A. If, in

addition, D is self-adjoint, we say that D is a ∗-derivation on A.

Lemma 2.3.2 ([28], p. 229) Let D : A → A be a derivation on a ∗-algebra

A. Then D = D1 + iD2, where D1 (respectively D2) is defined to be D1 =
1
2
(D(x) +D(x∗)∗) for every x ∈ A (respectively D2(x) = 1

2i
(D(x)−D(x∗)∗)

for every x ∈ A). Furthermore D1 and D2 are ∗-derivations on A.

Let A be an algebra and a ∈ A. If a linear map D : A → A is defined by

D(x) = ax − xa for every x ∈ A, then it can easily be verified that D is a

derivation on A ([36], p. 116). Such derivations are called inner derivations

([36], p. 116). Observe that in a commutative algebra, a derivation is inner

if and only if it is the zero derivation.

Proposition 2.3.3 ([36]) Let A be an algebra and let us replace the usual

multiplication on A⊕A with a different (non-associative) multiplication de-

fined as follows:

(a, b)(u, v) = (au, av + bu)
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for all a, b, u, v ∈ A. Let D be a derivation on A and define a linear map

θ : A → A⊕A by

θ(x) = (x,D(x))

for every x ∈ A. Then θ is an algebra homomorphism with respect to the

newly defined multiplication on A⊕A.

If, in addition, A is a topological algebra and A ⊕ A is equipped with

the corresponding product topology, then D is continuous if and only if θ is

continuous.

Proposition 2.3.4 ([86], Lemma 4.1.2) The only derivation on a commu-

tative C∗-algebra is the zero derivation.

Theorem 2.3.5 ([83], Theorem 2;[86], Lemma 4.1.3) Every derivation on

a C∗-algebra A into a Banach A-module is continuous. In particular, every

derivation on a C∗-algebra is continuous.

Theorem 2.3.6 ([86], Theorem 4.1.6) Every derivation D of a von Neu-

mann algebra is inner, i.e. there exists a ∈ A such that D(x) = ax− xa for

every x ∈ A.

Theorem 2.3.7 ([86], Corollary 4.1.7) Let A be a C∗-algebra on a Hilbert

space H. If D is a derivation on A, then D is ultraweakly continuous and

there exists an element a ∈ A, the ultraweak closure of A in B(H), such that

D(x) = ax− xa for every x ∈ A.

Example 2.3.8 ([86], Example 4.1.8) Consider the C∗-algebra K(H) of all

compact operators on a separable Hilbert spaceH. For a ∈ B(H), let D(x) =

ax−xa for every x ∈ K(H). Then, since K(H) is a two-sided ideal of B(H),

D is a derivation on K(H), but it is not inner if a /∈ K(H) + C1H.
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Chapter 3

Jordan homomorphisms

between algebras of measurable

operators

Recall that all self-adjoint Jordan homomorphisms between C∗-algebras are

continuous (Theorem 2.2.7). In particular, self-adjoint algebra homomor-

phisms between C∗-algebras are continuous, in fact, norm reducing. Also,

every self-adjoint Jordan homomorphism between von Neumann algebras is

expressible as a sum of a self-adjoint algebra homomorphism and a self-

adjoint algebra anti-isomorphism (Theorem 2.2.8). Motivated by these re-

sults, we explore in this chapter, amongst other things, the extent to which

these results carry over to Jordan homomorphisms between algebras of mea-

surable operators.

In Section 3.1,we prove the automatic continuity of characters on com-

plete metrizable GB∗-algebras. In Section 3.2, we show, amongst other

things, that every Jordan homomorphism between algebras of measurable op-

erators is γcm− γcm continuous. Some results about Jordan homomorphisms

between locally convex GB∗-algebras are collected in Section 3.3. The main

result of Section 3.4 is that every self-adjoint Jordan homomorphism between

algebras of measurable operators can be expressed as a sum of a self-adjoint
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algebra homomorphism and a self-adjoint algebra anti-homomorphism. Sec-

tion 3.5 gives conditions under which Jordan homomorphisms between alge-

bras of measurable operators are algebra homomorphisms.

Throughout this chapter, the notation Ã (respectively B̃) will always

stand for the algebra of τA− (respectively τB−) measurable operators affili-

ated with a von Neumann algebra A (respectively B) equipped with a faithful

semifinite normal trace τA (respectively τB).

3.1 Continuity of characters on complete metriz-

able GB∗-algebras

In this section, we prove that all characters on M̃ are measure continuous

(Corollary 3.1.5 below). We first give an example of a character on M̃.

Example 3.1.1 Recall from Section 1.4.1 that any commutative complete

locally m-convex topological algebra A has at least one continuous character.

In particular, if A is a commutative M̃ which is locally convex with respect

to the topology of convergence in measure, then A is locally m-convex with

respect to the topology of convergence in measure (Theorem 1.5.26), and

therefore A has at least one γcm-continuous character.

Let (X,Σ, µ) be a localizable measure space and A ∈ Σ an atom. The map

φA : L̃∞(X,Σ, µ) → C, defined as φA(f) = f(A) for every f ∈ L̃∞(X,Σ, µ),

is a character on L̃∞(X,Σ, µ). This makes sense since measurable functions

are constant on atoms.

Lemma 3.1.2 Let A be a unital *-algebra and x ∈ A. If 1+x∗x is invertible

in A, then −x∗x is quasi-invertible in A.

Proof. Let x ∈ A be such that 1 + x∗x is invertible in A and let y =

(1 + x∗x)−1(x∗x). Then (1 + x∗x)y = x∗x, i.e. y + (x∗x)y = x∗x. Thus

−x∗x + y − (−x∗x)y = 0. This implies that −x∗x is right quasi-invertible.

Similarly, −x∗x is left quasi-invertible (simply take z = (x∗x)(1 + x∗x)−1).

Hence −x∗x is quasi-invertible. ∇
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Theorem 3.1.3 ([79], Theorem 3) If A is a complete metrizable topological
∗-algebra such that −x∗x is quasi-invertible for every x ∈ A, then every

character on A is continuous.

Proposition 3.1.4 Every Jordan functional on a complete metrizable GB∗-

algebra A is continuous.

Proof. Let x ∈ A. Since A is a GB∗-algebra, 1 + x∗x is invertible in A
and therefore, by Lemma 3.1.2, −x∗x is quasi-invertible in A. This holds

for each x ∈ A. Any Jordan functional on a complex algebra is a character

(Proposition 2.1.9). The result follows from Theorem 3.1.3. ∇

Since M̃ is a GB∗-algebra (Theorem 1.5.29), the following corollary is an

immediate consequence of Proposition 3.1.4.

Corollary 3.1.5 Every Jordan functional on M̃ is measure continuous.

3.2 Automatic continuity of Jordan homomor-

phisms

We begin this section with some examples of algebra homomorphisms be-

tween algebras of measurable operators. Let A be a von Neumann algebra

with a faithful finite normal trace τA and denote the algebra of τA-measurable

operators by Ã. Let M = M2(A). Then one can define a faithful finite nor-

mal trace τM on M by τM((xij)) = τA(x11)+τA(x22), (xij) ∈M (i, j = 1, 2).

Denoting the algebra of τM-measurable operators by M̃, it follows from

Proposition 1.3.7 that

M̃ = U(M) = U(M2(A)) ∼= M2(U(A)) = M2(Ã).

Example 3.2.1 Let A and M be as in the previous remark. Given a self-

adjoint algebra homomorphism θ : Ã → Ã, define a map φ : M̃ → M̃ by

φ((xij)) = (θ(xij)) for every (xij) ∈ M̃ (i, j = 1, 2). It can easily be verified
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that φ is a self-adjoint algebra homomorphism. If θ is injective or surjective,

then so is φ.

Example 3.2.2 ([97]) Let A and M be as in Example 3.2.1. Let p ∈ Ap.

The map φ : Ã → M̃ defined as

φ(x) =

(
pxp px(1− p)

(1− p)xp (1− p)x(1− p)

)
is a self-adjoint algebra homomorphism.

Example 3.2.3 ([97]) Let A and M be as in Example 3.2.1. The map

φ : M̃ → Ã defined by φ((xij)) = x11 + x12 + x21 + x22 is a self-adjoint

algebra homomorphism.

Theorem 3.2.4 ([71], p. 951) Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be finite

measure spaces, with X1 a separable complete metric space and µ(X1) = 1.

A linear map T : L0(X1,Σ1, µ1) → L0(X2,Σ2, µ2) is γcm − γcm continuous if

and only if T is of the form

T (f)(t) = Σ∞i=1φi(t)f(Φi(t)), for almost every t ∈ X2, where

(i) φi is a sequence of elements in L0(X2,Σ2, µ2) such that µ2({t : φi(t) 6=
0 for infinitely many i}) = 0;

(ii) Φi : X2 → X1 is a sequence of mappings such that for each i and for

each A ∈ Σ1, Φ−1
i (A) ∈ Σ2 (the completion of Σ2) and Φ−1

i (A) ∩ {t :

φi(t) 6= 0} is a set of µ2-measure zero whenever A is a set of µ1-measure

zero.

Example 3.2.5 Let µ and Σ denote the Lebesgue measure and the Lebesgue

sigma-algebra of [0, 1] respectively, and let (X,Ω, λ) be a finite measure space.

In this case, L̃∞(X,Ω, λ) = L0(X,Ω, λ) and L̃∞([0, 1]) = L0([0, 1]). Let (Ai)

be a sequence of disjoint measurable subsets of X. Define a linear map

φ : L̃∞([0, 1],Σ, µ) → L̃∞(X,Ω, λ) as follows:

φ(f)(t) = Σ∞i=1f(Φi(t))χAi
(t)
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for every f ∈ L̃∞([0, 1],Σ, µ), where Φi : X → [0, 1] is a sequence of mappings

such that, for each i and for each measurable subset A of [0, 1], Φ−1
i (A) ∈ Ω,

and Φ−1
i (A)∩Ai has λ-measure zero whenever A has Lebesgue measure zero.

We show that φ is a Jordan homomorphism. Let f ∈ L̃∞([0, 1],Σ, µ) and

t ∈ X. Then

φ(f2)(t) = Σ∞i=1f
2(Φi(t))χAi

(t).

Now, if χAi
(t) = 1 for some i ∈ N, then χAj

(t) = 0 for all j 6= i. Therefore

φ(f)2(t) =
(
Σ∞i=1f(Φi(t))χAi

(t)
)2

= Σ∞i=1f
2(Φi(t))χAi

(t).

Hence φ is a Jordan homomorphism.

It is easily verified that the conditions of Theorem 3.2.4 are met, so that

φ is γcm − γcm continuous.

If φ : A → B is a linear map between metrizable topological vector spaces

A and B, we define the separating space S(φ,B) of φ to be the set

{b ∈ B : there is a sequence (xn) in A with xn → 0 and φ(xn) → b}.

Recall that the closed graph theorem is valid for any complete metrizable

topological vector space ([69], p. 101). Therefore, if A and B are complete

metrizable topological vector spaces, the linear map φ is continuous if and

only if S(φ,B) = {0}. It is easily verifiable that S(φ,B) is a vector subspace

of B.

We now show that every self-adjoint Jordan homomorphism φ : Ã → B̃
is γcm − γcm continuous (Theorem 3.2.8). For this, we require the following

two lemmas, in which M̃+ denotes the set of positive operators in M̃. The

proof of the following lemma is modelled along the lines of [52], Corollary

25C.

Lemma 3.2.6 Let (xn) be a sequence in M̃+ with xn → 0 in measure. Then

there is a subsequence (yn) of (xn) and a y ∈ M̃+ such that 2nyn ≤ y for all

n.
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Proof. Since M̃ is metrizable, there is a subsequence (yn) of (xn) such that

zn = 4nyn → 0 (γcm). Indeed, the metrizability of M̃ implies that there

exists a countable γcm-neighbourhood base {Uk : k ∈ N} of zero in M̃. Let

k ∈ N. Since xn → 0 (γcm), there exists Nk ∈ N such that xn ∈ 4−kUk for all

n ≥ Nk. Without loss of generality, the sequence (Nk) is increasing. Hence

4kxn ∈ ∩k
i=1Ui for all n ≥ Nk. Let yk = xNk

for every k. Then 4kyk ∈ ∩k
i=1Ui

for every k. Therefore 4nyn → 0 (γcm).

Since M̃ is complete, it follows that the Cauchy sequence (wn) of positive

elements, defined by wn = Σn
k=12

−kzk for every n, converges to y, say, in the

measure topology. By Proposition 1.5.12, y ≥ 0. Finally, it is evident that

2nyn ≤ y for every n. ∇

The proof of our next lemma is similar to that [52], Proposition 25D.

Lemma 3.2.7 Let φ : Ã → B̃ be a positive linear map. If (xn) is a sequence

in M̃+ with xn → 0 in measure, then there exists a subsequence (yn) of (xn)

such that φ(yn) → 0 in measure.

Proof. By Lemma 3.2.6, there is a subsequence (yn) of (xn) and a y ∈ M̃+

such that 2nyn ≤ y for every n. Since φ is positive, φ(yn) ≤ 2−nφ(y) for all

n. Therefore, for every n, 0 ≤ µt(φ(yn)) ≤ 2−nµt(φ(y)) for all t > 0. Since

2−nφ(y) → 0 (γcm), it follows from Lemma 1.5.16 that φ(yn) → 0 (γcm). ∇.

The following theorem is the main result of this section. For this, observe

that every self-adjoint Jordan homomorphism φ : A → B between GB∗-

algebras A and B is positive: Let x ∈ A be positive. By Proposition 1.4.21,

there exists a positive element y ∈ A such that x = y2. Therefore, since φ is

a Jordan homomorphism, φ(x) = φ(y2) = φ(y)2. Now φ(y) is a self-adjoint

element in B, since φ is self-adjoint. Hence φ(x) is a positive element in B.

Recall from Theorem 1.5.29 that M̃ is a GB∗-algebra.

Theorem 3.2.8 Every self-adjoint Jordan homomorphism φ : Ã → B̃ is

γcm − γcm continuous.
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Proof. Let y ∈ S(φ, B̃). Then there exists a sequence (xn) in Ã such

that xn → 0 (γcm) and φ(xn) → y (γcm). For every n, let Re(xn) = an =
1
2
(xn + x∗n). Let Re(y) = z = 1

2
(y + y∗). Then an → 0 (γcm) and φ(an) →

z (γcm) since φ is self-adjoint. By Theorem 1.5.20, bn = |an| → 0 (γcm)

and |φ(an)| → |z| (γcm). Since φ is a self-adjoint Jordan homomorphism,

|φ(an)|2 = φ(an)∗φ(an) = φ(an)2 = φ(a2
n) = φ(a∗nan) = φ(b2n) for every n.

Observe now that b2n → 0 (γcm) and φ(b2n) = |φ(an)|2 → |z|2 = z2 (γcm) since

z is self-adjoint. By Lemma 3.2.7, there exists a subsequence (cn) of (b2n) such

that φ(cn) → 0 (γcm). Since φ(b2n) → z2 (γcm), it follows that φ(cn) → z2

(γcm). By uniqueness of limits, z2 = 0. Since z is self-adjoint, it follows from

the polar decomposition of z that z = 0.

Similarly, Im(y) = 1
2i

(y − y∗) = 0. Hence y = 0, implying that φ is

γcm − γcm continuous. ∇.

Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be finite measure spaces with µ1(X1) =

1. By Theorem 3.2.8, a self-adjoint Jordan homomorphism φ : L̃∞(X1,Σ1, µ1)

→ L̃∞(X2,Σ2, µ2) is a map of the type described in Theorem 3.2.4 with the

added condition that Σ∞i=1φi(t) =
(
Σ∞i=1φi(t)

)2

almost everywhere.

There is an interesting link between Jordan homomorphisms and com-

position operators which we will now describe ([72]). Let (Xi,Σi, µi) be

σ-finite measure spaces for i = 1, 2. A linear operator C : Lp(X1,Σ1, µ1) →
Lp(X2,Σ2, µ2), where 0 ≤ p ≤ ∞, is called a (generalized) composition oper-

ator if there is a Y ∈ Σ2 and a measurable transformation T : Y → X1 (i.e.

T−1(E) ∈ Σ2 whenever E ∈ Σ1) such that

C(f)(x) =

{
(f ◦ T )(x) if x ∈ Y
0 if x ∈ X2 \ Y,

where f ∈ Lp(X1,Σ1, µ1), and we write C = CT ([72]). In this definition,

one could even replace the Lp-spaces with L̃∞ and still call C a composition

operator. We say that T is non-singular if µ2(T
−1(E)) = 0 whenever µ1(E) =

0, E ∈ Σ1 ([72]).

Proposition 3.2.9 ([72], Proposition 2.1) The operator CT : L∞(X1,Σ1, µ1)

44



Univ
ers

ity
 of

 C
ap

e T
ow

n

→ L∞(X2,Σ2, µ2) is a well defined bounded linear operator if and only if

T : Y → X1 is non-singular.

Proposition 3.2.10 ([72], Proposition 2.2) The operator CT : L̃∞(X1,Σ1, µ1)

→ L̃∞(X2,Σ2, µ2) is a well defined γcm − γcm continuous linear operator if

and only if T is non-singular and for every ε > 0, there exists δ > 0 such

that µ1(E) ≤ δ (E ∈ Σ1) implies (µ2 ◦ T−1)(E) ≤ ε.

Just as in Proposition 3.2.9, the non-singularity condition of T in Propo-

sition 3.2.10 is there to ensure that CT is well defined. Let L∞(Xi,Σi, µi)
R

be the (real) algebra of real-valued functions in L∞(Xi,Σi, µi), i = 1, 2.

Since a bounded linear operator φ : L∞(X1,Σ1, µ1)
R → L∞(X2,Σ2, µ2)

R is

a composition operator if and only if φ is a Jordan homomorphism ([72],

Proposition 2.6), the automatic continuity of self-adjoint Jordan homomor-

phisms from one von Neumann algebra into another can be thought of as

a non-commutative version of Proposition 3.2.9, i.e. self-adjoint Jordan ho-

momorphisms between von Neumann algebras can be considered to be non-

commutative composition operators ([72]). The following result is due to L.

E. Labuschagne.

Theorem 3.2.11 ([72], Proposition 4.7) Let φ be a self-adjoint Jordan ho-

momorphism from a ∗-subalgebra D(φ) of Ã, containing all projections of

finite trace, into B̃. The following statements are equivalent.

(i) φ is γcm − γcm continuous.

(ii) φ(D(φ) ∩ A) ⊂ B and for every ε > 0, there exists δ > 0 such that

τB(φ(p)) ≤ ε whenever p ∈ Ap with τA(p) ≤ δ. Furthermore, φ|(D(φ)∩A)

is norm-norm continuous.

By Theorems 3.2.8 and 3.2.11, every self-adjoint Jordan homomorphism

φ : Ã → B̃ satisfies (ii) of Theorem 3.2.11. By Proposition 3.2.10, one can

therefore regard every self-adjoint Jordan homomorphism φ : Ã → B̃ as a

non-commutative composition operator.
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3.3 Jordan homomorphisms between locally

convex GB∗-algebras

Lemma 3.3.2 was proved in [72] for the case where A and B are algebras

of measurable operators. We give a proof that is different to the one given

there. For this, we need the following lemma.

Lemma 3.3.1 If u is a unitary element of a GB∗-algebra A, then u ∈ Ab.

Proof. Since u is normal, u generates a maximal commutative ∗-subalgebra

B of A ([27], Proposition V.7). By Lemma 1.4.14, B is a GB∗-algebra. It

follows from the fact that u is unitary and Proposition 1.4.16 that 1
2
u =

u(1 + u∗u)−1 ∈ Bb ⊂ Ab. Thus u ∈ Ab. ∇

Lemma 3.3.2 If φ : A → B is a unital self-adjoint Jordan homomorphism

between GB∗-algebras A and B, then φ(Ab) ⊂ Bb.

Proof. Let u be a unitary element in A. By Lemma 3.3.1, u ∈ Ab. We

first show that φ(u∗)φ(u) = φ(u)φ(u∗). Since φ is self-adjoint, it follows that

x = φ(u∗)φ(u) − φ(u)φ(u∗) is self-adjoint. By Proposition 2.1.3, it follows

that

x2 =
(
φ(u∗)φ(u)− φ(u)φ(u∗)

)2

= φ
(
(u∗u− uu∗)2

)
= 0.

By Theorem 1.4.13 and Lemma 1.4.14, it follows that x = 0.

