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iv) Abstract

Skeletal maturation is influenced by various factors such as genetics, hormonal secretions, 

and nutrition. Establishing a skeletal maturity level in children becomes necessary when a 

deviation from the standard growth patterns may indicate signs of diseases; and whether that 

individual is a minor. Bone Age Assessment (BAA) achieves this, as it is a clinical process used 

to establish an individual's biological profile.  

A large proportion of the South African population resides in rural areas where the fully 

functional civil registration system is limited. Many individuals remain unregistered on the 

national database, bringing about various challenges. This reduces the likelihood of 

unregistered children receiving favourable treatment in judicial cases or access to amenities 

at juvenile rehabilitation centres. Moreover, it puts them under the same threat of abuse and 

discrimination as adult offenders.  

Typical clinical methods for BAA are the Greulich and Pyle (GP) and Tanner and Whitehouse 

(TW) methods using wrist radiographs of the left-hand. Although these methods have been 

updated throughout the decades, they rely on experienced radiologists' manual power, which 

is highly time-consuming, resulting in intra- and inter-observer errors. Our study uses a 

machine learning method to train and automatically predict bone age with carpal bones from 

a sample of South African children to mitigate these problems.  

Two datasets of 12,611 North American population (RSNA) and 400 South African population 

(SA) left-hand X-ray radiographs (from a LODOX machine) were used from birth to 19 years of 

age. These radiographs of the two datasets were pre-processed to remove unnecessary labels, 

remove the background, and straighten the X-ray image. The first experiment used the pre-

trained models, Xception, InceptionV3, MobileNet, and VGG-16, using the pre-processed and 

unprocessed datasets and comparing their performance. The pre-processed dataset was 

selected for model benchmarking to find the best-performing model for bone age estimation 

out of the four pre-trained models. Scatterplots of the four models were plotted to visualise 

their generalisation performance on bone age estimation. Xception was the best-performing 

bone age model used to determine bone age prediction using combined RSNA and SA 



datasets as train sets. Due to the overwhelming difference in sample sizes between RSNA and 

SA datasets, imbalanced and balanced data training was applied to overcome the difference. 

The best-performing model - Xception, achieved a mean absolute error of 5.70 months when 

using population-specific pre-processed data. Bone age estimation benefits more from a 

machine learning model than a simple linear regression model when using a raw X-ray image 

input. The combined RSNA (10,000) + SA (300) train set of the Xception model achieved an 

MAE of 7.43 months from RSNA and 14.36 months from the SA dataset. The results suggest 

that bone age estimation using different populations as train and test sets contributes to less 

accurate bone age prediction, indicating a need for a population-specific model. The 

imbalanced and balanced data training proved that more samples for the South African 

population are needed for accurate bone age prediction, as bone age MAE decreased with an 

increasing number of minority SA datasets increased. The population-specific bone age model 

significantly outperformed the manual methods. The population of South Africa is diverse and 

distinctive, with a wide range of ancestral and genetic backgrounds that might impact bone 

growth. Future studies should focus on creating a bone age estimation model tailored to this 

unique population. 
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Chapter One – Introduction 

Bone Age Assessment (BAA) is a diagnosis tool primarily used in pediatric endocrinology and 

growth-related conditions (Jones, 2021; Mughal, Hassan and Ahmed, 2014). It involves 

determining children's maturity levels from the radiographic images (Cavallo et al., 2021). This 

provides valuable information on children's maturation that could aid in diagnosing 

conditions such as early/delayed growth and skeletal dysplasia (Mughal, Hassan and Ahmed, 

2014; Cavallo et al., 2021; Hirsch, 2022; Satoh, 2015). Bone age assessment plays a central 

role in identifying legal cases such as immigration, lawsuits, and sports, where a child’s 

maturity level needs to be determined (Alkass et al., 2010). BAA is also necessary for 

estimating chronological age when biological profile records are unavailable (Ubelaker and 

Khosrowshahi, 2019). Therefore, the accuracy of bone age assessment becomes very 

important. 

Anatomical regions examined for bone age assessment, include the wrist bones (Satoh, 2015; 

Buken et al., 2007; Khan 2009), elbow (Canavese, Charles and Dimeglio, 2008), dental 

development (Kumar et al., 2013; Rao et al., 2016), pubic symphysis (Dudzik and Langley, 

2015), sternal rib ends (Jones, 2016), and clavicle (Falys and Prangle, 2014). Radiological 

examination of the left hand and wrist are typically used for BAA because of the discriminant 

nature of bone ossification stages of the non-dominant hand, which are then compared to 

the chronological age. Moreover, the left hand and wrist have little radiation exposure, and 

multiple ossification centres are available for age estimation (Satoh, 2015). Therefore, it is a 

good indicator of determining children's biological age.  

In adults, bone age assessment is challenging due to skeletal degenerative changes and the 

merging of age groups. This diminishes the accuracy of age estimation in adults. However, in 

children, bone age assessment is more accessible because of the well-documented growth 

and development process that the body undergoes for the first 18 years of age within the 

skeletal features. Experienced radiologists and paediatricians perform bone age assessments. 

Commonly used standards to determine skeletal maturity levels manually include Greulich 

and Pyle (1959) and Tanner and Whitehouse (1975). However, manual assessment can be 

subjective and returns high inter- and intra-observer variability (Bull et al., 1999). Moreover, 

it is also time-consuming (Dallora et al., 2019).  
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Technological advancement has made using machine learning methods to automate bone age 

assessment a promising alternative. Artificial intelligence (AI) has a subset called machine 

learning that allows computers to learn without being explicitly programmed and designed to 

learn relationships and patterns from large numbers of data (Burns, 2021; Brown, 2021; 

Hurwitz and Kirsch, 2018). It involves data pre-processing, visualization, experimentation, and 

prediction (Viswanathan and Kirshnan, 2022).  

In the context of bone age assessment, deep learning algorithms can be trained on large 

datasets of radiographic images and corresponding ground truth labels to accurately predict 

a child's bone age. BAA systems developed, such as BoneXpert (Thodberg et al., 2009), used 

automating GP and TW standards to produce results faster with reduced error (Mansourvar 

et al., 2013). Therefore, it is evident that such methods can potentially reduce the subjectivity 

and variability associated with the manual assessment, lower human errors, and inter- and 

intra-observer variabilities, and provide a more objective and consistent evaluation. 

Convolutional Neural Networks (CNNs), a deep learning method, are well-suited for bone age 

assessment, as they can learn complex patterns and relationships from large numbers of 

radiographic image data. Deep learning models can adapt to new data and generalize well to 

unseen cases, making them suitable for various datasets and populations. However, it is 

recognized that some automated systems are limited due to manual Region of Interest (ROI) 

localization requirements and the poor ability to process quality X-ray radiographic images 

(Razavian et al., 2014; Seok et al., 2012).  

Previously, the paediatric machine learning challenge to accomplish bone age estimation was 

released by the Radiological Society of North America (RSNA) (RSNA, 2017). The goal was to 

assess the capability of machine learning towards medical imaging while decreasing the 

artefacts prominent from manual methods. A data set was made available to determine the 

best bone age estimation. The best Mean Absolute Difference (MAD) for bone age was 4.4 

months; therefore, the approach to solving medical imaging problems can be made using 

deep learning.  
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1.1. Aims 

Bone age assessment will benefit from deep learning methods. Despite the widespread use 

of machine learning for BAA on a different population, local research is scarce on the accuracy 

and efficiency of bone age estimation. Therefore, this study aims to assess the reliability of 

deep learning neural networks on bone age estimation with left-hand and wrist radiographs 

of South African children. The following objectives aid the aim: 

1.2. Objectives 

- To describe the anatomical variation of the hand and wrist bones.

- Describe the architecture and parameters of the pre-trained models like Xception,

MobileNet, GoogleNet (InceptionV3) and OxfordNet (VGG-16).

- To fine-tune the hyperparameters for the BAA deep learning model based on the

international and local South African data and assess whether training and testing

from individual populations or with different populations is beneficial.

1.3. Thesis layout 

Following Chapter Two of the introduction, Chapter Three covers the literature on the 

forensic anatomy of the hand and focuses on the developmental stage of the carpal bones. 

Chapter Four covers the literature on the impact of machine learning on bone age assessment. 

Chapter Five extrapolates the methods conducted for bone age estimation. The results from 

the experiments are discussed in Chapter Six. Finally, Chapter Seven provides the conclusion 

of the research. 
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Chapter Two - Literature Review (Forensic Anthropology) 

Chapter two explores the anatomy and the developmental stages of the hand and wrist to 

understand the respective changes the BAA model will learn. It starts with the anatomy of 

the hand and concludes with a summary of different BAA methods.  

2.1. Anatomy of the hand and wrist 

The anatomy of the hand and wrist are complex because they consist of multiple bones, joints, 

ligaments, and muscles. These specialized structures combine to provide refined tactile 

senses and motor biomechanics. When there are injuries or problems with these structures, 

this results in impaired function and pain.  

Bones are dense skeletal structures that support the hand's soft tissue (Wiznia, Iftikhar and 

Cronkleton, 2022; Tang and Varacallo, 2022). The hand and wrist have 29 bones (including 

radius and ulna), consisting of 8 carpal bones, five metacarpals, and 14 phalanges (Figure 1). 

Figure 1: The overview of hand and wrist bones (Taken from Jarrett, 2022). 

2.1.1. Bone Development 

Before birth, the infant does not have ossified bones; instead, it comprises cartilage and 

fibrous structures (Patton and Thibodeau, 2003). As the infant develops, those structures 

become bones through osteogenesis or bone ossification, which occurs between the sixth 

and seventh week of embryonic development. This continues until age 25 but varies among 

individuals (Breeland, Sinkler, and Menezes, 2022).  
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Osteogenesis can be divided into two parts, namely, intramembranous, and endochondral 

ossification. These ossifications start with a mesenchymal tissue precursor; however, how 

they transform into bones varies (Breeland, Sinkler, and Menezes, 2022; Jin, Sim and Kim, 

2016). The bones in the hand and wrist are classified as long bones and thus undergo 

endochondral ossification.  

2.1.2. Endochondral Ossification 

During this process, the hyaline cartilage is replaced with the bone. Endochondral ossification 

takes longer than intermembranous ossification (Biga et al., 2019). Long bones and bones at 

the base of the skull are formed by endochondral ossification (Figure 2). It starts with 

mesenchymal cells differentiating into chondroblasts that form the bones' hyaline 

cartilaginous skeletal precursor (Figure 2a) (Ortega, Behonick and Werb, 2004). The 

chondrocytes produce this cartilage semi-solid matrix and are flexible (Figure 2b). 

Chondrocytes then form as the matrix surrounds and isolates the chondroblasts. The diffusion 

achieves these functions through the matrix vessels in the membrane covering the cartilage 

called the perichondrium (Biga et al., 2019; Ortega, Behonick and Werb, 2004). 

The chondrocytes at the centre of the cartilaginous model get bigger as more matrix is 

produced. When the matrix calcifies, this limits the nutrients' access to chondrocytes, 

resulting in death and disintegration of the surrounding cartilage (Patton and Thibodeau, 

2003). Here, the blood vessels carrying osteogenic cells invade the given spaces to enlarge 

the cavities. This space becomes the medullary cavity (Figure 2c) (Biga et al., 2019).  

As the cartilage grows, the capillaries penetrate it, transforming the perichondrium into the 

bone-producing periosteum. Bone cell development of an ossification creates the primary 

ossification centre (Figure 2c) (Biga et al., 2019; Ortega, Behonick and Werb, 2004). 

While these changes occur, the cartilage and chondrocytes grow from the ends of the bones 

to form future epiphyses. This increases the length of the bone whilst replacing the cartilage 

in the diaphysis (Patton and Thibodeau, 2003; Breeland, Sinkler, and Menezes, 2022; Jin, Sim 

and Kim, 2016). As the foetal skeleton fully forms, only the articular cartilage at the joint 

surface and the epiphyseal plate between the diaphysis and epiphysis remain as cartilage 

(Patton and Thibodeau, 2003; Breeland, Sinkler, and Menezes, 2022; Jin, Sim and Kim, 2016). 
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Following the birth, the epiphyseal regions experience the same series of events (i.e., matrix 

mineralization, chondrocyte death, invasion of blood vessels from the periosteum, and 

conversion of osteogenic cells to osteoblasts), and each of the activity centres is now known 

as the secondary ossification centres (Figure 2d - f) (Ortega, Behonick and Werb, 2004). 

Figure 2: The overview of endochondral ossification. a) The mesenchymal cells initially 
differentiate into chondrocytes, which serve as a template for the bone. b) Chondrocytes in 
the cartilage’s centre undergo hypertrophy and secrete matrix vesicles, initiating 
mineralization of the cartilage matrix. c) As blood vessels invade the hypertrophic zone, 
osteoblasts deposit bone matrix onto the calcified cartilage matrix, forming the primary 
ossification centre. d) Osteoclases remove calcified cartilage and excess bone, producing a 
medullary cavity, whereas the osteoblasts continue to form secondary ossification centres in 
the epiphyses of long bones. e - f) The cartilage model is eventually supplanted by bone tissue, 
leaving only articular cartilage and growth plates at the ends of long bones. (Taken from Biga 
et al., 2019).  

2.1.3. Development of the hand and wrist 

The upper limb differentiates from the upper limb bud during week 5 of the embryonic period. 

The apical ectodermal ridge manages the upper extremity's differentiation and maturation 

process (Tang and Varacallo, 2022; Raszewski and Singh, 2021). The shoulder, arm, forearm, 

and hand cartilage are then formed by mesenchymal condensation (Raszewski and Singh, 

2021). At the end of week 6, digital rays form in the hand plate. By week 7, carpal 

chondrification occurs (Raszewski and Singh, 2021). By week 8, the capitate and the hamate 
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bones are the first chondrogenic centres to appear as immature cartilage. The pisiform is the 

last carpal to appear in late week 8 (Tang and Varacallo, 2022). 

During week 8 of gestation, the hamate appears as an immature cartilaginous tissue and 

resumes its development after week 13. Between weeks 8 – 10, all the digits align in the same 

spatial plane, followed by the thumb rotation. This is when the digital and interdigital pads 

appear as they become prominent. Both types of pads start to revert in the second phase of 

development. The interdigital pads begin to revert at week 11, followed by the digital pad at 

week 13 onwards (Lacroix, Wolff-Quenot and Haffen, 1984). Finally, in week 14, a vascular 

bud penetrates the lunate cartilage that will be finished during the first year after birth 

(Lacroix, Wolff-Quenot and Haffen, 1984; Hita-Contreras et al., 2012). 

Eight carpal bones form the base of the hand and wrist. Superior to the carpal bones are the 

metacarpals forming the base of the fingers, while the phalanges form the basis of the fingers. 

The fingers are the most utilized component of the upper limb towards achieving daily tasks. 

Each finger can move independently from the other and consist of moving fingers towards 

(flexion) and away (extension) from the palm; and moving the digits towards (adduction) and 

away (abduction) from the middle digit (Drake et al., 2010).   

2.1.4. Bones of the wrist 

The wrist is formed by the bones of the forearm – radius and ulna – meeting at the carpus 

(Wiznia, Iftikhar and Cronkleton, 2022). The wrist has multiple joints, seven true carpal bones, 

and one sesamoid bone (Figure 3). The proximal row includes: the scaphoid, lunate, 

triquetrum, and pisiform; and the distal row includes the trapezium, trapezoid, capitate, and 

hamate (Drake et al., 2010; Eschweiler et al., 2022) 
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Figure 3: The carpal bones of the wrist. They consist of eight bones, starting from the 

scaphoid and ending with the hamate (Taken from Jones, 2020).  

The ossification of the wrist consists of two components: ossification centres of carpal bones 

and ossification centres of distal radius and ulna (Hacking, 2020). Carpal bones do not ossify 

at birth (Butler, Mitchell, and Healy, 2012). Carpal bones ossify in a sequence starting with 

the capitate and ending with the pisiform. General times for carpal bone ossification are as 

follows: Capitate (1-3 months), hamate (2-4 months), triquetrum (2-3 years), Lunate (2-4 

years), scaphoid (4-6 years), trapezium (4-6 years), trapezoid (4-6 years), pisiform (8-12 years). 

The distal radius ossifies one year after birth, and the distal ulna ossifies 5-6 years after birth 

(Hacking, 2020). 

2.1.5. Joints of the wrist 

The carpal bones within their rows form the radiocarpal, midcarpal, and carpometacarpal 

joints respective to the intercarpal joints between each bone. 

The radiocarpal and midcarpal joints are classified as the synovial wrist joint that acts on the 

carpal bones at the wrist (Erwin and Varacallo, 2021; Morrison and Seladi-Schulman, 2018; 

Standring and Gray, 2008). They allow for flexion, extension, adduction, and abduction of the 

wrist (Standring and Gray, 2008). Carpometacarpal joints join the base of the thumb and the 

hand, allowing for flexion, extension, abduction, and circumduction.  

