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Abstract 

************************************************************************************* 

Shrinkage estimation is an increat-lingly popular clat-ls of biat-led parameter estimation techniques, 

vital when the COhllllnt-l of the matrix of independent variables X exhibit dept~nclenciet-l or near 

dependencies. These dependcnciet-l often lead to t-lerious problemt-l in least t-lquares ct-ltiml'ttion: 

inflated variances and mean t-lquared e[fort-l of et-ltimatct-l. unstable coefficients, imprecision and 

improper estimation. Shrinkage ruethocit-l allow for a little biat-l and at the t-lallle time introduce 

smaller mean squared error and variances for the biased et-ltimatort-l, cOlupareci to those of un­

biased estimators. HO\vever, shrinkage methodt-l are based on the t-lhrinkage factor, of which 

estimation depends on the unknown values, often computed from the OLS solution. vVc argue 

that the int-ltability of OLS et-ltilllates may have an advcrt-le effect on performance of shrinkage 

estimators. 

Hence. a Ilf'W met hod for estimating the shrinkage factors is proposed and applied on ridge and 

generalized ridge regression. \Ve propose that the new shrinkage factors should be bat-led on the 

principal components instead of the unstable OLS estimates. \Ve ut-le the total mean t-lqnared 

errors of estimates to compare efficiencies of the ridge and generalized ridge estimators associ­

ated with the new method to the well knO\vn estimators, namely, the Stein estimator (James 

and Stein, 1961), ridge estimators (Hoerl et al., 1975; Lawless and \Vang. 1976; Brown, 1993; 

Kibria, 2003), generalized ridge estimators (Hoerl and Kennard, 1970a; Troskie and Chalton, 

1996), Lin estimators (Lin, 1993), the generalized Lin estimators (Liu,1993) and principal com­

ponent estimators deleting two smallest roots (Kendall, 1957). The goal is to try to find the 

most efficient estimator and to determine whether or not the estimators associated with the 

proposed procedure are better than the exit-lting estimators. 

The principal components estilllator deleting the smallest root t-lhows an outt-ltanding t-luperiority 

over the rest of the shrinkage estimators. Further, the new estimators based on the principal 

cOlllponentt-l estimator deleting; one root are superior and an improvement over the exit-lting 

biased estimators. 

************************************************************************************* 
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Chapter 1 

Introduction 

For a long time, regression analysis has been used as the main statistical technique for fitting 

equations to data. The technique is widely uscd in social, biological and physical sciences 

(Allison, 1999) to portray the relationship between the variable of interest (dependent) and 

one or more other variables (independent variables). 

Regression is usually used in prediction or causal analysis to 

• develop the functional form for making predictions about the response variable, based 

on the independent or explanatory variables and/or 

• to determine whether or not the independent variables influence the dependent variable. 

Through regression analysis, it is possible to combine more than one variables to produce 

optimal predictions of the response variable and to determine the magnitude of the unique 

contribution of each independent variable. 

Least squares estimation is the most frequently used statistical procedure, favoured for being 

unbiased and producing the estimates that have minimum variance. Hmvever, sometimes least 

squares estimation is plagued by existence of dependencies among the independent variables 

and tend to be imprecise and completely unreliable. It is in such conditions when shrinkage 

estimation becomes a necessity. 

This study striw's towards identification of the most stable and rdiable shrinkage estimation 

tedlllique( s), required to curb the problellls attributed to dependencies or near dependencies 

of independent variables. \Ve view some of the biased estimation methods from it shrinkage 

point of view, hoping to get an insight into \vhy they can be expected to perform \vell when 

the data are collinear. 

1-1 
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The specific objectiVC's of this study are the follmving: 

• to propose a UE'\V ltlet hod for estimation of t he shrinkage factors and assess from the 

silllulation study whether or not the l1E'\V mct hod improves on the traditional method 

of estimating shrinkage factors. vVe hope to observe a great improvement since the new 

method is based on a considerably stable procedure . 

• to bring together 24 biased estimators into a common framC'work of shrinkage estima­

tion. Our primary aim is to identify the Illost effective and robust estimator when there 

exists extreme collinearity alllong the independent variables. \Ve consider the following 

estima tors 

* the Stein estimator (James and Stein. 1961), 

* 14 ridge estimators (Hoerl et a1., 1975; Lawless and \Vang, 1976; Brown, 1993; 

Kibria, 2003), 

* 4 generalized ridge estimators (Hoerl and Kennard, 1970a; Troskie and Chalton, 

1996), 

* 2 Liu estimators (Liu, 1993), 

* the generalized Liu estimator (Liu,1993) and 

* 2 estimators from principal cOlllPonents regression (Kendall, Hl57) 

In the remaining sections of this chapter, we review the theory behind linear regression, Least 

squares estimation and the major problems that may be encountered in the process. In chapter 

2, the research problem is defined; collinearity is considered a broad problem from which the 

research problem originates. The general issues around collinearity are reviewed and the rem­

edy for collinearity is identified as the main research problem. 

Chapter :3 provides the literature review on shrinkage estimation and some of its special cases; 

we review the theory behind ridge and generalized ridge regression, Stein estimation, Liu and 

generalized Liu estimation and principal cOlllPonents regression. Estimation of the shrinkage 

factors is discussed in chapter 4; we look into what is traditionally being done and propose 

a new method through which shrinkage factors lllay be estimated. The simulation study is 

introduced in chapter 5: past simulation stlldies are reviewed and the manner in which our 

simulation study contributes to the global issue or the general topic of shrinkage estimation 

is specified. The design of the simulation and the simulation program are presented. Chapter 

6 presents the simlllation results. Finally, an ('valuation of the objectives, the conclusions, 

rccommendations as well as further research area are provided in chapter 7. 

1-2 
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Full program details and some of the important definitions arc prm'iclecl in the appendix in the 

following sequence 

- Appendix A -4 The R simulation progralll 

- Appendix 13 -4 The general theory behind distributions considered in the study 

- Appendix C -4 The estimators and estimation lllet hods considered for simulation. 

- Appendix D -4 Past silllulation studies. 

1.1 The linear model 

The standard form of a linear regression model is denoted by the following equation: 

Y=X3+E 

\\"here 

Y = an (n x 1) vector of observed responses 

n = the number of observations 

(1.1 ) 

X = an (71 x p) full columll-rank matrix of covariates, also known as a matrix of fixed 

array of independent numbers. If the model has a constant, it will be stated 

explicitly and the constant will be represented by a column of ones in the first 

column of X. That is XiI = 1 for i=1. ... nand xij = the ithrow element and yth 

column clement of X. 

p = the number of parameters in the model. 

3 = a (p xl) vector of unknown regression coefficients 

E = an (71 xl) a vector of uncorrelated random error terms. 

The random error terms account for all the variables (measurable or otherwise) that are not 

included in the regression lllodel, with the following properties. 

Ek] = 0 

E[EE'] = (J2 I, a.ssuming homogeneity. 

1.2 The orthogonal form of the linear model 

The linear model (1.1) can be reduced to an ort hogonal form (canonical form) by usage of the 

singular value decomposition (SVD) of X. The SVD of X is defined as follows: 

1-3 
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1.2.1 

Let 

where 

Singular Value Decomposition (SVD) of X 

)(I)XP 

Unxn and v~)XP 

= a matrix of order (n x p) and rank r(X) = s, 

= orthogonal matrices such that 

U~I v 
n xn "~I1XP Vpxp = ~nxp 

for s :'S: p:'S: n, 

( 1.2) 

~ = a diagonal n x p lllatrix whose first s diagonal dcments are square roots of eigenvalues 

of X' X, also known as the singular values of matrix X. 

Dc; = Diog( V,,\I .... ,v"\,s) for s = r(X); 

v"\i= the /h singular value of X and 

'\ = the iih eigenvaluc of X' X 

~2:J:\;2: ..... 5s>o 

U (n x 71) left singular vectors of X or eigenvectors of X' X 

V (p x p) right singular vcctors of X or eigenvectors of X X' 

Both U and V are orthogonal, imply that U'U = In and V'V = Ip where (') indicates transpose 

of the corresponding matrix. In addition, V is said to be orthonormal, meaning that V' = V-I, 

where V-I is the inverse of V. 

Hence, in the light of the above and using (1.2), X can be expressed as 

(1.3) 

If the assumption is that all columns of X are independent (X is of full column rank), then 

U 

V 

p 

Xn xp = Unxp~pxp V;xp = L ~UiV; 
i=l 

[u 1 lL2 

[('1 1'2 

where Vi is the ith (n x 1) column of U 

\'"here Vi is the i1h (p x 1) column of V 

Uji = the entry in the yth row and thei ih colullln of U 

Vji = the entry in the lh row and theith colulllll of V 

~ = Dp 

1-4 
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1.2.2 The orthogonal model 

The ort hogonal or caIlonical form of the linear lllodel (1.1) is defined by t he following 

y = Xv' V';) +E 
'-v-" '-v-' 

=Z 

\Vhere 

From (1.cl) and (l.5), we derive the following equations for later Hse in the study. 

• 

• 

• 

• 

• 

X 

Z 

X'X 

Z'Z 

p 

= Un;<p6.pxpV~xp = L ~(LiV; 
i=l 

= V 6.U'U 6. V' 

P 
2' ~ , = V 6. V = ~ AiUiUi 

i=1 

(Z' Z)-I = 6.- 2 

• (X'X)-l = (V6. 2V,)-1 

• 

• 

• 

• 

( . V' = V-I) ... .sznce . 

p 

Troce(X'X) = L Ai 
i=l 

Troce(Z' Z) 

p 1 
TT(I.Ce(X'X)-l = L­

i=l Ai 

Truce(Z'Z)-1 
p 1 

=L-
i=l Ai 

1-5 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.1cl) 

(1.15) 
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1.3 The Assumptions underlying linear models 

The following assumptions arc adhered to linear regression models. 

• The response variable is linearly related to the independent variables hence linear regres­

sion estimators are based on a linear equation. 

• The observations on the dependent variable are from populations of random variables 

with the expectation equal to 

E[Y I X] = X/3 

• The independent variables are known, uncorrclated constants, measured without error. 