It now follows from Lemma 2.1.2 that

2φ(u)φ(u)∗ = 2φ(u)φ(u∗)

= φ(u)φ(u∗) + φ(u∗)φ(u)

= φ(uu∗ + u∗u)

= 2φ(uu∗)

= 2φ(1)

= 2.1

Hence φ(u)φ(u)∗ = φ(u)∗φ(u) = 1 for all unitary elements u ∈ Ab. Therefore

φ preserves unitary elements. Since Ab is a C∗-algebra, every element of Ab
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is a linear combination of four unitary elements of Ab, and so we conclude

from Lemma 3.3.1 that φ(Ab) ⊂ Bb. ∇

If A is a ∗-algebra, we say that a linear map π is a ∗-representation (re-

spectively Jordan ∗-representation ) of A if π is a self-adjoint algebra homo-

morphism (respectively self-adjoint Jordan homomorphism) of A into B(H)

for some Hilbert space H. In [30], it is proved that every ∗-representation

of a complete metrizable locally m-convex ∗-algebra is continuous (see [30],

Lemma 3.1). This result is also true for every complete metrizable locally

convex ∗-algebra ([50], p. 60). The next proposition is an extension of this

result to Jordan ∗-representations of complete metrizable locally convex GB∗-

algebras with nearly the same proof, so we only sketch the proof. Proposition

3.3.4 is also needed in the proof of Theorem 3.3.5 below. We first give the

following example to show that there are complete metrizable locally convex

GB∗-algebras which are not locally C∗-algebras.

Example 3.3.3 ([6], Example 4) Let A be the Arens algebra Lω([0, 1]) =

∩∞p=1Lp([0, 1]). When equipped with the topology defined by the collection

of Lp-norms, A is a complete metrizable locally convex GB∗-algebra which

is not locally m-convex, and therefore not a locally C∗-algebra.

Proposition 3.3.4 Let A be a complete metrizable locally convex GB∗-algebra

and π : A → B(H) a Jordan ∗-representation. Then π is continuous.

Proof. Fix ε > 0. Let V = {a ∈ A : ‖π(a)‖ ≤ ε} and let Vξ,η = {a ∈ A :

|〈π(a)ξ, η〉| ≤ ε}, where ξ, η ∈ H. Then V = ∩{Vξ,η : ‖ξ‖, ‖η‖ ≤ 1}. By

linearity of π, it follows that, for every ξ, η ∈ H with ‖ξ‖, ‖η‖ ≤ 1, the set

Vξ,η is convex and balanced. Every positive linear functional on a complete

metrizable topological ∗-algebra, with continuous involution, is continuous

(Theorem 1.4.2).

Hence the linear functional a 7→ 〈π(a)ψ, ψ〉 is continuous: Let a ∈ A
with a ≥ 0. Since A is a GB∗-algebra, it follows from Proposition 1.4.21,
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that a = b2 for some self-adjoint b ∈ A. Therefore, since π is a self-adjoint

Jordan homomorphism, it follows that

〈π(a)ψ, ψ〉 = 〈π(b2)ψ, ψ〉

= 〈π(b)2ψ, ψ〉

= 〈π(b)∗π(b)ψ, ψ〉

= 〈π(b)ψ, π(b)ψ〉

≥ 0.

Hence the functional is positive, and therefore continuous for every ψ ∈ H.

By the polarization formula, the linear functional a 7→ 〈π(a)ξ, η〉 is con-

tinuous for every ξ, η ∈ H. Thus, every Vξ,η is closed. It follows immediately

that V is closed, convex and balanced. Also, by linearity of π, it is easily

verified that V is absorbing. Therefore, since A is metrizable and locally

convex, V is a neighbourhood of 0 ∈ A. It follows that π is continuous. ∇

Theorem 3.3.5 Let A and B be complete metrizable locally convex GB∗-

algebras. Suppose that B has a separating family of ∗-representations, i.e.

∩{Ker(π) : π a ∗-representation of B} = {0}.

Then every self-adjoint Jordan homomorphism φ : A → B is continuous.

Proof. By the closed graph theorem, it suffices to show that if xn → 0 in

A and if φ(xn) → y in B, then y = 0. For every n, let yn = φ(xn) and

let π be a ∗-representation of B. It follows from Proposition 3.3.4 that π is

continuous. Since φ is a self-adjoint Jordan homomorphism, π ◦φ is a Jordan
∗-representation on A. By Proposition 3.3.4, we see that π ◦ φ is continuous

on A. So

π(y) = lim
n→∞

(π ◦ φ)(xn)

= (π ◦ φ)( lim
n→∞

xn)

= 0.
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Hence π(y) = 0 for all ∗-representations π of B. By hypothesis, it follows

that y = 0. ∇.

If A is a metrizable locally C∗-algebra, then A has a separating family

of irreducible ∗-representations ([30], p. 52). In light of Theorem 3.3.5, the

following question presents itself: Under what conditions will a GB∗-algebra

have a separating family of ∗-representations? The following lemma is known

to hold for the case where A is a C∗-algebra (Theorem 1.2.17). It is easily

seen that this lemma also holds without the assumption of completeness.

Lemma 3.3.6 Let (A, ‖.‖) be a ∗-normed algebra with ‖x∗x‖ = ‖x‖2 for

each x ∈ A. Then A admits a family of ∗-representations which separate the

points of A.

Proposition 3.3.7 For a ∗-algebra A, the following statements are equiva-

lent.

(i) A admits a separating family of ∗-representations.

(ii) A admits a separating family of C∗-seminorms (pα).

Proof. (i) ⇒ (ii): Let (πα) be a separating family of ∗-representations which

separate the points of A. For each α, let pα(x) = ‖πα(x)‖ for every x ∈ A.

It is easily verified that every pα is a C∗-seminorm and that these seminorms

separate the points of A.

(ii) ⇒ (i): Suppose that (pα) is a separating family of C∗-seminorms

which separate the points of A. Let 0 6= a ∈ A. Then there exists pα

such that pα(a) 6= 0. Let Nα = {x ∈ A : pα(x) = 0}. Then A/Nα is a
∗-normed algebra with the standard quotient norm a C∗-norm. By Lemma

3.3.6, there is a ∗-representation πα of A/Nα on some Hilbert space H such

that πα(a + Nα) 6= 0 (since a /∈ Nα, it is clear that a + Nα 6= Nα). Let

π(x) = πα(x+Nα) for every x ∈ A. Clearly, π is a ∗-representation of A on

H, and π(a) = πα(a+Nα) 6= 0. The proof is complete. ∇
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3.4 More results on Jordan homomorphisms

between algebras of measurable opera-

tors

We now give an analogue of Theorem 2.2.6 for algebras of measurable oper-

ators.

Proposition 3.4.1 Suppose that φ : Ã → B̃ is a unital unitary preserving

γcm − γcm continuous linear map. Then φ is a Jordan homomorphism.

Proof. All unitary elements in Ã are in A. Similarly, all unitary elements

in B̃ are in B. Recall that A and B are the linear span of unitary elements

of A and B respectively. Thus, since φ is unitary preserving, φ(A) ⊂ B.

So, by Theorem 2.2.6, φ|A is a Jordan homomorphism. Since φ is γcm − γcm

continuous, φ is a Jordan homomorphism. ∇

The following example is a modification of Example 2.1.7.

Example 3.4.2 Let M = B(C2)⊕B(C2) ∼= M2(C)⊕M2(C), and let M1 =

B(C2 ⊕ C2). Now M ⊂ M1. Since M1 is the algebra of bounded linear

operators on C2 ⊕ C2, it follows that M1 admits a faithful finite normal

trace τ1. Thus τ = τ1|M is a faithful finite normal trace on M.

We conclude that M = M̃. Indeed, since M1 = M̃1, it follows from

Proposition 1.5.11 that

inf{τ(p) : 0 6= p ∈Mp} ≥ inf{τ1(p) : 0 6= p ∈ (M1)p} > 0.

By Proposition 1.5.11, it follows that M = M̃.

Define a linear map φ : M→M by φ(x, y) = (x, yt), where yt denotes the

transpose of the matrix y. By Example 2.1.7, φ is a Jordan homomorphism

but not an algebra homomorphism nor an algebra anti-homomorphism. So

a Jordan homomorphism between algebras of measurable operators need not

be an algebra homomorphism or an algebra anti-homomorphism.
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Proposition 3.4.3 Let A and B be GB∗-algebras with underlying C∗-algebras

Ab and Bb respectively, and suppose that Ab is a W∗-algebra. Suppose further

that the multiplications on A and B are jointly continuous. Let φ : A → B
be a continuous self-adjoint Jordan homomorphism such that φ(Ab) ⊂ Bb.

Then there exist orthogonal projections p and q in Bb with p + q = 1 such

that the maps φ1 : A → φ(A)p, defined as x 7→ φ(x)p, and φ2 : A → φ(A)q,

defined as x 7→ φ(x)q, are self-adjoint homomorphisms and self-adjoint anti-

homomorphisms respectively. Furthermore φ = φ1 + φ2.

Proof. By hypothesis, φ(Ab) ⊂ Bb. Therefore, Theorem 2.2.8 can be applied

to obtain projections p and q in Bb with p+q = 1 such that φ1 : Ab → φ(Ab)p

and φ2 : Ab → φ(Ab)q are self-adjoint homomorphisms and self-adjoint anti-

homomorphisms respectively, and φ|Ab
= φ1 + φ2. Since φ is continuous

and Ab is dense in A (Theorem 1.4.17), it follows that the maps φ1 and

φ2, first defined on Ab, can be extended by continuity to A. Therefore

φ1 : A → φ(A)p and φ2 : A → φ(A)q is a self-adjoint algebra homomorphism

and a self-adjoint algebra anti-homomorphism respectively. Furthermore,

φ = φ1 + φ2. ∇

Corollary 3.4.4 Suppose that φ : Ã → B̃ is a unital self-adjoint Jordan

homomorphism. Then there exist orthogonal projections p and q in B with

p+q = 1 such that the maps φ1 : Ã → φ(Ã)p, defined as x 7→ φ(x)p, and φ2 :

Ã → φ(Ã)q, defined as x 7→ φ(x)q, are self-adjoint algebra homomorphisms

and self-adjoint algebra anti-homomorphisms respectively. Furthermore φ =

φ1 + φ2.

Proof. First note that Theorem 1.5.29 and Lemma 3.3.2 implies that

φ(A) ⊂ B. The claim now follows from Proposition 3.4.3 and Theorem

3.2.8. ∇

An automorphism φ on an algebra A is said to be inner if there exists

an invertible element a ∈ A such that φ(x) = axa−1 for every x ∈ A.
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Theorem 3.4.5 Let φ be a self-adjoint automorphism on M̃, where M is

of type I, such that φ keeps every element of Z(M) element-wise fixed, i.e.

φ(x) = x for every x ∈ Z(M). Then φ is inner.

Proof. Since φ and φ−1 are unital, one can apply Lemma 3.3.2 to φ and φ−1

to obtain φ(M) = M. Therefore, φ|M is an automorphism leaving Z(M)

element-wise fixed. Every automorphism on a type I AW∗-algebra, leaving its

centre element-wise fixed, is inner ([66], Theorem 10. See also [65], Theorem

3). Hence there is an invertible element a ∈ M such that φ(x) = axa−1 for

every x ∈ M. Since M is γcm- dense in M̃ and φ is γcm − γcm continuous

(Theorem 3.2.8), it follows that φ(x) = axa−1 for every x ∈ M̃. ∇

3.5 Conditions under which a Jordan homo-

morphism is an algebra homomorphism

Proposition 3.5.1 Suppose that A is a commutative algebra and B is an

algebra with no nonzero nilpotent elements in its centre. If φ : A → B is a

surjective Jordan homomorphism, then φ is an algebra homomorphism.

Proof. By Theorem 2.1.6 and the surjectivity of φ, it is immediate that

φ preserves commutativity. Let x, y ∈ A. Then, since xy = yx and φ is a

Jordan homomorphism, it follows from Lemma 2.1.2 that

2φ(xy) = φ(2xy)

= φ(xy + yx)

= φ(x)φ(y) + φ(y)φ(x)

= 2φ(x)φ(y)

Hence φ(xy) = φ(x)φ(y). This holds for every x, y ∈ A. Thus φ is an algebra

homomorphism. ∇.

Let x be a closed normal (unbounded) linear operator on a Hilbert space.

By Theorem 1.3.9, x is affiliated with a commutative von Neumann algebra.
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It follows from Theorem 1.3.10 that, for every natural number n, xn is a

closed linear operator. This is important in the proof of our next lemma.

Lemma 3.5.2 The algebra M̃ has no nonzero nilpotent elements in its cen-

tre.

Proof. Suppose that x is a nilpotent element in the centre of M̃. Then

xy = yx for every y ∈ M̃. In particular, xa = ax for every a ∈ M. Since x

is nilpotent, there exists a natural number n such that xn = 0. As a result,

xn is everywhere defined. Therefore, since D(xn) ⊂ D(x), it follows that x is

everywhere defined. Hence, since x is a closed linear operator, x is a bounded

linear operator, implying that x ∈ M. Therefore x ∈ Z(M), the centre of

M. Since Z(M) is a commutative C∗-algebra, Z(M) ∼= C(X), where X is

the maximal ideal space of Z(M). Clearly, C(X) has no nonzero nilpotent

elements, so Z(M) does not either. Thus x = 0. ∇

The next corollary follows immediately from Proposition 3.5.1 and Lemma

3.5.2.

Corollary 3.5.3 Suppose that Ã is commutative and that φ : Ã → B̃ is a

surjective Jordan homomorphism, then φ is an algebra homomorphism.

Corollary 3.5.4 Suppose that φ : Ã → B̃ is a unital self-adjoint Jordan

homomorphism. Then φ is an algebra homomorphism if and only if there

exists α > 0 such that φ(a∗a) ≥ αφ(a∗)φ(a) for all a ∈ Ã.

Proof. Assume that φ is an algebra homomorphism. Then, by taking α = 1,

it is trivial that φ(a∗a) ≥ αφ(a∗)φ(a) for all a ∈ Ã.

Now assume that there exists α > 0 such that φ(x∗x) ≥ αφ(x∗)φ(x) for

all x ∈ Ã. This inequality holds in particular for all x ∈ A. By Theorem

1.5.29 and Lemma 3.3.2, φ(A) ⊂ B. It follows from Theorem 2.2.9 that φ|A is

an algebra homomorphism. By the γcm−γcm continuity of φ (Theorem 3.2.8)

and the denseness ofA in Ã, it follows that φ is an algebra homomorphism. ∇
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Recall that the product of two nonzero two-sided ideals I1 and I2 of a

ring R is the two-sided ideal of R consisting of all finite sums of the form

x1x2, with x1 ∈ I1 and x2 ∈ I2.

Lemma 3.5.5 ([54], p. 47) Let R be a ring. The following statements are

equivalent.

(i) If a, b ∈ R and aRb = {0}, then a = 0 or b = 0.

(ii) The product of two non-zero two-sided ideals of R is nonzero.

We call a ring satisfying the equivalent conditions of Lemma 3.5.5 a prime

ring.

Theorem 3.5.6 Let M be a von Neumann algebra with a faithful semifinite

normal trace. Then M̃ is prime if and only if M is prime.

Proof. Suppose that M̃ is prime and let a, b ∈ M with aMb = {0}. We

will show that a = 0 or b = 0. Let x ∈ M̃. Then there is a sequence (xn)

in M with xn → x (γcm). Therefore, since axnb = 0 for all n, it follows

that axb = a(limn→∞ xn)b = limn→∞ axnb = 0. This holds for every x ∈ M̃.

Thus aM̃b = {0}. Since M̃ is prime, a = 0 or b = 0, implying that M is

prime.

Suppose that M is prime. Let A and B be two-sided nonzero ideals in

M̃. We first show that A ∩M and B ∩M are nonzero two-sided ideals in

M, where the closures are taken with respect to the measure topology.

Since A and B are nonzero, A and B are nonzero two-sided ideals in

M̃. If A ∩M = {0}, then, by Theorem 1.5.21, A = A ∩M = {0}. This

is a contradiction. Therefore, we conclude that A ∩M 6= {0}. Similarly

B ∩M 6= {0}.
Since M is prime, it follows from Lemma 3.5.5 that (A∩M)(B ∩M) 6=

{0}. Hence (A)(B) 6= {0}. Therefore there exist elements x ∈ A and y ∈ B
such that xy 6= 0. Since x ∈ A, there is a sequence (xn) inA such that xn → x

(γcm). Similarly, there is a sequence (yn) in B such that yn → y (γcm). Hence

xnyn → xy (γcm). Therefore, since xy 6= 0, at least one of the terms of the
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sequence xnyn is nonzero. This implies that AB 6= {0} since all xn and yn

are in A and B respectively. It follows from Lemma 3.5.5 that M̃ is prime. ∇

It is known that a von Neumann algebra is prime if and only if it is

a factor ([9], p. 47). Therefore we can deduce the following result from

Theorem 3.5.6.

Corollary 3.5.7 Let M be a von Neumann algebra with a faithful semifinite

normal trace. Then M̃ is prime if and only if M is a factor.

By an application of Theorem 2.1.8 and Corollary 3.5.7, we obtain the

next result.

Corollary 3.5.8 If φ : Ã → B̃ is a surjective Jordan homomorphism,

with B a factor, then φ is an algebra homomorphism or an algebra anti-

homomorphism.

Corollary 3.5.8 is an analogue of the following result of Kadison.

Theorem 3.5.9 ([62], Corollary 11) If A and B are factors, then every self-

adjoint Jordan isomorphism φ : A → B is a self-adjoint algebra isomorphism

or a self-adjoint algebra anti-isomorphism.
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Chapter 4

A problem of Kaplansky

In Section 2.2, we explored affirmative answers to the following question,

raised by I. Kaplansky, in the context of C∗-algebras, especially von Neumann

algebras:

When is a unital invertibility preserving linear map between unital alge-

bras a Jordan homomorphism?

In Section 4.5 of this chapter, we provide some answers in the case where

the unital algebras in question are algebras of measurable operators.

In Section 4.1, we show that every continuous projection preserving lin-

ear map between GB∗-algebras is a Jordan homomorphism. In Section 4.2,

we give some results about positive operators in M̃ which we need in the

sections that follow. Sections 4.3 and 4.4 deal with automatic continuity of

positive linear maps between algebras of measurable operators and projec-

tion preserving linear maps respectively. These will culminate in the main

results of this chapter.

Throughout this chapter, the notation Ã (respectively B̃) will always

stand for the algebra of τA− (respectively τB−) measurable operators affili-

ated with a von Neumann algebra A (respectively B) equipped with a faithful

semifinite normal trace τA (respectively τB).
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4.1 Conditions under which a linear mapping

is a Jordan homomorphism

The proof of the following result is similar to the arguments given in [29].

Theorem 4.1.1 Let A be a GB∗-algebra with the underlying C∗-algebra Ab

of A a W∗-algebra, and let B be a topological ∗-algebra. Suppose further

that the multiplications on A and B are jointly continuous. If φ : A → B
is a continuous linear mapping preserving projections, then φ is a Jordan

homomorphism.

Proof. Let s be a self-adjoint element in Ab. Then there is a sequence (sn) of

finite linear combinations of mutually orthogonal projections in Ab such that

sn → s in norm (Theorem 1.3.11), and hence also with respect to the original

topology on A, since the restriction of the original topology of A to Ab is

weaker than the norm topology of Ab. By Proposition 2.1.4, φ(s2
n) = φ(sn)2

for every n, and hence, since φ is continuous, we have φ(s2) = φ(limn→∞ s
2
n) =

φ(limn→∞ sn)2 = φ(s)2. This holds for any self-adjoint element s ∈ Ab. By

Proposition 2.1.5, φ|Ab
is a Jordan homomorphism.

Let x ∈ A. By Theorem 1.4.17, there is a sequence (xn) in Ab such that

xn → x. By using a similar argument as above, φ(x2) = φ(x)2. This holds

for every x ∈ A. Thus φ is a Jordan homomorphism. ∇

4.2 Positivity in M̃

Let x ∈ M̃. Recall that x is positive if and only if x is self-adjoint and

〈xξ, ξ〉 ≥ 0 for all ξ ∈ D(x).

Lemma 4.2.1 Let x ∈ M̃. The following statements are equivalent.

(i) x is positive.

(ii) There exists a unique self-adjoint y ∈ M̃ such that x = y2.