The intrinsic ligaments support the intercarpal joints, and there is limited movement between 

the carpal bones (Erwin and Varacallo, 2021; Morrison and Seladi-Schulman, 2018; Standring 

and Gray, 2008). Instability in the wrist happens when scapholunate or lunotriquetral 

ligaments are disrupted. The scaphoid is biomechanically significant because it exists in both 

the proximal and distal carpal rows; therefore, it has a role in stabilizing the midcarpal joint 
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during wrist movement (Erwin and Varacallo, 2021; Morrison and Seladi-Schulman, 2018; 

Standring and Gray, 2008). The blood supply of the scaphoid mainly enters distally with no 

direct blood vessels to the proximal portion (Seradge H, Owens, and Seradge E, 1995). This 

means that a fracture at the scaphoid may lead to avascular necrosis, non-union, scaphoid 

non-union advanced collapse, and osteoarthritis of the carpals (Seradge H, Owens, and 

Seradge E, 1995). 

The carpus does not have muscle attachments nor tendons; therefore, the proximal row of 

the carpal bones has intercalated segments between the distal carpal row, radius, and ulna 

bones. Carpal bone’s stability comes from the ligaments and articular surface anatomy. This 

means that any injuries/problems on ligaments or bone fractures lead to instability of the 

intercalated fragment (Rachaveti et al., 2018). 

The Metacarpals are five long hand bones between the fingers and the wrist forming the 

palm. Each metacarpal consists of a head and a shaft. The first metacarpal (thumb) is shorter 

and thicker; it can move independently with greater mobility. The second to fifth metacarpals 

are similar in shape and move alongside each other. The metacarpals move with carpal bones 

in the following way: 1) the first metacarpal moves with the trapezium; 2) the second 

metacarpal has the most extensive base that connects to the trapezium, trapezoid, and 

capitate; 3) the third metacarpal joins with the capitate; 4) the fourth metacarpal joins with 

the capitate and the hamate; and 5) fifth metacarpal is the smallest that joins with the hamate 

(Vasković, 2022). 

The phalanx consists of 14 narrow bones that make up the fingers. The thumb has distal and 

proximal phalanges while the other four digits have distal, middle, and proximal phalanges. 

The distal phalanx supports the fingernail and the fingertip and articulates with the middle 

phalanx. The middle phalanx articulates with the distal and proximal phalanges respectively 

on the same digit. The proximal phalanx is the biggest phalanx that joins the metacarpal bones 

and the middle phalanx (Okafor, Sinkler and Varacallo, 2022).   

2.1.6. Joints of the finger 

The finger joint allows for mobility and performing activities like grasping and pinching. While 

the thumb is not referred to as a finger, it is considered to have finger joints (Rachaveti et al., 

2018). Joints supporting the four digits are Carpometacarpal (CMC), Metacarpophalangeal 

(MCP), Proximal Interphalangeal (PIP) and Distal Interphalangeal (DIP) joints (Drake et al., 
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2010). Three joints support the thumb: the metacarpophalangeal (MCP), Interphalangeal (IP), 

and trapeziometacarpal (TMC) joint (Rachaveti et al., 2018). 

Carpometacarpal (CMC) joints include the distal carpal bone and the base of the metacarpal 

bone. The thumb CMC joint has broad movement; however, this is the common area to 

develop arthritis in the hand and wrist (Barhum and Hershman, 2021). Injuries to this joint 

involve Bennett’s and Rolando’s fractures (Feletti and Varacallo, 2022). 

The metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints allow for the 

gripping, pinching, bending, and extending movement of the finger (Handcare, 2022). Distal 

interphalangeal (DIP) and interphalangeal (IP) joints act on the top of the finger towards the 

nail bed to support the finger (Barhum and Hershman, 2021). Trapeziometacarpal (TMC) joint 

is the CMC joint of the thumb that allows for more freedom of motion and flexibility (Barhum 

and Hershman, 2021; Handcare, 2022). 

2.1.7. Ligaments of the hand and wrist 

The ligaments are multiple bands of connective tissue that connect and support the bones 

(Tanrikulu et al., 2014; Palastanga and Soames, 2012). There are several ligaments which 

provide stability to the hand and wrist. Ligament injuries are commonly known as sprains 

(Lowe, 2020; Woon, 2022). The ligament and tendons inside the wrist are important towards 

daily activities and overusing them results in tendinitis or fractures (Jones, 2021; DiTano, 

Trumble and Tencer, 2003).  

2.2. Bone Age Assessment (BAA) 

Children's growth is affected by genetics, hormonal and nutritional factors, diseases, and 

psychosocial elements (Son et al., 2019). Thus, a digression from average growth indicates 

endocrine, genetic, and paediatric disorders (Ponzanski et al., 1978; Gilsanz and Ratib, 2005). 

166 million children are without a legal identity, and half live in third-world countries (i.e., the 

Democratic Republic of the Congo, Ethiopia, India, Nigeria, and Pakistan) (UNICEF Data, 2020). 

This is a problem in Sub-Saharan Africa because only 43% of children are registered (Statistics 

South Africa, 2018). These problems violate the liberties of children. Without proof of their 

age, children become susceptible to juvenile recruitment into the armed forces and early 

marriage (Stull, 2013). Therefore, children are more prone to adult judgement than a juvenile 

appearing before a criminal court or seeking asylum (Dembetembe and Morris, 2012).  
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Without any biological profile or birth documentation, children are viewed as adults by law 

enforcement (Mansourvar et al., 2013). When a juvenile or child is incorrectly identified as an 

adult, the child experiences a cycle disproportionate to the situation, age, or maturity (Hassan 

and Muad, 2019). Registration limits are compounded by the distance to a registration facility, 

availability of transportation and terrain accessibility (Statistics South Africa, 2018). Another 

important factor for low birth registration is the lack of knowledge of the importance and 

benefits of birth registration (Statistics South Africa, 2018). This means a child cannot obtain 

a birth certificate and lacks access to healthcare, education, and other social services.  

Children have a right to be protected and are under the age of criminal responsibility; 

however, they may join the formal justice system due to incorrect identification (Pietka et al., 

2003). Unregistered children that are migrants are, therefore, at risk of abuse and 

discrimination, and a realistic definition of age becomes essential to treat children and 

juveniles appropriately (Dembetembe and Morris, 2012). Fortunately, favourable decisions 

have resulted from different campaigns to register children’s biological information 

(Dembetembe and Morris, 2012; Statistics South Africa, 2018).  

2.2.1. The need for BAA 

In forensic anatomy, the skeletal remains are mainly used for ongoing research. This is 

achieved by estimating the sex, identification of diseases, the probable cause of death, and 

understanding the health conditions and the culture. Here, one of the essential features to 

be determined is age. However, when skeletal remains or decomposed bodies are acquired, 

it becomes challenging to estimate the age due to the environmental conditions, burial 

circumstances, and the time since death. Extensive decomposition can result in the loss of 

soft tissues, making it difficult to assess age-related features.  

Age is a crucial biological indicator for establishing skeletal maturity in clinical practices. 

Therefore, it is vital in assessing children. Bone age is used in decisions (e.g., immigration and 

legal matters), but its limitation must be recognized in predicting the exact age of various 

ethnicities and disease statuses. Bone age using the conventional manual method is outdated; 

however, recent data suggest alternative methods for acquiring bone age, involving using 

computers for automated methods to estimate age (Creo and Schwenk, 2017). 
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Bone Age Assessment (BAA) is a standard clinical and forensic method for establishing a 

biological profile. BAA is a radiological examination used to ascertain the difference between 

the skeletal bone age (SA) and the chronological age (CA) (Büken et al., 2007). BAA can track 

the status of children being treated for growth-affecting conditions. However, estimating 

bone age based on an accurate and reproducible method (manually) is a complex and time-

consuming radiological procedure (Zhang, Gertych and Liu, 2007). Mansourvar et al. (2013) 

conclude that BAA is based on three steps: 1) the appearance of primary and secondary 

ossification centres, 2) the growth of both centres and 3) the timing of the fusion of primary 

and ossification centres. 

It is challenging to age adults using BAA because their skeletal materials degenerate by wear 

and tear (caused by health, occupation, and status) over the lifespan. Moreover, epiphysis 

widening and merging age categories in adults complicate ageing them with dry skeletal 

materials. However, unlike adults, ageing children are more accessible due to a well-

documented process of body changes for the first 18 years of age (Büken et al., 2007; Zhang, 

Gertych and Liu, 2007; Wake, Hesketh, and Lucas, 2000).  

2.2.2. BAA on different skeletal elements 

BAA has been conducted across skeletal elements and includes dental emergence and 

eruption (Kumar et al., 2013; Rao et al., 2016; Wake, Hesketh, and Lucas, 2000), growth of 

carpal bones on the left hand and wrist (Mughal, Hassan and Ahmed, 2014; Cavallo et al., 

2021), and tracking growth plate fusion (Aljuaid and El-Ghamry, 2018; Ebeye, Okoro and 

Ikubor, 2021).  

Radiographs of the hand and wrist are most suitable for BAA because of the many skeletal 

materials within the region, and taking a radiograph of the hand and wrist is easy (Satoh, 

2015). By convention, the left-hand and wrist radiographs are preferred to the right. This is 

because of the discriminant nature of the bone ossification stages of the non-dominant hand, 

which are then compared to the chronological age. Another reason is that most of the 

population is right-handed, so the left hand has less injury or degeneration. The conferences 

of physical anthropologists in the early 1900s determined that physical measurements should 

be performed on the left side of the body (Greulich and Pyle, 1959; Tanner and Whitehouse, 

1975). Many studies show that BAA is based on the left hand and wrist (Büken et al., 2007; 
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Creo and Schwenk, 2017; Greulich and Pyle, 1959; Khan et al., 2009; Tanner and Whitehouse, 

1975; Zhang, Gertych and Liu, 2007). These studies can be categorised based on the accuracy-

testing methods used (Mansourvar et al., 2013): 1) Testing BAA methodologies on a distinct 

population segment, 2) Comparing error observers, 3) Comparing the precision of various 

atlases of the same skeletal region within the same cohort, 4) Comparing the maturity levels 

of various body parts in the same cohort. 

Numerous bones in the body can be used to determine bone age. However, the high expense, 

time commitment, and risk of radiograph exposure indicate that these methods are 

impractical for BAA (Pietka et al., 2004).  

2.3. Current BAA methods 

2.3.1. Greulich and Pyle (GP) 

Paediatric radiologists and endocrinologists mainly use this age estimation method (Creo and 

Schwenk, 2017). GP method is founded on a study in 1931 of high socioeconomic status 

children of North European ancestry in the United States of America (Greulich and Pyle, 1959). 

The GP atlas had a sample population of 1000 children (Greulich and Pyle, 1959). The atlas 

was then updated with children of low socioeconomic status, which closed the gap in different 

skeletal developmental rates (Greulich and Pyle, 1959). The atlas contains images of structural 

changes in the hand and wrist from birth to 19 years for males and females (Dembetembe 

and Morris, 2012). 

Greulich and Pyle (1959) used 100 radiographs of 0 – 19 years old Caucasian children from 

Cleveland to construct a standard atlas for age and sex. The radiograph with the most 

observed maturity indicators was designated as the standard for that age group (Greulich and 

Pyle, 1959). The maturity indicators are depicted as line drawings, followed by a characteristic 

description indicating the level of maturity (Greulich and Pyle, 1959).  

Unfortunately, the GP atlas method has high inter- and intra-observer variability (Hassan and 

Muad, 2019). GP method is also outdated due to the health and nutritional status over a long 

time affecting the skeletal structure; it was also based on North American society, whereas 

the population examined nowadays would be from different sectors of society. Even though 

the GP method is simple (Cunha et al., 2009), it cannot be applied to modern children, 

particularly those of diverse ancestry (Loder et al., 1993; Ontell et al., 2001).   
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2.3.2. Tanner and Whitehouse (TW) 

TW standard was developed in 1962, comprising 3000 British boys and girls. This standard is 

mathematical (Tanner and Whitehouse, 1975). It investigates the region of interest (ROIs) in 

the bones of the hand and wrists; then, a score is given to each developmental stage for each 

ROI individually (Tanner and Whitehouse, 1975). Seventeen developmental stages give 

maturity ratings for the carpal, radius, ulna, metacarpal and phalangeal bones (Tanner and 

Whitehouse, 1975). These stages are described based on the features observed from specific 

bones and changes with increasing chronological age. When developmental stages are 

determined, the maturity scores (3 sets of birth weights) are given to the specific bones in the 

hand and wrist (Tanner and Whitehouse, 1975; Berst et al., 2001). The total maturity score is 

calculated by adding all the maturity scores given to specific hand and wrist bones (Tanner 

and Whitehouse, 1975; Mughal, Hassan, and Ahmed, 2014; Choi et al., 2018; Poosarla, 2019). 

Finally, these scores are used to read skeletal age from the standard graphs by Tanner and 

Whitehouse (Tanner and Whitehouse, 1975).  

Unlike the GP standard, the TW method was revised to improve accuracy and reproducibility: 

TW1, TW2, and TW3. Studies were conducted to obtain skeletal ages from the different 

populations using TW1 and TW2 standards (Kimura, 1977; Malina and Little, 1981). As a result, 

the TW1 standard generally gave higher skeletal age than the TW2 standard. This may be 

because TW2 reached adulthood one year earlier than TW1 (Satoh, 2015). The TW2 method 

is based on data from the British population, while the TW3 method is based on North 

American children (Satoh, 2015).  

Bull et al. (1999) reported that intra-observer variation was more significant for the GP 

standard than the TW2 standard (95% CI for GP: −2.46 to 2.18 and TW: -1.48 to 1.43). TW2 

standard is more time-consuming than the GP standard, with reports of 7.9 min and 1.4 min 

for TW2 and GP standards, respectively (King et al., 1994). The TW method is affected by poor 

hand positioning when a radiograph is taken (Cox, 1996). 

Cavallo et al. (2021) highlighted that the GP standard is the best approach for BAA; however, 

it requires time and experience to achieve BAA. Therefore, a newer method, such as artificial 

intelligence, should be concerned with guiding medical individuals in the daily routine 

approach. 
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Table 1: Summary of different BAA techniques (Adapted from Cavallo et al. (2021)). 

BAA Method Usage method Advantages Disadvantages 
Radiation 
Risk 

Greulich and 
Pyle (GP) 

Visual examination 
using all the finger 
bones and carpal 
bones  

Reliable, simple, and fast execution. 
Primarily used method by 
paediatricians.  

More significant variability between the 
observers compared to the TW method.  
Time-consuming due to the many joints that 
must be processed. 
The X-ray images must be clear to estimate 
age. 

Low 

Tanner and 
Whitehouse 
(TW) 

Visual examination 
with a scoring 
method using the 
carpal, thumb, 
middle and last 
finger.  

Based on skeletal bone maturity 
compared to GP.  
It uses numerical scores assigned for 
bones instead of looking at the 
shape.  
Age is estimated using either Carpal, 
phalangeal, or RUS bones.  

Highly time-consuming. 
Bone age output can be subjective. 
X-ray images must be clear to achieve a
proper process.

Low 

Automated 
BAA 

Computerized 
bone age 
calculation using 
carpal bones, 
phalangeal bones, 
or both.  

Available on the web for access.  
Image processing techniques are 
used for better image quality. 
Accurate and precise measurement. 
Less time consumption.  
No prior knowledge is required.  

The user must be computer literate.  
The method still is being refined for better 
results.  
Did not eliminate radiologists and 
paediatrician evaluation.   

N/A 

Manual 
method (i.e., 
ultrasound) 

Method using skull, 
pelvis, knees, 
spine, femur, and 
hand.  

Ease of accessibility. 
Ability to estimate gender with these 
methods.  
Lower cost.  
BAA can be achieved beyond the 
teenage group.  

Time-consuming. 
Measurements are highly reliant on tools. 
Observer-dependent.  
The difficulty of standardization. 
Works on dead humans.  

N/A 
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2.4. Bone age estimation on different populations. 

2.4.1. Bone Age on World Populations 

Ontell et al. (1996) compared 599 bone ages across different ethnic groups and found 

variabilities in African American male and female children, Hispanic females, and Asian 

American males. With the GP standard, the Asian American male showed a delay in bone age 

in children aged between 2 - 7 years (p = 0.03), while children aged between 4 - 6 years had a 

delay of more than two years. African American data showed less correlation with GP 

standards, where bone age values were significantly advanced and delayed (p = 0.05). This 

finding is supported by Mora et al. (2001); which reported inaccuracy of bone age in African 

American and European American children when using GP standards.   

Büken et al. (2007) examined chronological age (CA) with skeletal age (SKA) in a Turkish 

children sample using the GP standard. In females, the CA was 14.52 ± 2.18 SD years; and SA 

was 15.06 ± 2.31 SD years, which were statistically significant (p < 0.001). In males, the CA 

was 15.28 ± 2.41 SD years; and the SA was 15.41 ± 2.92 SD years; however, the difference 

showed no statistical significance (p > 0.05) (Büken et al., 2007). GP method was advanced 

for most age groups and delayed for some age groups for both males and females. The 

authors noted a standard deviation at 12, 15 years of age for females and 12, 15, and 18 years 

for males which was more than a year (Büken et al., 2007). The high age values are 

unacceptable for criminal cases involving a minor.  

Pinchi et al. (2014) examined BAA standards (i.e., GP, TW2 and TW3) from an Italian sample. 