• Random error terms have zero mean, a COlllIllon variance and are pairwise independent. 

• There are no dependencies among the error terms and the independent variables. 

• Y; and Xi) arc paired observations, both measured on every observational unit. 

• For purposes of making significance tests, the dependent variable and the error terms are 

assumed to be normally distributed. 

• X is a fixed, full column rank matrix (orthogonal); r(X) = p. 

Violation of some of the listed assumptions sometimes leads to poor estimation. 

1.4 Bias, Variance, Mean Squared error and Total Mean Squared error 

Let ;3 denote any estimator of ;3 

1.4.1 Bias 

The bias of iJ, is defined by the following 

Bias[3] = E[3] - cJ (1.16) 

where 

11= the true parameter vector. 

Positive (negative) values of Bio.,.,[t3] imply that the estimates of j arc too much (little) in 

fanmr of ",;hat is being estimated. For t his reason, unbiased estimators are mostly required. 

1-6 
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1.4.2 Variance 

The variance plays a vital role ill regression analysis; it is one of the measures of precision of 

estimates, hence the basis for assessment of reliability of estimates. By definition 

(1.17) 

Small values of Var [;3] imply high precision of estimates and vice versa; therefore, estimators 

whose variances are minimum arc mostly desirable. 

1.4.3 Mean Squared Error 

I'dean Squared error (:l\ISE) represents the squared distance between the estimate and the ac­

tual parameter. Like the variance, the l\ISE is vital in assessing the quality of an estimator; 

the smaller it is, the closer the estimates are to the true values. A good estimator may be 

characterized by a relatively small MSE (McDonald and Galarneau, 1975). 

The MSE can be decomposed into a sum of the variance and the squared bias of the estimator. 

By definition, 

MSE(;3) = El(O - (3)(/3 - P)'J 

= E l((J - E[6]) + (E[;3]- p))((/3 - E[3]) + (E[r~]- f)))IJ 

= E l (;3 - E[;3]) (;3 - E[;3])IJ + ,(E[,6] - (3)~E[3] - (3): + ~E[(J - E[;31)(E[;3] - 6)l (1.18) 

, '(E'[6]-3)(E[6]-3)' 0 
\iar[;3] 

1.4.4 Total Mean Squared Error (TMSE) 

The Tl\ISE is another measure of precision of estimates, defined by 

(1.19) 

A trace of a matrix is defined as a sum of the diagonal elements of the matrix under consideration. 

If A is an (n x n) matrix with eigenvalues A1,'" An, then Trace[A] = L;~l Ai. 

The interpretation of TMSE[;3] is similar to that of Vur[;j] and MSE[13]; the smaller it is, 

the better the estimator and the more precise the estimates are. Illlportantly, high variances 

of estimators lllay be balanced with the bias; there exists a trade off bet\veen the variance anel 

t he bias of estilllators. 

1-7 
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1.5 Ordinary Least Squares (OLS) Estimation 

III regression analysis. there always exists some error, of which the magnitude varies per 

estimation mcthod employed and to a large extend, cstimators that are unbiased and have 

the minimum variance are mostly favoured. The ordinary least squares estimator (OLSE) is 

one such estimator, known to be the best fitting linear unbiased estimator (BLUE) in the sense 

of minimulll variance. 

In a class of linear unbiased estimators, the least squares estimator has the least variance. This 

is a critical factor and the most desirable property because minimal variance implies closeness 

to the true parameter, thus accuracy. The least squares regression procedure employs the 

criterion that the solution must yield the smallest sum of squared deviations of the observed 

response variable from the estimates provided by the solution. 

1.5.1 Derivation of the least squares estimator 

The OLSE minimizes the residual errors 

L (li - Yi)2 

= (Y - XB)'(Y - XfJ) 

= y'y - Y'X(3 - (X(3)'Y + (X/3)'X(J 

Differentiation with respect to Ii leads to the following 

8(Y'Y - Y' X B - (X(3')'Y + (X(3)' X(3) 
, = -2X'Y + 2X'X(3 

8(3 

Equating the differential to zero and solving forB yields the following: 

2X' X I) = 2X'y 

X'X] = X'y 

= V6,- l U'Y 

P 'y 
=L ViUi 

i=l ;:Xi 

.. . 1Lszng 1.6 (Lncl 1.11 

l-~ 

( 1.20) 
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1.5.2 Properties of (J 

1.5.2.1 Expectation 

E[J] = E[(X' X)-l X'Y] 

= (X'X)-l X' X(-J smce E[f] = 0 

=3 (1.21 ) 

1.5.2.2 Bias 

Bias [f3] = E[3] - ;3 = 0 from 1.16 (1.22) 

1.5.2.3 Variance 

Var(J) = Var[(X'X)-l X'Y] 

= (X' X)-l X' VaT[Y] X(X' X)-l 

... lLsmg 1.11 (1.23) 

1.5.2.4 Mean squared error 

MSE[;3] = Var[B] + (E[;3]- (-J)(E[;3]- ,3)' from 1.18 

= Var[r3] +0 

from 1.23 (1.24) 

1.5.2.5 Total mean squared error 

2 I 1 = TTO.Ce(CT (X X)- ) 

... w,zng 1.14 (1.25) 

For model (1.5). the orthogonal least squares estimator is denoted hy the follmvillg 

( 1.26) 
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1.5.3 Properties of (y 

1.5.3.1 Expectation 

E[n] = E[(Z'Z)-IZ'Y] 

=0' (1.27) 

1.5.3.2 Bias 

Bios[n] = E[c):] - 0' = 0 (using 1.16) (1.28) 

Hf'IlCe 00 is an unbiasE'd f'stimator of 0:. 

1.5.3.3 Variance 

Var(c}:) = 'Var[(Z'Z)-IZ'y] 

= (Z' Z)-l Z' Var[Y] Z(Z' Z)-l 

... usmg 1.10 (1.29) 

1.5.3.4 Mean squared error 

MSE[cl:] = Var[n] + (E[&]- o:)(E[&]- 0')' from 1.18 

= Var[&] 

from 1.29 ( 1.30) 

1.5.3.5 Total mean squared error 

TMSE[&] = Trace(MSE[d:]) 

.) , -1 = Trace(a-(Z Z) ) 

... W3'tng 1.15 (1.31) 

The OLSE has good qualities if it satisfies all the assumptions stated in section 1.3. Violation 

of the aSSll111ption of independence of the variables reslllts in the OLSE exhibiting high value's 
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of the variancc and mean squared error, being unstable and sensitive to mmor changes in 

the data. thus being unacceptably lmrealistic. This oftcn llleans that the data vectors for 

t he predictors arc not orthogonal: that is, the lllatrix X is not full colunlll rank hence there 

exist near-depcndencies and or dependencies alllong the columns of X. SOllle of the reasons or 

sources of these dependcncies and near dependencies include the following: 

• over definition of the model such that the lllllnber of observations is less than that of the 

variablcs . 

• generating other variables as function of others 

These distortions and others usually result in collincarity: a senous problem in regression 

analysis, explicitly defined in chapter 2. Under collinear conditions, the least squares estimator 

remains unbiased but 1\/ S E[/]] and V aT [~l increase, hence 3 becomes unreliable. It is in these 

conditions when shrinkage estimators become a nccessity; the 'fly in the ointmcnt' with the 

least squares criterion is its requirement of unbiasedness (1Iarquardt and Snee, 1975). 
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Chapter 2 

The Research Problem 

Existence of dependencies and ncar dependencies among the independent variables (collineari ty ) 

has long been studied in statistics but even today, there are still good reasons to study and 

identify the potential harm of such conditions on regression modelling. In the event that one or 

more independent variables are defined by linear combinations of other independent variables, 

the OLSE can become unacceptable; the coefficients may be too large, be of wrong signs and 

be extremely sensitive and unstable. Further, the variances and standard errors of estimates 

may be inflated, leading to imprecision of the estimates. All these often create difficulties in 

inference of the separate influence of the independent variables on t he response variable. 

The research problem is defined in this chapter. Collinearity is regarded a broad problem from 

which the main research problem stems. vVe narrmv our focus to the remedy for collinearity 

and instability of least squares estimates. 

2.1 Defining the problem 

In this thesis, we investigate shrinkage estimation as an alternative to least squares when the 

data are collinear. The motivation for this investigation has been induced by the following 

facts 

• Collinear designs of matrices result in instability of the 0 LSE, thus unreliahility and 

inconsistency of the least squares estimates. Failure to remedy collinearity is guaranteed 

to result in poor estimation . 

• There are lots of shrinkage methods of estimation available but it is not clear which one 

is ideal. l\Iost of the currently available shrinkage met hods are not robust to collinearity; 

the methods are based on an unstable least squares solution. 

Hence, we endeavor to solve the above problems by introducing a new procedure Inwt hod on 

which the shrinkage factors can be based. The new procedure depends on a stable solution 
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hE'llCe WE' expect it to be more reliable and consistent. compared to the existing procedure. vVe 

setup a simulation study to assess the efficiency of different shrinkage estimators alld select 

t he potentially best alternative to least squares estimation. 

2.2 Collinearity 

Collinearity has long been and still is one of the lllajor problems in statistical research that 

arises when there exist near-linear dependencies among the vectors of explanatory variables 

(\\'etlwriIL 1986). If 1/ ~ 0 is specified such that there exists a column vector 

c= 

Co 

c p 

whose elements are not all equal to zero such that 

p 

LCjXj = 6 
j=O 

with II 6 II < '/ II c II· 

thell. collinearity exists among the covariates. 

(2.1 ) 

A special case of equation (2.1) for which 6 = 0 indicates that exact collinearity exists, and if 

6 is very small, the relationship is approximately true hence ncar-collinearity exists (Thiart, 

199-1). Variates arc collinear if they lie on the same line or if the angle between them is very 

small or when the data vectors for predictors are not orthogonal (Hoerl and Kennard, 1980). 

Collinearity results '.vhen at least one dimension of the X-space is poorly defined such that 

the dispersion almost does not exist among the data points in that dimension. In a nutshell, 

collinearity describes a set of problems created when some combinations of the columns of 

matrix X are llearly zero such that the sallle information is proyided ill more than one way 

(recllwclancy) . 