(iii) There exists y ∈ M̃ such that x = y∗y.
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Proof. (i) ⇒ (ii) : Suppose that x ∈ M̃ is positive. By Proposition 1.3.2,

there is a unique self-adjoint (and thus closed) densely defined operator y

such that x = y2. Also, by Proposition 1.3.2, y is affiliated with M. We now

show that y ∈ M̃. Let δ > 0. Since x ∈ M̃, there is a projection p ∈ M
such that pH ⊂ D(x) and τ(1− p) < δ. It follows that pH ⊂ D(y2) ⊂ D(y).

Thus y ∈ M̃. The implication (ii) ⇒ (iii) is obvious.

(iii) ⇒ (i) : Suppose that x = y∗y for some y ∈ M̃. Then D(x) ⊂ D(y).

Therefore 〈xξ, ξ〉 = 〈y∗yξ, ξ〉 = 〈yξ, yξ〉 ≥ 0 for all ξ ∈ D(x). Also x is

self-adjoint. Thus x is positive. ∇

Lemma 4.2.2 Let x ∈ M̃ be self-adjoint. Then there exist positive operators

x1 and x2 in M̃ such that x = x1 − x2.

Proof. By Proposition 1.3.5, there exist positive operators x1 and x2 such

that x = x1 − x2. It remains to show that x1 and x2 are in M̃. By Proposi-

tion 1.3.5, it follows that x1 and x2 are closed densely defined and affiliated

with M. Furthermore, by the proof of [93], Corollary 9:31, D(x) ⊂ D(x1)

and D(x) ⊂ D(x2). Let δ > 0. Since x ∈ M̃, there is a projection p ∈ M
such that pH ⊂ D(x) and τ(1 − p) < δ. So we have that for every δ > 0,

there is a projection p ∈ M such that pH ⊂ D(x1) and pH ⊂ D(x2) as well

as τ(1− p) < δ. So x1 and x2 are in M̃. ∇

If A is a ∗-algebra, we say that b ∈ A is positive if b = a∗a for some

a ∈ A. Observe that every positive element of A is self-adjoint. If A = M̃,

then it follows from Lemma 4.2.1 that this notion of positivity coincides with

the definition of positivity in M̃.

Lemma 4.2.3 Let A be a ∗-algebra such that for each self-adjoint x ∈ A,

there exist positive a, b ∈ A such that x = a−b. Suppose that B is a ∗-algebra

and φ : A → B is a positive linear map. Then φ is self-adjoint.

Proof. Let z ∈ A. Then there exist self-adjoint elements x and y in A such

that z = x + iy. By hypothesis, there exist positive elements x1 and x2 in
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A such that x = x1 − x2. Also, there exist positive elements y1 and y2 in A
such that y = y1 − y2. Thus x = x1 − x2 + iy1 − iy2. Hence

φ(x∗) = φ(x1)− φ(x2)− iφ(y1) + iφ(y2).

On the other hand,

φ(x)∗ = φ(x1)
∗ − φ(x2)

∗ − iφ(y1)
∗ + iφ(y2)

∗.

Since φ is positive, φ(x1), φ(x2), φ(x3) and φ(x4) are positive and thus self-

adjoint. Hence

φ(x)∗ = φ(x1)− φ(x2)− iφ(y1) + iφ(y2).

Hence φ(x∗) = φ(x)∗ for all x ∈ A, implying that φ is self-adjoint. ∇

4.3 Automatic continuity of positive linear

mappings

Let A be a topological algebra. Recall that the radical of A, denoted by

Rad(A), is the intersection of all maximal left ideals of A. The strong radical

of A, denoted by RadS(A), is defined to be the intersection of all closed

maximal left ideals of A. If Rad(A) = {0} (respectively RadS(A) = {0}),
we say that A is semi-simple (respectively strongly semi-simple). If A is a

commutative complete locally m-convex topological algebra, then Rad(A) =

RadS(A) ([15], 4:11-1).

Theorem 4.3.1 If M̃ is commutative and locally convex, then M̃ is strongly

semi-simple.

Proof. By Theorem 1.5.30, M̃ is semi-simple. It follows from Theorem

1.5.26 and a preceding remark that RadS(M̃) = Rad(M̃) = {0}. ∇
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Let A and B be metrizable topological algebras and φ : A → B a linear

map. Recall that the separating space of φ, denoted by S(φ,B), is defined

to be the set

{y ∈ B : there is a sequence (xn) in A with xn → 0 and φ(xn) → y}.

Lemma 4.3.2 If φ : Ã → B̃ is positive, then

S(φ, B̃) ⊂ ∩{Ker(f) : f a positive linear form on B̃}.

Proof. Let y ∈ S(φ, B̃). Then there is a sequence (xn) in Ã such that

xn → 0 (γcm) and φ(xn) → y (γcm). Let f be a positive linear form on B̃.

Then f is measure continuous by Theorem 1.4.2. So f(φ(xn)) → f(y) (γcm).

Since φ is positive, f ◦φ is a positive linear form on Ã. So, by Theorem 1.4.2,

f ◦ φ is measure continuous on Ã. Therefore, since xn → 0 (γcm), it follows

that (f ◦ φ)(xn) → 0 (γcm), i.e. f(φ(xn)) → 0 (γcm). Due to uniqueness of

limits, f(y) = 0. But f is an arbitrary positive linear form on B̃. Hence the

result follows. ∇

Theorem 4.3.3 If φ : Ã → B̃ is positive and B̃ is locally convex in measure,

then φ is γcm − γcm continuous.

Proof. Let 0 < x ∈ B̃. By Theorem 1.5.29 and Proposition 1.4.22, there is

a positive linear form f on B̃ such that f(x) > 0. If 0 6= x ∈ B̃ is self-adjoint,

but not positive, there exists a positive linear form g on B̃ such that g(x) < 0

(Proposition 1.4.22). To summarize, if 0 6= x ∈ B̃ is self-adjoint, there is a

positive linear form f on B̃ such that f(x) 6= 0.

Let y ∈ S(φ, B̃). We show that a = 1
2
(y + y∗) ∈ S(φ, B̃). Since y ∈

S(φ, B̃), there exists a sequence (xn) in Ã such that xn → 0 (γcm) and

φ(xn) → y (γcm). Observe that x∗n → 0 (γcm). Since φ is positive and thus

self-adjoint (by Lemmas 4.2.2 and 4.2.3), φ(x∗n) = φ(xn)∗ → y∗ (γcm). Thus

y∗ ∈ S(φ, B̃). Therefore, since S(φ, B̃) is a vector subspace of B̃, it follows

that a ∈ S(φ, B̃).

Similarly, b = 1
2i

(y − y∗) ∈ S(φ, B̃). Observe that a and b are self-adjoint

elements of B̃. By Lemma 4.3.2 and the first paragraph, it is immediate that
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a = 0 and b = 0. Hence y = a + ib = 0, implying that S(φ, B̃) = {0}. Thus

φ is γcm − γcm continuous. ∇

4.4 Projection preserving linear mappings

Recall that, for an unbounded linear operator x, we denote the spectrum of

x by Sp (x). For x ∈ M̃, we denote the spectrum of x with respect to the

algebra M̃ by Sp (x,M̃), as in Section 1.4.

Lemma 4.4.1 Let x ∈ M̃ be a normal operator. Then Sp (x,M̃) ⊂ Sp (x).

Proof. For the purposes of this proof only, we denote, for elements x and

y of M̃, the ordinary sum of x and y by x+ y and the ordinary product by

xy. The strong sum and strong product of x and y will be denoted by x+ y

and xy respectively.

Let λ /∈ Sp (x). Then x − λ1 has a bounded inverse y. By Theorem

1.3.9, there is a smallest commutative von Neumann algebra A with which

x is affiliated. Therefore, A ⊂M ⊂ M̃. Also y ∈ A (see [63], p. 357). Thus

y ∈ M̃. Note that 1 = (x−λ1)y ⊃ y(x−λI). It follows from Theorem 1.3.6,

that

1 = 1 = (x− λ1)y = y(x− λ1).

This says that x − λ1 is invertible with respect to M̃, i.e. λ /∈ Sp (x,M̃).

Hence Sp (x,M̃) ⊂ Sp (x). ∇

In general the inclusion in Lemma 4.4.1 is strict. We demonstrate this

with the following example.

Example 4.4.2 Let M be the commutative von Neumann algebra {Mf :

f ∈ L∞([0, 1])}. Then M̃ = U(M) = {Mf : f ∈ L0([0, 1])}. Let x ∈ M̃.

By Lemma 1.3.8, it follows that Sp (x,M̃) = Sp (x,U(M)) = σp(x), where

σp(x) denotes the point spectrum of x.

We show that σp(x) may be empty. Let x = Mf , where f(t) = t for all

t ∈ [0, 1]. It is well known that x is a bounded self-adjoint operator with
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no eigenvalues, i.e. σp(x) is empty (see [70], excercise 9, p. 464). Hence

Sp (x,M̃) 6= Sp (x) since Sp (x) is non-empty (as x is bounded).

Sometimes, the inclusion of Lemma 4.4.1 is an equality, as the following

example confirms.

Example 4.4.3 Let M be as in Example 4.4.2. If p ∈ M̃ is a projection,

then Sp (p,M̃) = Sp (p): Observe that Sp (p) ⊂ {0, 1}. Hence

Sp (p) ⊂ {0, 1} = σp(p) = Sp (p,M̃).

By Lemma 4.4.1, we know that Sp (p,M̃) ⊂ Sp (p). Thus Sp (p,M̃) =

Sp (p).

Theorem 4.4.4 Let A be a GB∗-algebra and B a locally C∗-algebra. If φ :

A → B is a unital invertibility preserving self-adjoint linear map, then φ

preserves projections.

Proof. Let x ∈ Ab be self-adjoint. Then, since Ab is a C∗-algebra, Sp (x,Ab)

is bounded. Since φ is unital, linear and invertibility preserving, we have

from Lemma 2.1.13 that Sp (φ(x),B) ⊂ Sp (x,A) ⊂ Sp (x,Ab), and so

Sp (φ(x),B) is bounded. Since φ is self-adjoint, φ(x) is self-adjoint. Thus,

by Theorem 1.4.7, φ(x) ∈ Bs.

Let p ∈ A be a projection. Since p ∈ Ab (Lemma 1.4.15), it follows

from the previous paragraph that φ(p) ∈ Bs. Since φ is unital, linear and

invertibility preserving, it follows from Lemma 2.1.13 that Sp (φ(p),B) ⊂
Sp (p,A) ⊂ Sp (p,Ab) ⊂ {0, 1}. Therefore, by Proposition 1.4.9, we see

that Sp (φ(p),Bs) = Sp (φ(p),B). Hence Sp (φ(p),Bs) ⊂ {0, 1}. Since p is

self-adjoint, φ(p) is self-adjoint. Since Bs is a C∗-algebra (Theorem 1.4.8), it

follows that φ(p) is a projection in Bs. ∇

4.5 The main results

Lemma 4.5.1 (i) A unital linear functional f on a unital algebra A is

invertibility preserving if and only if f(x) ∈ Sp (x,A) for every x ∈ A.
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(ii) Every unital invertibility preserving linear functional on M̃ is a positive

linear form.

Proof. (i). This is a direct consequence of Lemma 2.1.13.

(ii). Let f be a unital invertibility preserving linear functional on M̃, and let

0 ≤ x ∈ M̃. Then Sp (x) ⊂ [0,∞). By Lemma 4.4.1, Sp (x,M̃) ⊂ Sp (x) ⊂
[0,∞). It follows from (i) that f(x) ∈ Sp (x,M̃). Hence f(x) ≥ 0, implying

the result. ∇

Since all characters on unital algebras are unital and invertibility preserv-

ing, Corollary 3.1.5 also follows immediately from Lemma 4.5.1 and Theorem

1.4.2. Our next result is an analogue of the Gleason-Kahane- Żelazko theorem

(Theorem 2.2.1) for M̃.

Theorem 4.5.2 Let f be a linear functional on M̃. The following state-

ments are equivalent.

(i) f is a character on M̃.

(ii) f is unital and invertibility preserving.

(iii) f(x) ∈ Sp (x,M̃) for every x ∈ M̃.

Proof. The implication (i) ⇒ (ii) is trivial. The implication (ii) ⇒ (iii)

follows from Lemma 4.5.1(i).

(iii) ⇒ (ii): If (iii) holds, then f is unital since f(1) ∈ Sp (1,M̃) = {1}.
Therefore, by Lemma 4.5.1, (ii) follows.

(ii) ⇒ (i): Suppose that f is unital and invertibility preserving. In

particular, f |M is unital, linear and invertibility preserving. Therefore, it

follows from Theorem 2.2.1 that f |M is a character. By Lemma 4.5.1(ii), f

is positive, and therefore, by Theorem 1.4.2, f is measure continuous. Con-

sequently, f is a character on M̃. ∇
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We are now ready to give the first main result of this section, namely

Theorem 4.5.3. The proof is nearly the same as that of [64], Theorem 4, and

we give the proof for completeness.

Theorem 4.5.3 Suppose that φ : Ã → B̃ is a unital invertibility preserving

linear map and that B̃ has a separating family of characters, i.e.

∩{Ker(f) : f a character on B̃} = {0}.

Then φ is an algebra homomorphism, and thus a Jordan homomorphism.

Proof. Let f be a character on B̃ and let F (x) = f(φ(x)) for all x ∈ Ã. Then

F is a linear functional on Ã. By Theorem 4.5.2 and the fact that φ is unital

and invertibility preserving, F (x) = f(φ(x)) ∈ Sp (φ(x), B̃) ⊂ Sp (x, Ã) for

all x ∈ Ã. By applying Theorem 4.5.2 again, we find that F is a charac-

ter on Ã, i.e. F (xy) = F (x)F (y) for every x, y ∈ Ã. Thus f(φ(xy)) =

f(φ(x))f(φ(y)) for every x, y ∈ Ã. Therefore, f(φ(xy) − φ(x)φ(y)) = 0 for

every x, y ∈ Ã. This holds for every character f on B̃, i.e. φ(xy)−φ(x)φ(y) ∈
Ker(f) for every character f on B̃. By hypothesis, φ is an algebra homomor-

phism. ∇

We give an example of an M̃ having a separating family of continuous

characters.

Example 4.5.4 Suppose that M̃ is commutative and locally convex. By

Theorems 1.5.26 and 4.3.1, M̃ is strongly semi-simple, i.e.

∩{M : M a closed maximal two-sided ideal of M̃} = {0}.

Since M̃ is commutative and locally convex, a maximal two-sided ideal of

M̃ is closed if and only if it is the kernel of a continuous character on M̃
(see Theorem 1.5.26 and [15], 4.10-4). Thus M̃ has a separating family of

continuous characters.

In light of Theorem 4.5.3, it would also be interesting to know whether

every M̃ has a separating family of characters. Proposition 4.5.5 below

answers this question in the negative.
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Proposition 4.5.5 If Mp is non-atomic, then M̃ does not have a separating

family of (measure continuous) characters on M̃.

Proof. We first show that f(a) = 0 for every a ∈ M̃0 and for every

f ∈ (M̃, γcm)∗. Suppose that Mp is non-atomic. Let f ∈ (M̃, γcm)∗. Then

f |M̃0
∈ (M̃0, γcm)∗ = {0}, by Theorem 1.5.25.

By Corollary 3.1.5, all characters on M̃ are measure continuous. There-

fore, the result follows from the first paragraph. ∇

The following example shows that, in Theorem 4.5.3, the condition that

B̃ have a separating family of characters cannot be dropped. This is based

on the example given in [85].

Example 4.5.6 Let A be a von Neumann algebra with a faithful finite nor-

mal trace τA. Let B = M2(A), and define a faithful finite normal trace τB on

B by τB((xij)) = τA(x11) + τA(x22) for every (xij) ∈ B. By Proposition 1.3.7,

B̃ = U(B) = U(M2(A)) ∼= M2(U(A)) = M2(Ã).

Define a map φ : Ã → B̃ by

φ(x) =

(
x x− ψ(x)

0 x

)
,

where ψ is an automorphism of Ã. It can easily be shown that φ is unital,

linear and invertibility preserving. However, φ is not a Jordan homomor-

phism unless ψ is the identity automorphism of Ã. By Theorem 4.5.3, B̃ has

no separating family of characters.

We now arrive at the second main result of this section.

Theorem 4.5.7 Suppose that φ : Ã → B̃ is a unital invertibility preserving

positive linear map, with B̃ a locally C∗-algebra with respect to the measure

topology. Then φ is a Jordan homomorphism.
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Proof. Recall that Ã is a GB∗-algebra (Theorem 1.5.29). By Theorem 4.3.3,

φ is continuous. Since φ is positive, it follows from Lemmas 4.2.2 and 4.2.3

that φ is self-adjoint. It is an immediate consequence of Theorem 4.4.4 that φ

is projection preserving. By Theorem 4.1.1, φ is a Jordan homomorphism. ∇

The positivity assumption of φ in Theorem 4.5.7 cannot be dropped, as

shown by the following example.

Example 4.5.8 ([91], Example 2) Let H be a Hilbert space. There exists a

basis B of B(H) such that 1 ∈ B. Let Z = span{1, b}, where λ1 6= b ∈ B for

every λ ∈ C. Let x ∈ Z with x = α11 +α2b, where α1, α2 ∈ C. Observe that

{1, b} is a basis for Z. Define a linear functional f : Z → C by f(x) = α2.

Clearly, f is well defined and f(1) = 0 and f(b) = 1. By the Hahn-Banach

theorem, f can be extended to a a nonzero linear functional g on B(H).

Define a map φ : B(H) → B(H⊕H) by

φ(x) =

(
x g(x)1

0 x

)
.

It can be shown that φ is linear, unital and invertibility preserving but not a

Jordan homomorphism. Furthermore, φ is not positive. Let A = B(H) and

B = B(H ⊕ H). Then A = Ã and B = B̃ (Example 1.5.9). Thus, B̃ is a

locally C∗-algebra with respect to the measure topology.
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Chapter 5

Derivations on M̃

It is well known that all derivations on a C∗-algebra are continuous (Theorem

2.3.5) and that every derivation on a von Neumann algebra is inner (Theo-

rem 2.3.6). One can therefore ask if these results also hold for algebras of

unbounded operators, such as M̃. A recent result of A. F. Ber, V. I. Chilin,

and F. A. Sukochev ([19] and [20]) states that the algebra of closed densely-

defined operators affiliated with a commutative von Neumann algebra can

have non-zero, and hence non-inner, derivations. We will give an outline of

their construction in Section 5.4 of this chapter. Motivated by their result,

we prove results which give sufficient conditions to ensure that all derivations

on a given M̃ are γcm − γcm continuous. We also explore some affirmative

answers to the question raised by Sh. A. Ayupov in [13], as to whether all

γcm − γcm continuous derivations on M̃ are inner. All of these issues are

explored in Section 5.3. Section 5.1 discusses the basics of non-commutative

Lp-spaces which are needed in the proof of Theorem 5.3.20. Section 5.2 gives

a characterization of continuous derivations on complete metrizable topolog-

ical algebras.
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5.1 Non-commutative Lp-spaces

For 0 < p <∞, we define Lp(M, τ) to be the set of all x ∈ M̃ such that

‖x‖p =
(∫ ∞

0

µt(x)
p dt

) 1
p

<∞

(a special case of [42], Definition 4.1). In addition, we put L∞(M, τ) = M
and denote by ‖.‖∞ the usual operator norm defined on M. It is well known

that Lp(M, τ) is a Banach space under ‖.‖p whenever 1 ≤ p ≤ ∞ ([42],

Theorem 4.5). Also, whenever 1 ≤ p ≤ ∞, Lp(M, τ) is a Banach M-module

([102], Proposition 2.5). If 1 < p < ∞, then Lp is reflexive (this is a special

case of [43], Corollary 5.16).

Lemma 5.1.1 Let 1 ≤ p < ∞ and let u ∈ M be a unitary operator. Then

‖u∗xu‖p = ‖x‖p for every x ∈ Lp(M, τ).

Proof. We first show that µt(xu) = µt(x) for every x ∈ M̃ and for every

t > 0. By Proposition 1.5.14, it follows that µt(xu) ≤ ‖1‖µt(x)‖u‖ = µt(x)

for every x ∈ M̃ and for every t > 0. Now, by similar reasoning, it follows

that µt(x) = µt(xuu
∗) ≤ µt(xu) for every x ∈ M̃ and for every t > 0 (since

u∗ is also a unitary operator in M). Therefore µt(xu) = µt(x) for every

x ∈ M̃ and for every t > 0.