They noted that the CA was estimated more closely with the TW3 method than the GP and 

TW2 methods. The GP standard scored children younger than the TW2 standard; however, 

the TW3 standard gave younger age estimates than the TW2 standard (Milner, Levick and Kay, 

1986). Horter et al. (2012) reported that the TW3 standard overestimated age, whereas the 

GP standard underestimated the age. The authors highlighted that the GP standard was 

better due to taking less time than the TW3 standard.  

Zhang et al. (2009) reported that bone age estimation was significantly overestimated in Asian 

and Hispanic children. The authors highlighted that these children seemed to mature sooner 

than their African American and White peers. This was evident in males aged 11 – 15 and 

female samples aged 10 - 13 (Zhang et al., 2009). It is noted that the GP standard does not 
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consider the existence of ethnic and racial differences in growth patterns at certain ages 

(Zhang et al., 2009). Kim et al. (2015) reported that both GP and TW3 standards accurately 

estimated the bone age in Korean children samples. Both also showed a correlation with the 

CA. Patil et al. (2012), using the Indian children population, reported a delay in bone age with 

a 1-year delay in males aged from 7 to 12 years. Awais et al. (2014) found that the GP 

method's results correlated with age for females but not for males. In Iranian children, 

researchers found that the bone age for males was 4.5 months less than the GP standard, and 

the bone age for females was 0.5 months older compared to the GP standard (Moradi, Sirous 

and Morovatti, 2012).  

2.4.2. Bone Age on African Populations 

Dembetembe and Morris (2012) used the GP standard on contemporary African males 

between 13 - 22 years. They noted a difference between the SA and CA, which ranged from 

2.4 months to 8.4 months between ages 13 and 18. However, the GP method overestimated 

CA by 4.8, 3.6 and 6.0 months in the age groups of 14, 16 and 17 years, respectively 

(Dembetembe and Morris, 2012). The authors highlighted that the GP standard is not 

appropriate for determining skeletal maturity after the CA of 16.50 years. They also noted an 

increasing trend for the age to be underestimated as CA increased. The CA did not complete 

the epiphyseal fusion of the hand and wrist for 19 years, suggesting that the epiphyseal fusion 

occurs around two years later in male Africans. This is probably due to the low socioeconomic 

status and bad environmental conditions that impact the rate of ossification of the bones of 

the hand and wrist (Dembetembe and Morris, 2012). 

Di Micco et al. (2021) compared the accuracy of SA against the CA using Bo/Ca and TW2 

methods using the South African sample (aged between 6 - 16 years). Bo indicates the ratio 

between the sum of the area of the eight carpal bones and epiphyses of the ulna and radius 

(Di Micco et al., 2021). Ca indicates the total area of the carpal bones including the epiphyses 

of the radius and ulna (Di Micco et al., 2021). Bo/Ca method uses a computer system to 

measure hand and wrist bones on radiographs to assess the skeletal age (SKA) (Di Micco et 

al., 2021). Both methods classified the African sample correctly (−0.07 and −0.20 years) and 

male and female (−0.19 and 0.19 years; and −0.03 and −0.21 years, respectively). In the 

African sample, CA was overestimated with the RUS method. The TW2 standard showed a 
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significant difference between the SA and CA. The Bo/Ca method overestimated African 

females younger than 13 years old (0.477 ± 0.123 SD years) and by RUS method (1.42 ± 0.12 

SD years). CA was underestimated by the TW2 method in African males (−0.25 ± 0.10 SD years). 

Govender and Goodier (2018) used the GP method on a digital database of 102 hand and 

wrist radiographs from KwaZulu-Natal, South Africa. The authors noted a good intra- and 

inter-observer agreement; however, the GP method underestimated the bone age between 

the age groups of 10 to 15 years in males and females (11.50 ± 17 S.D months and 7.40 ± 

13.20 SD months, respectively).  

Cole et al. (2014) examined 607 Black and White South African males and females (from birth 

to 20 years) using the TW3 RUS method. The authors highlighted a significant delay in skeletal 

maturity in Black males. However, a secular increase in the skeletal maturity of urban Black 

South African children occurred between 1962 and 2001, while non-significant increases were 

seen in white children. This is supported by Hawley et al. (2009), where an increase in skeletal 

maturity may impact the removal of growth constraints in Black children. 

2.4.3. The demand for BAA in South Africa 

Section 13 of the Child Justice Act of 2008 in South Africa requires a probation officer to 

estimate a child’s age during an evaluation if the child’s age is undetermined (Tiemensma and 

Phillips, 2016). The probation officer uses information such as medically determined age, 

school documents, and statements by the child or parent (Tiemensma and Phillips, 2016). The 

officer then submits the estimated age to the magistrate on a prescribed form. If additional 

information regarding the child’s age becomes available, the estimations are revised before 

sentencing (Dembetembe and Morris, 2012; Tiemensma and Phillips, 2016; South African 

Government, 2010). Nevertheless, neither the qualifications and experiences of the medical 

practitioner nor how these evaluations will be conducted are specified. As a result, subjective 

interpretation and application are possible; therefore, no consistent practice in South Africa 

(South African Government, 2010; Tiemensma and Phillips, 2016). Clinical forensic 

practitioners estimate the age of juveniles in Cape Town. The evaluation includes a physical 

examination, the compilation of a medical report, and the child’s age per Section 48 (2) of the 

Children’s Act of 2005 (South African Government, 2010).  
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The demand for age estimation increases as the number of immigrants increases. There are 

no published statistics on the number of undocumented foreign infants in South Africa 

(Tiemensma and Phillips, 2016). However, according to the United Nations High 

Commissioner for Refugees, there are 112,192 refugees and an estimated 463,940 asylum 

seekers in South Africa, Lesotho, and Swaziland, most of whom are from SADC (Southern 

African Development Community) countries (Tiemensma and Phillips, 2016; Aynsley-Green et 

al., 2012).   

 

BAA methods (i.e., GP and TW standards) are unreliable as they overestimate and 

underestimate bone age. A different growth rate is observed from other populations in the 

children of rural and foreign immigrants in South Africa. This complicates bone age estimation 

when the court requires a medical examiner’s scientific conclusion to ascertain an exact date 

of birth or chronological age (Tiemensma and Phillips, 2016). Determining the bone age of the 

South African population is complicated by a paucity of information, a language barrier, a 

deportation problem, and the absence of population-specific information to compare 

measurements (Tiemensma and Phillips, 2016).  

 

GP and TW standards’ reliability has been questioned in recent years as it heavily relies on 

radiologists' subjective assessment, which can lead to significant inter- and intra-observer 

variability. Extended time is consumed to obtain bone age as well. Therefore, a need for an 

objective tool would diminish such issues and provide immediate results. Such a tool for such 

a task is machine learning. Machine learning can process large numbers of data quickly and 

objectively without being influenced by personal biases. In addition, machine learning 

algorithms learn from these massive data and improve their accuracy over time, thus leading 

to more reliable and consistent results. The next chapter on machine learning is introduced 

to discuss the benefit and previous studies attempting to relieve challenges faced by manual 

methods.  
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Chapter Three – Background and Related Work on machine learning 

The following chapter describes machine learning and its impact on medical imaging, 

specifically for bone age estimation. 

3.1 Machine Learning 

Machine learning is a subfield of artificial intelligence (AI) developed in the 1950s by Arthur 

Samuel (Brown, 2021). ML is a machine's capability to learn without being explicitly 

programmed (Hurwitz and Kirsch, 2018; Burns, 2021; Brown, 2021; Viswanathan and Krishnan, 

2022). It involves data pre-processing, visualisation, experimentation, and prediction. The 

solution is updated as new data is fed to the machine-learning model. The programmer can 

tweak the model by editing the parameters, allowing the model to produce more accurate 

results. This, therefore, results in predicting the outcome (Hurwitz and Kirsch, 2018).   

Over the decades, medical fields such as genetics and molecular biology underwent a 

revolution, but BAA - an essential part of the field - has remained unchanged. GP and TW 

standards are still common methods of BAA analysis using hand and wrist radiographs 

(Cavallo et al., 2021). Although image processes have been computerised with increased 

computing capacity, automating BAA has been challenging. Nonetheless, several methods to 

automate BAA have been proposed over the last 70 years. Some of the proposed systems 

have been commercialised and verified in clinical studies. Studies showed that they produce 

good accuracy with very low intra- and inter-observer variability and significantly reduce the 

time to accomplish bone age estimation that is done manually (Mughal, Hassan and Ahmed, 

2014; Cavallo et al., 2021; Satoh, 2015; Dallora et al.,2019; Thodberg et al., 2009; Mansourvar 

et al., 2013; Zhang, Gertych and Liu, 2007; Pietka et al., 2004, Poosarla, 2019; Kim, Lee and 

Yu, 2015). 

3.1.1 Types of machine learning 

Machine learning is categorised based on how the algorithm learns to improve accuracy in its 

prediction. There are three approaches to machine learning: Supervised learning, 

Unsupervised learning, and Reinforcement learning.  

Supervised learning is the most used approach to find data patterns that can be applied to 

the analytic process (Hurwitz and Kirsch, 2018; Sarker, 2021). The model is trained with a set 

of labelled datasets – attributes and the data's meaning–that allows the model to learn to 
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become more accurate (Nichols, Herbert, and Baker, 2018). Continuous values are regression, 

whereas data from a set of values is classified. Regression is used for supervised learning to 

understand the correlation between the variables, such as biological profiles and the current 

condition which can be used to predict an individual's age (Sarker, 2021).  

The unsupervised learning approach uses unlabelled data. Unsupervised learning predicts an 

outcome when there is a large number of data such as in, social media applications like 

Facebook, Instagram and Snapchat which have many unlabelled data (Sarker, 2021). The 

unsupervised learning algorithm can classify the data based on the clusters or groups of 

features it finds (Nichols, Herbert, and Baker, 2018). The unlabelled data creates the 

parameter values and classification of the data (Hurwitz and Kirsch, 2018). 

Reinforced learning is a behavioural learning model (Hurwitz and Kirsch, 2018). The algorithm 

keeps receiving feedback from the analysis through trial and error to produce the best 

outcome (Hurwitz and Kirsch, 2018; Brown, 2021; Sarker, 2021). Therefore, a successful 

decision will result in a "reinforced" process due to the best outcome from the problem 

(Hurwitz and Kirsch, 2018). The best application of reinforcement learning is in video games, 

A.I. and robotics (Hurwitz and Kirsch, 2018; Brown, 2021; Sarker, 2021).   

 

3.2. Dataset Properties in Machine Learning 

3.2.1. Train, Validation and Test the dataset 

In machine learning, the available datasets are divided into three subsets: Train, Validation 

and Test datasets. The training dataset consists of labelled set data used to learn patterns and 

fit the model (Burns, 2021; Brown, 2021). The validation set configures the model by 

objectively evaluating a given model fitted on the train set. Fine-tuning model 

hyperparameters achieve this; hence the model sees this data but never learns from it (Shah, 

2017; Hurwitz and Kirsch, 2018). Finally, the test set is used to evaluate the final model, and 

it is only used once a model is trained thoroughly (after using the training and validation set). 

The test dataset contains a general overall distribution of the data samples the model would 

face when used in real-world problems (Shah, 2017). The train set is typically much larger 

than the test set. 
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3.2.2. Splitting of the data sets 

The commonly used ratio between the three data sets is 80% for training and 20% for testing 

(Joseph, 2022; Baheti, 2022). This is due to the Pareto principle (Joseph, 2022), hence a rule 

of thumb used by practitioners. 70-30 and 60-40 ratios are also considered in practice (Figure 

4); however, there is no clear guidance on the best split for the dataset (Shah, 2017; Joseph, 

2022; Baheti, 2022; Agrawal, 2021).  

Figure 4: Pie chart on the data split between train, validation, and test data. (Taken from 

Baheti, 2022).  

Birba (2020) found that the model performance improved with more data. Moreover, the 

choice of data split improves the ability to model to generalise data dependent. The split 

depends on the total number of samples in the data and the actual model being trained 

(Agrawal, 2021). In data science and image processing, models need much data to train upon 

with thousands of parameters. This suggests extensive training sets are needed (Shah, 2017; 

Joseph, 2022; Agrawal, 2021). Models with few hyper-parameters are simpler to fine-tune so 

that the validation set can be reduced (Shah, 2017; Agrawal, 2021). Models with many hyper-

parameters also need a more extensive validation set (Moody, 1991; Shah, 2017; Agrawal, 

2021). The optimum data split should be based on the two factors mentioned above. 

3.2.3. Data Balancing 

Imbalanced data is present in a dataset where the number of (training) samples belonging to 

different classes are unequal (Badr, 2020; Allwright, 2022). Such cases are expected in 

machine learning, as real-world datasets are often imbalanced. Datasets for cancer detection 

often have many more negative (non-cancer) than positive (cancer) examples from which to 
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learn a model. As a result, this will negatively impact the performance and accuracy of 

machine learning models. Imbalanced data can be caused by data sampling methods or 

domain-specific data properties (Sharma, 2021). Imbalanced data occurs due to biased 

sampling. If one class dominates a population, randomly sampling from the population is 

likely to lead to the over-representation of the "majority class", and models trained on this 

data will favour the selection of this class (Wu, 2022). When models are trained on 

imbalanced datasets, this will result in lower performance in model generalisation on unseen 

data.  

Balancing the dataset can mitigate these issues and improve the performance of machine 

learning models. There are several techniques to balance datasets, such as over-sampling the 

minority class (i.e., a class with fewer samples) and under-sampling the majority class (Badr, 

2020; Wu, 2022). However, this may create sampling bias which in turn leads to potential 

false positives or false negatives in the final output. The choice between under-sampling the 

majority class and oversampling the minority class for machine learning depends on factors 

such as the size of the dataset, the distribution of classes, and the specific requirements of 

the problem being solved. Combining multiple methods, such as synthetic data generation, 

oversampling, or under-sampling, can be the most effective way to balance the dataset and 

improve the machine learning model's performance.  

Under-sampling the training dataset is one of the options to balance the dataset and 

overcome the challenges posed by imbalanced data in machine learning (Hernandez, 

Carrasco-Ochoa, and Martínez-Trinidad, 2013). Under-sampling helps balance the 

distribution of samples in the train set, reduces the bias towards the majority class, and 

potentially improves the machine learning model's performance. However, under-sampling 

the training set can lead to a loss of information and may negatively impact the model's ability 

to generalise to the new data (Krawczyk, 2016). Additionally, under-sampling the train set 

may not be appropriate if the dataset is already tiny. In this case, the information loss from 

under-sampling may be significant, resulting in poor performance of the machine learning 

model.  

Oversampling the minority class involves generating additional samples for the minority class 

to match the number of samples in the majority class (Hernandez, Carrasco-Ochoa, and 

Martínez-Trinidad, 2013). This overcomes the imbalanced data but can also lead to overfitting 
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and selection bias, where the model becomes too specific towards the minority class, failing 

to generalise to the new data (Krawczyk, 2016).  

3.3. Neural Network and Deep Learning 

An artificial neural network (ANN) is a network of input layers of nodes (i.e., neurons), weights, 

a few hidden layers of neurons, and a final layer of output neurons that are interconnected 

(Figure 5). The neuron inputs are multiplied with the weights and summed to produce an 

output signal (Wang, 2003). Increasing the number of hidden layers makes the network 

deeper, resulting in a deep-learning neural network. Deep learning networks use large-sized 

data to determine values for their multiple weights, thus outputting more accurate results. 

With more training data, the model can learn and generalise patterns better, resulting in a 

higher probability of correct predicted answers. Deep learning system requires powerful 

hardware because of a need to process a large amount of data with complex mathematical 

calculations (Reyes, 2022). Machine learning (ML) is a subset of AI, while deep learning (DL) 

is a subset of ML. DL has been used for extensive data studies with success in computer vision, 

pattern recognition, a recommendation system and natural language processing (Liu et al., 

2017).  

Figure 5: Overview of a deep neural network. It consists of multiple layers that the input gets 

analysed. The information will be carried on producing an output (Taken from Johnson, 2020). 

The Convolutional Neural Network (CNN) is a well-known deep neural network architecture. 

CNN identifies an aspect of images through convolutions (Albawi, Mohammed and Al-Zawi, 

2017; Castillo, 2023). It has convolutional, pooling, fully connected, and non-linearity layers 

(Albawi, Mohammed and Al-Zawi, 2017; Castillo, 2023). CNN has been proven to perform 

significantly in machine learning problems like image classification and regression involving 

predictive analytics to predict continuous outcomes (Albawi, Mohammed and Al-Zawi, 2017; 

Castillo, 2023). Non-linearity and pooling layers do not have parameters, whereas the fully 
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connected layers and convolutional layers have parameters that can be learned to enhance 

the performance of CNN (Albawi, Mohammed and Al-Zawi, 2017; Castillo, 2023). When an 

image input with a particular pixel height and width (H x W) is input to the CNN, it gets passed 

through several layers, which implement different "filters" which produce new images that 

highlight aspects of the input image (Figure 6). 

 

Figure 6: A overview of convolutional neural network (CNN). When an image goes through 

convolutional layers, the pooling layers trim the image between different layers. Features are 

then extracted, forming a flattened layer. These features are then fully connected to produce 

a final output (Taken from Swapna, 2020). 