Other terms for collinearity are: ill-conditioning (Gunst and hInson, 1977; Belsley et al., 1980; 

Belsley. 1987; \\'alker and Page, 2001; Liu, 2003), non-orthogonality (Farrar and Glauber, 

1967: Hoerl and Kennard, 1980; Sundberg, 1993 ), over fitting (Le Ccssic and Van Houwelin­

gen. 1992), llear collinearity (Mandel, 1982; Stev,;art. 1987: Thiart. 199-1; Firinguetti and 

Rubio, 2000), conditioning (Belsley and Oldford, 1986), confluence allalysis (Frish, 1934), 

multicollinearity ( Hocking et al., 1976; GUllst et al., 1976: Winchern and Churchill, 1978: 

Askin and hIontgomcry, 1980; Dorsett et al., 1983; Gunst. 1983: Nomura, 1988; Ohtani, 1986; 

Oman. 1991; Troskie and Chalton, 1996: Allison, 1999: \Vcncheko, 2000), clusterillg (Grolln 
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ct al.. 20m), singularity (Stewart, H)87), near singularity and near rank deficiency (Sengupta 

and I3himasankaram, 1997; Knight and Fu, 2(00). 

2.2.1 Effects of Collinearity 

Collinearity plagues multiple regression and other multivariate techniques. If not corrected for. 

it may cause serious problems in least squares regression particularly if the primary intention is 

to find separate influences of independcnt variables. Collinearity makes it virtually impossible 

to scparate the marginal effects of the independcnt variables on the response variable. 

In collinearity designs of matrices, the X matrix becomes non-orthogonal and is said to be of 

less than full column rank (r(X) < p). As a consequence, SOllle of the singular values of X 

become very small and tend to have an adverse impact on the regression coefficients, variances, 

and reliability of estimation in general. An insight into specific effects of collinearity 011 least 

squares is provided below. 

2.2.1.1 Unstable least squares estimates and poor prediction 

In the presence of collinearity, the least squares estimate of {3 becomes unstable and sensitive 

to 

• the computational method used, and 

• errors in regressor variables (Sengupta and Bhimasankaram. 1997). 

Little perturbations in either X or Y may result in unstable least squares coefficients (Thiart, 

1990). This sensitivity and instability of least squares estimators make their predictions and 

forecasts generally unreliable. 

2.2.1.2 Inflated variances of least squares estimates 

Small eigenvalues inflate the variances of the corresponding regression coefficients and lead 

to wrong predictions and improper conclusions about the estimated regression coefficients 

(Thiart, 1994: \Vetherill, 1986). Inflated variances result in large standard errors of regression 

coefficients, thus statistically insignificant coefficients, which lllay sometimes not be truly so. 

From l.23, the variance of least squares estimates may be expressed as 
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Hence. in the presence of collineari ty, the eigenvalues (>-;.')). corresponding to collinear vectors 
lJi U' : 

becomc extrclllely small (near zero) anel it follows an tOllla tically t haL ---;:/ and VaT Cd) bccome 

inflated since the denominator is a number close to zero. 

2.2.1.3 Unexpected coefficient signs 

It is often assumed that signs of coefficients are known by intuition. However, when the data 

are collinear. the coefficients hear UllRnticipated signs. 

2.2.1.4 Large coefficients 

Collincarity leads to unacceptably large coefficients of the correlated variahles. \Ve note that 

(from 1.20) 

\\'hen collinearity is present in the data, the singular values (;:\i8) that corrcspond to collinear 
viu~Y 

vectors approach zero, hence, increases, resulting in large valucs of coefficients. 
;:\i 

2.2.2 Collinearity Measures 

Several techniques arc availahle in the statistical literature for detccting collinearity however, 

there is no particular ideal technique for detection of collinearity therefore more than one 

techniques should be used. The most important factor is heing ahle to observe and identify 

collinearity in the data. 

Defore proceeding to the techniques, the following important observation needs to be made. 

All the techniques are applied on the correlation form (scaled and centered) of the X matrix. 

However, it is also important to note that centering removes the intercept from the models 

hence the models in which the intercept plays a vital role may not be practically sound when 

the X matrix is centered. Therefore it is sometimes necessary to scale and not center. 

• Centering 

Centering the X matrix entails subtracting the column mcans from corresponding elements 

of columns of X to eliminate collinearites that may be due to the origins of the predictor 

variables . 

• Scaling 

The columns of a matrix arc said to be scaled when each element of the column is divided 

by the root of the SurllS of squares of all the elclllcnts in the corresponding column such 
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that the lcngth of f'<1ch column of X is one. Scaling cnsures uniformity in the meaSUff'mcnt 

of the predictor variable. 

• Standardizing 

Standardizing means centcring and scaling such that the matrix X' X IS III corrC'lation 

form. 

The following techniques are some of the detective measures of collinearity 

2.2.2.1 Correlation Matrix 

TilE' correlation matrix, denoted by X' X, presents the values of corrC'lations between pairs of 

independent variables (bivariate correlatiolls). Correlations close to 1 indicate serious collinear­

ity bet\veen the pairs of illdependent variables. 

Despite its importance, the correlation matrix cannot be relied upon for full diagnosis of 

collinearity since it cannot detect existence of more than two dependencies in a matrix. 

2.2.2.2 Variance Inflation Factors 

The ith variance inflation factor (VIFi ) (Chatterjee and Price, 1977), is defined by 

(2.2) 

\vhere RT is the magnitude of variation in the ith independent variable Xi, explained by the 

variation in the rest of the independent variables when the regression model is such that Xi 

is the response variable and other independent variables are the explanatory variables. The 

dependencies involving Xi and other independent variables is signified by the closeness of RJ 

to L thus a high V I Fi . Any variance inflation factor greater than 10 indicates collinearity 

(Wetherill, 1986). 

Although variance inflation factors lllay be reliable, they are unable to detect more than two 

coexisting dependencies or near dependencies, just like the correlation matrix. 

2.2.2.3 Farrar and Glauber Technique 

The Farrar and Glauber Technique (Farrar and GlaubeL 19(7) measures collinearity based on 

the follO\ving assumptions: 

• 1Iatrix X is a sample of size (n) from a p-variate Gaussian (Normal) distribution. 

• X has orthogonal columns 
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This technique employs both the determinant of the correlation matrix, (XI X) and the variance 

infiation factors. The procedure involves tmnsformation of the determinant of (XI X) and the 

use of \'C,riance infiation factors as indicators of variates involved in collillearity. 

Nonet heless, the Farrar and Glauber technique is usually not used as a statistical test for 

collinearity clue to the fact that it uses the determinant of (XI X) and the determinant is very 

sensitive to scaling hence may not be trusted. The technique also depends on the correlation 

matrix and from what we observe from 2.2.2.1, the correlation matrix cannot be entirely relied 

upon for diagnosis of collinearity. Fmthcr, the technique relics on orthogonality of the X matrix 

and from the definition of collinearity and the effect, we note that X becomes non-orthogonal 

in the presence of collineari ty. 

2.2.2.4 Bunch Maps 

Bunch 1Iaps (Belslcy et al., 1980) are graphical investigations of the possible relationships 

among sets of data. They indicate location of dependencies but do not detenuille the degree 

to which regression results are degraded by their presence. However, the bunch maps are not 

recommended for use as a major tool in regression because their extension to dependencies 

among more than two variates is time consuming and subjective (Belsley et al., 1980). 

2.2.2.5 Small eigenvalues 

If a matrix has one or more eigenvalues that are almost zero or too small compared to oth­

ers, then collinearity exists in the data. Small eigenvalues correspond to large elements of 

eigenvectors therefore any of the two may be a sign of collinearity (I3elsley et al., 1980). 

2.2.2.6 A small determinant 

A matrix is not invertible or near-singular if its determinant is zero. Near-dependencies and 

dependencies can clearly be detected from the determillant that is extremely small such that 

the inverse almost does not exist. Since the determinant is generally computed as the product 

of the eigenvalues of a square matrix and in the presence of collincarity, it tends to zero and the 

matrix becomes singular. Nonetheless, as pointed out under the Farrar and Glauber techniqlle, 

the delerIllinant is very sensitive to scaling and callIlot be fully rdied upon for diagnosis. 

2-G 



Univ
ers

ity
 of

 C
ap

e T
ow

n

2.2.2.7 Condition Number 

The condition mllllber (I3dsley et al., 1980) of lllatrix X IS the ratio of the largest to the 

smallest singular value; 

c = (A/l/OJ:) 1/2 
Anlln 

It measures the sensitivity of the solution to small changes in X or Y. A condition number 

greater than 100 indicate extrellle collinearity. 

2.2.2.8 Condition Index 

The condition indices (Be Isley et al., 1980) identify th(' dimensiolls of the X-space where the 

dispersion is limitf'd to cause problems in the least squares solution. The hlh condition index 

is denotf'd by 

h = 1, ... ,p 

Condition Indices measure collinearity in the following manller 

Condition index 

10 - 30 

30 - 100 

100+ 

Collincari ty 

weak 

llloderate - strong 

extreme 

The problem with using condition indices is that it is not easy to identify the columns respon­

sible for collinearity. 

2.2.2.9 Multicollinearity index (md) 

The lllulticollinearity index (Thistcd, 1980) is a measure of collinearity that involves the ratios 

of the squares of eigenvalues of X' X. The mci is defined by 

where Ap is the smallest eigenvalue of X' X. 

Values of mci close to 1 indicate high collinearity and mci greater than 2 indicate little or no 

collincarity (Thistecl, 1980). 
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2.2.2.10 Variance Decomposition 

Unlike the collinearity measures discussed so far, the variance decomposition (I3clsley et al., 

1980) makes it possible to identify the COhllllllS of X iuvolved in collinearity. The variance of 

/il component of J lllay be defined to be 

(using 1.23) 

\Vhere I'ji = the /h element of the ith eigenvector, 

The abov"e equation decolllPoses the variance of the /h coefficient into a sum of components, 

each associated with one of the eigenvalues. The variance-decomposition proportion is the 

variance of the /It regression coefficient associated with the i lh component of the decomposi­

tion of /h regression coefficient. 