Hence, by Proposition 1.5.14,

µt(u
∗xu) = µt(u

∗x)

= µt((u
∗x)∗)

= µt(x
∗u)

= µt(x
∗)

= µt(x)

for every x ∈ M̃ and for every t > 0. It is now immediate that ‖u∗xu‖p =

‖x‖p for every x ∈ Lp(M, τ). ∇

68



Univ
ers

ity
 of

 C
ap

e T
ow

n

There are other definitions of non-commutative Lp-spaces which we will

not discuss, see for example [47], p. 271, and [102]. These definitions are

equivalent to the one given above.

5.2 Derivations on complete metrizable topo-

logical algebras

Let X and Y be metrizable topological vector spaces. Recall that the sepa-

rating space of a linear map φ : X → Y , denoted by S(φ, Y ), is defined to

be the set

{y ∈ Y : there is a sequence (xn) in X with xn → 0 and φ(xn) → y}.

Recall that S(φ, Y ) is closed ([36], Proposition 5.1.2) and that the closed

graph theorem is valid for complete metrizable topological vector spaces (see

[69],p. 101). Therefore φ is continuous if and only if S(φ, Y ) = {0}, provided

X and Y are complete and metrizable. From here on, we shall denote the

separating space of a derivation D on a metrizable algebra A by S(D). It is

easy to verify, using the definition of a derivation, that S(D) is a two-sided

ideal of A.

The proof of the following theorem is modelled along the lines of that of

[90], Remark 12.3 and Corollary 12.5. Also, the main idea of the proof is

well known in the context of Banach algebras. See, for example, the proofs

of [36], Theorems 5.3.22 and 5.3.43, and [83], Theorem 2.

Theorem 5.2.1 Let A be a unital complete metrizable topological algebra

and D a derivation on A. The following are equivalent.

(i) D is continuous.

(ii) The ideal I = {a ∈ A : aS(D) = S(D)a = {0}} has finite codimension

in A, and any sequence (xn) in I with xn → 0 can be written as

xn = pyn, with p a nonzero idempotent in I and (yn) a sequence in A.
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(iii) I = A, where I is defined as in (ii).

Proof. (i) ⇒ (iii): Suppose that D is continuous. Then S(D) = {0},
implying that I = A.

(iii) ⇒ (ii): This is trivial since A is unital.

(ii) ⇒ (i): Consider the linear map θ : A → A ⊕ A defined as θ(a) =

(a,Da). Recall that when A⊕A is equipped with the multiplication defined

as (a, b).(x, y) = (ax, ay + bx) for every a, b, x, y ∈ A, then it is a complete

metrizable topological vector space in the product topology. Furthermore,

θ is an algebra homomorphism (Proposition 2.3.3). It is easy to verify that

S(θ) = {0} ⊕ S(D), where S(θ) = S(θ,A⊕A). Hence

I = {a ∈ A : θ(a)S(θ) = S(θ)θ(a) = {(0, 0)}}.

We show that I is closed. Let (xn) be a sequence in I with xn → x.

Then xnS(D) = S(D)xn = {0} for all n. But xny → xy and yxn → yx for

every y ∈ S(D). Hence xy = yx = 0 for all y ∈ S(D). Thus x ∈ I, implying

that I is closed.

Since S(D) is a two-sided ideal of A, it follows that I is a two-sided ideal

of A.

Let (xn) be a sequence in I with xn → 0. By hypothesis, there exists a

nonzero idempotent p ∈ I and a sequence (yn) in A such that xn = pyn for

all n. Since p ∈ I, it follows that θ(p)S(θ) = {(0, 0)}.
We prove that the map x 7→ θ(px) is continuous. Suppose that (zn) is a

sequence in A with zn → 0 and θ(pzn) → y. By the closed graph theorem,

it suffices to show that y = (0, 0). Observe that pzn → 0. Thus y ∈ S(θ).

Since θ(p)S(θ) = {(0, 0)}, it follows that θ(p)y = (0, 0). Now θ(pzn) =

θ(p)θ(zn) = θ(p2)θ(zn) = θ(p)θ(p)θ(zn) = θ(p)θ(pzn) → θ(p)y = (0, 0) since

θ is an algebra homomorphism. Therefore y = (0, 0).

Since pyn = xn → 0, it follows from the previous paragraph that θ(xn) =

θ(pyn) = θ(ppyn) → (0, 0). Hence θ is continuous on I. Since I is closed and

of finite codimension in A, it follows that θ is continuous on the whole of A.

It follows from Proposition 2.3.3 that D is continuous. ∇
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5.3 Derivations on M̃

Recall that if D is a derivation on M̃, S(D) is γcm-closed.

Theorem 5.3.1 Let D be a derivation on M̃ and I = {a ∈ M̃ : aS(D) =

S(D)a = {0}}. Then there exists a central projection p in I such that I =

pM̃.

Proof. Observe that I is a γcm-closed two-sided ideal of M̃. By Theorem

1.5.21, I0 = I ∩M is a norm closed ideal of M.

We show that I0 is strong operator closed in M. Let (aα) be a net in

I0 with aα → a ∈ M with respect to the strong operator topology on M.

Then aα(η) → a(η) for all η ∈ H, where H is the underlying Hilbert space

of M. Let x ∈ S(D) ∩M. Then aα

(
x(η)

)
→ a

(
x(η)

)
for all η ∈ H. So

(aαx)(η) → (ax)(η) for all η ∈ H. Since x ∈ S(D) and aα ∈ I for all α, it

follows that aαx = xaα = 0 for all α. Hence (aαx)(η) = 0 for all η ∈ H. Thus

(ax)(η) = 0 for all η ∈ H. Thus ax = 0. This holds for every x ∈ S(D)∩M.

Let y ∈ S(D). By Theorem 1.5.21,

S(D) ∩M
γcm

= S(D).

Hence there is a sequence (yn) in S(D) ∩M with yn → y (γcm). It follows

from what we have proved above that ayn = 0 for every n. Thus ay = 0.

Also, ya = 0: Since (aα)(η) → a(η) for all η ∈ H, (ynaα)(η) → (yna)(η)

for all η ∈ H and for all n. Since ynaα = 0 for all α and for all n, yna = 0

for all n. Hence ya = 0.

Therefore a ∈ I, implying that a ∈ I0. Hence I0 is strong operator closed

in M, and hence weak-operator closed ([63], Theorem 5.1.2).

Therefore there exists a central projection p ∈ I0 such that I0 = pM
(Proposition 1.2.10). By Theorem 1.5.21,

I = I ∩Mγcm
= I0

γcm
= pMγcm

.

By Theorem 1.5.10, it follows that pMγcm
= pM̃. Hence I = pM̃. ∇
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Corollary 5.3.2 Let D be a derivation on M̃. The following are equivalent.

(i) D is γcm − γcm continuous.

(ii) The ideal I = {a ∈ M̃ : aS(D) = S(D)a = {0}} has finite codimension

in M̃.

(iii) I = M̃.

Proof. By Theorem 5.3.1, there exists a central projection p in I such that

I = pM̃. Therefore, if (xn) is a sequence in I with xn → 0 (γcm), there is

a sequence (yn) in M̃ such that xn = pyn for all n. The result now follows

from Theorem 5.2.1. ∇

LetM be a type II factor and let D be a derivation on M̃. Corresponding

to D, consider the ideal I of M̃ as in Corollary 5.3.2. A trivial consequence

of Theorem 5.3.1 is then that I = {0} or M̃. Therefore, for the case where

M is a type II factor, it follows from Corollary 5.3.2 that it is sufficient to

show that I 6= {0} in order to prove that D is γcm − γcm continuous.

Recall that all derivations on a C∗-algebra are continuous (Theorem 2.3.5)

and that all derivations on a von Neumann algebra are inner (Theorem 2.3.6).

The following result is due to A. F. Ber, V. I. Chilin and F. A. Sukochev.

Theorem 5.3.3 ([19], Theorem 3, and [20], Theorem 3.4) Let M be a com-

mutative von Neumann algebra. Then S(M) admits a nonzero derivation if

and only if Mp is not atomic.

By recalling that every commutative von Neumann algebra is finite, the

following corollary follows from Proposition 1.5.5.

Corollary 5.3.4 Let M be a commutative von Neumann algebra with a

faithful finite normal trace. Then M̃ admits a nonzero derivation if and

only if Mp is not atomic.

Note that if M is commutative, then a derivation on M̃ is γcm − γcm

continuous if and only if it is zero ([2], p.11).
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Using Theorem 5.3.3 and the fact that every finite type I von Neumann

algebra is a direct sum of finite matrix algebras over commutative von Neu-

mann algebras (Theorem 1.2.2), one can prove the following result.

Theorem 5.3.5 ([21], Theorem 5) If M is a finite type I von Neumann

algebra and every derivation D : S(M) → S(M) is inner, then Mp is

atomic.

The following corollary is an immediate consequence of Proposition 1.5.5.

Corollary 5.3.6 Let M be a finite type I von Neumann algebra with a faith-

ful finite normal trace τ . If every derivation D : M̃ → M̃ is inner, then Mp

is atomic.

Our next result was motivated by Corollary 5.3.4 and the remark imme-

diately thereafter.

Theorem 5.3.7 If Mp is atomic, then all derivations on M̃ are γcm − γcm

continuous.

Proof. Let D be a derivation on M̃ and q an atomic projection in M. Let

y ∈ S(D). Then there exists a sequence xn in M̃ with xn → 0 (γcm) and

D(xn) → y (γcm). Therefore

D(qxnq) = qD(xnq) +D(q)xnq

= qxnD(q) + qD(xn)q +D(q)xnq

→ qyq (γcm).

By Theorem 1.5.10, it follows that qM̃q = q̃Mq. Since q is an atomic

projection, qMq = Cq.
We show that qMq = q̃Mq. Since q is an atomic projection, it is the

only nonzero projection in qMq. Hence

inf{τ(p) : p a nonzero projection in qMq} = τ(q) > 0,

since q 6= 0 and the trace τ is faithful. Therefore, by Proposition 1.5.11,

qMq = q̃Mq.
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Thus qM̃q = q̃Mq = qMq = Cq. Since xn → 0 (γcm), qxnq → 0 (γcm).

Since qM̃q is finite-dimensional, D|qM̃q is γcm−γcm continuous, implying that

D(qxnq) → 0 (γcm). Recall that D(qxnq) → qyq (γcm). Therefore qyq = 0.

This is true for every atomic projection q in M and for every y ∈ S(D).

We show next that S(D) contains no atomic projections of M. Suppose

that S(D) contains an atomic projection q0 of M. Then, from what we have

proved above, q0q0q0 = 0, i.e. q0 = 0. This is a contradiction since q0 6= 0.

Therefore S(D) contains no atomic projections of M.

To show that D is γcm − γcm continuous, it suffices to show that S(D) =

{0}. Suppose that S(D) 6= {0}. By Theorem 1.5.21, and the fact that

S(D) is a γcm-closed two-sided ideal of M̃, it follows that S(D) ∩M is a

norm closed two-sided ideal of M. Furthermore, S(D) ∩M 6= {0} since, by

Theorem 1.5.21,

S(D) ∩M
γcm

= S(D) 6= {0}.

Therefore, by Theorem 1.2.9, S(D)∩M has at least one nonzero projection

p. Since Mp is atomic, there exists an atomic projection q0 of M such that

0 < q0 ≤ p. So q0 = q0p ∈ S(D) ∩M because q0 ∈ M, p is in S(D), and

S(D)∩M is a two-sided ideal of M. This is a contradiction since S(D) has

no atomic projections of M. ∇

In light of Corollary 5.3.4 and the remark thereafter, it would be inter-

esting to know if the converse of Theorem 5.3.7 holds. We now solve this

problem in the affirmative for finite type I von Neumann algebras (Theorem

5.3.14), thereby extending Corollary 5.3.6. For this, we need the follow-

ing four lemmas. The proof of [21], Theorem 5 (i.e. Theorem 5.3.5), relies

strongly on Proposition 1.3.7, which itself depends on the fact that S(M) is

a regular algebra whenever M is finite. In general, M̃ is not regular even if

M is commutative (see Corollary 6.5.9). We postpone the discussion on the

regularity of M̃ until Section 6.5.

Lemma 5.3.8 Let p be a central projection of M and D a derivation on

p̃Mp. Then D can be extended to a derivation D on M̃.
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Proof. Let D(x) = D(pxp) for every x ∈ M̃. Since p is a central projec-

tion, D(p) = 0. Using this, it is easily verified that D is a derivation on M̃
extending D. ∇

For p ∈Mp, we denote by c(p) the least central projection majorizing p,

and we call c(p) the central support of p. If p, q ∈Mp, then qxp = 0 for every

x ∈ M if and only if c(p)c(q) = 0 ([95], Corollary V.1.7). This is needed in

the proof of the following known result, which we give for completeness.

Lemma 5.3.9 ([56], Theorem 2.1) If q is an atom in a von Neumann algebra

M, then the central support c(q) of q is an atom in Z(M).

Proof. Let p be a central projection of M such that 0 < p ≤ c(q). Then

qp ∈Mp and qp ≤ q. Since q is an atom, it follows that qp = 0 or qp = q.

We show that qp 6= 0. Suppose that qp = 0. Then qxp = qpx = 0 for

every x ∈ M, and so c(q)c(p) = 0, i.e. pc(q) = c(q)p = 0. Since p ≤ c(q), it

follows that p = 0. This is a contradiction since 0 6= p. Thus qp 6= 0.

Therefore qp = q, implying that q = qp ≤ p. Hence c(q) ≤ p, since p is a

central projection majorizing q, and thus c(q) = p, implying that c(q) is an

atom in Z(M). ∇

Lemma 5.3.10 Let (pα) be a family of central orthogonal projections in M
such that

∑
α pα = 1. If (pαMpα)p is atomic for every α, then Mp is atomic.

Proof. Suppose (pαMpα)p is atomic for every α. Let 0 < p ∈ Mp. Since

pα is a central projection for every α, it follows that ppα ∈ Mp for every α.

By hypothesis,
∑

α pα = 1, and so
∑

α ppα = p. Since p 6= 0, we have that

ppα 6= 0 for some α. It is easily verified that p ≥ ppα and that ppα ≤ pα.

Therefore, ppα is a projection in pαMpα and, by hypothesis, there exists an

atom qα in pαMpα such that p ≥ ppα ≥ qα. Clearly, qα is also an atom in

M. This completes the proof. ∇

For the next lemma, we recall the notion of a direct sum of von Neumann

algebras ([39], p. 20-21). For each α, let Aα be a von Neumann algebra on
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the Hilbert space Hα, and let ‖ · ‖α denote the norm on Aα. If xα ∈ Aα

for each α, and supα ‖xα‖α < ∞, define a bounded linear operator x on

the direct sum H of the family of Hilbert spaces (Hα) by x(ξ) = (xα(ξα)),

where ξ = (ξα) ∈ H. The direct sum A of the von Neumann algebras Aα is

defined to be the set of all such operators x, and we write A = ⊕αAα. It

can be verified that A is a von Neumann algebra on H with coordinate-wise

operations, and norm x 7→ supα ‖xα‖α.

Lemma 5.3.11 Let M = A ⊗ B(H), where A is a commutative von Neu-

mann algebra and H a finite-dimensional Hilbert space (so M is a type I von

Neumann algebra). If Ap is atomic, so is Mp.

Proof. Since A is commutative and Ap is atomic, A ∼= L∞(X,Σ, µ) for some

localizable atomic measure space (X,Σ, µ). Therefore we can find a disjoint

family of atoms (Aλ : λ ∈ Λ) satisfying X = ∪Aλ. Recall that measurable

functions on atoms are constant. Hence A ∼= l∞(Λ), where l∞(Λ) is the space

of all bounded nets in C indexed by Λ. Hence, by [39], p. 29,

M = A ⊗ B(H)

∼= l∞(Λ) ⊗ B(H)

= ⊕α∈Λ(Cα ⊗ B(H))

∼= ⊕α∈ΛB(Hα),

where Hα = H and Cα = C for every α ∈ Λ. Every (B(Hα))p is atomic, and

one can find a family of central orthogonal projections (pα) in M such that∑
α pα = 1 and pαMpα

∼= B(Hα), namely pα = 1α, where 1α denotes the

identity operator onHα, for every α ∈ Λ. By Lemma 5.3.10,Mp is atomic. ∇

If M is a finite von Neumann algebra, then M can be imbedded into the

maximal ring of right quotients QM of M ([25]). Furthermore, U(M) ∼= QM
([25]). Therefore, if A and B are ∗-isomorphic finite von Neumann algebras,

then U(A) ∼= U(B). In particular, if A and B are equipped with faithful

finite normal traces, then Ã = U(A) ∼= U(B) = B̃. This is needed in the

proof of our next proposition.
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If A is a von Neumann algebra with a faithful finite normal trace, then

M̃n(A) = Mn(Ã) for every n ∈ N (Proposition 1.3.7). Let (am
i,j) be a sequence

in Mn(Ã) and (ai,j) ∈ Mn(Ã). Then (am
i,j) → (ai,j) in measure as m → ∞

if and only if am
i,j → ai,j as m → ∞ for every i, j (this is an immediate

consequence of [44], Lemma 2.1).

The proof of the following proposition is a slight modification of the proof

[21], Theorem 5, and we give the proof for completeness. It is a special case

of Theorem 5.3.14.

Proposition 5.3.12 Suppose that M is a type I von Neumann algebra with

a faithful finite normal trace. If all derivations on M̃ are γcm − γcm contin-

uous, then Mp is atomic.

Proof. Since M is a finite type I von Neumann algebra, there exists

a sequence of central projections (pn) such that M = ⊕∞n=1pnMpn, and

pnMpn
∼= Mkn(An), where An is a commutative von Neumann algebra for

every n (Theorem 1.2.2), and the kn are integers. Assume that Mp is not

atomic. Then, by Lemmas 5.3.10 and 5.3.11, it follows that (Ar)p is not

atomic for some r ∈ N. By Corollary 5.3.4, there exists a derivation δ on Ãr

which is not γcm − γcm continuous.

We show that there exists a derivation Dr on M̃kr(Ar) = Mkr(Ãi) which

is not γcm − γcm continuous. Define Dr to be the linear map defined by

Dr((ai,j)) = (δ(ai,j)) for every (ai,j) ∈Mkr(Ãr). It is easily verified that Dr is

a derivation. Since δ is not γcm−γcm continuous, there exists a sequence (am)

in Ãr such that am → 0 in measure and δ(am) does not converge to zero in

measure. Let (am
i,j) be the sequence in Mkr(Ar) defined as am

i,j = am for every

m and for all i, j. By the preceding remarks, (am
i,j) → (bi,j) as m→∞, where

bi,j = 0 for all i, j. Also, by the preceding remarks, Dr((a
m
i,j)) = (δ(am

i,j))

does not converge to Dr((bi,j)) = (δ(bi,j)) in measure. Therefore, Dr is not

γcm − γcm continuous.

Since prMpr
∼= Mkr(Ar) and the traces of prMpr and Mkr(Ar) are finite,

it follows that the algebra Mkr(Ãr) = M̃kr(Ar) is isomorphic to p̃rMpr, and
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this isomorphism is also γcm − γcm bicontinuous (by Theorem 3.2.8). There-

fore, the derivation Dr can be identified with a derivation on p̃rMpr which

is not γcm − γcm continuous. By Lemma 5.3.8, Dr can be extended to a

derivation D on M̃. It follows from Lemmas 1.5.15 and 1.5.16 that D is not

γcm − γcm continuous. This contradicts the hypothesis, implying that Mp is

atomic. ∇

The following proposition is the first part of the proof of Theorem 5.3.14.

Proposition 5.3.13 Let M be a finite type I von Neumann algebra. If all

derivations on M̃ are γcm − γcm continuous, then (Z(M))p is atomic.

Proof. Suppose that M is a finite type I von Neumann algebra such that

all derivations on M̃ are γcm − γcm continuous.

Let q be nonzero central projection such that τ(q) < ∞. Let D be a

derivation on q̃Mq. By Lemma 5.3.8, D can be extended to a derivation D

on M̃. By hypothesis, D is γcm − γcm continuous, and thus, D is γcm − γcm

continuous (this follows from Lemmas 1.5.15 and 1.5.16). Therefore, all

derivations on q̃Mq are γcm − γcm continuous. Since qMq is a type I von

Neumann algebra with finite trace, it follows from Proposition 5.3.12 that

(qMq)p is atomic. Therefore there exists an atom q0 in qMq such that

q ≥ q0. It is clear that q0 is also an atom in M.