Convolutional Layer (Figure 6). This layer makes up the building block of CNN (Mishra, 2020). 

A convolutional layer takes an input image and uses k kernels or filters to generate k output 

feature maps (output images) stacked atop one another to produce an image volume. A 

kernel moves across the input image in steps known as a stride (Indolia et al., 2018). This 

kernel moves from the top left corner of the image, performing a matrix multiplication on the 

pixel values at that location. The kernel then moves to the right by the same stride values. 

This process gets repeated until it goes through the entire image width. It thus extracts high-

level features of the image (Yamashita et al., 2018).  

The convolution process reduces the height and width of the output feature map. Then 

padding is used where image rows and column pixels are added on each side of the image 

input to keep the same in-plane dimension (Yamashita et al., 2018). Modern CNN architecture 

uses zero paddings.  
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Pooling Layer (Figure 6, 7). This down-sampling process reduces the number of parameters 

by decreasing the dimensionality of the feature maps (Indolia et al., 2018; O’Shea and Nash, 

2015). This results in a reduction in the computational power for efficient data processing. A 

commonly used pooling layer is the Max Pooling layer because it suppresses the noise from 

the input (Indolia et al., 2018; O’Shea and Nash, 2015). This is achieved by extracting sections 

from the input feature maps and outputting each section's maximum value, then disregarding 

the other values (Indolia et al., 2018; O’Shea and Nash, 2015).  

 

Figure 7: Overview of Max pooling on a feature map. After applying a 2x2 kernel with a stride 

of 2, the feature map's dimension has reduced whilst maintaining the max value of the pixel. 

This down-samples the dimension of the feature map by a factor of 2 (Taken from Rosebrock, 

2021).  

Fully Connected (FC) Layer (Figure 6). The convolutions and pooling layer output is forward 

propagated to the fully connected layer. In this layer, the output is flattened into a one-

dimensional (1D) vector and then connected to the fully connected layer by a learnable 

weight known as the dense layer (Yamashita et al., 2018). Forward propagation allows pixel 

values to pass through the hidden layers of the fully connected layer, in which the final output 

is calculated by a dot product of the input vector and weight vector (Zhou et al., 2016). The 

final FC layer has the same output nodes as the number of classes (Yamashita et al., 2018; 

O’Shea and Nash, 2015). A non-linear activation function follows each FC layer (Yamashita et 

al., 2018).  

Activation Function (Figure 6). This function decides whether the neurons should fire as each 

input pixel passes through the architecture. Non-linear functions are used; otherwise, neural 

network models a linear function which cannot represent a complex non-linear function. The 
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Rectified Linear Unit (ReLU) is a widely used activation function that enables fast and stable 

partial derivative calculation (Zhou et al., 2016). The training time using ReLU is much faster 

than the sigmoid function, another non-linear activation function (Indolia et al., 2018), and 

gradients do not disappear, leading to better convergence. O'Shea and Nash (2015) suggest 

that ReLU should be used between the activation layers to improve performance. 

3.3.1 Loss function 

The training process aims to minimise the prediction error and is thus a minimisation problem. 

An objective function aims to minimise the error. In deep learning, this error is called the loss 

function. The loss function evaluates the performance of the algorithm. Small values as an 

output from a loss function indicate good performance by the algorithm and vice versa. The 

loss function is used during backpropagation to adjust the model's weights. The model 

weights are adjusted accordingly, and if the output value decreases, it indicates the correct 

weight selection. 

Training Loss. This metric determines how well a deep-learning model fits the training data. 

Hence, the training loss assesses the model's error on the training set. Initially, a training set 

from a portion of a dataset is used to train the model. The training loss is the sum of errors 

for each example in the training set once passed through the model. Usually, the loss is 

computed per batch of training data. This is then visualised by plotting a curve of the training 

loss against the batch number (or against epochs). Batch size is a hyperparameter that 

determines the number of samples to be processed before the model's internal parameters 

are updated (Brownlee, 2022). The number of epochs enables the neural network to process 

complete datasets by passing them forward and backward (Brownlee, 2022, Sharma, 2017).  

Validation Loss. This metric is used to examine the performance of the deep learning model 

on the validation dataset. The validation set is a part of the original dataset set aside to 

validate the model's performance. The validation loss is calculated similarly to the training 

loss by adding the errors for each sample in the validation set. The validation loss is calculated 

after each epoch, indicating whether a model needs fine-tuning. A learning curve also aids 

this – a plot of a model's learning performance over time (Brownlee, 2019; Muralidhar, 2021) 

– for the validation loss.
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3.3.2 Problems of the loss function 

An excellent deep learning model generalises well from the training data to unseen data. As 

the model learns, the error for the model on the training data decreases whilst validating on 

the validation set. However, as the model trains longer, the performance on the training 

dataset decreases due to the model overfitting and learning unnecessary details and noises 

in the training dataset. The error of the validation set also increases as the model's ability to 

generalise decreases. Therefore, a good fit would be a point just before the error on the 

dataset starts to increase, where the model can generalise well on both the training dataset 

and an unseen dataset (Brownlee, 2020). The training and validation losses are typically 

visualised on a graph (Figure 8). The machine learning model's performance is assessed based 

on overfitting and underfitting. These are the causes of the poor performance of machine 

learning algorithms, in which fine-tuning is required. 

 

Figure 8: Line graphs of a good model fit that does not overfit nor underfit. Decreasing 

training and validation loss and stabilisation at a certain point (Taken from Baeldung, 2023). 

Overfitting happens when a model fits the training data too well (Figure 9). This is due to a 

model learning the detail and noise (i.e., random fluctuations) in the training data that 

negatively affects the model's generalisation ability on new unseen data. Overfitting is 

frequent when learning a target function with non-linear models with flexibility. To overcome 

this, machine learning algorithms use parameters to limit and constrain the number of detail 

the model can learn, such as batch normalisation and dropout function.  

Batch normalisation is a regularisation technique for a deep neural network that normalises 

the data input to a layer for every batch (Shacklett, 2021). This improves the model 

performance and decreases the number of training epochs required to train deep neural 

networks.  
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Dropout is another regularisation technique that introduces noise into the neural network to 

improve its generalisation and efficiency in obtaining output (Shacklett, 2021; Brownlee, 

2022).  

A study indicates that in some cases, a model with a dropout layer outperforms a model with 

a batch normalisation layer (Kim, 2021). Ioffe and Szegedy (2015) suggest using batch 

normalisation before the activation function and then the dropout layer, which produces an 

optimal desired output.   

Underfitting occurs when a model does not have enough complexity or explanatory power 

(too few parameters) to accurately represent the target data set (Figure 9). This is because 

the model is too simple and unable to determine the relationship between the input and 

target values. Underfitting can also happen due to incorrect hyperparameter tuning. 

Figure 9: Graphs on the overfit and underfit of a model from a given dataset. Overfit fits the 

training dataset too well (as the curve follows the trend well), whereas the underfit cannot 

generalise to the training data (Adapted from Alpaydin, 2021). 

3.4. Classification Models 

The classification problem uses inputs categorised into discrete classes (i.e., binary or multiple 

discrete values) (Figure 10) (Baughman and Liu, 1995). The desired output is categorised by a 

label based on the parameters given in the input. The model then learns how to predict the 

correct discrete label, given unseen input. For example, classification is used in instances like 

e-mail spam classification and classifying types of cancer tumour cells. The classification

neural network selects the category based on which output has the highest output value 

(Baughman and Liu, 1995). 

There are a few examples of classification models: K-Nearest Neighbours (KNN), Decision 

Trees, Random Forests, and Support Vector Machines (SVM).  
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Figure 10 a – b: Overview of classification problems based on the binary (a) and multiple 

classes (b). The data values are sorted according to their categories (Taken from Tera, 2022). 

K-Nearest Neighbours (KNN). A simple and intuitive non-parametric algorithm is used to

predict the class label of an unseen data point based on the class labels of its nearest 

neighbours in the training data (Gareth et al., 2021). The KNN algorithm operates with the 

notion that data points tend to belong to the same class. Given a new data point, the 

algorithm finds the K-nearest neighbours in the training data based on some distance metric, 

such as Euclidean distance (Gong, 2022). The class label of the new data point is then assigned 

based on the majority vote of the K-nearest neighbours (Harrison, 2019; Gong, 2022). KNN is 

a simple algorithm for classification problems, especially when the data is not linearly 

separable (Harrison, 2019). However, KNN can be computationally expensive to find the K-

nearest neighbours, especially when the training data is extensive (Gareth et al., 2021). 

Decision Trees. A tree-based algorithm models the relationship between features and target 

variables (Gupta, 2017; Gareth et al., 2021). It learns a collection of test scenarios that can 

predict the class labels of unseen new data. This works by recursively splitting the data into 

subgroups based on the feature values until the data becomes pure to the target variable 

(Gareth et al., 2021, Chauhan, 2022). Each internal node in a decision tree represents a test 

condition on a feature; each branch denotes the test's results, while each leaf node denotes 

a class label (Gupta, 2017; Gareth et al., 2021).  

Random Forest. An ensemble method in machine learning that works by creating many 

decision trees. It then combines their predictions to improve the model's accuracy (Gareth et 

al., 2021). In the random forest method, each decision tree is trained on a different random 

subset of the training data in a bootstrapping process (Brownlee, 2020). Additionally, each 

tree is trained on a different random subset of the feature chosen without replacement in a 

feature-bagging process (Brownlee, 2020). Random forest predicts the outcome by obtaining 

b) a) 
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a majority vote on the predictions from the individual trees. This voting process is known as 

the "wisdom of the crowd" (Dale, 2020; Bernardo, 2022).  

Support Vector Machines (SVM). A supervised learning algorithm is used for classification 

problems (Gandhi, 2018; Raj, 2020; Banoula, 2023). SVM finds a hyperplane that divides the 

data into two or more classes to maximise the margin between the classes (Ray, 2023). The 

margin measures the distance between the hyperplanes and the class's nearest data points, 

known as the support vectors (Gareth et al., 2021; Ray, 2023).  

SVM is used in classification, while SVR (Support Vector Regressor) is used in regression 

(Bhattacharyya, 2022). SVM predicts the class of a given data point, whereas the SVR predicts 

a constant value output from a set of given input features (Raj, 2020). The objective of SVM 

and SVR is to find the hyperplane that best predicts the data (Raj, 2020; Bhattacharyya, 2022). 

However, SVM focuses on finding the hyperplane that maximises the margin between the 

classes (Raj, 2020; Bhattacharyya, 2022).  

 

3.5. Regression Models 

Regression is used to investigate the relationship between the independent variable (features) 

and a dependent variable (outcome) (Monica, 2021). Methods seek to predict a continuous 

outcome variable (y) based on the value of one or multiple input variables (x) (Monica, 2021; 

Seldon, 2021). Linear regression is the most widely used regression algorithm (Ohri, 2022; 

Sharma, 2022). Based on the given independent variable, linear regression predicts the 

dependent variable (target value), establishing a linear relationship (Sharma, 2021). Linear 

regression may result in overfitting; however, this can be remedied by using regularisation 

techniques and cross-validation (Sharma, 2021). 

Linear Regression (Figure 11). Linear regression is a standard regression algorithm for 

supervised learning (Ohri, 2022). This algorithm is used in the labels that are continuous 

values. Based on the given independent variable, linear regression predicts the dependent 

variable (target value), establishing a linear relationship (Sharma, 2021). The equation gives 

linear regression: y = mx + c (Sharma, 2021; Ohri, 2022), where y is the independent, and x is 

the dependent variable. A loss will be output if the dependent and independent variables are 
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not plotted on the same line in the linear regression. The loss of output from linear regression 

is given as follows: (Prediction value - Actual output)2. 

This algorithm is much simpler than the other algorithms. Linear regression may result in 

overfitting; however, this can be remedied by using regularisation techniques and cross-

validation (Sharma, 2021). The downside of linear regression is its ability to simplify real-world 

problems via linear relationships among the variables. It also gets negatively impacted by the 

outlier values (Sharma, 2021). 

Figure 11: A graph of the best line of fit in linear regression. The best line of fit is given by 

the dependent variable (y-axis) and independent variable (x-axis) (Taken from Sharma, 2022). 

Ridge Regression. A regularised linear regression technique prevents overfitting by adding a 

penalty to the loss function. This is done by shrinking the coefficient of less essential features 

towards zero (Sharma, 2022; Vadapalli, 2022). Ridge regression becomes helpful when there 

are many associated predictors because it can prevent overfitting by decreasing the 

coefficients of correlated predictors towards one another (Ohri, 2022; Sharma, 2022; 

Vadapalli, 2022). However, it may not be suitable for situations with irrelevant predictors or 

very small coefficients since the penalty term will shrink all coefficients, regardless of their 

importance (Ohri, 2022; Sharma, 2022; Vadapalli, 2022).  

Support Vector Regression (SVR). SVR is a supervised algorithm that uses a support vector 

machine (SVM) for regression tasks to predict continuous values (Bhattacharyya, 2022; 

Banoula, 2023). SVR finds the hyperplane separating the data into two classes, one 

representing the observed values and the other representing the predicted values. The 

hyperplane is chosen to have the maximum margin, or the most considerable distance 
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between the planes and the closest data points, known as the support vectors (Figure 12) 

(Gareth et al., 2021; Ray, 2023).  

SVR aims to find the hyperplane that minimises the prediction error while satisfying 

constraints on the distance between the predicted and observed values (Bhattacharyya, 

2022). The prediction error is measured by the loss function defined by the sum of squared 

differences between the predicted and actual values. SVR is useful when the data has a non-

linear relationship that cannot be modelled by a simple linear regression (Gareth et al., 2021). 

 

Figure 12: A graph of Support Vector Machine (SVM). The blue line represents the 

hyperplane, and the red line represents the boundary line (Taken from Panovski, 2020). 

 

3.6. K-Fold Cross Validation 

K-Fold cross-validation is a statistical method used in machine learning for model selection 

and hyperparameter tuning (Refaeilzadeh, Tang and Liu, 2009). It validates the performance 

of a machine learning model by splitting the data into K subsets or "folds" of equal size (Jung 

and Hu, 2015). The model is then trained on K-1 folds of the data and evaluated on the 

remaining fold. This process is repeated K times, each time with a different fold used for 

evaluation (Refaeilzadeh, Tang and Liu, 2009; Jung and Hu, 2015). K-Fold cross-validation 

outputs different K performance scores that are averaged to estimate the model's 

performance. This process helps to mitigate the risk of overfitting by allowing the model to 

be trained on multiple subsets of the data and tested on multiple validation sets. K-Fold cross-

validation also helps assess the variability of the model's performance, which can help identify 

potential sources of error or bias (Refaeilzadeh, Tang and Liu, 2009; Jung and Hu, 2015). K-

Fold cross-validation is used for machine learning tasks, including classification and regression 

problems. 
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3.6.1 Grid search 

Grid search is a technique to find a machine learning model's optimal set of hyperparameters 

(Refaeilzadeh, Tang and Liu, 2009; Jung and Hu, 2015). It involves defining a set of 

hyperparameters and evaluating the model's performance on the training data for each 

combination of hyperparameters. The combination of hyperparameters that produces the 

best performance is chosen as the optimal set (Belete and Huchaiah, 2021). 

A grid search defines the hyperparameters to be optimised, such as the number of neuron 

layers, learning rate, activation functions and other relevant parameters. Then, a grid of 

hyperparameters is defined, which contains a set of all possible combinations of the 

hyperparameters (Korstanje, 2020; Malik, 2022). For each set of hyperparameters, the model 

is trained and evaluated in conjunction with K-Fold cross-validation. Once the performance 

metrics for each combination of hyperparameters have been calculated, the combination that 

outputs the optimal performance on the validation data is determined (Korstanje, 2020; Malik, 

2022).    

3.7. Related Works on BAA with machine learning 

This study aims to assess the performance of the automatic bone age assessment (BAA) using 

deep learning methods from South African children. This section will review existing literature 

on automated BAA methods highlighting their advantages, disadvantages, and deep learning-

based approach to BAA methods. The automated BAA methods using left-hand and wrist 

radiographs are mainly based on the GP and TW standards (Gilsanz and Ratib, 2005). These 

two methods are criticised due to their manual involvement by radiologists, which can be 

time-consuming. This is worsened by the rise in demand for this activity brought on by the 

increased number of immigrants looking for refuge, which is prominent in South Africa. 

Moreover, they are prone to inter- and intra-observer variability, posing moral and legal 

concerns for minors. Therefore, a shift towards automating such methods is introduced.  

3.7.1. Automation with BoneXpert. 

BoneXpert was developed by Thodberg et al. (2009). It is one of the successful automatic 

computerised methods of bone age estimation. BoneXpert automatically reconstructs the 

edges of 15 bones (RUS-bones) from the hand radiograph based on the active appearance 
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model. It then calculates the intrinsic bone age by examining the shape, intensity, and scores. 

(Kim et al., 2017). The intrinsic bone age is then converted to GP or TW bone age. The 

BoneXpert system has been validated across ethnicities and children with endocrine diseases. 