The variance-decomposition proportions are calculated by 

i,j=l, ... ,p. (2.3) 

where 
p 

cPj = LcPji i = 1, ... ,p. 
i=l 

\Ve note that when collinearity is present in the data, the eigenvalues corresponding to covariates 

involved in dependencies become small. From the equation above, we observe that if the eigen­

valuC's are small, then the variance proportions increase hence, we may identify the columns 

involved in collinearity. Collinearity becomes a problem when the variance proportions of at 

least two regression coefficients associated with components that correspond to small eigenval­

ues exceed 50%. 

2.2.3 Coping with collinearity 

There are lots of remedial measures for collinearity reported in the literature. These include 

among others additional data (2.2.3.1), deletion of collinear variables (2.2.3.2), transformation 

of variables (2.2.3.3), bayesian methods (2.2.3.4), detrending of variables (2.2.3.5), first differ­

encing (2.2.3.6) and shrinkage estimation (2.2.3.7). It must be emphasized that not all the 

rellledial measures arc effective: hence, it is impETativc to find the most appropriate. 

According to l\Iarquardt and Snee (1975), scvcralmcthods proposed to handle collinearity are 

usually not met in practice. \Ve maintain that most of the rcmedial lllC'asnres of collillearity 

suggested in the statistical literature, haw recognizable disadvantages that should not just 
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be ignored. Failure to recoglllze these disadvantages is likely to hinder effectiveness of the 

corresponding remedialmeasnres. In the light of the above considerations, som€' of the remcdial 

nlcasnrcs of collincarity are discussed below and the corresponding shortcolllings identified. 

2.2.3.1 Additional data 

Obtaining additional data or collecting new data is considered one of the methods for solving 

collincarity problems. 110re often, the additional data is tak€'n in the direction of the collinear­

ities such that the X-space is expanded to elilllinate the dependencies (Rmvlings et al., 1998). 

Although the procedure sounds simple, it is usually regarded illlpractical because 

• analysts may not generally be in control of variables to obtain \vell-behaved data (Jagpal, 

1982) . 

• Data collection may be expensive and/or time-consuming. 

2.2.3.2 Deletion of collinear variables 

Deletion of the corrC'lated variables reduces collinearity but also reduces the iuterpretability 

of the regression equation. Also, the deleted variables Illay tend to be the most illlPortant 

variables of the lllodel, thus improper or false estimation and sometimes biasness may result. 

2.2.3.3 Transformation of variables 

Although collinearity lllay sometimes be removed by appropriate transformations of the explanatory 

variables (\Vetherill, 1986), transformations lllay completely change the models, thereby lead-

ing to estimation of lllodeis that differ from the original. 

2.2.3.4 Bayesian methods 

The use of a priori information or Bayesian lllethods of estimation is SOI1letimes useful when 

collinearity is a problem (Gruber, 1980). However, Bayesian methods require a priori information 

about the distribution of regression parameters which may sOllletimes not be available. 

2.2.3.5 Detrending of variables 

Expressing the variables in terms of deviations from their linear trends reduces collinearity 

(GrubeI', 1980). However, the procedure reduces dependeucy of Y on X and also changes the 

original specification of the regression equation. 
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2.2.3.6 First Differences 

Expression of the variables in the first differences (the differences bet\veen tho current and the 

previous values) oyercomes collinearity (Gruber, El80). However, the procedure produces even 

greater variances of parameter estimates than OLS (Sujan and Conclik, 1979). 

2.2.3.7 Shrinkage estimation 

Shrinkage estimation defines a class of biased methods of estimation, known to shrink the least 

squares estimators j proportionally towards ~ero. I3y allowing for a little hias, the methods 

stabilize the regression and provide estimates with smaller variance (a trade off between high 

coefficient variances and a little bias) (Le Cessie and Van Houwdingen, 1992). The methods 

are vital and critically useful ill cases whereby collinearity causes the least squares parameter 

estimates to be too large in absolute values (Gruber, 1998). Unlike discrete procedmes such as 

model selection, shrinkage methods are continuous and therefore do not exhibit high variance 

(Hastie et al., 2001) 

In a nutshell. shrinkage estimation is more important when the existing dependencies alllong 

the covariates lead to the following problems: 

• unstable coefficients, 

• inflated variances, hence large standard errors, 

• insignificant coefficients and 

• poor prediction and or improper modelling. 

Besides being the most practical way to correct for collinearity, shrinkage methods are easy to 

deal with. Even more important is the fact that there are lots of shrinkage techniques to choose 

from: there is always at least one shrinkage method appropriate to cmb problems attributed 

to collinearit:v. 

2.3 Summary 

In this chapter, the instability of OLS estimates and com put ation of the shrinkage factors from 

the OLS solution were identified as the problems addressed by this thesis. 

Collincarity was broadly discussed as a phenomenon from which the main research problem of 

this thesis stems. The definition of collinearity, detective measures. effects and the approaches 

to collinearit~· were provided in details. It was noted that presence of collinearity among the 
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independent variables leads to high variability and cOlllPutational instability of the OLS£; the 

sampling variances of the estimates become very large hencC'. the distance bchvecn the esti­

mates and the true values becomes extrelllely large. 

Several remedialllleasures for collinparity were provided and t he respective disadvantages high­

lighted. Shrinkage estimation was considered a class of the most effective approaches to the 

problel1ls attributed to collinearity since it directly reduces the mean squared error of estimates. 

From our point view, usage of parallleter estimation technique's that minimize the mean square 

error of estimates is the most effective way to deal w'ith problems associated with collinearity. 

Shrinkage estimation is one such techuique, of which the estimates are biased but have smaller 

mean squared errors compared to least squares when collincarity is the problem. \Ve stress 

t hat usage of biased methods of estimation in collinear designs of matrices is the l1lost practical 

way to reach meaningful conclusions. 
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Chapter 3 

Ridge and Shrinkage Estimators 

\Ye consider shrinkage estimation a powerful alternative to OLS. for which there is low risk 

of imprecision of estimates and poor estimation when collinearity is the problem. Shrinkage 

lllethods result in biased estimates but most importantly, lead to a significant reduction in 

the variances and mean squared error values of estimates when the OLS estimates exhibit 

high variances. \\'e view shrinkage as the most practically convenient and reasonable way to 

estimate the parameters when the least squares estimates are unstable and imprecise. 

For each shrinkage method, there is a specific shrinkage factor for \vhich the variances of the 

corresponding shrinkage estimates are less than the variances of the least squares estimates. 

By sacrificing a little bias, each shrinkage estimation method reduces the mean squared error 

values of estilllates, stabilizes the coefficients and produces estimates that are highly precise 

and almost accurate. This is one attractive feature of shrinkage estilllation methods that makes 

them highly important in research application. 

This chapter is organized as follows. The general shrinkage estimator and its properties are 

defined in the next section. Some of the special cases of shrinkage estimation are discussed 

in subsequent sections: specifically, we discuss Stein estilllation (Stein, 1956), ridge and gen­

eralized ridge regression (Hoerl and Kennard, 1970a). Lin and generalized Li u estimation 

techniques (Lin, 1993) and principal components regression (Kendall, 1957). 

For each of the shrinkage lllethods, we specify the following 

* the shrinkage factor, 

* the expectation, 

* the bias. 

* the YClriance of the estimator, 

3-1 



Univ
ers

ity
 of

 C
ap

e T
ow

n

* the Illean squared error of the estimator and 

* the total mean squared error. 

Considerable attention is drawn to ridge regression and the differcnt ways ill which the ridge 

biasing constants are selected. 

3.1 The shrinkage estimator 

\Ye denote the general shrunken estimator (ish by the following 
- -

= dsh(X' X)-l X'y (using 1.20) 

\vhere 

d"h = a shrinkage factor within the bounds 0 < cish < 1 

3 = a vector of least squares coefficients, (defined in § 1.5.1) 

V. U and ,6. are defined in § 1.2.1. 

3.1.1 Properties of (lsh 

3.1.1.1 Expectation 

E[3sh ] = E[dsh /3] 

= dsh E[;3] 

= dsh /3 (using 1.21) 

Hence, shrinkage estimates are biased for ;3. 

3.1.1.2 Bias 

Bias [.3sh] = E[Jsh ] -;3 (using 1.16) 

= dsh .3 -.3 

= (dsh - 1)(-1 

3.1.1.3 Variance 

(USlng 1.23) 
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3.1.1.4 Mean Squared Error 

(using 1.18) 

:2 :2 r/ -\ :2.~ / 
= dshrJ (X X) + (dsh - 1) 3.3 

(3 .. 5) 

3.1.1.5 Total Mean Squared Error 

(from l.19) 

(3.G) 

\vhere A is defined in § l.2.l. 

3.1.2 Desirable qualities of shrinkage estimators 

From the properties of /ish , the following important qualities of biased estimators may be 

observed: 

(i) 

Implying that VaT [;3sh ] < VaT[l]] since 0 < d Sh < 1, 

(ii) The squared length of (3sh is shorter than that of IJ. That is 

. 1·) 1 Slllce (.;h < 

(iii) TMSE[13sh ] < TMSE[;3] 

The Admissibility Condition (I\Iayer and Willke, 1973) states that a shrinkage estimator 

is said to be mean square admissible if and only if there exists a shrinkage factor dsh sllch 

that TMSE[d sh ,3] < TMSE[!J]. This condition is satisfied only when 
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To find out whether or not /3sh is admissible, \VC minilllize 3.G subject to d Sh1 equate the 

result to zero and finally solve for dsh . If dsh satisfies the above stated condition, then 

Jsh is lllean square adlllissible, hence TJ\ISE[J,sh] < TMSEP]. 