Let p ∈ Z(M)p. Since M is finite, it follows that that τ |Z(M) is semifinite

([39], Proposition 10, p. 12). Therefore, there exists a nonzero p1 ∈ Z(M)p

such that τ(p1) < ∞ and p ≥ p1. By the previous paragraph, there is an

atom p2 in M such that p1 ≥ p2. Hence every central projection majorizes an

atom of M. By Lemma 5.3.9, c(p2) is an atom in Z(M). Since p ∈ Z(M)p,

it follows that p ≥ c(p2). Thus Z(M)p is atomic. ∇

Theorem 5.3.14 Let M be a finite type I von Neumann algebra with a

faithful semifinite normal trace τ . If all derivations on M̃ are γcm − γcm

continuous, then Mp is atomic.
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Proof. Since M is a finite type I von Neumann algebra, we can write

M ∼= ⊕∞n=1Mn, where every Mn is a finite type I von Neumann algebra

such that Mn
∼= Z(Mn) ⊗ B(Hn), where Hn is a finite-dimensional Hilbert

space for every n. There is a sequence of central projections (pn) in M such

that, for every n, Mn
∼= pnMpn and

∑∞
n=1 pn = 1 (Theorem 1.2.2). By

Theorem 1.5.10, M̃n = pnM̃pn for every n.

Consider now a fixed n and let Dn be a derivation on M̃n. It follows

from Lemma 5.3.8 that Dn can be extended to a derivation Dn on M̃. By

hypothesis, Dn is γcm − γcm continuous, and so the same holds for Dn (this

follows from Lemmas 1.5.15 and 1.5.16). Hence all derivations on M̃n are

γcm − γcm continuous. This holds for every n. Since Mn is a finite von Neu-

mann algebra, τ |Z(Mn) is semifinite ([39], Proposition 10, p. 12), and hence,

by Proposition 5.3.13, Z(Mn)p is atomic for every n. It is an immediate

consequence of Lemma 5.3.11, and the fact that Mn
∼= Z(Mn) ⊗ B(Hn)

for every n, that every (Mn)p is atomic. Finally, by Lemma 5.3.10, Mp is

atomic. ∇

The following example demonstrates that the converse of Theorem 5.3.7

does in general not hold.

Example 5.3.15 Let A = L∞([0, 1]), H an infinite dimensional Hilbert

space, and M = A ⊗ B(H). Then M is a type I∞ von Neumann algebra.

Now

Z(M) = Z(A ⊗ B(H))

= Z(A) ⊗ Z(B(H))

= A ⊗ C1

∼= A

= L∞([0, 1]).

Therefore Z(M) has no atoms. Therefore, by Lemma 5.3.9, M has no atoms,

implying that Mp is not atomic. However, F. A. Sukochev, A. F. Ber and B.
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de Pagter recently proved that all derivations on M̃ are γcm−γcm continuous

([22]).

We have already seen that derivations on M̃ need not be continuous, nor

inner. Therefore, the following problem presents itself.

Problem ([13], Problem 5) Is every γcm − γcm continuous derivation on

M̃ inner?

Recall that if M is commutative, then every γcm−γcm continuous deriva-

tion on M̃ is inner, i.e. the zero derivation is the only γcm − γcm continuous

derivation on M̃. We now give other results which provide some affirmative

answers to this question. One such result is Theorem 5.3.20 below.

Lemma 5.3.16 Let A be a GB∗-algebra such that the underlying C∗-algebra

Ab of A is a W∗-algebra. If D is a continuous derivation on A such that

D(Ab) ⊂ Ab, then there exists a ∈ Ab such that D(x) = ax − xa for all

x ∈ A, i.e. D is inner.

Proof. Let D be a derivation as in the hypothesis. Then, since D(Ab) ⊂ Ab,

there exists a ∈ Ab such that D(x) = ax − xa for every x ∈ Ab (Theorem

2.3.6). Since D is continuous and Ab is dense in A (Theorem 1.4.17), it

follows that D(x) = ax− xa for every x ∈ A, i.e. D is inner. ∇

Corollary 5.3.17 ([13]) If D is a γcm − γcm continuous derivation on M̃
such that D(M) ⊂ M, then there exists a ∈ M such that D(x) = ax − xa

for all x ∈ M̃, i.e. D is inner.

Proof. By Theorem 1.5.29, M̃ is a GB∗-algebra with M as underlying C∗-

algebra. The result follows from Lemma 5.3.16. ∇

Corollary 5.3.24 below demonstrates that not every γcm−γcm continuous

derivation on M̃ maps M into itself.

In 2006, the author presented Theorem 5.3.7 at the conference “Great

Plains Operator Theory Symposium” in Iowa City, USA ([98]). He then
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communicated with Sh. A. Ayupov, who, with S. Albeverio and K. K. Ku-

daybergenov, gave an extension of Theorem 5.3.7 in [2].

Proposition 5.3.18 Let D : M̃ → M̃ be a derivation. If D|M is γcm− γcm

continuous, then D is γcm − γcm continuous.

Proof. By Lemma 2.3.2, we may assume without loss of generality that D

is a ∗-derivation. It suffices to show that S(D) = {0}. Let y ∈ S(D). Then

there is a sequence (xn) in M̃ such that xn → 0 (γcm) and D(xn) → y (γcm).

Since xn(1 + x∗nxn)−1 is affiliated with M for every n (Lemma 1.5.27), it

follows from Proposition 1.3.1 that xn(1 + x∗nxn)−1 ∈ M for every n. Since

inversion is continuous on M̃ in the measure topology ([96]) and 1+x∗nxn → 1

(γcm), it is immediate that xn(1 + x∗nxn)−1 → 0 (γcm). Observe that

D
(
xn(1 + x∗nxn)−1

)
= xnD

(
(1 + x∗nxn)−1

)
+D(xn)(1 + x∗nxn)−1,

and

0 = D(1) = D
(
(1 + x∗nxn)(1 + x∗nxn)−1

)
= (1 + x∗nxn)D

(
(1 + x∗nxn)−1

)
+D(1 + x∗nxn)(1 + x∗nxn)−1.

Therefore

(1 + x∗nxn)D
(
(1 + x∗nxn)−1

)
= −D(1 + x∗nxn)(1 + x∗nxn)−1,

implying that

D
(
(1 + x∗nxn)−1

)
= −(1 + x∗nxn)−1D(1 + x∗nxn)(1 + x∗nxn)−1

= −(1 + x∗nxn)−1D(x∗nxn)(1 + x∗nxn)−1

= −(1 + x∗nxn)−1
(
x∗nD(xn) +D(xn)∗xn

)
(1 + x∗nxn)−1

→ −1−1(0.y + y∗.0)1−1

= 0

by continuity of inversion in the measure topology. HenceD
(
xn(1+x∗nxn)−1

)
→

y (γcm). Let yn = xn(1 + x∗nxn)−1 for every n. Then (yn) is a sequence in
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M such that yn → 0 (γcm) and D(yn) → y (γcm). By hypothesis, y = 0,

implying that S(D) = {0}. ∇

In what follows, we will need the following result.

Theorem 5.3.19 (Ryll-Nardzewski fixed point theorem) ([77], p. 444)

Suppose that X is a locally convex Hausdorff space and ∅ 6= K ⊂ X a

weakly compact convex subset of X. Let F : K → K be a non-contracting

semigroup of weakly continuous affine maps (here, non-contracting means

that for every x, y ∈ K with x 6= y, there exists a seminorm p such that

infφ∈F p(φ(x) − φ(y)) > 0). Then there exists x ∈ K such that x is a fixed

point of F .

The proof of our next result is similar to that of [58], Lemma 4.1, and

[55], Theorem 1. Recall from Section 5.1 the notion of the non-commutative

Lp-spaces Lp(M, τ), 0 < p <∞, and that every Lp(M, τ), p ≥ 1, is a Banach

M-module with the norm ‖.‖p as defined in that section.

Theorem 5.3.20 Let D be a derivation on M̃ such that D(M̃) ⊂ Lp(M, τ)

for some 1 < p < ∞. Then there exists an a ∈ Lp(M, τ) such that D(x) =

ax− xa for every x ∈ M̃.

Proof. We denote the unitary group of M by Mu. Let K = {u∗D(u) : u ∈
Mu} and L be the σ(Lp, (Lp)

∗)-closed convex hull ofK (here Lp = Lp(M, τ)).

Let Db = D|M. Then Db is a derivation on M into Lp. By Theorem 2.3.5,

Db is norm continuous.

Therefore L is a bounded subset of (the Banach space) Lp: ‖u∗D(u)‖p ≤
‖u∗‖‖D(u)‖p = ‖D(u)‖p. Now Mu is a norm bounded subset of M. Since

Db is (norm) continuous, {D(u) : u ∈Mu} is a norm bounded subset of Lp.

So supu∈Mu
‖D(u)‖p < ∞. Hence supu∈Mu

‖u∗D(u)‖p < ∞, meaning that

K, and thus L, is a norm bounded subset of Lp.

Since Lp is reflexive, it follows from the Banach-Alaoglu theorem that L
is σ(Lp, (Lp)

∗)-compact. For each u ∈ Mu, define the affine map Au(x) =

u∗xu+u∗D(u) for all x ∈ Lp. Since Lp is a Banach M-module, Au(Lp) ⊂ Lp

82



Univ
ers

ity
 of

 C
ap

e T
ow

n

for every u ∈Mu. Since ‖u∗xu‖p = ‖x‖p for every u ∈Mu and every x ∈ Lp

(Lemma 5.1.1), it follows easily that Au : Lp → Lp is norm continuous for

every u ∈Mu. A standard result tells us that Au is σ(Lp, (Lp)
∗)-continuous

for every u ∈ Mu. Let u, v ∈ Mu. Then an easy computation shows that

Av(u
∗D(u)) = (uv)∗D(uv). Now uv ∈ Mu. Thus Av(K) ⊂ K. Therefore,

since Av is σ(Lp, (Lp)
∗)-continuous, Av(L) ⊂ L. Since AuAv(x) = Avu(x) for

every x ∈ Lp, it follows that {Au : u ∈Mu} is a semigroup.

Now let x, y ∈ L with x 6= y. Then, by Lemma 5.1.1,

‖Au(x)− Au(y)‖p = ‖u∗xu+ u∗D(u)− u∗yu− u∗D(u)‖p

= ‖u∗xu− u∗yu‖p

= ‖u∗(x− y)u‖p

= ‖x− y‖p

for all u ∈Mu and for all 1 < p <∞. Hence

inf
u∈Mu

‖Au(x)− Au(y)‖p = ‖x− y‖p > 0

for every 1 < p <∞. Hence {Au : u ∈Mu} is non-contracting. By the Ryll-

Nardzewski fixed point theorem, there exists a0 ∈ L such that Au(a0) = a0

for every u ∈ Mu. Therefore u∗a0u + u∗D(u) = a0 for every u ∈ Mu. Let

a = −a0. It follows that D(u) = au− ua for every u ∈Mu.

Let x ∈ M. Then it is well known that x =
∑4

i=1 λiui, where λi ∈ C
and ui ∈ Mu for all 1 ≤ i ≤ 4. Once again, an easy calculation shows that

D(x) = ax − xa. This holds for every x ∈ M. Thus D|M is γcm − γcm

continuous. By Proposition 5.3.18, D is γcm − γcm continuous. Therefore,

since M is dense in M̃ with respect to the measure topology, it follows that

D(x) = ax− xa for every x ∈ M̃, implying that D is inner. ∇

In the proof of [86], Theorem 4.1.6, a similar argument was used for the

case where M is a countably decomposable finite von Neumann algebra:

Sakai introduced the maps Tu(x) = uxu∗ +D(u)u∗ for all x ∈M and for all

u ∈Mu. He showed, by using Zorn’s Lemma, instead of the Ryll-Nardzewski

fixed point theorem, that the maps Tu have a fixed point.
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It would be interesting to know if all inner derivations on M̃ are neces-

sarily defined by bounded operators. We answer this question in the negative

(Proposition 5.3.23). First, we give the following lemmas, of which the first

is straight-forward, and so we omit the proof.

Lemma 5.3.21 If A is a unital algebra and a ∈ A is an invertible element

in Z(A), the centre of A, then a−1 ∈ Z(A).

The next result was brought to the author’s attention by Sh. A. Ayupov.

We give a proof for completeness.

Lemma 5.3.22 ([14]) If M is a factor, then Z(M̃) = Z(M) = C1.

Proof. By the fact that M is dense M̃ with respect to the measure topol-

ogy, it follows easily that Z(M) ⊂ Z(M̃). It remains to show that Z(M̃) ⊂
Z(M). Let x ∈ Z(M̃). Then x∗ ∈ Z(M̃) and hence 1 + x∗x ∈ Z(M̃). It

follows from Lemma 5.3.21 that (1 + x∗x)−1 ∈ Z(M̃). But (1 + x∗x)−1 ∈M
(Lemma 1.5.27). Hence (1 + x∗x)−1 ∈ Z(M̃) ∩M ⊂ Z(M). Since M is a

factor, there exists a nonzero λ ∈ C such that (1 + x∗x)−1 = λ1. Therefore

1+x∗x = 1
λ
1. Hence 1+x∗x ∈M. So x∗x ∈M. By the polar decomposition

of x, it follows that x ∈M. Thus x ∈ Z(M̃) ∩M ⊂ Z(M). ∇

The following result was communicated to the author by Sh. A. Ayupov.

We give a proof for completeness.

Proposition 5.3.23 ([14]) Suppose that M is a factor and D is an inner

derivation on M̃, i.e. there exists a ∈ M̃ such that D(x) = ax−xa for every

x ∈ M̃. Suppose b ∈ M̃ is also such that D(x) = bx− xb for every x ∈ M̃.

Then a ∈M if and only if b ∈M.

Proof. By hypothesis, ax− xa = bx − xb for all x ∈ M̃. Hence ax− bx =

xa − xb for all x ∈ M̃, i.e. (a − b)x = x(a − b) for all x ∈ M̃. Hence

a − b ∈ Z(M̃). Since M is a factor, it follows from Lemma 5.3.22 that

a− b = λ1 for some λ ∈ C. Therefore a ∈M if and only if b ∈M. ∇
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Corollary 5.3.24 If M is a factor with M̃ 6= M, there exists a γcm − γcm

continuous derivation D on M̃ such that D(M) is not contained in M.

Proof. Let a ∈ M̃ with a /∈M. Define the inner derivation D(x) = ax−xa
for every x ∈ M̃. Then D is a γcm − γcm continuous derivation on M̃. By

Proposition 5.3.23, there is no b ∈ M such that D(x) = bx − xb for very

x ∈ M̃.

If D(M) ⊂M, then the restriction of D to M is a derivation on M, and

hence there exits b ∈M such that D(x) = bx−xb for every x ∈M (Theorem

2.3.6). Since D is γcm − γcm continuous, it follows that D(x) = bx − xb for

very x ∈ M̃. This is a contradiction. Therefore D(M) is not contained in

M. ∇

5.4 Examples of non-inner derivations on M̃

In this section, we examine the construction of a non-inner derivation on a

commutative M̃, where Mp is not atomic. This construction can be found

in the proof of [20], Theorem 5.3.3.

Theorem 5.4.1 ([20], Remark 3.1) Let A = L0(X,Σ, µ), where X = [a, b],

and let B = P ([a, b]), the subalgebra of all polynomials in A. Then every

derivation D : B → A can be extended to a derivation on A.

Example 5.4.2 ([20], Remark 3.1) Let A = L0(X,Σ, µ), where X = [a, b],

µ the Lebesque measure on X, and Σ the Lebesque σ-algebra of X. Since µ

is a finite measure, we see that A = L̃∞(X,Σ, µ). Let B as in Theorem 5.4.1,

and D(p) = p′ the standard (differentiation) derivation on B. By Theorem

5.4.1, the derivation D defined on B extends to a derivation D0 : A → A.

Since D is a nonzero derivation, it follows that D0 is a nonzero derivation on

A. Hence D0 is non-inner, since A is commutative.

Example 5.4.3 ([2], Example 4.6) Let A = L∞([0, 1]) and M = M2(A).

Recall that one can define a faithful finite normal trace τM on M as the sum

85



Univ
ers

ity
 of

 C
ap

e T
ow

n

of the traces of the diagonal elements of (xij) for every (xij) ∈M. Denoting

the algebra of τM-measurable operators by M̃, it follows from Proposition

1.3.7 that

M̃ = U(M) = U(M2(A)) ∼= M2(U(A)) = M2(Ã).

Let DA be the nonzero derivation on Ã = L0([0, 1]) as in Example 5.4.2.

Then the map D : M̃ → M̃ : (xij) 7→ (DA(xij)) (i, j = 1, 2) defines a

derivation on M̃. It can easily be verified that D is not inner.
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Chapter 6

Derivations and primitive

ideals of M̃

In 1955, Singer and Wermer proved that every continuous derivation D on

a commutative Banach algebra A maps into the (Jacobson) radical Rad(A)

of A ([36], Corollary 2.7.20). At the same time, they conjectured that the

continuity assumption on D can be dropped. This conjecture remained open

until 1988, when M. P. Thomas settled this conjecture in the affirmative, i.e.

he proved that every derivation on a commutative Banach algebra A maps

into the radical of A ([36], Theorem 5.2.36).

The non-commutative Singer-Wermer conjecture states that if D is a

derivation on a (not necessarily commutative) Banach algebraA with xD(x)−
(Dx)x ∈ Rad(A) for every x ∈ A, then D maps into the radical of A ([36],

p. 272). This problem is still open. An equivalent formulation of the non-

commutative Singer-Wermer conjecture is the following: If D is a derivation

on a Banach algebra A, then D(I) ⊂ I for every primitive ideal I of A ([36],

p. 272).

This conjecture is already known to hold when D is continuous ([36],

Proposition 2.7.22). In this chapter, we explore the Singer-Wermer theorem

as well as the non-commutative Singer-Wermer conjecture for the algebra

M̃. In particular, we show that primitive ideals of M̃ are invariant under
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derivations on M̃ in the cases where M is commutative (Section 6.3) and

where the trace on M is finite (Section 6.5). Section 6.4 looks at the invari-

ance problem for certain ideals of M̃. In Section 6.2, we show that primitive

ideals of M̃ are in general not γcm-closed and for this, we appeal to some

results in Section 6.1, some of which are of independent interest.

6.1 Measure bounded elements of M̃ and fur-

ther properties of M̃

Recall from Section 1.4 that an element x in a topological algebra A is

bounded if there there is a nonzero λ ∈ C such that the set {(λx)n : n =

1, 2, . . .} is a bounded subset of A.

Proposition 6.1.1 Let x ∈ M̃. The following statements are equivalent.

(i) x is γcm-bounded.

(ii) For every δ > 0, there exist M > 0 and α > 0, depending on x, such

that µδ(x
n) ≤Mαn for every natural number n.

Proof. (i) ⇒ (ii): Suppose that x is γcm-bounded. Then there exists a

nonzero λ ∈ C such that the set {(λx)n : n = 1, 2, . . .} is γcm-bounded. Let

ε, δ > 0. Then there exits γ > 0 such that

{(λx)n : n = 1, 2, . . .} ⊂ γM̃(ε, δ), i.e.

{λ
n

γ
xn : n = 1, 2, . . .} ⊂ M̃(ε, δ).

Therefore, by Lemma 1.5.16, µδ(
λn

γ
xn) ≤ ε for all n. Thus |λ|

n

γ
µδ(x

n) ≤ ε for

all n (Proposition 1.5.14). Hence µδ(x
n) ≤ εγ

|λ|n . Let M = εγ and α = 1
|λ| .

Then µδ(x
n) ≤Mαn for all n.

(ii) ⇒ (i): Suppose that (ii) holds and take ε > 0. Let γ = M
ε

and let

λ ∈ C be such that |λ| = 1
α
. Then M = εγ and α = 1

|λ| . Applying the proof

of (i) ⇒ (ii) in reverse, it follows that x is γcm-bounded. ∇
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Recall that M̃ is a GB∗-algebra (Theorem 1.5.29). The next corollary

is known to hold for all GB∗-algebras ([40], p. 695). We give a more direct

proof for M̃ using Proposition 6.1.1.

Corollary 6.1.2 If x ∈M, then x is a γcm-bounded element of M̃.

Proof. If x ∈ M, then, by Proposition 1.5.14(i), µδ(x
n) ≤ ‖xn‖ ≤ ‖x‖n.

This holds for every n and for every δ > 0. Let M = 1 and α = ‖x‖. Hence

µδ(x
n) ≤ Mαn for every n and for every δ > 0. By Proposition 6.1.1, the

result follows. ∇.

Lemma 6.1.3 ([40], Lemma 2.6) Let A be a GB∗-algebra with Ab being

the underlying C∗-algebra. If x ∈ A is a self-adjoint bounded element, then

x ∈ Ab.

The following result is known for locally convex GB∗-algebras ([6], p. 94).