Martin et al. (2022) obtained an RMS error of 0.45 years (5.40 months) with the BoneXpert 

system using RSNA (North American) dataset. The standard deviation between the BoneXpert 

system and the GP atlas method was 0.42 years. A higher standard deviation was observed 

with 0.80 years between the BoneXpert and TW2 methods. A similar trend was observed in a 

study by Zhang, Lin and Ding (2016) with the Japanese population, in which the precision error 

(SD) on a GP bone age estimation was 0.17 years (95% CI 0.15-0.19), and TW bone age 

estimation was 0.72 years (95% CI 0.68-0.76). The more significant error observed from the 

TW rating is because of the variability ratings. The images of TW-ratings include children with 

disorders, whilst GP children are all healthy and have less accurate hand poses (Thodberg et 

al., 2009). The larger weight associated with the radius and ulna contributes to poor 

performance by BoneXpert on the TW standards (Thodberg et al., 2009). BoneXpert has a few 

limitations. The system only accepts high-quality radiographs with a rejection rate of 4.5% 

(Martin et al. 2010). BoneXpert uses only 15 bones, which excludes short bones and carpal 

bones for bone age estimation.  

Although the widely recognised system for BAA, such as BoneXpert, exists, the problem is still 

not solved satisfactorily. Above automated BAA methods are based on hand-crafted features, 

which reduces the algorithm's capability from generalising to the target output (Lee et al., 

2017). Those, mainly based on the TW standards, have produced an accuracy varying from 

MAE of 0.37 – 2.63 years (Pietka et al., 2001; Giordano, Kavasidis and Spampinato, 2016; 

Spampinato et al., 2017). Some of these proposed systems do not meet the relative level of 

accuracy of an experienced radiologist (Koitka et al., 2020). Moreover, some of these systems 

are unreliable when presented with very young children's X-rays or are vulnerable to artefacts 

(Koitka et al., 2020).  

3.7.2. Automation of BAA using deep learning model. 

Although a demand for a fully automated BAA system exists, developing an accurate and 

robust BAA method remains challenging. This has been attempted using a deep-learning 

neural network (Spampinato et al., 2017). Image dataset for BAA is ideal for training a deep 

learning network due to relatively standardised findings from the hand and wrist radiographs. 
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BAA is a case where object detection can be applied, hence using deep learning for a given 

input and respective age and sex, bone age can be determined (Lee et al., 2017). Automated 

BAA using CNN models has shown outstanding performance and has been found to decrease 

the cost of BAA by reducing the time spent by radiologists to predict bone age (Zhang, Gertych 

and Liu, 2007; Thodberg et al., 2009; Mansourvar et al., 2013; Mughal, Hassan and Ahmed. 

2014; Kim, Lee and Yu, 2015; Satoh, 2015; Dallora et al., 2019; Poosarla, 2019; Unrath et al., 

2012; Yildiz et al., 2011).  

Spampinato et al. (2017) proposed an automated BAA system with the TW3 standard. Their 

framework followed these configurations: i) Obtain features from the medical images from 

CNNs; ii) Fine-tuned pre-trained CNN models (e.g., OverFeat, GoogleNet and OxfordNet); iii) 

Building a custom CNN model called BoNet to consider abnormalities in the skeletal structures 

(Spampinato et al., 2017). Consequently, GoogleNet performed the best with an MAE of 0.82 

years, while their BoNet model performed with an MAE of 0.79 years (Spampinato et al., 

2017). This finding was supported by Son et al. (2019) study on the TW3-based fully 

automated BAA system. When the authors tested BoNet, it achieved an MAE of 0.46 years 

and an RMS error of 0.62 years (Kim et al., 2017; Lee et al., 2017; Spampinato et al., 2017; 

Son et al., 2019). 

Lee et al. (2020) compared the performance between CaffeNet, GoogleNet and ResNet on 

bone age estimation. GoogleNet performed with the lowest Mean Absolute Difference (MAD) 

of 8.90 months, then CaffeNet with 12.3 months and ResNet with 15.4 months (Lee et al. 

2020). Chollet (2017) reported the outperformance of Xception – an edited version of 

GoogleNet – to GoogleNet with a top-1 accuracy of 9.48 months, while InceptionV3 got 9.36 

months. Xception's outperformance was observed in Westerberg’s (2020) study comparing 

the BAA using Xception, InceptionV3 and ResNet. Xception outperformed with an MAE of 9.53 

months, followed by InceptionV3’s MAE of 9.81 months (Westerberg, 2020).  

He and Jiang (2021) proposed an end-to-end BAA model based on lossless image compression 

and ResNet with an MAE of 0.503 years (6.04 months). This outperformed BoNet – another 

end-to-end model with an MAE of 0.79 years.  

Pan et al. (2019) examined 48 submissions to the RSNA bone age challenge for individual BAA. 

Various combinations were conducted to increase the heterogeneity of models. The best 
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performance had four models combined with an MAE of 3.79 months on the RSNA test set 

(Pan et al., 2019).  

3.7.3. BAA using pre-processed X-ray samples. 

Canziani et al. (2016) determined the accuracy of the pre-processed images against the raw 

images on the pre-trained models. They found that when GoogleNet was trained with original 

raw radiographs, it achieved a test accuracy of 39.06% for females and 40.60% for males 

(Canziani et al., 2016). Females and males had an age within one year of the ground truth of 

75.59% and 75.54%, respectively (Canziani et al., 2016). However, when GoogleNet was fine-

tuned with pre-processed samples, the accuracy was 57.32% for females and 61.40% for 

males with age within one year of ground truth 90.39% and 94.18%, respectively (Canziani et 

al., 2016). This, therefore, indicates that pre-processed images output better accuracy. 

3.7.4. BAA using machine learning on the South African population. 

The prominent use of hand and wrist radiographs is evident in the automation of bone age 

assessment because of significant skeletal changes with epiphyseal plates throughout the age 

progression. This is done using samples of individuals' ages ranging from below to above 18 

years (Dallora et al., 2019). Some of the proposed BAA systems decreased the dependability 

of human input instead of fully automating the BAA. However, these methods should also be 

acceptable due to the reduced subjectivity of the traditional BAA methods that rely on the 

radiologists' experience, which can result in intra- and inter-rater variability (Dallora et al., 

2019).   

Previous studies on BAA were focused on the U.S., European and Asian populations. However, 

such a study has not yet been conducted on the South African population. This raises an issue 

where age plays a crucial role in giving biological profiles for children who are unregistered 

and are immigrants. The studies on BAA methods (Zhang, Gertych and Liu, 2007; Thodberg et 

al., 2009; Yildiz et al., 2011; Unrath et al., 2012; Mansourvar et al., 2013; Mughal, Hassan and 

Ahmed. 2014; Kim, Lee and Yu, 2015; Satoh, 2015; Dallora et al., 2019; Poosarla, 2019) may 

not directly apply to the South African population due to the potential differences in skeletal 

maturation patterns and ethnic diversity. Therefore, studies need to be conducted to improve 

the accuracy of automated bone age estimation, specifically on the South African population. 
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The major challenge in bone age estimation using machine learning with the South African 

population is likely influenced by the availability of labelled train data. There has not been any 

study on such a field, resulting in a lack of such a data set. Collecting labelled X-ray images is 

time-consuming and requires expert radiologists to annotate the images with the person's 

actual bone age. The lack of labelled data can limit the size of the available dataset, limiting 

the accuracy of the trained machine-learning models. Addressing these factors through 

improved data collection and standardisation of the bone age assessment process can help 

improve the accuracy of automated bone age estimation in the South African population. 

However, it is evident that an automated system for bone age assessment accelerates the 

radiologist's workflow without breaking it and produces good predictions much lower than 

manual output. A study should examine the validity of BAA using the South African population 

as a dataset. 
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Chapter Four – Materials and Methods 

Chapter four covers a detailed description of the data set used and the algorithms and 

techniques employed using machine learning to carry out the BAA. The following section 

contains data collection, pre-processing, machine learning algorithms, and experimental 

setups.   

4.1. Datasets 

4.1.1. International Datasets (North American) – RSNA Dataset 

The Radiological Society of North America (RSNA) presented a hand radiograph of male and 

female children (n = 12,611) from Colorado and Stanford Children's hospitals for study 

purposes. This dataset is available through the RSNA website (RSNA, 2017) and Kaggle (Mader, 

2018). The dataset contains images of the left-hand wrist and a CSV file on the corresponding 

ages in months with separate sex. The public availability of this data is ethically clear and has 

been used for this study to examine its impact on South African populations. 

4.1.2. South African local Dataset – SA Dataset 

A total of 400 left-hand radiographs (obtained with LODOX Statscan) of South African children 

from birth to 18 years were collected. This data is an unstudied sample previously collected 

for GP method pre-COVID from Red Cross Children’s War Memorial Hospital. Samples are in 

a DICOM (Digital Imaging and Communications in Medicine) format that contains radiograph 

images and patient identification data in which bone age is determined for further study. For 

this study, the new HREC (Human Resources Ethics Committee) number was HREC REF 

179/2022. 

The details around the demographics on gender distributions and statistics of the RSNA and 

SA data sample are described in section 4.3.2. Data Visualisation.  

4.1.3. SA data processing 

For this study, the radiograph of the left hand, sex, and bone ages were extracted from the 

DICOM files. The conversion of DICOM to PNG image format was done using Python's Pydicom 

package. The conversion was achieved with Pydicom (ver. 2.4.1) and Pandas (ver. 2.0.2) 

packages in Python. However, the polarity of some DICOM samples was inverted, remedied 

by VOI grayscale transformation followed by linear stretching where some low percentile 
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goes to 0, high percentile goes to 255, and levels in between are transformed linearly. 

Therefore, it outputs a normal radiograph in PNG format. 

The chronological age (CA) of a child was achieved with Python’s DateTime package by 

calculating the difference between the child’s date of birth and the date during which the X-

ray image was taken for examination. Simultaneously, the child’s sex information was 

obtained as well. DICOM file containing any abnormalities and right hands were discarded for 

this study. A CSV Excel spreadsheet was produced containing images 'id', 'bone age', and 

'gender'.  

 

Figure 13: A display of the DICOM file. (Every information except the patient's birthdate, age, 

and sex was anonymised).   

From the DICOM file, a CSV file containing three data was extracted: 1) ID, name of the image 

file; 2) bone age, calculated by getting the difference between the birth date and the medical 

examination date in months; 3) Sex, male or female which was based on at birth.  

Therefore, there are two datasets utilised for this study (n = 12,611 for RSNA Dataset (in PNG 

format + CSV file) and n = 400 for SA data (in DICOM format with image process required). 

The images were examined, and those with irregular hand positions (Figure 14a, b), hands 

with certain conditions like fractures and blurred qualities (Figure 14a-c) and right-hand 

images were discarded for this study. 
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Figure 14 a – c: Examples of radiograph samples discarded. a) Extra digits. b) fractured index 

phalanges. c) Unnecessary objects by the ulna.  

4.2. Programming language and tools 

Python (ver. 3.9.12) is an object-orientated, high-level, and general-purpose language used 

to build software, automate tasks, and analyse data. It is simple and has various libraries that 

are used for this study.  

TensorFlow and Keras. Google’s TensorFlow is an open-source machine-learning library for 

high-performance computations across multiple platforms. Keras is a high-level application 

programming interface (API) for TensorFlow-based neural networks.  

4.2.1. Programming environment settings 

The BAA model for this study was developed using Keras and TensorFlow with Python. This 

was achieved with a computer having Windows 10 Operating System with AMD Ryzen 5 

5600X CPU, Nvidia RTX 3060 TI with 8GB VRAM GPU and 16GB DDR4 3200MHz RAM. 

Anaconda was used to manage and deploy respective libraries for BA model development. 

The environment is comprised of packages (Table 2). Nvidia CUDA version 11.2 with cuDNN 

library version 8.1 was installed to use the right Keras and TensorFlow libraries. The primary 

integrated development environment (IDE) used to develop the model was on a Jupyter 

Notebook and JupyterLab. These are freely available through Anaconda. 

a c b 
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Table 2: List of Python package and their versions used for BAA model development. 

Library/Language/Package Version 

Python 3.9.12 

Keras and TensorFlow 2.8.0 

NumPy 1.12.5 

Matplotlib 3.5.1 

OpenCV 4.5.4.60 

Pandas 2.0.2 

Pydicom 2.4.1 

Scikit-Image 0.19.2 

Scikit-Learn 1.0.2 

4.3. Methodology 

4.3.1. Image Pre-process 

Image pre-processes steps are implemented as follows to improve the ability of deep learning 

models and distinguish the differences in the hand radiographs:  

i. Discard image samples with irregularities.

Right-handed samples containing unidentifiable objects in the radiographs were 

discarded for this study. 

ii. Image scaling

The image samples are scaled to the correct size using the OpenCV library according to 

the hand's position. This was done to remove any white borders around the images.  

iii. Histogram equalisation for image contrast

The histogram equalisation technique enhanced the scaled image samples' contrast 

(Toomatari, Mohammadi and Sepehrvand, 2012). Firstly, the frequency of each pixel was 

counted; secondly, using the NumPy library, the pixel values were normalised by getting 

the difference between the maximum and the minimum cumulative sum. The images 

were then flattened with the histogram and then reshaped to the flattened matrix to its 

original shape (Figure 15b; 16b).  
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iv. Removal of label tags

The adjusted image samples had the label tags with texts removed. This was achieved 

with the OpenCV library. The samples were converted to grayscale. Gaussian blur was 

applied to reduce the high-frequency noise to smooth out the image, making it easier to 

identify the feature of interest. Morphological operations were then applied to remove 

small objects from the background and smooth the edges of the label tag region. Otsu 

thresholding is applied to create a binary image where the foreground objects have a 

value of 255, and the background has a value of 0 (Murzova and Seth, 2021; Bangare et 

al., 2015). The contours of the foreground were obtained using the contour method, 

which was then used to create a mask for the foreground. The identified label tag in the 

image sample was then greyed out, removing the label tags (Figure 15b, 16c).   

v. Background removal

The identification of the background from the left-hand image sample was like that of the 

label tag removal. Image samples with their label removed were loaded, converted to 

grayscale, blurred with Gaussian blur, and then applied a threshold. During morphological 

operation, dilation was applied to fill small gaps in the foreground regions (i.e., the left-

hand regions). The contours of the left hand were obtained using the contour method, 

which was then used to create a mask for the original image using OpenCV to remove the 

background to obtain the result (Figure 15c, 16d).   

vi. Image straightening

To straighten the image, the OpenCV library was used to obtain an ellipse by detecting 

the concavities of the left hand and then fitting the ellipse to estimate the axis of the hand. 

Then the image was warped and rotated according to the line of axis obtained (Figure 15c). 

The final image output from the pre-process was saved to a different folder directory, 

making those an input to the proposed BAE model (Figure 15d, 16d). 
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Figure 15 a – d: The pre-processing of the raw hand radiograph (RSNA dataset). a) original 

radiograph containing all the unnecessary factors. b) better contrasting and cropping to 

better accentuate the hand. Then the label tags are removed/greyed out. c) The background 

is blackened. The axis of the rough middle finger is drawn. d) The image is straightened to be 

input into the model. 

Figure 16 a – d: The pre-processing of the raw hand radiograph (SA dataset). a) The obtained 

left-hand radiograph from Figure 13 above (SA Data). b) Improved image contrast. c) White 

labels removed. d) Removal of background noise by straightening the hand. 

4.3.2. Dataset visualisation 

The dataset was split into train and validation sets using an 80/20 ratio. The validation set was 

used with the training set to validate the model's performance during training and tune their 

hyper-parameters accordingly. A separate test set was set to determine the final bone age 

output and the model's performance on unseen data.  

The dataset was split into train and validation sets using an 80/20 split ratio. The validation 

set was used to validate the model's performance during training and fine-tune the 

hyperparameters accordingly. A separate sample set was allocated for the test set to evaluate 

the model's performance on the unseen data for bone age estimation.  

d c b a 

d c b a 
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Before inputting the dataset into the model, they were normalised to balance the number of 

male and female radiographs. The bone age of the children is calculated in months. The RSNA 

dataset had a minimum age of 1 month and maximum age of 228 months. The SA dataset had 

a minimum age of 1 month and maximum age of 211 months.  

Figure 17 a – c: Histograms describing the gender distribution of three datasets. 17a = RSNA 

Dataset (male = 5,860 and female = 4,921), 17b = SA Dataset (male = 259 and female = 141) 

and 17c = RSNA + SA (male = 7,926 and female = 6,823). 

Figure 18 a – c: Histograms on the number of samples allocated for bone age groups. 18a = 

RSNA Dataset; 18b = SA Dataset; and 18c = RSNA + SA Dataset. The figure displays the X-axis 

in bone age in months, with the Y-axis showing the total number of radiographs 

corresponding to respective bone ages.  