(from 3.6) 

p 

= d;hTAISE[/1] + (dsh - 1)22..: 3; (using l.25) 
i=1 

\Ye find the partial derivatives of TAISE[/1sh ] \vith respect to dsh : 

Thus 

Hence 

D(TMSE[jshD 
Ddsh 

.(:2 2 pI) 
J dshO" Li=l ~ ~)(( 1. _ 1)2 ,P 32 ) 
___ ,----__ A----'----I + u (sh L., 1= 1 • I 

Ddsh Jdsh 

PIP 
2", '" 2 = 2dsh O" L ~ + 2(dsh - 1) L 3i 

i=1 I i=1 

P 

= 2d.shTAISE[r3] + 2(dsh - 1) 2..:!J; 
1=1 

D(TMSE[;1shD = 0 
Jdsh 

implies that 

P P 

dshT M 5 E [;1] + dsh 2..: il./ = 2..: ,13f 
i=1 1=1 

(J'r3 - Tran'O(AISEP]) 

,3'(3 + Troce(MSE[3]) 

Therefore 13sh is mean square admissible thus TJUSEpsh] < nHSE[3]. This implies 

that there is always a shrinkage factor for which the shrinkage estimator is guaranteed 

to have a smaller total mean sqmmxl error compared to OLSE. 

SOllle of the special cases of shrinkage estilllation are discussed below. Their properties stem 

from the properties of ;]sh hence we do not repeat them. Rather. \n' use the final expressions 

from the general properties to specify the properties of each of the cases considered; we simply 

substitute appropriate shrinkage factors for dsh. 
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3.2 Stein Estimation 

Stf'in estimation is a shrinkage method, first proposed by Stein (1956) and later reviewed by 

James and Stein (1961), Dempster (1973), Efron and I\Iorris (197:)), Wind (1973), Zellner 

and Vanf'lc (197-1), Gruber (1979: 1998) to mention a f('\v. The estimation method has long 

been used in the statistical analysis to substitute least squares estimation when the OLSE is 

unsatisfactory: hence it is still one of the important estimation procedures that may be put 

into practice. 

3.2.1 The Stein estimator 

The Stein estimator is a shrinkage estimator of which the shrinkage factor dsh =c, and is defined 

by the following: 

for 0 < c < 1 

3.2.1.1 Properties of {is 

From the properties of /J.s h , the following may be specified for Js , for \vhich dsh is replaced by c. 

Expectation: 

(fTom 3.2) (3.7) 

Bias: 

Bius[Js ] = (c -1),3 (fT07T~ 3.3) (3.8) 

Variance: 

(fTom 3.4) (3.9) 

Mean Squared Error: 

(from 3.5) (3.10) 

Total Mean Squared Error: 

T!lISE[j.s] = r:
2a 2 t ~. + (c - 1)2 t 6[ 

i=l I i 

(fTom 3.6) (3.11) 
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3.2.2 The Stein shrinkage factor 

Examples of the most COllllllOIl snggestions for estimation of c include the following 

* James and Stein (1961) 

Given that X' X = Ip and p 2: 3, JaIlles and Stein proposed the following expression for 

c. 

_ .. (, [ _ (p- 2)(71- p)(j2J) r - nlUJ O. 1 A A 

(n - p + 2),3'/3) 
(:1.12) 

,vhere 

(j:2 is the least squares variance, obtained after fitting the least squares estimator /3, 
max(O,a) returns a the largest nuruber in a set of values ranging between 0 and a. 

* Sclove (1968) 

Sclove modified the above expression by substituting the coefficients from the orthogonal 

or canonical form of least squares for /3',13. That is 

( [ 
(p-2)(n-p)(j"2 J) 

c = nUl); 0, 1 - ( _, ) "p \ , ',2, 
n p+2 L..i=lA/Cl: i 

(3.13) 

Further, based ou the canonical form of the model, Sdove proposed that a subset of the 

least squares parameters should be shrunken such that the shrinkage estimator may be 

expressed as 

0< c < 1, 

where 

r eigeuvalues are significantly different from zero (rauk of X =r) aud 

conly shriuks the last p-r compoueuts of :3 that correspoud to the smallest eigenvalues. 

* Van Houwelingen and Le Cessie (1990) 

Van Homvelingen and Le Cessie proposed cross-validation calibration for estimation of 

c. The procedure is carried out in following subsequent steps: 

For all i, compute /3_ i as a vector of coefficients estilllated from a regression in which 

the ith obsen"atiou has been excluded. That is }.T_i = X'-iJ-i' 

Perform a single variable linear regression of li on Y- i . 

Usc the resnlting coefficient (slope) as an estimate of the shrinkage factor c. 
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The procedure \yas further investigated by Le Cessie and Van Houwelingen, 1992; Vetch 

et aI., 2001; Van H01l\yclillgcn, 2001; Sauerhrei. 1999. all of \\"ho acknowledge that the 

procedure overcomes large varianccs of least squares estimates caused by dependencics 

and or ncar-depcndencies of the independcnt \"ariables. 

* Breiman's Garrote 

Breilllan (1995) defined a procecl ure for \y hich t he corresponding estimators was called 

Breilllan's Garrote. For a given threshold t 2: O. the Garotte shrinkage factor c is obtained 

from 

('1 0 o 0 

0 C2 o 0 
c= 

0 

0 0 

under a constraint 

JOT Cj 2: 0 

If t is predetermined to be p, that is if t = p, then Cj = 1 hence c is a diagonal matrix 

of ones; c = Ip. Thus the Garotte estimator l)('comes equivalent to /3: if for convenience, 

we denote the Garotte estimator by /3G , then jG =3 when t=p. On the other hand, if 

t is predetermined to be small, then some of the Cj tend to zero hence the corresponding 

coefficients also approach zero. The optimal value of t is selected by crossvalidation (Vach 

et al., 2001). That is, t is selected such that the following function is minimized 

where Jj( -i) (t) is the /h Garotte estimate, computed from a specific value of t, with the 

i lh observation omitted. 

3.3 Ridge Regression 

Ridge regression is a shrinkage procedure, originating from a response surface technique known 

as ridge Analysis and first introduced by Hoerl (1959). The technique was used to graphically 

portray the beha\"iour of high-dimensional quadratic response surfaces and to locate optimal 

regions and the first pllblication on its application on regression problems was on the chemical 

plant data (Hoerl. 1962). This was further extcnded by" Hoerl and Kenllard (1968) to include 
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Da,vesian interpretation of ridge and t hf' comparison of ridge and estimation of ,13 when con­

strainf'd to a bounded convex set, 

Alt hough ridge analysis had been proved to be important in locating the optimal predicted 

variables in spaces of predictor variables, computational instability of least squares estimates 

rf'mainf'd a problem when the data were collinear, therefore, Hoerl and Kennard (1970a, 1970b) 

proposed and later published a new estimation met hod (ridge regression), to address problems 

that could be attributed to collinearity. The family of estimates given by the ridge biasing 

parameter [k 2: 0] in the newly introduced ridge regression seemed mathematically similar to 

portrayal of quadratic response functions (ridge analysis) hence the analysis built around the 

new tcchnique was becn labelled 'ridge regression' (Hoerl and Kennard, 2000). 

Subsequent to its publication, ridge regression was further investigated and given so much at­

tention that it masked ridge analysis, leading to sparse literature on the ridge analysis technique 

(Hoerl, 1985), 

3.3.1 Definition 

Since 1970. the following expressions have been interchangeably used to define ridge regression. 

• Ridge regression is a biased estimation technique and a formal procedure that has been 

developed to compensate for effects of collinearity (Swindel, 1981: Hawkins and Yin, 

2002: Akdmiz et aI., 2003; Sundberg, 1993; Walker and Birch, 1988: Gunst, 1980). 

• It is an important estimation technique in the theory of point estimation which provides 

estilllators with slllaller lllean square error than Least Squares when collinearity is present 

in the data (Halawa and EI Bassiouni, 2000; Ngo et aI., 2003: Gunst and Mason, 1977; 

Elston and Proe, 1995; Hoerl and Kennard, 1970a). 

• Ridge regression is sometimes regarded a restricted or constrained least squares estima­

tion method (Gibbons and 1IcDonald, 1984; Grob, 2003) that may be used to portray 

the sensitivity of the estilUates to the set of data in use (Hoerl and Kennard, 1970a). 

• It is a classical statistical algorithlll that illlposes a penalty or a restriction on the size of 

coefficients to obtain stable results (Le Cessie and Van Houwelingen, 1992; Hong et aI., 

2004: Hastic et aI., 2001). 

• It is a procedure intended to overCOlUe 'ill-conditioned' :-;ituations, where near dependencies 

betwecn colulllns of X cause: 

near-singularity of the correlation matrix (X' X) and 
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- instability in the parameter estimates (Sv/indel, 1981) . 

• Ridge regression is an alternative' to least squares estilllation, used as a tool to alleviate 

collillearity or nOll-orthogonality (\Vall, 2002: Troskie and Chalton, 1996; Hoerl, 1985: 

Kidv,-cll and I3rown, 1982; Conniffc and Stone, 1973: ThiarL 1990) . 

• Ridge regression may also be considered an estilllation procedure based on the equation 

that defines a class of estilllators indexed by a scalar parameter (1IcDollald and Galarneau, 

1975). 

Ideally. ridge regression is an estimation procedure based on adding slllall positive qualltitics 

(bias. biasing parameters or characterizing scalars (Dwi"edi et aI., 1£)80)) to the diagonal of 

the correlatioll matrix of independent variables, hence it produces biased estimators. Although 

ridge estimators are biased, they are less affected by small changes in the data alld are much 

more stable than least squares estilllators when prediction vC'ctors are not orthogonal. Ridge 

estimates may be used to obtain point estill1ates with minimum 1ISE in cases where the 

estimates are sensitive to particular sets of data being used (Hoerl and Kennard, 2000). 

3.3.2 The ridge estimator 

The ridge estimator ,,1R is a shrinkage estimator for which the shrinkage matrix is defined by: 

k>O 

where 6 and V are defined in section l.2.1, and k is the ridge constant, also known as the 

biasing constant or the shrinkage parameter. 

3.3.2.1 Derivation of the ridge estimator 

/3n minimizes 

n p 

",(}T. ""L' .,J.)2 ~ I -~. 1)!J] 

i=l j=l 

subject to 

P "'') ~,3J S t 
j=1 

(3.14) 

where t is an arbitrary constant and Xij is the elell1ent in the ith row and the jih column of X. 