Proposition 6.1.4 If x ∈ M̃ is γcm-bounded and normal, then x ∈M.

Proof. If y ∈ M̃ is γcm-bounded and self-adjoint, then y ∈M (by Theorem

1.5.29 and Lemma 6.1.3).

We first show that x∗ is γcm-bounded. Let δ > 0. Since x is γcm-

bounded, it follows from Proposition 6.1.1 that there exist M,α > 0 such

that µδ(x
n) ≤Mαn for all n. Therefore, by Proposition 1.5.14(viii), it follows

that µδ((x
∗)n) = µδ((x

n)∗) = µδ(x
n) ≤Mαn for all n. Hence, by Proposition

6.1.1, x∗ is γcm-bounded.

Next, we illustrate that x∗x is γcm-bounded. Let δ > 0 and δ1 =

δ2 = 1
2
δ. Then δ = δ1 + δ2. Since x and x∗ are γcm-bounded, there ex-

ist M1,M2, α1, α2 > 0 such that µδ1(x
n) ≤ M1α

n
1 for all n, and µδ2((x

∗)n) ≤
M2α

n
2 for all n. Hence, since x is normal, it follows from Proposition 1.5.14(vi)

that

µδ((x
∗x)n) = µδ1+δ2((x

∗x)n)

= µδ1+δ2((x
∗)nxn)

≤ µδ1((x
∗)n)µδ2(x

n)
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≤ (M1α
n
1 )(M2α

n
2 )

= (M1M2)(α1α2)
n

for all n. Thus x∗x is γcm-bounded by Proposition 6.1.1.

Now, since x∗x is self-adjoint, it follows that x∗x ∈ M. By the polar

decomposition of x, it follows that x ∈M. ∇

The following corollary is already known for locally convex GB∗-algebras

([6], p. 94, and [40], p. 695).

Corollary 6.1.5 If M is commutative, then x ∈ M̃ is γcm-bounded if and

only if x ∈M.

Proof. By hypothesis, every element of M̃ is normal. By Proposition 6.1.4

and Corollary 6.1.2, the result follows. ∇.

Lemma 6.1.6 ([6], Corollary 2.8) Let A be a barrelled pseudocomplete lo-

cally convex GB∗-algebra such that every element of A is bounded. Then A
is a C∗-algebra.

Theorem 6.1.7 Suppose that M̃ is locally convex with respect to the mea-

sure topology. The following statements are equivalent.

(i) M̃ = M.

(ii) M̃ is a Q-algebra, i.e. the group of invertible elements of M̃ is open

with respect to the measure topology.

(iii) M̃ is a C∗-algebra in the measure topology.

(iv) Every element of M̃ is measure bounded.

Proof. (i) ⇒ (iv): By Corollary 6.1.2, every element of M is a γcm-bounded

element of M̃. But M̃ = M. Hence every element of M̃ is γcm-bounded.

(iv) ⇒ (iii): Recall that M̃ is a GB∗-algebra (Theorem 1.5.29). By

Lemma 1.4.19, M̃ is pseudocomplete. Since M̃ is complete and metrizable,
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M̃ is barrelled. It follows from Lemma 6.1.6 that M̃ is a C∗-algebra with

respect to the measure topology.

(iii) ⇒ (ii): This is trivial since every Banach algebra is a Q-algebra.

(ii) ⇒ (i): Suppose that M̃ is a Q-algebra with respect to the measure

topology. Assume that M̃ 6= M. Then there exists a self-adjoint element

x ∈ M̃ with x /∈M. Since M̃ is a Q-algebra, Sp (x,M̃) is a bounded subset

of C (by [15], 4.8-3, p. 206, the spectrum of every element in a Q-algebra is

bounded). By Proposition 6.1.4, every measure bounded self-adjoint element

of M̃ is in M. Therefore, since x /∈M, x is not a measure bounded element

of M̃. By Lemma 1.4.19, M̃ is pseudocomplete. It follows from Lemma

1.4.20 that M̃ does not have continuous inversion. By [104], Theorem 7.4,

every complete metrizable Q-algebra has continuous inversion. Since M̃ is a

complete metrizable Q-algebra, we have a contradiction. Hence M̃ = M. ∇

After the author proved Theorem 6.1.7, I. Tembo proved that, in general,

M̃ is a Q-algebra if and only if M̃ = M ([96]).

6.2 Non-closed primitive ideals of M̃

Definition 6.2.1 If A is an algebra, then we say that a two-sided ideal P
of A is a primitive ideal of A if there exists a maximal left ideal I of A such

that P = {a ∈ A : aA ⊂ I}. An algebra is said to be primitive if {0} is a

primitive ideal of A.

Every algebra has at least one primitive ideal, since every algebra has at

least one maximal left ideal. It is well known that every primitive ideal of

a Banach algebra is closed ([36], Proposition 2.28(iii)). In this section, we

show that this is not true in general for the algebra M̃, not even when M is

commutative. The motivation for this becomes clear later on. The following

theorem is due to W. Żelazko.

Theorem 6.2.2 ([105], Corollary 3, [36], p. 594) Let A be a commuta-

tive complete metrizable locally m-convex topological algebra. The following

91



Univ
ers

ity
 of

 C
ap

e T
ow

n

statements are equivalent.

(i) All maximal two-sided ideals of A are closed.

(ii) A is a Q-algebra.

Recall that a two-sided ideal of a unital commutative algebra is maximal

if and only if it is primitive ([36], Proposition 1.4.36). We now come to the

main result of this section which is an immediate consequence of Theorems

1.5.26, 6.1.7 and 6.2.2.

Corollary 6.2.3 Suppose that M̃ is commutative and locally convex with re-

spect to the measure topology. If M̃ 6= M, then M̃ has at least one primitive

ideal which is not γcm-closed.

We now give an example of a maximal two-sided (hence primitive) ideal

in M̃ which is not closed with respect to the measure topology. For this, we

first give the following lemma.

Lemma 6.2.4 Let (X,Σ, µ) be a localizable measure space, f ∈ L̃∞(X,Σ, µ) =

L̃∞ and λ ∈ C. If µ({x ∈ X : f(x) = λ}) > 0, then λ ∈ Sp (f, L̃∞).

Proof. Suppose that λ /∈ Sp (f, L̃∞). Then f − λ1 is invertible in L̃∞, i.e.

there exists g ∈ L̃∞ such that (f − λ1)g = 1 almost everywhere. Therefore

µ({x ∈ X : f(x) = λ}) = 0. ∇

The following example is modelled along the lines of an argument in the

proof of Theorem, p. 293 in [105].

Example 6.2.5 Suppose that M̃ 6= M and that M̃ is commutative and

locally convex in the measure topology. We know from Example 1.5.8 that

M̃ can be identified with L̃∞(X,Σ, µ) for some localizable measure space

(X,Σ, µ). By Proposition 1.5.11 and Theorems 1.5.23 and 1.5.24, there is a

sequence of atoms (An) such that

L̃∞(X,Σ, µ) = L0(E,ΣE, µE)⊕ L∞(X \ E,ΣX\E, µX\E),
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where E = ∪∞n=1An and µ(E) < ∞. Let f ∈ L̃∞(X,Σ, µ) be defined by

f(An) = n for every n > 0, and f(x) = 0 for every x ∈ X \ E.

We show that n ∈ Sp (f, L̃∞) for every n > 0, where L̃∞ = L̃∞(X,Σ, µ).

For every n, {x ∈ X : f(x) = n} = An, and µ(An) > 0. By Lemma 6.2.4,

n ∈ Sp (f, L̃∞) for every n > 0.

For every n, let

φn(λ) =
∞∏

k=n

(1− λ

k
) exp

(λ
k

+
1

2
(
λ

k
)2 + · · ·+ 1

mk

(
λ

k
)mk

)
,

where (mk) is a sequence of positive integers. It follows from a theorem of

Weierstrass ([1], Theorem 7, p. 194) that every φn is an entire function. By

Theorem 1.5.26, M̃ is locally m-convex. Using the holomorphic functional

calculus for complete metrizable locally m-convex topological algebras ([104],

Theorem 11.8), define a sequence (xn) in M̃ by xn = φn(f) for every n.

Let I be the smallest ideal of A containing the sequence (xn). As in the

proof of Theorem, p. 293 in [105], it can be shown that I is properly con-

tained in A, and therefore there is at least one maximal ideal of A containing

I. One can also prove, as in the proof of Theorem, p. 293 in [105], that any

such maximal ideal is not closed, and thus dense in A.

In 2006, W. Żelazko extended Theorem 6.2.2 by proving that a unital

complete metrizable topological algebra A is a Q-algebra if and only if all

maximal one-sided ideals of A are closed ([106]).

We now give a property of primitive ideals of von Neumann algebras,

which is of independent interest and does not seem to have appeared in the

literature.

Proposition 6.2.6 If I is a primitive ideal of a von Neumann algebra M,

then I is strong-operator closed or strong-operator dense in M.

Proof. We denote by Isot
the strong-operator closure of I in M. Since I

is a primitive ideal, I is the kernel of an irreducible ∗-representation π of M.

Furthermore, by Proposition 1.2.10, I ⊂ Isot
= pM for some central pro-

jection p of Isot
. Since p is central, π(p)π(x) = π(px) = π(xp) = π(x)π(p)
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for every x ∈ M. Thus π(p) commutes with π(M). Hence π(p) = λ1 for

some λ ∈ C (Proposition 1.2.16). Since p is a projection, so is π(p). Thus

λ = 0 or λ = 1, implying that π(p) = 0 or π(p) = 1.

If π(p) = 0, then p ∈ I, implying that I is strong-operator closed. If

π(p) = 1 and x ∈ M is arbitrary, then x = xp + x(1 − p), implying that

π(x(1 − p)) = 0 for every x ∈ M, i.e. x(1 − p) ∈ I for every x ∈ M. In

particular, for x = 1, 1 − p ∈ I ⊂ Isot
. Therefore 1 = p + (1 − p) ∈ Isot

.

Hence I is strong-operator dense in M. ∇.

6.3 The invariance of primitive ideals under

derivations on a commutative M̃

In this section, we show that if M̃ is commutative, then every primitive ideal

of M̃ is invariant under derivations on M̃ (Corollary 6.3.6). First we review

some well-known terminology.

Let R be a unital ring. If I is a two-sided ideal of R, then we call I
a semiprime (respectively prime ) ideal if whenever a ∈ R and aRa ⊂ I
(respectively aRb ∈ I with b ∈ R), then a ∈ I (respectively a ∈ I or

b ∈ I). Observe that every prime ideal of R is semiprime and recall that

every primitive ideal of R is prime ([36], Proposition 1.4.34(iii)). Thus every

primitive ideal of R is semiprime.

Lemma 6.3.1 Let R be a unital ring with centre Z(R), and I a semiprime

ideal of R. If a2 ∈ I with a ∈ Z(R), then a ∈ I.

Proof. By hypothesis, it follows that aRa = a2R ⊂ I. Since R is

semiprime, a ∈ I. ∇

The following lemma is a special case of [103], p. 63, and we give a proof

for completeness.

Lemma 6.3.2 If x ∈ M̃, then |x| ∈ {x∗x}′′, the bicommutant of x∗x in M̃.
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Proof. Let y ∈ {x∗x}′ be self-adjoint. Then (x∗x)y = y(x∗x). Therefore

x∗x and y generate a maximal commutative ∗-subalgebra A of M̃ ([27],

Proposition V.35.7). By Theorem 1.5.29 and Lemma 1.4.14, A is a GB∗-

algebra. Therefore, by Proposition 1.4.21, |x| = (x∗x)
1
2 ∈ A. Since A is

commutative and |x|, y ∈ A, we have |x|y = y|x|. This holds for every

self-adjoint y ∈ {x∗x}′.
Let z ∈ {x∗x}′ (not necessarily self-adjoint). Then z = a + ib, where

a = 1
2
(z + z∗) and b = 1

2i
(z − z∗). Recall that a and b are self-adjoint. It

is easily verified that z∗ ∈ {x∗x}′, and hence a, b ∈ {x∗x}′. By the previous

paragraph, |x|a = a|x| and |x|b = b|x|. It follows that |x|z = z|x|. This holds

for every z ∈ {x∗x}′. Hence |x| ∈ {x∗x}′′. ∇

Theorem 6.3.3 Let I be a semiprime ideal of M̃. If x ∈ I ∩ Z(M̃), then

x = ab with a ∈ I and b ∈ I.

Proof. Let x ∈ I ∩Z(M̃) and x = v|x| the polar decomposition of x. Then

v ∈ M and, since I is an ideal, |x|2 = x∗x ∈ I. Also, since x ∈ Z(M̃),

x∗ ∈ Z(M̃). Hence x∗x ∈ Z(M̃), implying that {x∗x}′ = M̃. Therefore, by

Lemma 6.3.2, |x| ∈ {x∗x}′′ = (M̃)′. Hence |x| ∈ (M̃)′ ∩ M̃ = Z(M̃).

By Lemma 6.3.1, |x| ∈ I. Observe that |x| ≥ 0. Once again, |x| 12 ∈ {|x|}′′

(Lemma 6.3.2). Therefore, since |x| ∈ Z(M̃), it follows that |x| 12 ∈ Z(M̃).

Now (|x| 12 )2 = |x| ∈ I. By Lemma 6.3.1, |x| 12 ∈ I. Since v ∈ M ⊂ M̃, it

follows that v|x| 12 ∈ I. Let a = v|x| 12 ∈ I and b = |x| 12 . Then a, b ∈ I and

x = v|x| = ab. ∇

Our next result is the main result of this section.

Theorem 6.3.4 Let I be a semiprime ideal of M̃ and D a derivation on

M̃. Then D(I ∩ Z(M̃)) ⊂ I.

Proof. Let x ∈ I ∩ Z(M̃). By Theorem 6.3.3, x = ab with a ∈ I and

b ∈ I. Therefore D(x) = D(ab) = aD(b) + D(a)b ∈ I, implying that

D(I ∩ Z(M̃)) ⊂ I. ∇
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Proposition 6.3.5 Let A an algebra, I a two-sided ideal of A, and D a

derivation on A. If for every x ∈ I, there exist a, b ∈ I such that x = ab,

then D(I) ⊂ I.

Proof. Let x ∈ I. By hypothesis, there exist a, b ∈ I such that x = ab.

Hence D(x) = D(ab) = aD(b) + D(a)b. Therefore, since I is a two-sided

ideal of A, D(I) ⊂ I. ∇

The next corollary follows immediately from Theorem 6.3.4 and Propo-

sition 6.3.5.

Corollary 6.3.6 Suppose that M is commutative and let D be a derivation

on M̃. Then D(I) ⊂ I for every semiprime, and hence primitive, ideal I of

M̃.

6.4 The invariance of ideals under derivations

on a general M̃

Recall that the zero derivation is the only γcm − γcm continuous derivation

on a commutative M̃. Therefore, if M is commutative, then every γcm−γcm

continuous derivation on M̃ maps into Rad(M̃). Observe that this is an ana-

logue of the Singer-Wermer theorem for commutative Banach algebras ([36],

Corollary 2.7.20). The following result follows immediately from Theorem

1.5.30 and Corollary 5.3.4.

Corollary 6.4.1 If M is commutative with finite trace, and Mp is not

atomic, then there is a derivation on M̃ which does not map into the radical

of M̃.

Recall that, in contrast, every derivation on a commutative Banach alge-

bra A maps into the radical of A ([36], Theorem 5.2.36).

Theorem 6.4.2 If D is a derivation on M̃, then D(I) ⊂ I for every γcm-

closed two-sided ideal I of M̃.
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Proof. Let I be a γcm-closed two-sided ideal of M̃. By Theorem 1.5.21,

I ∩M is a norm closed two-sided ideal of M. Let x ∈ I. Then, by Theorem

1.5.21, there is a sequence (xn) in I ∩ M such that xn → x (γcm). Since

I ∩M is norm closed, it follows from [95], p. 19, that |xn| ∈ I ∩M for every

n. By Theorem 1.5.20, |xn| → |x| (γcm). Hence |x| ∈ I since I is γcm-closed.

By a similar argument to that given above, |x| 12 ∈ I. Therefore v|x| 12 ∈ I,

where x = v|x| is the polar decomposition of x ∈ M̃. So x = v|x| 12 |x| 12 = ab,

where a = v|x| 12 and b = |x| 12 . The result now follows from Proposition 6.3.5.

∇

The above result shows that γcm-closed primitive ideals of M̃ are invariant

under derivations on M̃. By Corollary 6.2.3, primitive ideals of M̃ need not

be γcm-closed. Sometimes {0} is a primitive ideal of M̃. We now characterize

the case where M̃ has {0} as the only primitive ideal. We first prove the

following lemma.

Lemma 6.4.3 An algebra A is simple if and only if {0} is the only primitive

ideal of A.

Proof. Suppose that A is simple. Then {0} is the only proper two-sided

ideal ofA and, since primitive ideals are always proper, it is the only primitive

ideal of A.

Conversely, suppose that {0} is the only primitive ideal ofA. Assume that

A is not simple. Then A has a nonzero proper two-sided ideal I. Therefore

there exists a maximal two-sided ideal I0 of A with I ⊂ I0. Since every max-

imal two-sided ideal of an algebra is primitive ([36], Proposition 1.4.34(iv)),

we have a contradiction, implying that A is simple. ∇

Theorem 6.4.4 The following statements are equivalent.

(i) {0} is the only primitive ideal of M̃.

(ii) M̃ is simple.

(iii) M is simple.
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(iv) M is a finite factor.

Proof. The equivalence of statements (i) and (ii) follows from Lemma 6.4.3.

(ii) ⇒ (iv): Assume that M̃ is simple. By Lemma 6.4.3, M̃ is primitive

and thus prime. By Theorem 3.5.6, M is prime, and hence a factor ([9],

p. 47). Also, since the trace τ on M is semifinite, M̃0 6= {0}. Therefore

M̃0 = M̃ because M̃ is simple and M̃0 is a two-sided ideal of M̃. By Lemma

1.5.18, this implies that 1 ∈ M has finite trace. So the identity element of

M is finite, implying that M is a finite factor.

(iv) ⇒ (iii): This is a restatement of Corollary 1.2.13.

(iii) ⇒ (ii): Let I be a two-sided ideal of M̃. Then I ∩M is an ideal of

M. Since M is simple, I ∩M is {0} or M.

Suppose that I ∩M = {0}. Let x ∈ I. Then, since x ∈ M̃, it follows

from Lemma 1.5.27 that (1+x∗x)−1 ∈ M̃. By Proposition 1.3.1, x(1+x∗x)−1

is a bounded operator. Therefore x(1+x∗x)−1 ∈M, since x(1+x∗x)−1 ∈ M̃,

and thus affiliated with M. Hence, since x ∈ I, we have that x(1+x∗x)−1 ∈
I ∩M = {0}. This implies that x = 0. Thus I = {0}.

Now suppose that I ∩M = M. Then 1 ∈ I, and so I = M̃. Therefore

I is {0} or M̃. This implies that M̃ is simple. ∇

Let A be an algebra. By an irreducible ∗-representation of A on a Hilbert

space H, we mean a self-adjoint algebra homomorphism π : A → B(H) such

that the only subspaces of H invariant under π(A) are {0} and H.

It is well known that if A is a C∗-algebra, then a two-sided ideal I of A
is primitive if and only if I is the kernel of an irreducible ∗-representation of

A on a Hilbert space ([27], Proposition 24.12, and [38], p. 57). This is often

taken to be the definition of a primitive ideal of a C∗-algebra.

If A is a metrizable locally C∗-algebra, then it is known that A ad-

mits irreducible ∗-representations on a Hilbert space ([30]). Also, every ∗-

representation of A is continuous ([30], Lemma 3.1).

Suppose that M̃ is commutative and locally convex with respect to the

measure topology (thus locally C∗ with respect to the measure topology by

98



Univ
ers

ity
 of

 C
ap

e T
ow

n

Theorem 1.5.26), and that M̃ 6= M. By Corollary 6.2.3, M̃ has at least one

primitive ideal which is not γcm-closed. It follows from the previous para-

graph that M̃ admits irreducible ∗-representations which are all continuous.

It follows that the kernels of the irreducible ∗-representations of M̃ are all

γcm-closed. Hence primitive ideals of M̃ need not be kernels of irreducible
∗-representations on a Hilbert space.