The mean bone age in the RSNA and RSNA+SA datasets were 128.92 months and 128.49 

months, and the standard deviation was 40.09 and 41.42, respectively. The SA dataset had 

more radiograph samples within the bone age range of 25 – 125 months. This dataset had a 

mean age of 86.28 months and a standard deviation of 48.67 months. 

a) b) c) 

a) b) 

c)
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The histogram above describes the widespread number of images at different bone age 

categories, which could adhere to the model training and prediction. A Z-score of RSNA and 

RSNA + SA datasets was calculated to overcome this problem. The following equation 

calculated this:  

Boneage_Z-Score = 
𝐵𝑜𝑛𝑒 𝐴𝑔𝑒−𝑏𝑜𝑛𝑒𝑎𝑔𝑒_𝑚𝑒𝑎𝑛

𝑏𝑜𝑛𝑒𝑎𝑔𝑒_𝑠𝑡𝑑_𝑑𝑒𝑣

Equation 2: Boneage Z-score for dataset normalisation 

Figure 19 a – c: Histograms on the bone age Z-score distribution. 19a = RSNA Dataset; 19b = 

SA Dataset; and 19c = RSNA + SA Dataset. The figures show a considerable number of 

radiographs within the bone age ranging between 50 – 175 months for both the RSNA and 

RSNA + SA datasets. 

4.3.3. Image error visualisation with Histogram bin 

Histogram error visualisation is a technique used in machine learning to analyse the 

distribution of error values across a dataset. This part experiment was divided into two. One 

is to validate the use of pre-processed dataset on BAA, and the second is to identify image 

samples that contribute to a higher MAE value (i.e., samples that were poorly modelled) on 

the pre-processed dataset to improve the performance of the model and gain insight on the 

expected error on the image sample.   

In the first part of the experiment, the unprocessed and pre-processed datasets were trained 

and then tested on the deep learning model. Then a histogram error visualisation was done 

by dividing the error values into equal-sized bins or intervals and counting the number of 

a) b) 

c)
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image samples that fell into each error bin. The total number of histogram bins was set to 20, 

and the maximum MAE range was set to 100. Equation 3 below calculates the histogram bin 

size to find the maximum MAE in months.  

Histogram bin size = 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝐴𝐸 𝑅𝑎𝑛𝑔𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝐵𝑖𝑛𝑠

Equation 3: Histogram bin size to obtain the maximum MAE. 

Using the NumPy library, the number of rows was obtained. This was then iterated through 

the test set, which took the error value and decided which bin in the histogram it was 

categorised. The total count of histogram bin errors was counted with the respective image 

name using the dictionary function in Python. The final histogram error graph was obtained 

below (Figure 20a, b).  

Figure 20 a – b: Histogram of the number of samples giving a high MAE of unprocessed (a) 
and pre-processed (b) datasets. a) Decreasing trend yet not a smooth decreasing trend. b) A 
smooth decreasing trend indicates a good MAE decrease. 

This experiment's histogram error visualisation was done on the pre-processed dataset 

following the abovementioned step (Figure 20b). Here, the graph displayed a decreasing 

trend indicating an acceptable trend for a good MAE distribution (Figure 20b). The irregular 

decreasing trend described in Figure 20a shows unprocessed images contributing to higher 

errors in age. The images in the higher MAE error bin were identified to visually inspect for 

issues that may have led to a higher MAE in the pre-processed dataset. The young age samples 

were not removed since removing those samples could be detrimental to the model training 

as fewer young individuals are in the dataset, therefore decreasing any bias in the dataset. 

a) b) (Months) (Months) 
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4.4. Pre-trained models for BAA 

Four pre-trained models were selected for this study: Xception (He and Jiang, 2020), 

InceptionV3 (Szegedy et al., 2016), MobileNet (Howard et al., 2017), and VGG-16 (Liu and 

Deng, 2015). The pre-processed datasets (i.e., train set, validation set and test set) were used 

across all four models to experiment. The hyperparameters for these models were selected 

based on the grid search method. Radiograph images were scaled to 299 x 299 for three 

models: Xception, InceptionV3, and VGG-16, and 224 x 224 for MobileNet. The image data 

generator function from TensorFlow and Keras achieved this. 

4.4.1 Xception 

After the hyper-parameter tuning from grid search, a global max pooling layer is added after 

model initiation. A flattened layer followed this to transition the convolution layer from the 

Xception model to the fully connected layer. The choice for dense layers were 10, 12, 16, 32 

and 64 layers. After searching, twelve neurons performed the best with the ReLU activation 

function. A single neuron dense layer followed this with a linear activation function to output 

a bone age prediction. The batch size for training was 16, 20 epochs, a learning rate of 0.0003, 

and an optimiser set to Adam. 

4.4.2 InceptionV3 (GoogleNet) 

The architecture design is like that of the Xception model. After parameter tuning, a global 

max pooling layer was added after initiating the model, followed by a flattened layer. For 

dense layers, the options were 10, 12, 16, 32 and 64 layers. The twelve-neuron dense layer 

was allocated with a ReLU activation layer followed by a single-neuron dense layer with a 

linear activation function for the fully connected layer. A batch size of 16, 20 epochs, a 

learning rate of 0.0003, and the Adam optimiser was used to train. 

4.4.3 MobileNet 

After initiating this model, a global average pooling layer is added, followed by a flattened 

layer. Two fully connected layers consist of ten neurons dense layer with ReLU activation 

function followed by a single dense layer linear activation function for bone age output. 

Sixteen batch sizes, 20 epochs, and an Adam optimiser were used for training MobileNet. 
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4.4.4 VGG-16 (OxfordNet) 

A trial with similar architecture to the above three models was used. However, the model 

returned high validation loss, which indicated model underfitting. This was due to a higher 

number of trainable parameters compared to other models. After initiating the VGG-16 

model, the batch normalisation layer was added. A 32 convolutional neuron layer was added 

with a kernel size of 1, padding set to the same and ReLU activation function, followed by 16 

neurons convolutional layer with a single kernel size, same padding and ReLU activation 

function. A locally connected layer was added with a kernel size of one, padding set to the 

valid and sigmoid activation function. A global average pooling layer and a dropout layer were 

added to 0.5. Five hundred twelve neurons fully connected layer was added, followed by a 

single neuron fully connected layer output. Sixteen batch sizes, 20 epochs, and an Adam 

optimiser were implemented for training VGG-16.  

4.5. Experimental Setup 

4.5.1. Experimental dataset distribution 

The radiograph samples were allocated to the following experiments to assess the bone age 

outputs for international and local datasets: 

1) A pilot study to determine whether to use pre-processed or unprocessed datasets.

2) A pilot study to determine BAA from a simple regression model.

3) Model benchmarking to select the best-performing model on the BAA.

4) Determination of final bone age with the best-performing model in MAE.

5) Reduced data imbalanced and balanced training on the SA samples.

1) Pilot study on the validity of the pre-processed dataset

The validity of using pre-processed samples compared to unprocessed samples was 

determined by calculating the confidence for both samples. A small proportion of the RSNA 

dataset (n = 2,600) was used instead of the whole dataset because this pilot study aimed to 

highlight the usage of pre-processed samples. This dataset was applied to the selected pre-
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trained models: Xception, InceptionV3, MobileNet and VGG-16. The confidence interval was 

obtained using Python's Scikit-learn library.  

A Keras Regressor model is used to call the four pre-trained models. Five-fold splits of K-Fold 

and mean absolute error function are used to obtain an average MAE in months. Standard 

deviation is then calculated from five MAE obtained from which variance is calculated. The 

variance is multiplied by 1.96 (95% confidence interval) to calculate the final confidence 

interval of the model.  

2) A pilot study using a simple regression model (i.e., SVR) on BAA.

This study determined whether BAA would benefit from a simple regression model. The 

regression model chosen for this study was Support Vector Regressor (SVR). SVR can handle 

the non-linear relationship between features and target variables and generalise unseen data 

well. These features make SVR suitable for BAA, where the relationship between the age of a 

patient and the appearance of their bones can be complex and non-linear. Moreover, SVR can 

handle high dimensional data, often in medical imaging, where many features can be 

extracted from a single image. The performance between RSNA data and SA data is compared 

with the following parts: 

i. Trained on RSNA (n = 2,000) and tested on RSNA test set (n = 200).

ii. Trained on SA (n = 300) and tested on SA test set (n = 100).

iii. Trained on SA (n = 320) and tested on SA test set (n = 80).

For part 3, the SA test set was decreased to 80, while the SA train data was increased to 320. 

This was done to determine if bone age MAE would depend on the number of test sets. 

Depending on the MAE value between parts 2 and 3, that number was utilised for the 

downstream experiments.  

3) Best-performing model selection on BAA using the RSNA dataset.

There were 400 South African data samples which were minuscule compared to the RSNA (n 

= 10,000) dataset. This was remedied by mixing South African data with the RSNA dataset to 

see whether adding more samples would help the local bone age estimation. This experiment 

was therefore formed by using RSNA and SA datasets. Using RSNA and SA datasets, the best-
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performing pre-trained model out of the four is determined by benchmarking with the lowest 

MAE in months. This is achieved by training four models in the following way: 

1. Training on the RSNA dataset (n = 10,000) evaluated on the RSNA test set (n = 200).

2. Training on the RSNA dataset (n = 10,000) evaluated on the SA test set (n = 400).

3. Training on the RSNA dataset (n = 10,000) evaluated on the SA test set (n = 100).

4. Training on the SA dataset (n = 300) evaluated on the SA test set (n = 100).

For part 3 of this experiment, the test was done with fewer (n = 100) SA test sets to determine 

whether the bone age MAE depends on the number of tests set since the number of the SA 

dataset is limited. After the four-benchmarking experiment, the best-performing model was 

selected for the following experiment. 

The model benchmarking was done with a fixed number of 20 epochs, a training batch size of 

16, a learning rate of 0.003 and 12 dense layers within the four models. The image size for 

Xception, InceptionV3 and VGG-16 was 299 x 299, while MobileNet was 224 x 224 (maximum 

input size).  

4) Using the best-performed pre-trained model to test for the bone age MAE.

After determining the best-performed model out of the four deep learning models from 

experiment 2; and the number of South African test sets from experiment 3, the bone age 

prediction was made.  

Here, both datasets are combined as a training set to evaluate data performance on 

international and South African data. A total of 10,400 train set (RSNA (n = 10,000) + SA (n = 

400)) was trained and then tested on the RSNA test set (n = 200), and a total of 10,300 train 

set (RSNA (n = 10,000) + SA (n = 300)) was trained then tested on the SA test set (n = 100). 

The discrepancy in the SA dataset was due to limitations of the number of the SA dataset. 

Lastly, to evaluate the validity of using the population-specific dataset for bone age estimation, 

RSNA data was split into 8,000 train sets, 1,000 validation sets, and 1,000 test sets. The MAE 

was obtained to determine their performance.  

5) Reduced data imbalanced and balanced training on the minority class of SA samples.

Typically, data balancing is conducted to correctly adjust for majority and minority classes to 

have an almost equal data distribution. However, the number of SA datasets is limited. 
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Therefore, a reduced data-imbalanced training was conducted to somewhat accommodate 

the significant default imbalance to almost compensate for training models. 

Firstly, the RSNA dataset was reduced to 2,000 samples and combined with 300 SA datasets. 

This was set as the training set. The testing was conducted on RSNA and SA test sets to 

evaluate bone age in MAE.  

Secondly, the RSNA dataset was further reduced to 300 samples to match the 300 SA dataset 

equally. The combined 600 RSNA + SA dataset was formed as a train set. Testing was 

conducted on RSNA and SA test sets to predict bone age in MAE. 

Thirdly, the SA dataset was increased to 2,000 from 300. Owing to the lack of SA samples, 

2,000 samples were formed by random SA samples. This was combined with a reduced 2,000 

RSNA dataset with a total of 4,000 RSNA + SA datasets to be used as a train set. Testing was 

conducted on RSNA and SA test sets to predict bone age in MAE. 

The table below summarises the experiments conducted (Table 3, 4): 

Table 3: Pilot study with RSNA dataset as a train set to determine the best-performing 

model between Xception, InceptionV3, MobileNet and VGG-16. For testing bone age, RSNA 

and SA test sets are set aside to obtain MAE. 

Train Dataset Test Dataset 

Xception, InceptionV3 (GoogleNet), MobileNet and VGG-16 (OxfordNet) 

RSNA (n = 10,000) RSNA (n = 200) 

RSNA (n = 10,000) SA (n = 400) 

 

Table 4: Experiments conducted using the best-performing model selected from above 

(Table 3).  

Train dataset Test dataset 

Model benchmarking of best performing model  

RSNA (n = 10,000) SA (n = 100) 

SA (n = 300) SA (n = 100) 

Using a simple model (SVR) 

RSNA (n = 2000)  RSNA (n = 200) 

SA (n = 300) SA (n = 100) 

SA (n = 320) SA (n = 80) 

Bone age MAE using best performed pre-trained model 

RSNA + SA (n = 10,300) RSNA (n = 200) 

RSNA + SA (n = 10,300)  SA (n = 100) 
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RSNA (n = 8,000) RSNA (n = 1000) 

Reduced data imbalanced training 

RSNA (n = 2000) + SA (local) (n = 300) 
(Reduced data imbalanced train) 

RSNA (n = 200) 

RSNA (n = 2000) + SA (local) (n = 300) 
(Reduced data imbalanced train) 

SA (n = 100) 

RSNA (n = 300) + SA (n = 300) 
(Data-balanced training) 

RSNA (n = 200) 

RSNA (n = 300) + SA (n = 300) 
(Data-balanced training) 

SA (n = 100) 

RSNA (n = 2000) + SA (n = 2000) 
(Data-balanced training) 

RSNA (n = 200) 

RSNA (n = 2000) + SA (n = 2000) 
(Data-balanced training) 

SA (n = 100) 

Ethical considerations 

This research project was submitted for human ethical submission in the Faculty of Health 

Sciences, University of Cape Town (Ethics number: HREC REF 179/2022). 
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Chapter Five – Results and Discussion 

In this section, we present the results of the experiments and discuss the performance of 

different machine-learning models on bone age estimation. We also analyse the factors that 

affect the accuracy of the models and discuss the potential clinical implications of our findings. 

Finally, we explore the limitations of this study and the future directions for research to 

improve the accuracy of bone age assessment. 

5.1 Hyper-parameter fine-tuning for pre-trained models. 

Given the data, four pre-trained models - Xception, InceptionV3 (GoogleNet), MobileNet and 

VGG-16 (OxfordNet) – were fine-tuned using the K-fold cross-validation with the Keras 

regressor model. The table below describes the best hyper-parameters for each model (Table 

5). 

Table 5: Fine-tuned hyper-parameters for respective pre-trained models. 

Hyper-parameters Fine-tuned parameter values 

Xception 

Batch size 16 

Dense layers 12 -> 1 

Learning rate 0.0003 (Adam optimiser) 

InceptionV3 

Batch size 16 

Dense layers 12 -> 1 

Learning rate 0.0001 (Adam optimiser) 

MobileNet 

Batch size 16 

Dense layers 12 -> 1 

Learning rate Adam (optimiser function) 

VGG-16 

Batch size 16 

Dense layers 128 -> 1 

Learning rate Adam (optimiser function) 

After fine-tuning the model using grid search, the optimal batch size for all four pre-trained 

models was 16. The models Xception, InceptionV3, and VGG-16 failed to train with higher 

batch sizes (e.g., 32, 64) due to limited computing power. Moreover, these three models were 

input with bigger image sizes of 299 x 299. MobileNet could only accept images of size 244 x 

244; hence it could run models with larger batch sizes. However, to accommodate equal 

training throughout all four models, the batch size was kept to 16. 
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Xception, InceptionV3 and MobileNet could accommodate twelve dense layers followed by a 

single dense layer. VGG-16 has a higher model depth with more trainable parameters; thus, 

16 convolutional layers followed by 32 convolutional layers with ReLU activation function. A 

single dense layer followed one hundred twenty-eight dense layers afterwards.   

5.2. Pre-processed dataset against an unprocessed dataset 

The pre-processed dataset consists of scaled, removed background, and straightened X-ray 

radiographs, while the unprocessed dataset contains raw X-ray radiographs. Datasets were 

input into the models to determine the validity of the pre-processed dataset. Mean absolute 

error (MAE) was calculated for the two datasets with a 95% confidence interval.  

Models trained with pre-processed datasets performed with a lower MAE with narrower 

confidence intervals than the unprocessed dataset. Figure 21 displays a narrower spread of 

prediction points from the pre-processed dataset (Figure 21b) compared to a broader spread 

of predictions from the unprocessed dataset (Figure 21a). Figure 20 displays MAE distribution 

from bone age MAE estimates from samples of unprocessed (Figure 20a) and pre-processed 

(Figure 20b) datasets. An even decreasing trend is observed in the pre-processed dataset, 

while the unprocessed dataset's histogram has an uneven decreasing trend. Figure 24 shows 

left-hand radiographs contributing to a high bone age estimate MAE. Figure 21 c - e are 

unprocessed samples with all the artefacts that negatively affected the MAE. Figure 21 f – h 

are samples of younger individuals and not fully processed, contributing to high MAE.  
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Figure 21 a – b: Scatterplot of the bone age prediction made from unprocessed (a) and pre-

processed data (b). 21a shows broader bone age predictions. The prediction was narrower 

from the pre-processed dataset of 21b with fewer outliers.   