Equivalently, we may say the ridge estimator shrinks the OLSE by imposing a penalty on their 

size as follows: 

n p P 

13H = argrnin[L(1'j - L :rij;J))2 + k L dfl (3.15) 
i=l j=l )=1 
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where k 'Lj=l 3f is the penalty and k is a shrinkage parallleter that has a direct relationship 

with t in (3.1-1). 

Let J(3) = [(Y - X;:i)'(Y - Xi)) + k/:i2 ] 

= y'y - Y' X.3 - /3' X'Y + (3' X' X f3 + k.d2 

To derive the ridge estimator, we differentiate J(L3) once with respect to (:i and equate the 

derivative to zero and solve for the ullknowll coefficient: 

uJ( 3) 
--!- = -2X'Y + 2X' X!J + 2kL3 = 0 u.3 f. 

2X'y = 2X' X/J + 2kfJ = 0 

X'y = (X'X + kI)l:i 

:3n = (X'X + kI)-IX'Y k>O (3.16) 

3.3.2.2 Relation to OLSE 

The ridge solution is a linear transform of least squares solution, \\"here the transform depends 

on the biasing parallleter k. 

Let 

W = (X'X + kI)-l (3.17) 

It follows from simple substitution of (3.17) into (3.16) that jR = WX'y 

Post-multiplication of\V and pre-multiplicatioll of X'Y by the Identity matrix I = X' X(X' X)-l 

leads to 

.:3R = WX'X(X'X)-IX'Y 
'-.,.-' 

13 
Implying that 

:3n = wX'x/3 

Let 

then 

~ A 

du = Cd 

k>O 

(3.18) 

(3.E)) 
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Hence jn is a shrinkage estimator of which the shrinkage matrix is G. 

Considering the orthogonal form of the linear model (1.5). we lllay express the ridge estimator 

as follows: 

1lsmg 1.9 (3.20) 

Hence for the orthogonal form of the linear lUodeL 

)\j 0 0 0 
)'1 +1.: 

0 '\') 0 
G= '\2+1.: 

0 0 

0 0 0 ~ '\p+1.: 

A A' 
Each {th element of !) is shrunk by Ai; k' implying that 

: Ai: 
3R = ~~3i 

, Ai +k 

\\"here 3 R, is the ith element of fiR and the ith shrinkage factor is 

3.3.2.3 Properties of ,6 R 

From the general properties of the shrinkage estimator specified in 3.2, 3.3, 3.4, 3.5 and 3.6, 

the following properties lllay be specified for the ridge estimator ,(~H. 

Expectation 

E[JRl = G,J 

= (V~2V' + kI)~lV~2V'p 

Bias 

Bio8[JRl = (G - 1)!3 

(using 3.18) 

= [(V~2l-/1 + kI)~1l-7~2V' - I]d 

(using 3.21) 
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Variance 

VarOR) = a:2G(X'X)-lG' 

(3.23) 

Mean Squared Error 

J.ISE(JR ) = a2G(X'X)-lG' + (G ~ 1)iJ(J'(G ~ 1)' 

Total Mean Squared Error 

(3.25) 

3.3.2.4 Other Properties 

• There always exists a positive constant k snch that the j\ISE[3R ] is minimized (Hoerl and 

Kennard, 1970a; Marquardt, 1970; Gruber, 1980). The Ridge Existence Theorem (Vinod 

and Ullah. 1981) states that in the presence of collinearity, there is always an arbitrary 

constant from which the l\ISE for ridge estimates may be computed to be less than that 

of least sqnares estimates. That is: there exists a constant k [0 < k < (2a 2 /,6' ~rJ)l snch 

that 

(3.26) 

Hence in situations whereby the existence theorem holds true, ridge estimators are con­

sidered lllnch more reliable than least squares estimators since lllinilllal AI SE[/]] of an 

estimator implies that the corresponding estimator is the closest to the true parameters. 

• The ridge estimator is not invariant to scaling and ot her linear transformations. 

• The bias of JR is a functioIl of the orielltatioll of the ullkllown parameter vecLor /3 Lo the 

eigenvectors: the bias is minimized when :3 = Vl and maximized when (3 = 'Up; where V1 

and up represent the 1 sf and the lh right singnlar vectors of X (Newhouse and Oman, 

1971; Gruber, 1980). 
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• The ridge estimator is equivalf~nt to the Rugmented OLSE: where the augmentation is as 

foIlO\\"s: 

[ 
y 1 
Op 

\\'here 

x = the (n x p) standardized matrix of independent variables 

l' = a (n x 1) vector of response observations 

Op = the (p xl) null vector 

I p = a (p x p) identity matrix 

vI = the bias, added to each of the standardized explanatory variables, with no ob­

servable effect on the dependent variable (Gruber, 1980: 1Iarqllardt, 1970). 

3.3.2.5 Selection of k, the biasing parameter 

The ridge theory postulates that biasing parameter k should be chosen to minimize lIlean 

squared error of ridge estimators. However, there is no specific biasing parameter assured to 

yield good ridge estimates for all unknown coefficient vectors. The optimal k value is a function 

of the unknown parameters j3 and (J2 and in practice, k should be estimated froIll the data or 

be df'termined subjectively (Gruber, 1980). 

The literature suggests several ways in which the optimal shrinkage parameter may be chosen 

and these include the following: 

Ridge Traces 

A ridge trace is a graphical presentation or a plot of individual ridge coefficients (~H) versus 

the corresponding ridge constants (k), used as a guide for selecting the optimal ridge constant 

in a givC'n problem (McDonald, 1980). The procedure was originally suggested by Hoerl and 

Kennard (1970a) to investigate a variety of k values and their impact upon changes in ridge 

coefficient estimates. 

The ridge trace Illay be clefined as a path through the likelihood space that provides an insight 

into the structure of the factor space and the sensitivity of the results to particular sets of data 

(Hoerl and Kennard. 2000). It may abo be referred to as a hyo-dimensionai plot of the ridge 

solutions against the corresponding k parameters in thE' internil [0.1] that serves to portray the 

complex interrelationships that exist bebveell collinear prediction YClriables and their effects on 
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tIl(' estimation of :1 (Hoerl and KClllmrci, 1970a). 

The criteria used to cxallline a ridge trace inclucle stabilit)", magnitudcs and sign changes of 

t he estimated cocfficients <1nd the inflation of residual Slllll of squares (1IcDonald, 1980). All 

these are primarily subjective on the range of k plotted for the ridge trace. Frolll the graph, 

the optilllal biasing paraltleter k is selected at a point where the traces stabilize. 

Disadvantages 

- The exercise of running multiple ridge regrcssion models with different k values is time 

consuming and may be tedious. 

- There is ahvays an uncertainty in determining the optilllal k frolll the ridge traces. The 

optilllal value is not obvious from the graph; a rough estilllate is usually made, depending 

on the stability of the traces. 

Other procedures 

Besides the ridge traces, there are lots of mathematical equations provided in the statistical 

literature for estilllation of the optimal k; some of the examples are outlined below. Note that 

j and & represmt the OLS coefficients for models (1.1) (standard classical model) and (1.5) 

(orthogonal linear model) respectively . 

• Hoerl and Kennard (1970a) 

(3.27) 

where 

, ) 

3~/(!.r = the square of the maximum or largest least squares coefficient. 

IJ2 = the least squares residual variance 

Disadvantage 

- kill.' depends on (j2 and /3;lax hence it is likely to be affected by collinearity. If the 

data are highly collinear, least squares coefficients tend to be extremely larger than 

the true values, leading to false or inaccurate estimation. Further, (Jma:r becomes 

the most misleading and inappropriate coefficient to rely on. 
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• Mallows (1973) 

tlallo\\"s proposed that k should be chosen to minimizE' the following function 

\vhere 

SSRk 
C[, = -'-2- + 2trarc(Hd - (71 - 2) 

a 

SSRk =- (Y - X/~H)'(Y - xJn ) = Sum of sqnared residuals nsing ,3H 

HI.: = X(X/X + H)-IX' 

Disadvantages 

(3.28) 

- Identifying k that minimizes C L may not be practically simple. The process could 

take too long and be tiresome. 

- The act of minimizing CL is vulnerable to erratic computations. 

• Hoerl, Kennard and Baldwin (1975) 

where 

:3/,3 = the SUIll of squares of least squares regression coefficients excluding 

the constant. 

p = the ll111llber of variables in the model, excluding the constant. 

0-2 = the least squares residual variance. 

Disadvantage 

(3.29) 

- Although kHb is simple to compute, it depends on 0-2 and ,3;ax both of which are 

unstable and unreliable in collinear designs of matrices. 

• McDonald and Galarneau (1975) 

tIcDonald and Galarneau suggested selection of k such that the squared length of its 

corresponding vector of coefficiellts equals the squared lellgth of the true parameter. 

The suggested unbiased estimator of the squared length of the true parameter is defillecl 

as 

]J 

Q = ,3/ j - 0- 2 L \-1 (3.30) 
i=1 

S(']CctiOll of k is based 011 the following rnles: 
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Rule 1 

Choose k=O such that ,{ju = rj. (j is required for computation of Q. 

Rule 2 

Choose k=O such that ~R = ;3 for Q < 0 otherwise choose k to satisfy !j~d3u = Q 

Rule 3 

Choose k = ::xJ so that (jR = 0 for Q < 0 othcl'\visc choose k to satisfya~(jR = Q 

Rules 2 and 3 are alternative default values of k when Q is negative. Frolll our point of 

yiew. rules 2 and 3 are the same; the implementation rules for each are not clear. 

Disadvantages 

Although the tIcDonald and Galarneau procedure is one of the well known methods by 

which the ridge constant may he selected, the following disadvantages may be highlighted: 

* In highly collinear designs, {J'/3 becomes llll"table, implying that some parameters 

may dcyiatc considerably from the mcan, hence elements in ({JR) may be abo have 

high yariances (G rn ber, 1980). 

* j~j R = Q does not consider a lower bound of the "um of squared coefficients (/3/;3) 

and in some cases it may lead to negative values (Gruber. 1980). 

* In highly collinear data, Q Illay be unstable as a result of the instability of the least 

squares solution . 