Example 6.4.5 We give an example of an irreducible ∗-representation of

M̃ on a Hilbert space, when the trace on M is not finite. By Theorem

1.5.19, M̃/M̃0 is a non-trivial C∗-algebra when equipped with the norm

µ̇∞. Let φ : M̃ → M̃/M̃0 be the canonical homomorphism of M̃ onto

M̃/M̃0. Since M̃/M̃0 is a non-trivial C∗-algebra, M̃/M̃0 admits an irre-

ducible ∗-representation π on a Hilbert space H (Theorem 1.2.17). Define a
∗-representation π0 : M̃ → B(H) by π0 = π ◦ φ, i.e. π0(x) = π(x + M̃0) for

every x ∈ M̃.

We show that π0 is irreducible. Let K be subspace of H such that

π0(x)K ⊂ K for every x ∈ M̃. Then π(x + M̃0)K ⊂ K for every x ∈ M̃.

Hence π(a)K ⊂ K for every a ∈ M̃/M̃0. Since π is irreducible, it follows

that K = {0} or H. Hence π0 is an irreducible ∗-representation of M̃.

Proposition 6.4.6 Suppose that M̃ admits an irreducible ∗-representation

π on a Hilbert space. If D is a derivation on M̃, then D(Ker(π)) ⊂ Ker(π).

Proof. By Example 1.5.9, Proposition 1.5.11 and Theorem 3.2.8, π is

γcm − γcm continuous when B(H) admits the diagonal trace in Example

1.2.3(ii), and hence Ker(π) is γcm-closed. The result follows from Theorem

6.4.2. ∇

We now give an example of a primitive ideal of M̃.

Example 6.4.7 Let M be a countably decomposable factor of type I∞ or

II∞. By Theorem 1.2.14, M0 is a maximal ideal of M, and hence M/M0 is

simple. By Theorem 1.5.19, it follows that M̃/M̃0 is simple. Therefore M̃0
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is a maximal ideal, and hence a primitive ideal of M̃. If M is of type II∞,

then M̃ 6= M ([76], Remark 1(v)).

The next example shows that M̃0 is not always a primitive ideal of M̃.

Example 6.4.8 Let M = L∞(R) have the trace τ(f) =
∫

R f dµ and let

A = (0,∞) ⊂ R. Let q = χA. Let Ip be the p-ideal generated by P =

{p ∈ Mp : τ(p) <∞} ∪ {q}. By Theorem 1.2.9, Ip generates a norm-closed

two-sided ideal I of M̃. Clearly, M0 is properly contained in I. Let F ∈ Σ

such that µ(F ) < ∞ and let p0 = χF . Then 1 6= p0 ∧ q and 1 6= p0 ∨ q.
Therefore 1 /∈ I, implying that M0 is not a maximal ideal of M. Hence

M/M0 is not simple, and hence, by Theorem 1.5.19, M̃/M̃0 is not simple,

implying that M̃0 is not a maximal, and hence not a primitive ideal of M̃.

6.5 Derivations on a regular M̃

A ring R is called regular if for any a ∈ R, there exists x ∈ R such that

a = axa.

Lemma 6.5.1 ([53], Corollary 1.2(a)) Every left or right ideal I of a regular

ring has the property that I2 = I.

The next corollary is an immediate consequence of Lemma 6.5.1 and

Proposition 6.3.5.

Corollary 6.5.2 If M̃ is regular and D is a derivation on M̃, then D(I) ⊂
I for every two-sided ideal I of M̃.

In light of Corollary 6.5.2, it would be interesting to know when M̃ is

regular. Recall that U(M) stands for the set of closed, densely defined

operators affiliated with M, and if M is finite, then U(M) is a unital ∗-

algebra. The following result is well known.

Theorem 6.5.3 ([48], Theorem 2) If M is a finite von Neumann algebra,

then U(M) is regular.
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Corollary 6.5.4 Let M be a von Neumann algebra with a faithful finite

normal trace τ . Then the following statements hold.

(i) M̃ is regular.

(ii) If D is a derivation on M̃, then D(I) ⊂ I for every two-sided ideal I
of M̃.

Proof. (i) If τ(1) < ∞, then, by Proposition 1.5.5, M̃ = U(M). By

Theorem 6.5.3, M̃ is regular.

(ii) This follows from (i) and Corollary 6.5.2. ∇

Let M be a von Neumann algebra. In [67], an equivalence relation ↔ on

the lattice of projections of M is defined in the following manner: Let p and

q be projections in M. We write p↔ q if there exist elements x ∈ pMq and

y ∈ qMp such that xy = p and yx = q.

Lemma 6.5.5 ([24], Proposition 1.4) If p and q are projections in M and

p ∼ q, then p↔ q.

We say that a ∗-algebra A is ∗-regular if A is a regular algebra and

x∗x = 0, with x ∈ A, implies x = 0 ([67]). Also, A is called complete ∗-

regular if A is ∗-regular and the projections in A form a complete lattice

([67]).

Theorem 6.5.6 ([67], Theorem 2) If p and q are projections in a complete
∗-regular algebra with p↔ q ≤ p, then p = q.

Corollary 6.5.7 If M̃ is regular, then M is finite.

Proof. Let x ∈ M̃ with x∗x = 0. By the polar decomposition of x, it follows

that x = 0. Hence M̃ is a complete ∗-regular algebra. Let p, q ∈ Mp such

that p ∼ q ≤ p. Then, by Lemma 6.5.5, p↔ q ≤ p. It follows from Theorem

6.5.6 that p = q, implying that M is finite. ∇
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Theorem 6.5.8 Let (X,Σ, µ) be a localizable measure space. The following

statements are equivalent.

(i) L̃∞(X,Σ, µ) is a regular algebra.

(ii) (X,Σ, µ) is a finite measure space.

(iii) L̃∞(X,Σ, µ) = L0(X,Σ, µ).

Proof. (i) ⇒ (ii): Suppose that L̃∞(X,Σ, µ) is a regular algebra and that µ

is not finite. Since (X,Σ, µ) is localizable, it is semifinite. By Lemma 1.1.1,

there exists a disjoint sequence (Fn) of measurable subsets of X such that

1 < µ(Fn) <∞ for every n. Let

f(x) =

{
1
n

if x ∈ Fn

1 if x /∈ ∪∞n=1Fn.

Then f ∈ L̃∞(X,Σ, µ). Since L̃∞(X,Σ, µ) is regular, there exists g ∈
L̃∞(X,Σ, µ) such that f = f 2g. Clearly, g = 1

f
almost everywhere.

Observe that µ(∪n=∞
n=1 Fn) = ∞. Also, note that

g(x) =

{
n if x ∈ Fn

1 if x /∈ ∪∞n=1Fn.

We show that g /∈ L̃∞(X,Σ, µ), thereby obtaining a contradiction. Let t ∈ R.

Choose a natural number n0 such that t < n0 and n0 > 1. Then

∞ = µ(∪∞n=n0+1Fn)

≤ µ({x ∈ X : g(x) > n0})

≤ µ({x ∈ X : g(x) > t})

= dt(g).

Hence dt(g) = ∞ for every t ∈ R. Therefore, by Proposition 1.1.4, it follows

that g /∈ L̃∞(X,Σ, µ), a contradiction. Thus (X,Σ, µ) is a finite measure

space.

(ii) ⇒ (iii): This is immediate.
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(iii) ⇒ (i): Assume that L̃∞(X,Σ, µ) = L0(X,Σ, µ). Since L0(X,Σ, µ) is

regular (by Proposition 1.5.5 and Theorems 6.5.3 and 1.5.3), it follows that

L̃∞(X,Σ, µ) is regular. ∇.

Our next result is now immediate.

Corollary 6.5.9 Let M be a commutative von Neumann algebra with a

faithful semifinite normal trace τ . The following statements are equivalent.

(i) M̃ is a regular algebra.

(ii) The trace τ is finite.

(iii) M̃ = U(M).

For the case where M is not necessarily commutative, we now show that

statements (i) and (ii) of Corollary 6.5.9 are equivalent when M is a factor.

Recall that all factors of type I and II admit faithful semifinite normal traces,

while type III factors have no faithful semifinite normal traces (Theorem

1.2.7).

Theorem 6.5.10 Suppose that M is a factor with a faithful semifinite nor-

mal trace τ . The following statements are equivalent.

(i) M̃ is a regular algebra.

(ii) The trace τ is finite.

Proof. The implication (ii)⇒ (i) follows from Corollary 6.5.4. We now show

that the implication (i) ⇒ (ii) holds. Suppose that M̃ is a regular algebra.

By Corollary 6.5.7, M is a finite factor. Therefore, by Theorem 1.2.6, M
is countably decomposable, and so M admits a faithful finite normal trace

τ0 (Theorem 1.2.5). It follows from Proposition 1.2.8 that τ = kτ0 for some

k > 0. Hence τ(1) = kτ0(1) <∞. Thus τ is finite. ∇
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We now show that in the equivalence of statements (i) and (iii) of Corol-

lary 6.5.9, the commutativity assumption of M can be replaced with the

more general assumption of finiteness of M.

Let M be a finite von Neumann algebra. Then M can be enlarged to a

regular ring U(M), the algebra of closed densely defined operators affiliated

with M (Theorem 6.5.3). By [24], p. 211, U(M) is also the smallest regular

ring to contain M, in the sense that the only regular subring of U(M) to

contain M is U(M) itself.

Corollary 6.5.11 Let M be a finite von Neumann algebra with a faithful

semifinite normal trace τ . Then M̃ is a regular algebra if and only if M̃ =

U(M).

Proof. Suppose that M is finite and M̃ = U(M). By Theorem 6.5.3,

U(M), and thus M̃, is regular.

Suppose that M̃ is regular. Since U(M) is the smallest regular ring to

contain M and M⊂ M̃ ⊂ U(M), it follows that M̃ = U(M). ∇

In light of Corollary 6.5.9 and Corollary 6.5.11, it would be interesting to

know if M̃ = U(M) implies that the corresponding trace on M is finite. We

do not know if there is an M̃ having a γcm − γcm continuous derivation D

and a primitive ideal P such that D(P) is not contained in P . The existence

of such an example implies the existence of an M̃ with a non-inner γcm−γcm

continuous derivation.

We end with a characterization of regular C∗-algebras, which is of inde-

pendent interest.

Theorem 6.5.12 A C∗-algebra A is regular if and only if A is finite-dimen-

sional.

Proof. Suppose that A is regular. Since every regular Banach algebra is

finite-dimensional ([68], p. 111), A is finite-dimensional.

Suppose that A is finite-dimensional. Then A ∼= ⊕i=n
i=1Ai, where Ai =

Mni
(C) for some ni ∈ N for every i ([95], Theorem I.11.9). Since C is
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regular, Mni
(C) is regular ([68], Theorem 24, p. 114) for every i. Therefore,

since any direct sum of regular rings is regular ([68], p. 110), A is regular.

∇
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Chapter 7

Jordan homomorphisms and

derivations on locally

W∗-algebras

Inverse limits of W∗-algebras, called locally W∗-algebras, were first studied

by M. Fragoulopoulou in [49]. More than a decade later, M. Joita continued

this study in the papers [60] and [61]. Derivations on locally C∗-algebras

were first studied in [49], [16] and [82]. In this chapter, we extend some

results on Jordan homomorphisms and derivations for operator algebras to

locally C∗-algebras and locally W∗-algebras. In particular, in Section 7.4,

we investigate a problem raised in [49]: Is every derivation on a locally W∗-

algebra inner? A sufficient condition on a derivation on a locally W∗-algebra

is given to ensure that it is inner. The automatic continuity of derivations on

locally C∗-algebras is proved by Becker in [16], and we give an independent

proof of his result which differs significantly to that provided by him (The-

orem 7.4.1). We give, in Section 7.2, a characterization of those M̃ having

the property that the measure topology is a locally W∗-topology (Corollary

7.2.2). At the same time, we establish another characterization of locally

W∗-algebras amongst the class of locally C∗-algebras (Theorem 7.2.1). Sec-

tion 7.3 deals with Jordan homomorphisms of locally C∗-algebras and locally
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W∗-algebras. We concern ourselves mainly with the problem as to when

invertibility preserving linear maps between locally W∗-algebras are Jordan

homomorphisms.

7.1 Locally W∗-algebras

In this section, we gather some basic concepts and results, mainly from [49],

[60] and [61], regarding locally W∗-algebras and locally C∗-algebras which are

not so well known and are needed in this chapter. No proofs will therefore

be given since they can all be found in the above mentioned references.

7.1.1 Locally Hilbert spaces and locally C∗-algebras

Definition 7.1.1 ([60], Definition 1.1) Let Λ be a directed set and {Hα :

α ∈ Λ} a family of Hilbert spaces such that for α, β ∈ Λ, β ≤ α, Hβ ⊂ Hα

and 〈·, ·〉β = 〈·, ·〉α|Hβ
, where 〈·, ·〉α denotes the inner product of Hα. Let

H = lim→Hα = ∪αHα be equipped with the inductive limit topology, i.e. the

finest topology on H making the inclusion maps Hβ → Hα continuous when

every Hα is equipped with the norm topology. Then H is called a locally

Hilbert space.

Then if ξ, η ∈ H, there is an α ∈ Λ such that ξ, η ∈ Hα. Put 〈ξ, η〉 =

〈ξ, η〉α. This defines an inner product on H ([60], Definition 2.1 and Proposi-

tion 2.2). The completion of H under the norm induced by the inner product

is denoted by H̃. The norm topology on H is weaker than the inductive limit

topology on H ([60], Corollary 2.5).

As promised in chapter 1, we give an example of a non-commutative

locally C∗-algebra, namely the algebra described in the next proposition.

Proposition 7.1.2 ([57], Proposition 5.1; [49], Example 3) LetH = lim→Hα

be a locally Hilbert space. Denote the algebra of all continuous linear opera-

tors on H by L(H). Let

L(H) = {x ∈ L(H) : for every α ≤ β, xβ ◦ iβα = iβα ◦ xα},
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where xα = x|Hα ∈ B(Hα), and iβα the canonical injection of Hα into Hβ

(it is shown in [57] that x(Hα) ⊂ Hα for every α). The algebra L(H)

is a locally C∗-algebra. The topology of L(H), making L(H) a locally C∗-

algebra, is defined by the family of C∗-seminorms {pα : α ∈ Λ}, where, for

every α ∈ Λ, pα(x) = ‖xα‖α, and ‖.‖α is the norm on B(Hα). Moreover,

L(H) ∼= lim← B(Hα), where the connecting maps fαβ, α ≤ β, are defined by

the formulas fαβ(xβ) = xα.

Definition 7.1.3 If H is a locally Hilbert space, then a locally C∗-subalgebra

of L(H) is a closed ∗-subalgebra of L(H).

The proof of the following lemma is part of the proof of [49], Scholium

1.2.

Lemma 7.1.4 Let B be a locally C∗-subalgebra of L(H), where H is a lo-

cally Hilbert space, and let (pα) be the family of C∗-seminorms on L(H) in

Proposition 7.1.2 defining the topology on L(H). For every α, let qα = pα|B,
and put Nα = {x ∈ B : qα(x) = 0}. For every α, denote the projection

map of L(H) into B(Hα) by fα. Then, for every α, we have that B/Nα, with

norm q̇α defined as q̇α(x + Nα) = qα(x) for every x ∈ B, is isometrically
∗-isomorphic to fα(B), equipped with the norm ‖.‖α on B(Hα) restricted to

fα(B). Furthermore, fα(B) is a C∗-subalgebra of B(Hα) for every α.

Proof. For every α, the map φα : B/Nα → fα(B), defined as φα(x+Nα) =

fα(x), is a self-adjoint algebra isomorphism. Furthermore, q̇α(x + Nα) =

qα(x) = ‖fα(x)‖α for every x ∈ B. Since B/Nα is a C∗-algebra for every α

(Theorem 1.4.6), it follows that fα(B) is a C∗-subalgebra of B(Hα) for every

α. ∇

It is a well known fact that every abstract C∗-algebra is ∗-isomorphic

to a C∗-algebra of operators on some Hilbert space. The next result is an

extension of this fact to locally C∗-algebras.

108



Univ
ers

ity
 of

 C
ap

e T
ow

n

Theorem 7.1.5 ([57], Theorem 5.1) If A is a locally C∗-algebra, then there

exists a locally Hilbert space H such that A is topologically ∗-isomorphic to a

locally C∗-subalgebra of L(H).

We say that a locally C∗-subalgebra A of L(H), where H is a locally

Hilbert space, acts non-degenerately on H if for each 0 6= ξ ∈ H, there exists

x ∈ A such that xξ 6= 0 ([60], Definition 3.9).

Proposition 7.1.6 ([60], Proposition 3.10) Let A be a locally C∗-algebra.

Then there is a locally Hilbert space H and an injective homomorphism of

locally C∗-algebras π : A → L(H) such that the locally C∗-algebra π(A) acts

non-degenerately on H.

Lemma 7.1.7 ([61], p. 91) Let A be a locally C∗-algebra which acts non-

degenerately on a locally Hilbert space H. Then As can be identified with a

C∗-subalgebra of B(H̃) which acts non-degenerately on H̃.

Proposition 7.1.8 ([61], Proposition 3.4) If A is a locally C∗-algebra which

acts non-degenerately on a locally Hilbert space H, then (A′′)s = (As)
′′, where

(As)
′′ is the bicommutant of As in B(H̃).

7.1.2 Locally W∗-algebras and locally von Neumann

algebras

We now come to generalizations of W∗-algebras and von Neumann algebras.

Definition 7.1.9 ([49], Definition 1.1) An algebra A is said to be a locally

W∗-algebra if it is an inverse limit of W∗-algebras, i.e. A = lim←Aα, where

each Aα is a W∗-algebra.

Before we continue, we give an example of a locally W∗-algebra, which is

a generalization of the algebra of all bounded linear operators on a Hilbert

space.
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Example 7.1.10 ([49], Example 3) Consider the locally C∗-algebra L(H)

in Proposition 7.1.2, where H = lim→Hα is a locally Hilbert space. By

Proposition 7.1.2, L(H) ∼= lim← B(Hα), proving that L(H) is a locally W∗-

algebra. Recall that the connecting maps fαβ, α ≤ β, are defined by the

formulas fαβ(xβ) = xα. One can also show that these connecting maps

are σβ − σα continuous, where, for every α, σα is the σ(B(Hα), (B(Hα))∗)

topology.

Theorem 7.1.13 below gives an abundance of examples of locally W∗-

algebras. Another example of a locally W∗-algebra is given in the next sec-

tion.

Theorem 7.1.11 ([49], Scholium 1.2) Every locally W∗-algebra A = lim←Aα,

where each Aα is a W∗-algebra, is a locally C∗-algebra equipped with the in-

verse limit topology τ induced on it by the norm topologies of the Aα’s. Fur-

thermore, the Arens-Michael decomposition of A is given by the ∗-subalgebras

fα(A) of the Aα’s, and a family (pα) of C∗-seminorms defining the topology

of A is given by pα(x) = ‖fα(x)‖α for every x ∈ A.

Theorem 7.1.12 ([49], Proposition 1.3) Let A = lim←Aα be a locally W∗-

algebra in such a way that the connecting maps fαβ, α ≤ β, of the inverse

system (Aα) are σβ − σα continuous, where, for each α, σα denotes the

σ(Aα, (Aα)∗) topology of Aα. Then A can be equipped with the inverse limit

topology σ defined by equipping each Aα with its σα topology. This topology

is coarser than the inverse limit locally C∗-topology τ of Theorem 7.1.11.

Theorem 7.1.13 ([49], Proposition, p. 38) Let A be a locally W∗-algebra

admitting the inverse limit topology σ. Then every σ-closed ∗-subalgebra of

A is a locally W∗-algebra.

Theorem 7.1.14 ([61], Corollary 3.3) If A is a locally W∗-algebra admitting

the inverse limit topology σ, then As is a W∗-algebra.

The next definition is a generalization of the notion of strong-operator

topology on B(H), the algebra of bounded linear operators on a Hilbert

space.
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Definition 7.1.15 ([60], Definition 3.1(ii)) Let L(H) be defined as in Propo-

sition 7.1.2. The strong topology of L(H), denoted by st, is the locally convex

topology defined by the family of seminorms (pξ)ξ∈H, where

pξ(x) = ‖xξ‖

for every x ∈ L(H).

We now come to a generalization of von Neumann algebras.

Definition 7.1.16 ([60], Definition 3.7) A locally von Neumann algebra is

a strongly closed locally C∗-subalgebra of L(H), where H is a locally Hilbert

space.

We remark that the strong topology on L(H) is the inverse limit of the

strong topologies on the B(Hα)’s ([60], Remark 1). The following result is

now an immediate consequence of Lemma 1.4.4.