Figure 21 c - h: Examples of plain radiograph samples contributing to a higher MAE. c – e: 

Example of poor left-hand samples from the unprocessed dataset. f - h: Processed radiograph 

samples giving a high MAE.  

c 

a) b) 

e d 

f g h 
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This pilot study highlighted the importance of using pre-processed samples as a dataset. The 

models trained with pre-processed dataset output lower MAE in months with narrower 

confidence intervals (Table 6). Pre-processed samples had accentuated left-hand X-rays, 

contributing to the model's learning difference in bone structures and lower MAE. The narrow 

confidence intervals indicate the validity of pre-processed dataset for BAA. 

Table 6: The bone age MAE with a confidence interval (CI) between the pre-processed (n = 

2,600) and unprocessed dataset (n = 2,600) using four pre-trained models.  

Pre-trained model 
Unprocessed dataset 
(MAE in months + CI in months) 

Pre-processed dataset 
(MAE in months + CI in 
months) 

Xception 24.5354 ± 5.01 18.7511 ± 1.94 

InceptionV3 30.5883 ± 5.27 19.3148 ± 0.78 

MobileNet 31.3581 ± 12.93 20.9640 ± 1.89 

VGG-16 33.4665 ± 4.34 29.6500 ± 0.58 

Models trained on the pre-processed dataset produced a lower MAE. Histograms support this 

finding in Figures 22 – 25. Pre-processed dataset (Figure 20b) displayed a decreasing trend for 

a lower MAE distribution. The unprocessed dataset (Figure 20a) had uneven MAE error bin 

distribution, contributing to a high MAE. The graph supports the evidence of high MAE in 

Figure 20 shows the unprocessed dataset (Figure 21a). It had many outliers compared to the 

blue linear line (i.e., the actual prediction of the bone age). Figure 21 c-e shows an example 

of unprocessed images contributing to high MAE. Most images contributing to a high MAE in 

the pre-processed dataset were from younger individuals aged 0 – 50 months (Figure 21 f-h). 

The unprocessed dataset contained irrelevant information, such as background noises, label 

tags, and texts. Unprocessed data affect model performance, increasing MAE with wider 

confidence intervals (Table 6). Unprocessed datasets took longer to train due to significant 

computational resources requirement. Whilst training, the models could not generalise well 

due to overfitting from the small train set.  

This experiment utilised 2,600 samples for two datasets. With more examples in the dataset, 

significantly lower MAE in months with narrower confidence could be expected. 



58 

5.3. Benchmarking for selecting the best-performing BAA model. 

Four experiments were conducted using RSNA and SA datasets to determine the MAE on the 

bone age estimation using four off-the-shelf models (Table 7). The result suggests that the 

Xception model outperformed the other three models, noticeably with an MAE of 7.31 

months from RSNA datasets. Overall, InceptionV3 performed the second best, followed by 

MobileNet, and VGG-16 performed the least.   

Figures 22 to 25 below are scatterplots of the predicted bone age (red dots) against the actual 

bone age (blue line) from the four experiments shown in Table 7. The scatterplots show that 

models trained and tested from the RSNA dataset had a closer relationship between the 

prediction and actual bone age (Figures 22a, 23a, 24a, 25a). Three experiments tested on the 

South African (SA) dataset performed poorly with a broader spread of prediction points 

(Figure 22b – 28d). 

Table 7: Result from MAE values obtained on the datasets according to respective pre-

trained model. 

Train dataset Test dataset 
Mean Absolute Error 
(Months) 

Xception Model 

RSNA (n = 10,000) RSNA (n = 200) 7.3105 

RSNA (n = 10,000) SA (n = 400) 19.0634 

RSNA (n = 10,000) SA (n = 100) 19.8257 

SA (n = 300) SA (n = 100) 19.5616 

InceptionV3 Model 

RSNA (n = 10,000) RSNA (n = 200) 7.6696 

RSNA (n = 10,000) SA (n = 400) 20.8219 

RSNA (n = 10,000) SA (n = 100) 20.5228 

SA (n = 300) SA (n = 100) 20.9134 

MobileNet Model 

RSNA (n = 10,000) RSNA (n = 200) 8.4505 

RSNA (n = 10,000) SA (n = 400) 21.8551 

RSNA (n = 10,000) SA (n = 100) 22.1197 

SA (n = 300) SA (n = 100) 19.8354 

VGG-16 Model 

RSNA (n = 10,000) RSNA (n = 200) 11.7847 

RSNA (n = 10,000) SA (n = 400) 25.6562 

RSNA (n = 10,000) SA (n = 100) 22.7868 

SA (n = 300) SA (n = 100) 23.6025 
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Figure 22 a – d: Scatterplot of BAA predictions made from Xception model benchmarking. 

a) RSNA -> RSNA test. b) RSNA -> SA test (n = 400). c) RSNA -> SA (n = 100). d) SA -> SA

a) 

c) 

b) 

d)
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Figure 23 a – d: Scatterplot of BAA predictions made from InceptionV3 model benchmarking. 

a) RSNA -> RSNA test. b) RSNA -> SA test (n = 400). c) RSNA -> SA (n = 100). d) SA -> SA

a) 

c) 

b) 

d)
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Figure 24 a – d: Scatterplot of BAA predictions from MobileNet model benchmarking. a) 

RSNA -> RSNA test. b) RSNA -> SA test (n = 400). c) RSNA -> SA (n = 100). d) SA -> SA  

a) 

c) 

b) 

d)
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Figure 25 a – d. Scatterplot of BAA predictions made from VGG-16 model benchmarking. a) 

RSNA -> RSNA test. b) RSNA -> SA test (n = 400). c) RSNA -> SA (n = 100). d) SA -> SA  

5.3.1. Model Benchmarking 

The model benchmarking experiment compared four pre-trained models to determine the 

best-performing model on the bone age estimation (Table 7). The result highlights the 

outperformance of Xception on the BAA compared to the other three models. Xception 

performed with the lowest MAE throughout all four experiments. The model performed with 

an MAE of 7.31 months (0.61 years) on the North American population (RSNA); and an MAE 

of 19.56 months (1.63 years) on the South African population (SA). After Xception, 

InceptionV3 performed second best, MobileNet third best, and VGG-16.  

a) 

c) 

b) 

d)
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Xception uses depth-wise separable convolutions, which reduces the number of parameters 

and increases the model's efficiency (Chollet et al., 2016). During the experiment, InceptionV3 

took less time to obtain bone age estimates than Xception because Xception has more layers 

than InceptionV3 and uses more filters in each layer. However, this makes Xception a deep, 

complex model that can learn more complex features from the input. Therefore, it explains 

Xception's outperformance on the bone age estimation.  

Despite the MobileNet having the lowest weight size of 16MB, it performed the third-best on 

the BAA model benchmark with an MAE of 8.45 months (0.70 years) on RSNA and second-

best with an MAE of 19.84 months (1.65 years) on SA. MobileNet has a simple model depth; 

however, its limited image size input of 224 x 224 could contribute to higher MAE on RSNA. 

This limits the model to see details compared to others with 299 x 299 image size input. 

MobileNet may benefit from a smaller sample size, which explains the second-best 

performance of the South African population. The bone age estimation task requires many 

samples; therefore, the model would have to become more complex.  

VGG-16 performed the worst in bone age estimation. This model has a significant weight size 

of 528MB with 138.4 million trainable parameters. More computation resources are required 

to train the model with a slower time, therefore outputting the highest MAE out of all pre-

trained models. Xception was selected as a primary model for downstream bone age 

assessment experiments on different populations. 

5.4. Bone age estimation using Xception. 

Three experiments used Xception as the best-performing off-the-shelf model for bone age 

estimation. Xception tested on the 200 RSNA test set with an MAE of 7.43 months. Xception 

was performed with an MAE of 5.70 months when using a dataset of the sample population 

(i.e., RSNA). 

The scatterplot in Figure 26a shows narrow predictions of the bone age with a single outlier. 

Figure 26b shows poor generalisation when tested on the SA dataset, which performed with 

a higher MAE of 14.36 months. Figure 26c displays a narrower bone age prediction (Table 8). 
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Table 8: The performance of the Xception model on the BAA determination. 

Train Dataset Test Dataset 
Mean Absolute Error 
(Month) 

RSNA (n = 10,000) + SA (n = 300) RSNA (n = 200) 7.4273 

RSNA (n = 10,000) + SA (n = 300)  SA (n = 100) 14.3617 

RSNA (n = 8,000) RSNA (n = 1,060) 5.6961 

 

  

 

Figure 26 a – c. Scatterplot of Xception on final bone age estimation using different datasets. 

a) RSNA+SA -> RSNA test. b) RSNA+SA -> SA test (n = 400). c) RSNA (n = 8,000) -> RSNA test (n 

= 1,060)  

 

5.4.1. Xception as the primary model for BAA 

Xception – a CNN architecture – has shown to be effective in a medical imaging application. 

This discussion will explore the potential of using Xception as a primary model for bone age 

estimation and discuss the challenges and opportunities this approach presents. 

a) 

c) 

b) 
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In the first two experiments (Table 8), the Xception model was trained with RSNA + SA (n = 

10,300) dataset to assess the impact of the age estimation from different populations on a 

specific population. When tested on the North American (RSNA) population, the MAE was 

7.43 months (0.62 years). This was comparable to 7.31 months from model benchmarking 

using the same population (Table 7). An additional 300 SA datasets to the RSNA train set 

allowed Xception to learn on varied populations, hence less ability to generalise on a target 

population with a higher MAE (Table 8).   

An MAE of 14.36 months was observed when Xception was tested on the South African 

population (n = 100). The MAE was lower than Xception trained only on the RSNA train set 

(Table 7) because 300 South African samples allowed the model to generalise to the SA 

population. However, the MAE from the South African population was doubled that of the 

RSNA population. This is due to the majority class that is RSNA having 10,000 samples which 

masks the minority class of South African data comprising only 300 samples. A population-

specific study on bone age estimation was conducted using the RSNA dataset to minimise the 

masking of the majority class on the minority class. The result suggests a successful outcome: 

Xception performed with an MAE of 5.70 months (0.48 years), outperforming all BAA 

experiments. Unfortunately, a similar trend was not examined for the South African 

population, which performed with an MAE of 19.56 months (1.63 years). This is because of 

the dataset's significantly low number of South African samples. Therefore, having 

comparable samples to the RSNA dataset (n = 10,000) would produce similar or better results 

in the South African population. Overall, this experiment highlights that combining different 

populations for BAA improves bone age estimation for machine learning, and population-

specific datasets would benefit highly from machine learning models for BAA. 

The literature contains several studies evaluating the ML-based bone age estimation 

performance. Table 9 describes the MAE of BAA for respective studies.  
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Table 9: Comparison of the MAE for different BAA approaches using machine learning.  

Method Mean Absolute Error (months, years) 

Liu et al. (2019) 6.00 (0.50 years) 

Iglovikov et al. (2017) 6.12 (0.51 years)  

Li et al. (2021) 6.24 (0.52 years) 

Pan et al. (2020) 7.32 (0.61 years) 

Wu et al. (2019) 7.38 (0.62 years) 

Tajmir et al. (2019) 7.93 (0.66 years) 

Han et al. (2018) 8.40 (0.70 years) 

Zhou et al. (2017) 8.64 (0.72 years) 

Spampinato et al. (2017) 9.48 (0.79 years) 

Raman et al. (2022) 9.55 (0.80 years) 

Westerberg (2020) 9.53 (0.79 years) 

Nguyen et al. (2022) – Without sex 5.28 (0.44 years) 

Nguyen et al. (2022) – With sex 4.68 (0.39 years) 

 

5.4.2. Data augmentation on machine learning for BAA.  

Raman et al. (2022) used image rotation and horizontal flip for data augmentation on their 

left-hand radiographs. As a result, MobileNet performed the best with an MAE of 9.55 months 

(0.80 years), followed by Xception with 9.98 months (0.83 years) (Raman et al., 2022). The 

authors implemented image pre-processing before data augmentation. However, the pre-

processing step was not described in the literature. Therefore, it is assumed that their pre-

processing method was not extensive enough since their MAE was higher than this research. 

Westerberg (2020) did not implement any pre-processing or data augmentation for bone age 

estimation, but he used labelling software to find a region of interest (ROI) from the left-hand 

samples. Xception was the best-performing model with an MAE of 9.53 months (0.79 years), 

followed by InceptionV3's 9.81 months (0.82 years). Using data augmentation on the sample 

before using labelling software would have benefited BAA. Spampinato et al. (2017) applied 

data augmentation by extracting ten uniformly spaced crops from each input image, with the 

crop size depending on the model's expected sizes. Moreover, a simple pre-processing 

method to remove the label tags in the X-ray sample was implemented. As a result, their best 

off-the-shelf GoogleNet performed with 9.84 months (0.82 years), and their custom-made 

model called BoNet performed with an MAE of 9.48 months (0.79 years).  

Some studies implemented data augmentation on their samples before input in the CNN 

model. However, more data augmentation should be considered – such as the height and 

width shift range; and image rescaling – as this helps the model to see a variation of the left-
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hand X-ray samples during bone age estimation. Image pre-processing should also be 

implemented such that only the left hand of interest would be accentuated, which was not 

the case for some studies mentioned above.  

5.5. A simple linear regression model on the BAA 

The support Vector Regressor (SVR) model was used as a simple linear regression for BAA. 

Table 10 displays a significantly high MAE throughout all three experiments (i.e., An MAE of 

43 months (3.58 years) and above).  

Table 10: The performance of the SVM model on bone age estimation. 

This pilot study was conducted to determine the validity of using SVR – simple linear 

regression – towards BAA. Overall, the MAE for all three experiments returned a very high 

MAE in months. In the case of BAA, simple models like SVM rely on a feature extractor to 

obtain a highly descriptive feature vector for each bone age value, and this training data is 

then passed to the SVM Regressor. Therefore, raw X-ray image values that relied on pattern 

recognition resulted in poor performance with a very high MAE (Table 10). When the model 

was trained (n = 300) and tested (n = 100) with the SA dataset, it obtained the lowest MAE of 

43.97. Despite a high MAE output, its low value could be due to fewer parameters for the 

models to train since it was trained with the fewest training samples. Therefore, it is not viable. 

Somkantha, Theera-Umpon and Auephanwiriyakul (2011) used a boundary extraction 

technique to extract carpal bone features (Somkantha, Theera-Umpon and Auephanwiriyakul, 

2011). These data were used as input to SVR for BAA. As a result, it obtained the MAE of 12.37 

months and 8.13 months for Caucasian males and females (Somkantha, Theera-Umpon and 

Auephanwiriyakul, 2011). They concluded that the SVR model had better efficiency than the 

neural network regression and yielded results close to that of the skilled radiologists. This 

suggests that by extracting carpal bone features using such a technique, a simple regression 

model could be utilised to return precise bone age estimation with lower MAE in months. 

Train Dataset Test Dataset Mean Absolute Error (Month) 

RSNA (n = 2000) RSNA (n = 200) 49.4273 

SA (n = 300) SA (n = 100) 43.9728 

SA (n = 320) SA (n = 80) 47.0186 
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5.6. Data balancing and reduced data imbalanced training  

Experiments on imbalanced data training were conducted to make up for the minority class, 

the South African dataset (n = 300). The results in Table 11 suggested a high MAE when the 

RSNA dataset was downsampled (RSNA + SA dataset of n = 2,300) compared to the results 

from Table 8.  

Four experiments were conducted for data-balanced training. Samples reduced to 2,000 for 

RSNA and SA datasets produced a lower MAE than the imbalanced training when tested on 

the RSNA data. The MAE was higher when tested on the SA data; however, it had a marginal 

decrease in MAE than RSNA and SA datasets scaled to 300 samples (Table 11). 

Table 11: Experiments on the reduced data imbalanced and balanced train using the 

Xception model to balance the SA dataset (i.e., minority class) 

Train Dataset Test Dataset 
Mean Absolute Error 
(Months) 

Data imbalanced training 

RSNA (n = 2000) + SA (n = 300) RSNA (n = 200) 12.0214 

RSNA (n = 2000) + SA (n = 300) SA (n = 100) 16.9914 

Data balanced training 

RSNA (n = 300) + SA (n = 300) RSNA (n = 200) 15.5216 

RSNA (n = 300) + SA (n = 300) SA (n = 100)  18.8487 

RSNA (n = 2000) + SA (n = 2000) RSNA (n = 200) 11.0923 

RSNA (n = 2000) + SA (n = 2000) SA (n = 100) 16.6839 

  

  

Figure 27 a – b: Scatterplot of imbalanced data training using RNSA (n = 2,000) + SA (n = 

300) train data. a) RSNA + SA -> RSNA test. b) RSNA + SA-> SA test. 

a) b) 
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Figure 28 a – b: Scatterplot of balanced data training using RNSA (n = 300) + SA (n = 300) 

train data. a) RSNA + SA -> RSNA test. b) RSNA + SA-> SA test. 

   

Figure 29 a – b: Scatterplot of balanced data training RSNA (n = 2,000) + SA (n = 2,000) 

train data. a) RSNA + SA -> RSNA test. b) RSNA + SA -> SA test.  

 

5.6.1. Data imbalanced training  

The number of samples in RSNA and SA datasets is not evenly distributed as the RSNA 

population masks the South African population, negatively impacting bone age estimation. 