• Iteration (Hoerl and Kennard, 1976) 

Shortly after introducing khkb , Hoerl and Kennard developed an iteration on khkb on the 

basis that the squared length of (3 (;3/;3) is large when X is collinear, hence khkb may 

potentially be too small. The iterative procedure is summarized below. 

... ko 

;jR(ko) : 

... kt+l 

where 

3-16 

~ oJ 
per 

3'.3 
,0) 

per 

[jR(ko)]' [rJR(ko)] 
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ki 

In(k i ) 

t 

JR(kt) : ... ki+1 

= the estimat(' of k OIl the i lll iteration 

= a vector of ridge coefficients for the jill iteration, 

computed from the ki - I . 

= the ttll iteratioll 

=? /3 n (kJ is used to estimate ki+ 1 

,") 
pa-

Initially, [-3 is used to estimate ko = TheIl, ko is used in estimating the ridge 
p'd 

coefficients ill 3n (ko), which in turn, are illput in computation of kl' so on and so forth. 

The sequence is terminated when 

Troce(X'X)-1 ( 
\vhere T = Hoerl and Kellnard, 1980) 

p 

Disadvantage 

- Iteration is a long process that is open to errors . 

• Lawless and Wang (1976) 

where the unknowlls are described ill the previous sectiolls 

Disadvantage 

(3.31) 

- klw depends on the least squares solution and may easily be affected by high or 

extreme collinearity . 

• Vinod (1976) 

The proposed biasing parameter is selected to minimize index of stability of the relative 

magnitudes of parameters (ISRI'vI), defined as 

(3.32) 

Disadvantage 

- Selectioll of k that millill1izes ISR~I(k) ma:\" be practically a tiresome exercise. 
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• Hocking~ Speed and Lynn (1976) 

(3.33) 

Disadvantage 

- khs/ depends on the least squares solution and is likely to be impacted on by extreme 

collinearity. 

• Brown (1993) 

Brown made two suggestions for k, originating from the k/w and khkb , hence \VC label 

them k/wm and kh/;bm respectively. 

(r - 2)0-2 L Ai 
k/wm = riJI X' X;3 

\vhere r=rank(X) 

In order for 3.34 and 3.35 to be positive the condition r(X) > 2 has to hold. 

Disadvantages 

(3.34) 

(3.35) 

- Both khkbm and klwln have high chances of being affected by collinear-ity since 0-2 

and ;3 are adversely impacted on by collinearity. 

• Kibria (2003) 

Kibria made the following three suggestions for k: based on the arithmetic mean (alll) , 
0-'2 

the geometric lllean (gIll) and the median (med) of (~) respectively. 
Q i 

(3.36) 

(3.37) 

(3.38) 

Disadl'antage 

Extrellle cases of collincarity are likely to have an adverse effect on kllm and kgm since 

t he two depend on the lcast squares solution. 
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3.3.3 Ridge regression procedure 

Ridge' regression generally works with centred and scaled lllatrices (§ 2.2.2) of indepcndent 

variables so that the sum of squares and product matrices are in the correlation form (§ 2.2.2). 

The analysis procedure is usually carried out logically in the following subsequent steps: 

• Center and scale the lllatrix of independent variables to standardize the measurement 

units and to remove possible collinearities that may involve the intercept. However, it is 

important to note that centring rellloves the constant from the regression model hence 

any model in which the constant plays a vital role ma.\'- lack practical sense when the 

constant has been removed. Therefore, it is sOIllctimes essential to scale and not ccnter. 

• For selection of k from the suggested formulae. 

Compute Ordinary least squares solutions in tenus of t he centred and scaled ma­

trices of independent variables. 

Substitute the least squares solutions in at least one of the biasing parameter sug­

gestions provided in the previous section or any other method, not discussed in this 

study. 

Compute the ridge solution from the selected biasing parameter 

• For selection of k from the ridge traces, 

COIllpute ridge solutions for different k parameters; k i ::::: O. 

Plot the ridge estimates against the different k parameters (ridge traces) and select 

the optimal biasing parameter 

• In this study we transform the solutions corresponding to the optimal k back to the 

original form (the unstandardized form) before COIll pu ting any measures of efficiencies of 

estimators. 

3.3.4 Application and accessibility of ridge regression programs 

For years, ridge regression has had a considerable amount of application varying from all fields 

of research: marketing scoring lllodels (l'vIalthouse, 1999), molding conditions for thermosets 

(Tahyar and Ashlock 1970), price and production (Bettlllan, 1973). mortality and air pollu­

tion (l\IcDonald and Schwing, 1973), agricultural research (Jeffery and l'vIcKinney, 1975) to 

mention a few. 

In all applications, ridge regression has been proved to be important when dealing with estillla­

tion problems that arise out of collinE'arity. It produces excellent c::;timate::; that are relatively 
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silllple to calculate (Feig. 19(8). The algorithlll and cOlllPutations for ridge regressIOn are 

straight fonntrd and can be made with silllple nlOciifications to it standard linear regression 

program. The procedure involves inversion of the matrix X' X + k1 instead of a ncar singular 

lllatrix X' X. where k is selected to relllove the singularity, t bus stabilizing the estilllators of rJ 

(Thiart. 1990). 

A lot of computer programs have been developed to undertake ridge regression analysis. For 

example: 

• Hoerl (1959) coded a full ridge regression program III FORTRAN IV to compute the 

coefficients for 32 different biasing parameters. 

• Bradley and l\IcGann (1977) wrote RIDGEREG to improve the precision of regression 

estimates for nonorthogonal data. It calculates the standardized covariance matrix, its 

determinant and the regression coefficients for the parameter (k) varying from 0 to 0.5 

in steps of 0.1. 

• GUllSt (1979) proposed the guide to an efficient programllling of biased regressioll algo­

rit hms, takillg advantage of the mathematical similarities among them. 

• ~ R I DC E was described by MIT (1975) as a progralll that implements the main ridge 

regression algorithm. 

• Bolding and Houston (1974) wrote a Fortran program to compute ridge regression coefficients. 

• BRIDGE was developed by Jain ct al. (1977) as a Fortran IV program that handles up 

to 30 factors, 200 observations and 20 values of k. Its output includes the correlatioll 

matrix, eigenvalues and parameters for different values of the biasing factor, k. 

• (Carmer and Hsieh (1979): Sillha ami Hardy (1979)) described SAS macros for ridge 

regressioll computatiolls. 

• Bush (1980) coded a comprehensive FORTRAN IV program to compute ridge regression. 

The progralll computes parameters for various k paramc1ers. including those of: 

(Dempster et al., 1977) 

(Hoerl et al., 1975) 

(Kasarda alld Shih, 1977) 

(Lawless and Wang, 1976) 

(l\IcDonald and Galarneau, 1975) 
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Today. an option for ridge regression IS available in most statistical software packages. For 

instance, Statistica provides an option for computation of ridge solutions: only k has to be 

specified. Also, Evie\vs and R are other statistical software programs with built-in functions 

that allmv easy computations anel programming. 

3.4 Generalized Ridge Regression 

The generalized ridge estimation is a shrinkage method, first proposed by Hoerl and Kennard 

(1970a) to improve on ridge regression. The improvement is explained by the following: 

Previously, 

3n = {(~:2 + kI)-l~:2}~ 
From the above function, we observe that only one value of k is used to shrink all the com­

ponents of J. Illlplying that the components associated with large eigenvalues Illay possibly 

be shrunk lllore than necessary, and those that are associated with slllall eigenvalues may be 

shrunk less than required. Hence, allowing the choice of different constants ruay signify an 

im provelllent. 

On this basis, Hoerl and Kennard (1970a) introduced generalized ridge regression, for which 

the additive constants vary across the different components of 13. Therefore, the generalized 

ridge estimation method is defined as a general form of ridge regression for which the biasing 

parameter k is defined by a diagonal matrix of differcnt constants k;8, with cOlllPonents ki 2: O. 

3.4.1 The estimator 

Consider the orthogonal linear model (1.5) frolll \vhich the least squares estimator of ex is 

defined by 

it = (Z'Z)-lZ'y = V';3 (from 1.2G) 

The gencralized ridge estimator is defined by: 

(iGR = (Z' Z + Iq-l Z'y (3.39) 

where 

kl 0 0 0 

0 k'2 0 
K= 0< ki . i = 1. .... p 

0 

0 0 kp 
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Notice t hat unlike in ridge regression where k is the sallle for Rll diagonal entries, generalized 

ridge utilizes different k;s. 

3.4.1.1 Relation to Least Squares 

In terms of the least squares estimator (1:, (1:CR is defined as : 

OCR= (6.:2 + 1\)-1 Z'y 

=(6.:2+1\)-16.2 n. 
, 

Hence, etCH is a shrinkage estilllator, of which the shrinkage lllatrix is 

Al 0 0 0 )q+kl 

0 A'J 0 
6= A2+k2 

0 0 

0 0 0 Ap 
Ap+kp 

Therefore, the i lh generalized ridge estimator lllay be expressed as: 

A 
A 1 A 

etCR, = \ 0 kCl: i /\/ +/ 

and the i lh generalized ridge shrinkage factor lIlay be defined by 

- Ai (\ = ~~~ 
Ai +ki 

3.4.1.2 Properties of generalized ridge estimators 

Expectation 

= 6G 

Bias 

Bias[ocRJ = (6 ~ 1)0: 

Variance 

T r (A ) ") -(Z'Z) 1 -, ,) - A 0)_, 
VOl" GCR. = a-6 - 6 = a-Ou. --6 (usinq 1.29) 
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(3,42) 

Mean Squared Error 

Total Mean Squared Error 

(3.44) 

3.4.2 Suggestions for the optimal set of '<s 
The optimal set of compollents k;s leads to the minillluIlllH5E[(\:GRj. \Ve provide the following 

suggested formulae for ideal k;s. 

* Hoerl and Kennard (1970a;1970b;1980) 

(3.45) 

* Troskie and Chalton (1996) 

(Ai) 
ktcz = ((Ajar /;'2) + 1) (3.46) 

\Vhere 

Comment 

The fact that khkz and k tc ; clepencl on least squares is a disaclnllltage since the least squares 

solution is unreliable and unstable in collinear designs of matrices. 