Proposition 7.1.17 Let H = lim←Hα be a locally Hilbert space and A a

locally C∗-subalgebra of L(H) such that A = lim←Aα, where Aα is a C∗-

subalgebra of B(Hα). Then Ast
= lim←Aα

sα
, where sα denotes the strong-

operator topology on B(Hα) for every α.

The next result is a generalization of the well known fact that a W∗-

algebra can be represented faithfully as a von Neumann algebra on some

Hilbert space.

Theorem 7.1.18 ([60], Corollary 3.17) Let A be a locally W∗-algebra ad-

mitting the inverse limit topology σ. Then there exists a locally Hilbert space

H and an injective self-adjoint algebra homomorphism π : A → L(H) such

that π(A) is a locally von Neumann algebra on H containing the identity

operator on H.

It follows from the proof of [60], Corollary 3.17, that the ∗-homomorphism

π in Theorem 7.1.18 is a topological-algebraic isomorphism. By [60], Propo-

sition 3.14 and its proof, every locally von Neumann algebra is a locally

W∗-algebra which admits the inverse limit topology σ.
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The following proposition is an extension of the bicommutant theorem

for von Neumann algebras to locally von Neumann algebras.

Proposition 7.1.19 ([60], Corollary 3.12) Let A be a locally C∗-subalgebra

of L(H) with strong closure M, where H is a locally Hilbert space. If A acts

non-degenerately on H, then M = A′′ (the bicommutant of A in L(H)).

For a locally von Neumann algebra M, we say that v ∈ M is a par-

tial isometry if v∗v and vv∗ are projections in M. Since every locally von

Neumann algebra is a locally C∗-algebra, and hence a GB∗-algebra, it follows

from Proposition 1.4.21 that every positive element in a locally von Neumann

algebra has a positve square root. This is of importance in the next theorem.

Theorem 7.1.20 (Polar decomposition) ([61], Theorem 4.5) Let M be

a locally von Neumann algebra. For every x ∈ M, there exists a unique

partial isometry v ∈M such that x = v(x∗x)
1
2 .

7.2 Characterizations of locally W∗-algebras

We already know from Theorem 7.1.14 that, if A is a locally W∗-algebra

admitting the inverse limit topology σ, then As is a W∗-algebra. In Theo-

rem 7.2.1 below, we prove the converse, thereby characterizing locally W∗-

algebras among the locally C∗-algebras.

First we make a remark which will be of importance in the proof of this

theorem. If A and B are W∗-algebras such that A ⊂ B, then they can both

be represented as von Neumann algebras on the same Hilbert space. Indeed,

since B is a W∗-algebra, there exists a Hilbert space H and a faithful normal

representation π of B on H such that π(B) is a von Neumann algebra on

H. Let π0 = π|A. Then π0 is a faithful normal representation of A on H.

By Theorem 1.2.15, π0(A) is a von Neumann algebra on H, implying that

A and B can both be represented as von Neumann algebras on the same

Hilbert space.
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Theorem 7.2.1 Let A be a locally C∗-algebra such that As is a W∗-algebra.

Then A is a locally W∗-algebra admitting the inverse limit topology σ.

Proof. Since A is a locally C∗-algebra, it follows from Proposition 7.1.6

that there exists a locally Hilbert space H such that A is isomorphic to a

locally C∗-subalgebra B of L(H) which acts non-degenerately on H. There-

fore there exists a family of Hilbert spaces Hα such that H = lim→Hα

and L(H) = lim← B(Hα). For each α, let Bα = fα(B). Then, by Lemma

7.1.4, every Bα is a C∗-subalgebra of B(Hα) and, by Lemma 1.4.4, A ∼=
B = lim← Bα ⊂ lim← Bα

sα
= B0 say, where, for each α, sα denotes the

strong-operator topology of B(Hα). By Proposition 7.1.17, B0 is a locally

von Neumann algebra.

We prove that B = B0. By Theorem 7.1.14, it follows that (B0)s is a

W∗-algebra. Since A is isomorphic to B, we get from Theorem 1.4.10 that

As and Bs are (isometrically) ∗-isomorphic C∗-algebras. Therefore, since As

is a W∗-algebra, Bs is also a W∗-algebra. Clearly, Bs ⊂ (B0)s. By Lemma

7.1.7, Bs and (B0)s can both be represented as von Neumann algebras on

the Hilbert space H̃, since B0 acts non-degenerately on H. By Proposition

7.1.19, it follows that B0 = Bst
= B′′. Therefore, by Proposition 7.1.8,

(B0)s = (B′′)s = (Bs)
′′, where (Bs)

′′ is the bicommutant of Bs in B(H̃). Since

Bs is a von Neumann algebra with underlying Hilbert space H̃, it follows

that (Bs)
′′ = Bs. Hence (B0)s = Bs. By Theorem 1.4.8, it now follows that

B0 = B, implying that B0 is a locally von Neumann algebra. Hence A is a

locally W∗-algebra with the inverse limit topology σ. ∇

Corollary 7.2.2 The following statements are equivalent.

(i) M̃ is locally m-convex with respect to the measure topology.

(ii) M̃ is a locally C∗-algebra with respect to the measure topology.

(iii) M̃ is a locally W∗-algebra with respect to the measure topology, admit-

ting the inverse limit topology σ.
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Proof. Since M̃ is a GB∗-algebra (Theorem 1.5.29), the equivalence of

statements (i) and (ii) follows from Theorem 1.4.18. The implication (iii) ⇒
(ii) is obvious in light of Theorem 7.1.11.

(ii) ⇒ (iii) : Suppose that M̃ is a locally C∗-algebra with respect to the

measure topology. In that case, we know from Theorem 1.5.29 and Lemma

1.4.12 that M = (M̃)s, implying that (M̃)s is a W∗-algebra. By Theorem

7.2.1, M̃ is a locally W∗-algebra. ∇

Definition 7.2.3 ([41], Definition 1.2) Let A be a set of closed, densely

defined operators on a Hilbert space H which is a ∗-algebra under strong

sum, strong product, adjunction and scalar multiplication (it is understood

that λx = 0, the zero operator on the whole of H, if λ = 0). We call A an

EW∗-algebra if the following conditions are met:

(i) (1 + x∗x)−1 exists for every x ∈ A,

(ii) the subalgebra Ae of bounded operators in A is a W∗-algebra.

By [41], Proposition 2.4, the condition (i) of Definition 7.2.3 is equivalent

to the condition that xηAe for every x ∈ A.

Theorem 7.2.4 ([103], Theorem 3) Every GB∗-algebra with underlying C∗-

algebra a W∗-algebra is algebraically ∗-isomorphic to an EW∗-algebra.

Corollary 7.2.5 The locally W∗-algebras admitting the inverse limit topol-

ogy σ are, up to self-adjoint algebra isomorphism, precisely the EW∗-algebras

admitting complete locally m-convex GB∗ topologies.

Proof. Suppose that A is a locally W∗-algebra admitting the inverse limit

topology σ. Then, by Theorem 7.1.11, A is a locally C∗-algebra with a family

of C∗-seminorms (pα) defining the topology of A. By Theorem 7.1.14, As is

a W∗-algebra. It follows from Lemma 1.4.12 that A is a GB∗-algebra with

underlying C∗-algebra Ab a W∗-algebra. By Theorem 7.2.4, there is a self-

adjoint algebra isomorphism φ of A onto an EW∗-algebra B. For every α,

let qα(φ(x)) = pα(x) for every x ∈ A. Since φ is a ∗-algebra isomorphism,
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every qα is a C∗-seminorm on B, and the topology defined on B by the family

of C∗-seminorms (qα) is a locally C∗-algebra, and hence a complete locally

m-convex GB∗-algebra.

Now suppose that A is an EW∗-algebra admitting a complete locally

m-convex GB∗-topology. By Theorem 1.4.18, A is a locally C∗-algebra.

We show that Ab = Ae, where Ae is the W∗-algebra in Definition 7.2.3,

and Ab the underlying C∗-algebra of A as in Definition 1.4.11. Since all

unitary elements in A are bounded operators, it is clear that every unitary

element of Ab is a unitary element in Ae. Conversely, it follows from Lemma

3.3.1 that every unitary element of Ae is contained in Ab. Since every C∗-

algebra is the span of its unitary elements, it follows that Ab = Ae.

By Lemma 1.4.12, As = Ab, implying that As is a W∗-algebra. It follows

from Theorem 7.2.1 that A is a locally W∗-algebra which admits the inverse

limit topology σ. ∇

7.3 Jordan homomorphisms of locally W∗-algebras

Proposition 7.3.1 Let A be locally W∗-algebra admitting the inverse limit

topology σ and let B a locally C∗-algebra. If φ : A → B is a continuous unital

self-adjoint invertibility preserving linear map, then φ is a Jordan homomor-

phism.

Proof. Recall that every locally C∗-algebra is a GB∗-algebra and therefore,

by Theorem 7.1.14 and Lemma 1.4.12, A is a GB∗-algebra with underlying

C∗-algebra a W∗-algebra. The result is now an immediate consequence of

Theorem 4.4.4 and Theorem 4.1.1. ∇

The following example demonstrates that not all unital self-adjoint invert-

ibility preserving linear maps between locally C∗-algebras are continuous.

Example 7.3.2 ([81], p. 172) Let F be the family of countable closed

subsets of [0, 1] having only finitely many cluster points, and let A = C([0, 1])
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be equipped with the topology of uniform convergence on the members of F .

Then A is a locally C∗-algebra. Consider the identity map i : A → C([0, 1]),

where the codomain of i is equipped with the usual topology. Then it can be

shown that i is a discontinuous self-adjoint algebra isomorphism, and hence

a discontinuous unital self-adjoint invertibility preserving linear map.

Recall that if A is a locally C∗-algebra, then A is a GB∗-algebra with

Ab = As. With this in mind, the following result is an immediate consequence

of Theorem 3.3.5, Lemma 3.3.2, Proposition 3.4.3 and Theorem 7.1.14.

Corollary 7.3.3 Let A and B be metrizable locally C∗-algebras, with A a

locally W∗-algebra admitting the inverse limit topology σ. Then every self-

adjoint Jordan homomorphism is continuous and is a sum of a self-adjoint

algebra homomorphism and a self-adjoint algebra anti-homomorphism.

7.4 Derivations on locally C∗-algebras and lo-

cally W∗-algebras

In [49], it is mentioned that it would be of interest to know whether every

derivation on a locally W∗-algebra is inner. In this section, we give a sufficient

condition under which this is the case (Theorem 7.4.2). It is well known

that every derivation on a C∗-algebra is continuous (Theorem 2.3.5). In [16],

Becker proved that every derivation on a locally C∗-algebra is continuous. His

proof is entirely algebraic. Below, we give another proof of this result using

the same strategy as that of Becker, but our proof relies on the fact that every

locally C∗-algebra can be represented on a locally Hilbert space (Theorem

7.1.5) as well as on some results about locally von Neumann algebras.

Theorem 7.4.1 ([16], Proposition 2) Every derivation on a locally C∗-algebra

is continuous.

Proof. Let A be a locally C∗-algebra and D a derivation defined on it. By

Theorem 7.1.5, A can be identified with a locally C∗-subalgebra B of L(H),

116



Univ
ers

ity
 of

 C
ap

e T
ow

n

where H is a locally Hilbert space, say H = lim→Hα. Therefore we can

identify the derivation D with a derivation D0 on B. It suffices to show that

D0 is continuous.

Let (pα) be the family of C∗-seminorms defining the topology of L(H),

as in Proposition 7.1.2. Now B is a locally C∗-algebra with (qα) = (pα|B)
being a family of C∗-seminorms defining its topology. Recall that L(H) ∼=
lim← B(Hα). By Lemmas 1.4.4 and 7.1.4, B = lim← Bα, with every Bα a

C∗-subalgebra of B(Hα), namely, Bα = fα(B), where fα is the restriction to

B of the projection map of
∏

α Bα onto Bα for every α. Let Nα = {x ∈ B :

qα(x) = 0} for each α.

If 0 ≤ x ∈ Nα, then there exists a unique y ∈ Nα such that x = y2. To

see this, note that, by Proposition 1.4.21, there already exists 0 ≤ y ∈ B
such that x = y2. Now 0 = qα(x) = qα(y2) = qα(y∗y) = qα(y)2, implying

that y ∈ Nα.

Let x ∈ Nα and consider the polar decomposition x = v|x| of x, where

v ∈ Bst
(Theorem 7.1.20). Hence x = (v|x| 12 )(|x| 12 ). Since x ∈ Nα, it follows

that x∗x ∈ Nα. Hence, by what was proved above, |x| ∈ Nα because x∗x ≥ 0.

Therefore, once again by what was proved above, |x| 12 ∈ Nα.

We aim to show that v|x| 12 ∈ Nα, so that x = ab with a, b ∈ Nα. Since

|x| 12 ∈ Nα, it follows that pα(|x| 12 ) = 0. Hence pα(v|x| 12 ) ≤ pα(v)pα(|x| 12 ) = 0.

So it remains to prove that v|x| 12 ∈ B, thereby showing that v|x| 12 ∈ Nα. By

Lemma 1.4.4, B = lim← Bα ⊂ lim← Bα
sα

= Bst
and v|x| 12 = (vα|xα|

1
2 )α,

where vα|xα| is the polar decomposition of xα in Bα
sα

for every α ([61],

Remark 4.6). Therefore, by Proposition 1.3.4, it follows that vα|xα|
1
2 ∈ Bα

for every α. Hence v|x| 12 ∈ B.

Since every Nα is a two-sided ideal of B, it follows from Proposition 6.3.5

that D(Nα) ⊂ Nα for every α, and therefore the map Dα : B/Nα → B/Nα :

x+Nα 7→ (D0(x))+Nα is well defined for every α. One can also easily verify

that every Dα is a derivation on B/Nα. By Theorem 1.4.6, every B/Nα

is a C∗-algebra, and therefore, by Theorem 2.3.5, every Dα is continuous.
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Suppose that (xλ) is a net in B with xλ → x ∈ B. Then

lim
λ
q̇α((xλ +Nα)− (x+Nα)) = lim

λ
qα(xλ − x) = 0

for all α. It follows that, for each α, limλ(xλ +Nα) = x+Nα in B/Nα. Since

every Dα is continuous, it follows that limλ(Dα(xλ +Nα)) = Dα(x+Nα) for

each α. Hence limλ((D0(xλ)) + Nα) = (D0(x)) + Nα for each α. Therefore

D0(xλ) → D0(x). Hence D0, and thus D, is continuous. ∇

The zero derivation is the only derivation on a commutative locally C∗-

algebra ([16], Corollary 3), i.e. every derivation on a commutative locally

C∗-algebra is inner. In general, one at least has the following result.

Theorem 7.4.2 Let A be a locally W∗-algebra admitting the inverse limit

topology σ. If D is a derivation on A such that D(As) ⊂ As, then D is

inner.

Proof. Let D be a derivation on A. Since A is a locally W∗-algebra, it

follows from Theorem 7.1.11 that A is a locally C∗-algebra. It follows from

Theorem 1.4.8 that As is a C∗-algebra which is dense in A. By Theorem

7.4.1, D is continuous. By hypothesis, D(As) ⊂ As, i.e. D|As is a derivation

on As. Now As is a W∗-algebra (Theorem 7.1.14), and hence, by Lemma

5.3.16, D is inner. ∇

A derivation D on a locally W∗-algebra A does not always have the

property that D(As) ⊂ As, as demonstrated in the following example.

Example 7.4.3 Let (Hn) be a (countable) family of Hilbert spaces, and

let H = lim→Hn. Consider the locally W∗-algebra A = L(H) in Example

7.1.10.

We show that Z(A) = C1, where Z(A) denotes the centre of A. Indeed,

A = lim← B(Hn). Now Z(A) = lim← Z(B(Hn)) (this is a special case of [49],

Corollary 2.2), implying that Z(A) = lim←C1n, where 1n is the identity

operator on Hn for every n. Therefore, if x ∈ Z(A), then x = (λn1n) for
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scalars λn. If n ≤ m, then Hn ⊂ Hm, and so, λn1n = λm1m|Hn = λm1n,

implying that λn = λm. This holds for every n ≤ m. Thus λn = λ, say, for

every n. Hence x = λ1.

Let a ∈ A with a /∈ As. Consider the inner derivation D on A defined by

D(x) = ax− xa for every x ∈ A.

We show that D(As) is not contained in As. Assume that D(As) ⊂ As.

Then, since As is a W∗-algebra, it follows from Theorem 2.3.6 that there

exists b ∈ As such that D(x) = bx− xb for every x ∈ As. Since As is dense

in A and D is continuous, it follows that D(x) = bx − xb for every x ∈ A.

Hence ax − xa = bx − xb for every x ∈ A. Therefore (a − b)x = x(a − b)

for every x ∈ A, i.e. a − b ∈ Z(A) = C1 ⊂ As. Since b ∈ As, we have that

a ∈ As, a contradiction.

Our next result was motivated by Theorem 2.3.7. For the proof of this,

recall that the von Neumann algebra generated by a C∗-subalgebra A of

B(H), where H is a Hilbert space, is the closure of A in the ultraweak and

the strong-operator topologies on B(H) ([39], Corollary 1, p. 45).

Proposition 7.4.4 Let D be a derivation on a locally C∗-subalgebra B of

L(H), where H is a locally Hilbert space, say H = lim→Hα. Then D can be

extended to a derivation on Bst
.

Proof. Let (pα) be the family of C∗-seminorms defining the topology of

L(H), as in Proposition 7.1.2. Then B is a locally C∗-subalgebra of L(H)

with (qα) = (pα|B) defining the topology of B. Let Nα = {x ∈ B : qα(x) = 0}
for each α. Furthermore, by Lemmas 1.4.4 and 7.1.4, B = lim← Bα, where, for

every α, Bα is a C∗-subalgebra of B(Hα), namely, Bα = fα(B) for each α. For

every α, let σα denote the topology on B(Hα) as defined in Example 7.1.10.

In the proof of Theorem 7.4.1, we have shown that D(Nα) ⊂ Nα for all α, and

that, consequently, the derivationsDα : B/Nα → B/Nα : x+Nα 7→ D(x)+Nα

are well defined. Let the maps fαβ be defined as in Theorem 1.4.6. It follows

from Theorem 1.4.6 that

fαβ(Dβ(x+Nβ)) = fαβ(D(x) +Nβ)
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= D(x) +Nα

= Dα(x+Nα),

where α ≤ β.

For every α, it follows from Lemma 7.1.4 that the derivation Dα can be

identified with a derivation on Bα, which we also denote by Dα. If x ∈ B,

then x = (xα) ∈ lim← B(Hα), and xα = x|Hα for every α. We may therefore

identify the connecting maps associated with B by the restrictions of the

connecting maps of B(Hα) to Bα for every α. We use the same notation fαβ

for these connecting maps, and so fαβ(Dβ(xβ)) = Dα(xα) for every α ≤ β,

and for every x = (xα) ∈ B.

By Theorem 2.3.7, every Dα extends to a derivation Dα on Bα
sα

= Bα
σα

,

where, for each α, sα denotes the strong-operator topology on Bα.

Therefore D extends to a derivation D on Bst
= lim← Bα

sα
(Proposition

7.1.17). To see this, let D(x) = (Dα(xα)), where x = (xα) ∈ Bst
and

xα ∈ Bα
sα

for every α.

We show that D(x) ∈ Bst
for every x ∈ Bst

. By Example 7.1.10 and

Theorem 2.3.7, the connecting maps fαβ of B are σβ − σα continuous and

Dα is σα-continuous. By Theorem 7.1.12 and Lemma 1.4.4, lim← Bα
σα

= Bσ
,

where σ is the inverse limit topology defined by the σα’s.

It follows that fαβ(Dβ(xβ)) = Dα(xα) for every (xα) ∈ lim← Bα
σα

. Indeed,

let x = (xα) ∈ Bσ
. Then one can find a net ((xα,λ)) ∈ B = lim← Bα such that

limλ(xα,λ) = (xα) in the σ topology. Therefore, for every α, limλ xα,λ = xα

in the σα topology. Hence

fαβ(Dβ(xβ)) = fαβ(Dβ(lim
λ

(xβ,λ)))

= lim
λ
fαβ(Dβ(xβ,λ))

= lim
λ
Dα(xα,λ)

= lim
λ
Dα(xα,λ)

= Dα(lim
λ
xα,λ)

= Dα(xα),
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where α ≤ β.

Therefore (Dα(xα)) ∈ lim← Bα
σα

= lim← Bα
sα

, i.e. D(x) ∈ Bst
for every

x ∈ Bst
. It is easily verified that D is a derivation on Bst

. ∇
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