Data imbalance was introduced where RSNA was downscaled to 2,000 samples. This was to 

adjust the Xception model's decision threshold or loss function to prioritise the correct 

classification of the South African data, even if it meant accepting more false positives in the 

RSNA data (Table 11).   

a) 

c) 

b) 

d) 
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The result suggests that data imbalance by downsampling RSNA to 2,000 samples negatively 

impacted the South African population on bone age estimation. The MAE was 16.99 months 

(1.42 years), which was higher than 14.36 months (1.22 years) from normal RSNA + SA data 

(n = 10,300) (Table 8). Figure 27b displays a poor generalisation of the model on the SA dataset 

with broader distribution of bone age predictions. A high MAE observed from data imbalance 

was lower than the MAE of RSNA as a train set on the SA data (Table 7 – MAE of 19.83 months). 

A simple downsampling of the majority class (i.e., RSNA dataset) resulted in an inaccurate 

reflection of the actual RSNA data distribution and a loss of information on different age 

groups on the training dataset. The scatterplot supports this in Figure 27a, which shows data 

imbalance resulting in a wide distribution of predictions relative to actual bone age. Therefore, 

including datasets from different populations plays a role in bone age estimation, and the 

majority class plays a higher role in lowering the bone age MAE. 

5.6.2. Data-balanced training. 

Owing to the data imbalance over-represented the North American population and under-

represented the South African population, a proper data balance was introduced to keep the 

number of samples in RSNA and SA the same. RSNA samples were downscaled, while the SA 

samples were upscaled (Table 11). Xception trained on the balanced number by a minority 

class of SA data (n = 300 x 2 for RSNA + SA) could not generalise the bone age estimation. The 

MAE on the North American (RSNA) population was 15.52 months (1.29 years) which was 3.5 

months higher than the RSNA data tested from the imbalanced experiment. When tested on 

the South African population, the data balancing of RSNA to 300 samples further increased 

the MAE to 18.85 months (1.57 years) on the South African population with a difference of 

1.86 months. The results suggest that the CNN model (i.e., Xception) performs poorly with 

smaller samples. It is worth noting that the majority class (i.e., RSNA) played a role in affecting 

the bone age MAE as the number of minority class's (i.e., SA) samples were kept constant, 

therefore indicating a bias in the model. The difference between the balanced and 

imbalanced data was 3.5 months and 1.86 months for North American and South African 

populations, respectively. The downscaling of the RSNA dataset caused a loss of valuable 

information on that specific population, negatively impacting the North American population 

more. The number of samples available for Xception to learn from also decreased from 

downscaling; therefore, it led to the ability of the model to capture the complexity of the 
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problem poorly and resulted in a less accurate model for BAA. The scatterplots support this 

finding in Figure 28. The downscaling of the majority class resulted in a broader spread of 

points in bone age predictions relative to the expected bone age from RSNA data in Figure 

28a, while SA data had points of predictions way spread out, indicating a less accurate model. 

Therefore, to alleviate issues caused by fewer available samples, the minority class of the 

South African population was increased to 2,000. 

The increase of South African data to 2,000 samples positively impacted bone age estimation 

in the North American population. The MAE was 11.09 months (0.92 years) lower than the 

results from the imbalanced data experiment and smaller dataset. The Xception model 

generalised well on the RSNA data, and the predicted age points were less spread out in Figure 

29a. A decrease in the MAE was also observed in the South African population. The MAE was 

16.68 months (1.39 years) compared to 18.85 months from a less available dataset (n = 600 

RSNA + SA). The difference between them was 2.17 months. Even though data balance was 

introduced to minimise biased predictions from the model, the model repeatedly learned 

from 300 available samples via random selection. A decrease in MAE is evident that upscaling 

did help with bone age estimation. However, the ability of the model to generalise on BAA 

was minimal, as the scatterplot on South African data shows an uneven distribution of 

predictions (Figure 29b). Even though the SA dataset was upscaled to 2,000, this was done 

through simple random repetition of the small SA dataset. Thereby the model is biased and 

overfitting towards that specific cohort. This could explain a slightly lower MAE of 16.68 

months compared to imbalanced data of 16.99 months. The poor generalisation from the 

model on SA could also be due to the poor distribution of age groups in the dataset when 

upscaling and downscaling the two datasets. The Xception model was able to generalise well 

on the younger (0 – 100 months) and older (175 months onwards) individuals but not with 

the mid-range age group (100 – 175 months) on the RSNA test set. This suggests that 2,000 

samples from RSNA and SA were insufficient to generalise the new unseen data well.  

This experiment highlights that combining populations for training data contributes to a 

better bone age estimation model. This is shown as the data-imbalanced results, and data-

balanced experiments surpassed the results from Xception model benchmarking, which only 

utilised one population for a train set. Moreover, having more samples for each respective 

population contributes to a more accurate model. 
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Table 12: Summarised table for overall MAE values of those tested on the RSNA dataset. 

Train Dataset Test Dataset 
Mean Absolute Error 
(Month) 

RSNA + SA (n = 10,300) RSNA (n = 200) 7.4273 

RSNA + SA (n = 2,300)  
(Imbalanced data training) 

RSNA (n = 200) 12.0214 

RSNA + SA (n = 4,000) 
(Balanced data training) 

RSNA (n = 200) 11.0923 

RSNA + SA (n = 600) 
(Balanced data training) 

RSNA (n = 200) 15.5216 

 

Table 13: Summarised table for overall MAE values of those tested on the SA dataset. 

Train Dataset Test Dataset 
Mean Absolute Error 
(Month) 

RSNA + SA (n = 10,300) SA (n = 100) 14.3617 

RSNA + SA (n = 2,300)  
(Imbalanced data training) 

SA (n = 100) 16.9914 

RSNA + SA (n = 4,000) 
(Balanced data training) 

SA (n = 100) 16.6839 

RSNA + SA (n = 600) 
(Balanced data training) 

SA (n = 100)  18.8487 

 

The impact of a decrease in the test samples on bone age estimation was studied during 

model benchmarking. The result suggested an increased bone age MAE observed from 

Xception and MobileNet models when SA test samples were decreased from 400 to 100. 

However, this was not the case for InceptionV3 and VGG-16 models, as they yielded a higher 

MAE with decreasing test sample size. The difference was 0.30 months for InceptionV3, which 

could be overlooked, but the difference in months was larger for VGG-16 (2.87 months). VGG-

16 has a deep network with many parameters and a fixed structure that simultaneously 

processes the entire input image (Qassim, Verma and Feinzimer, 2018). VGG-16 may not be 

optimised to extract relevant features from specific ROIs in the radiograph, which is crucial 

for accurate bone age estimation, hence may explain higher MAE with decreased number of 

test samples. Therefore, it is safe to assume that smaller tests set results to less accuracy in 

generalising age for specific models with less depth network.  

Compared to the other automated BAA MAE outputs shown in Table 11 below, Xception 

failed to meet its standards using the South African population. The Xception model evaluated 

on the South African dataset yielded a high MAE of 19.56 months (1.63 years) (Table 7). This 
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does not meet nor surpass the GP and TW manual methods due to the significant downside 

of this research: the availability of a sample to represent the South African population. 

However, using RSNA for the population-specific dataset for BAA – with their high number of 

samples – Xception yielded an MAE of 5.70 months (0.48 years), which outperformed most 

bone age MAEs from other works of literature (Table 11). Therefore, it is safe to assume that 

a similar number of samples from RSNA, e.g., 10,000 samples of South African data, could 

produce similar or better bone age estimates.  

Random undersampling on the RSNA dataset and random oversampling on the South African 

dataset yielded a poorly calibrated model. This was evident in those tested using the SA 

dataset as it lacked a variation in the data and the probability of belonging to the minority 

class was strongly overestimated (Van den Goorbergh et al., 2022). The RSNA dataset could 

not represent SA test data. This research showed that having an overwhelming number of 

samples masked the minority class that is SA data, thus a less accurate model with a high bone 

age MAE. Therefore, future studies should include population-specific experiments with more 

samples on the South African dataset. Moreover, the dataset should be evenly distributed 

among the age groups to generalise BAA better.   

5.7. What do the results suggest for Forensic Anthropology? 

Bone age estimation is essential in forensic anthropology, paediatrics, and radiology. It 

provides information for identifying skeletal remains and diagnosing and treating various 

medical conditions that affect growth and development. Bone age estimation in children 

using machine learning is a typical application of artificial intelligence in healthcare, which is 

vital for undocumented children prone to criminal and judicial cases.  

Traditionally, trained forensic anthropologists have performed bone age estimation manually 

using Greulich and Pyle (GP) and Tanner and Whitehouse (TW) standards. However, bone age 

estimation can be time-consuming and labour-intensive, requiring expert knowledge and 

experience. The advent of machine learning technology caused a shift towards automation of 

bone age estimation. By training algorithms on large datasets of known age and skeletal 

development, machine learning can accurately predict bone age with a high degree of 

accuracy. 
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The average time taken to do a BAA using GP and TW3 methods manually is 0.79 ± 0.14 min 

and 3.01 ± 0.84 min (p < 0.001), respectively (Yuh, Chou and Tung, 2023). In this research, 

bone age estimation using machine learning took roughly 1.5 seconds which massively 

shortened the time consumption from manual methods with higher accuracy.  

The bone age MAE using GP methods from Pan et al. (2020) was 14.60 months for radiologist 

one (P < .0001) and 16.00 months for radiologist two (P < .0001). Hwang et al. (2022) reported 

an MAE of 13.09 months and 13.12 months from manual readings by two radiologists from 

the GP method. King et al. (1994) reported 8.88 months for the TW2 method and 11.52 

months for the GP method. Zhang et al. (2009) highlighted a discrepancy in bone age readings 

from using a population on a different population because manual methods do not consider 

the existence of ethnic and racial differences in growth patterns at certain ages. In the African 

population, low socioeconomic status and bad environmental conditions delay the rate of 

ossification of the bones in the hand and wrist. Therefore, overestimation and 

underestimation of age are common using GP and TW methods (Cole A, Webb and Cole T, 

1988; Dembetembe and Morris, 2012; Govender and Goodier, 2018; Di Micco et al., 2021).  

Xception – a best-performing model for this research – was performed with an MAE of 7.31 

months when using the North American (RSNA) population. Furthermore, it performed better 

with an MAE of 5.70 months with an increased test sample size. These results significantly 

outperformed the manual methods. Machine learning methods for BAA negate the artefacts, 

such as the inter- and intra-observer errors, as the algorithm does not depend on the 

radiologists. Bone age estimation using a combined population of RSNA + SA (n = 10,300) 

dataset was also able to outperform the manual methods (MAE of 7.43 months). 

Unfortunately, when RSNA – of the American population – was used to evaluate the South 

African population, it failed to deliver a lower MAE (Table 8's 14.36 months against other 

literature's MAEs). Data imbalance and balance methods were introduced to remedy such 

issues; however, the upscale and downscale datasets on the South African population did not 

show promising results as they returned significantly higher MAE (Table 13) than the manual 

methods. To estimate age, a few factors are considered. One of these factors is the difference 

in growth rates between the population groups. From this study, the RSNA data consisted 

North American population while the SA data consisted South African population. Despite 

America’s substandard healthcare and nutritional intake (almost comparative in intake of junk 
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food) in comparison to other first world countries, America’s standards are much higher than 

South Africa, a third world country. This indicates that the socio-economic status of the RSNA 

population is satisfactory compared to the SA population. This also highlights the need for a 

population-specific study on bone age estimation with more samples. 

The performance of BoneXpert is widely commercialised and is known for its accuracy and 

reliability (Thodberg et al., 2009). Martin et al. (2022) used the latest version of the BoneXpert 

program on the RSNA dataset of 200 images, to which they obtained an RMSE of 0.45 years. 

Thodberg and Van Rjin (2013) reported mean standard deviation (MAD) between the manual 

assessment and the BoneXpert model ranged from 0.55 to 0.76 years, with a weighted 

average of 0.68 years. Larson et al. (2018) developed a convolutional neural network (CNN) 

model for bone age estimation using TensorFlow, to which they reported an RMSE of 0.63 

years after evaluation. Using Xception as the best-performing model for BAA in this study, 

with RSNA data, achieved an RMSE of 0.67 years. The result suggests that the proposed model 

is almost on par with the commercialised BAA system. However, the bone age estimates can 

be improved with a better pre-processing technique and more samples.  

Other pieces of literature examine BAA using different anatomy. Pintana et al. (2022) 

achieved 83.25% classification accuracy using transfer learning with the ResNet50 model 

using dental area focusing on the lower left mandibular third molar. Shen et al. (2021) used 

seven lower left permanent teeth on the machine learning models of the traditional 

Cameriere method to predict children's dental age. The research showed that the ML models 

have better accuracy than the traditional Cameriere formula (using SVM achieved an MAE of 

0.49 years vs 0.85 years based on the European Cameriere formula). Seo et al. (2023) used 

segmented cervical vertebrae from lateral cephalogram for bone age estimation using a 

regression model which yielded an MAE of 0.30 years. Dental development and cervical 

vertebrae are not widely studied for BAA; however, the above results suggest that using 

different anatomical parts is possible for bone age estimation. 

Wang et al. (2022) assessed the bone age readings with and without AI assistance. 

Radiologists' accuracy was better with AI assistance (mean MAE of 0.35) than without (mean 

MAE of 0.542) (Wang et al., 2022). This indicates that machine learning assistance towards 

bone age estimation will benefit the most. However, AI models are unlikely to be used without 

radiologist input because they cannot reject radiographs with subtle abnormalities (abnormal 
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morphology or texture). Bone age results from machine learning assistance need to be 

reviewed by radiologists; thus, ML-assisted bone age estimation is more likely to be utilised 

in clinical applications.   

 

5.8. Future Studies 

The major limitation of this research was the lack of South African samples for the BAA model 

training. This was because the South African samples initially meant to be part of the study 

were not readily available due to the delays in obtaining ethical clearance. Therefore, only a 

smaller data set was available (n = 400). Research suggests that more data sets with equal 

sample distribution towards the bone age classes result in a better model generalisation with 

lower MAE, suggesting the BAA automation's preciseness. It is also essential to develop 

population-specific models for bone age estimation using machine learning to improve 

accuracy and reduce bias in predicting bone age in South African patients. 

Instead of relying on the model for pattern recognition, with a better pre-process technique, 

such as feature extraction of individual bone structure within the X-ray (i.e., individual carpal 

bone), the model could learn more information on bone age development. Therefore, better 

the validity for model uses towards clinical applications. Another suggestion would be to take 

sex into account. The differences in terms of sex were not highlighted in this study due to the 

smaller number of individuals in the local South African dataset. Compared to the 

international comparative dataset, if sex was utilized, the small dataset would 

disproportionally divide the male-to-female ratio, thus it would have been statistically 

insignificant. Nguyen et al. (2022) produced a better bone age estimation with lower MAE by 

taking sex into account (refer to Table 9). In conclusion, an increased number of data samples, 

whilst taking account of factors such as sex, contributes to the reliability and accuracy of a 

bone age estimation model. This research introduced BAA with machine learning using the 

hand and wrist. Future studies should include other anatomical regions for BAA using machine 

learning and evaluate its capability compared to using hand and wrist.  
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Chapter Six – Conclusion 

This study aimed to assess the validity of deep learning-based bone age estimation using left-

hand radiographs of international RSNA and local South African datasets. This was achieved 

with deep learning models like Xception, the best-performing model. This research showed 

the ability of machine learning to reduce the time and resources required for some forensic 

anthropology investigations.   

Although this model only relied on pattern recognition from the hand, it achieved the best 

bone age estimates of an MAE of 5.70 months from RSNA data, comparable to other research 

that used more complicated methods, such as feature extraction of individual carpal bones. 

This means implementing the pre-processing method with feature extraction methods 

introduced by other research could further lower the MAE by months resulting in more 

precise bone age estimation and better generalisation of the model.  

Despite this study lacking local data to establish a sound output, the speed to obtain the result 

was superior to that of the manual method. Dembetembe and Morris (2010) discovered that 

when the radiographs were re-examined a month after they were first captured, it took less 

time and was easier to identify specific development patterns. Although this procedure is 

familiar, obtaining acceptable results still takes time. When using the proposed algorithm, the 

repeat analysis time is dramatically reduced as it takes only a few seconds to produce bone 

age estimates.  

The full RSNA model performed poorly on South African patients; several factors could 

contribute to this. Firstly, there can be differences in factors such as genetics and 

environments that can affect bone growth and development in different populations. Many 

South African population groups have different nutritional status, physical activity levels and 

exposure to different diseases compared to other populations. These all affect bone growth. 

Secondly, there are differences in how bone age is assessed and measured in different 

populations. The methods and techniques used for bone age estimation may not be 

standardised across different regions and may vary depending on the availability of resources, 

expertise, and cultural practices. Thirdly, there may be differences in the data used to train 

machine-learning models in different populations. If the training data does not represent the 

predicted population, then the model may not accurately predict bone age in that population. 
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Moreover, this research highlights that samples that contributed to high MAE (i.e., low 

accurate BAA model) were from younger individuals aged 2 – 8 years old in South Africa, and 

some were severely pre-processed. Consequently, future research must be conducted with 

an equal sample size with more samples between the various population groups. Cross-

training throughout the different population groups is possible with acceptable results; 

however, population-specific bone age estimation results in a more accurate and precise 

bone age estimate.  
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