3.5 Liu Estimation 

Liu estimation was proposed by Liu (1993) as one of the shrinkage methods of cstilllation that 

may be used whcn least squares cstimates are unsatisfactory. The mcthod was developed on 

t he basis that the hvo mostly comlllon biased met hods of estimation. Stein and ridge regression 

han- the follO\\'ing drawbacks: 
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• Stein: 

Stein shrinks all components of d with the same factor hence the Stein estimator does 

not behave well in practice (Liu, 1993) . 

• Ridge: 

Computations of ridge shrinkage parameter using suggestions like those of Mcdonald 

and Galarneau (1975) and CL criterion (Mallows, 1973) complicate estimation of k (Liu, 

1993). 

This shrinkage method was further investigated by Akdeniz and Kaciranlar, 1995; Gruber, 

1998: Liu, 2003: Akdeniz, 2001; Arslan and I3illor, 2000: Kaciranlar and Sakalliogln, 2001, 

and Kaciranlar et a1., 1999 to mention a few. This series of investigations resulted in a lot of 

amendments and corrections allCI an example has been provided at the end of this section. 

3.5.1 The Liu estimator 

The Lin estimator is defined by the least squares solution to the following linear system: 

Y** = .Y** d + E** (3.4 7) 

\vhere 

** [ E 1 f(n+p)xl = 
E* 

where d is an arbitrary constant, within the range 0 < d < 1. 

Thus the Lin estimator is 

= (X' X + I)-I (X' X + dI)/3 

(3.48) 

Let L = (V ~:2V' + I)-l(V ~2V' + (1I) 

Then, /h = L:3: hence the Lill shrinkage matrix is defined by L. 

3.5.1.1 Properties of the Liu estimator 

Expectation 

E[Jd = L3 

(3.49) 
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Bias 

Bi(Js[.3d = (L ~ I)J 

= ((V6:2V' +I)~l(V6:2V' +dI) ~ 1)3 (3.50) 

Variance 

VarPd = aJ. L(X' X)-l L' 

= a:2(V6 J.V' + I)~1 (V 6:2V' + (lI)V 6 ~2V'l(V 6:2V' + I)~l(V 6J.V' + dI)j' (3.51) 

Mean Squared Error 

(3.52) 

Total Mean Squared Error 

P )2 P 3:2 
A 2",", (Ai+ d 2",", 'i 

L\ISE[:3d=a ~\.(\. )2+(d~1) ~(\. 1):2 
i=l AI At + 1 i=1 A/ + 

(3.53) 

3.5.1.2 The choice of d 

Liu 1993 

Liu suggests the following criteria for selection of the parameter d. 

* (3.54) 

drmn is defined as a point where 1'\1 SE[JL] obtains the minimum hence the label rum. 

Liu 1993 uses the term 'the minimum l\ISE estimate' to refer to rlmm . 

* 

Disadl'antage 

- r1mm depends on 0-2 and liT, both of which are adversely affected by collinearity. 

A A 2 I:r=l 1j(Ai + 1) 
del = 1 ~ a I:r=l A/if j()\i + 1)2 

riel is computed as the minimum of 

where SSRd = Sum of squared residuals from estimation of,h and 

Hd = X(X' X + I)-I (X' X + dI)X' 

Disadvantage 

(3.55) 

riel is lllore likely to be impacted 011 11egntiwly by collinearity since it depends on 

the least squares solution. 
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* (3.56) 

Disadvantagcs 

(h is practically complicated and likely to be computed with errors. 

(h depends on 0- 2 and 0:; both of which are impacted on by collinearity. 

* Iteration of d"IITl' del or (it.: 
Liu also proposes iteratioll of either rill/Tn' del 01' (i),. For example, 

Iteration of el"lIn 

Ct : do 

where /h (d i ) = a vector of Lin coefficients estimated from the ith d. 

Initially, the least squares vector of coefficient 0: is used to estimate do. Then, do is used 

to estimate the components in ~drlo). which in turn, are input in computation of d l , so 

on and so forth. 

The sequence is only terminated when 

TrClce(X' X)-l 
where T = ------­

p 

Disadvantagcs 

- Iteration is time conslll11ing 

- The mathematical functions that are being iterated are highly likely 

to be muddled in the process. 

For simulation. we select del awl dm1n Slllce both functions are easy to cOlllpntc and time 

Sa\"lllg. 
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3.5.2 The modified Liu estimator (Liu-type estimator (Jkrl )) 

\Yc note \vithout further inwstigatioll that Liu (2003) extended the Lin estimation theory by 

introducing the estimator called the Liu- type estimator J"rl. Liu 2003 argues that unlike (3 [~. 
Jkd includes hvo constants, k auel d so that k may not just be restricted to small values while 

d may be adjusted to reduce the bias that may be introduced by large values of k. 

The improved estilllate :·hd is derived as the least squares solution to the following: 

(3.57) 

\vhere 

* [ FE 1 E(n+p)xl = ~ 

Thus the Liu-type estilllator is 

(3.58) 

where 

k and d = parameters; k > 0 and -CXJ < d < x respectively and 

j = Any estimator of .3. 

Note that for ih, 0 < d < 1 whereas for /3krl, -OC < d < x. 

If we substitute j for ;3, then 

J"d = (X' X + kI)-1 (X' X - dI)/J 

From the abow equation, (V t:,. 2V' + kI) -1 (V t:,. 2V' - (II) is the shrinkage matrix. 

Howe\·er, the fact that el is not restricted to slllall values is a huge drawback. If cl is set to be a 

positive value close to x, the diagonal entries of (V t:,.2V' + kI)-l (V t:,. 2V' - elI) approach -CXJ 

hence, (Vt:,. 2V' + kI)-1(Vt:,.2V' - dI) does not qualify to be a shriukage matrix. That is, the 

diagonal elements of (V t:,. 2V' + kI)-I(V t:,. 2V' - elI) do not fall within the range 0 < el"h < 1. 

Similarly. if d is a large negative value, the diagonal dements of CV t:,. 2V' + kI) -1 (V t:,. 2V' - elI) 

become too large to be considered shrinkage factors. 

Further, if we substitute .aR forj, then 
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By observation, negative values of d infiate ;jn while positiw values between 0 and 1 lead to 

shrinkage of j n. 

Frolll om vie\v point, inflating hnd or shrinking :3 H does not make sense. Rjdge coefficients 

are among the mostly favoured and potentially accurate estimates when collinearity is the 

problem, hence, inflating or shrinking lin only destroys the existing good qualities of the ridge 

coefficients. 

• Inflating 3R is not a good procedure in that it forces the ridge coefficicnts to be too large 

relative to the true values. 

• Also, from experience, rjH already shrinks /3 enough to correct for the problems attributed 

to collinearity. Hence, shrinking /In implies that /3 is being shrunk lllorC than necessary. 

So far, we have only substituted /3H and /3 into 3.58 and the outcome of substitution is not 

convincing that 3kd is a good estimator, However. we note without further details that the 

following estimators have been practically investigated for substitution into 3.58 for i3 and the 

results have shown that !3kd can be regarded a good estimator: 

• Ridge estimator (aR ) (Liu. 2003), 

• Principal component estimator (f3pc ) (Kaciranlar and Sakallioglu, 2001) and 

• the 1I-estimator (Arslan and Billor, 2000). 

Furt her inwstigation into the matter is beyond the scope of this thesis therefore we simply 

note the information for interest's sake. 

3.6 Generalized Liu Estimation 

The generalized Lin method of estimation IS another shrinkage method. suggested by Liu 

(1993) as a general form of Liu estimation. The mcthod follows the exact same procedure as 

Liu except that like in generalized ridge, generalized Liu method substitutes d by a diagonal 

matrix of d;.';. \vherc each di estimates a single coefficient. 
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3.6.1 The estimator 

The generalized Liu estimator is defined by the following 

= (X'X + 1)-l(X'X + D)/3 

\vhere 

ell 0 0 0 

0 ci2 0 
D= 0< eli < 1, i = 1. .... p 

0 

0 0 dp 

Let 5 = (1/,6.21/' + 1)-1(1/,6.21/' + D) 

ThelL jC;L = s.J therefore S is the shrinkage matrix for generalized Liu estimation. 

This implies that each ith clement of rjcL is shrunk by 

AiViV ; + eli 

AiViU; + 1 

3.6.1.1 Properties of .3CL 

Expectation 

E[dcr] = 5.3 

Bias 

Bias[JcLJ = [5 - 1]3 

= ((1/,6.2V' + 1)-1 (V,6.2V' + D) - 1)3 

Variance 

17 [3' J ')5 1 '''-')17'5' v (l r . c; L = 0-- v LJ. - V 
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Mean Squared Error 

(3.62) 

Total Mean Squared Error 

(3.63) 

3.6.1.2 Selection of eli 

Liu (1993) suggests the following function for estimating the optilllal set of cOlllPonents of (h 

(3.64) 

3.7 Principal Components Regression 

Principal components regression (Kendall, 1957) is one of the most widely used shrinkage meth­

ods of estimation. The method entails deletion of the dimensions of the X-space that cause 

dependencies among the independent variables. The principal cOlllPonents of X = U 6. Vi are 

defined (L'l linear functions of the independent variables specified by the colullln vectors of V. 

Consider the orthogonal linear model (l.5) 

Y = Zn+E 

where 

• the least squares estimator of a is 0: = (Z' Z) -1 Z'Y and 

• each column of Z represents one of the principal components. 

Suppose we partition Z into [Za : Zh] snch that 

• Za is a matrix of dimension (n x (p - m)), containing p-lll principal components corre­

sponding to p-m largest eigenvalues 

• Zb is a matrix of dimension (n x Tn), containing m principal components corresponding 

to III smallest eigenvalnes. 

\Ye can the rewrite equation l.5 as follows 
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where 

Oa = it vector of dilllension Up ~ m) x 1), corresponding to Zo 

0& = a H'ctor of dimension (m x 1), corresponding to Zb. 

From the relationship Z = XV (.section 1.2.1), V can also be partitioned into 

sHch that 

Z=XV=~ S ~ J 

(11 X p) (p x (p ~ m)) (p x m) 

Principal components regression entails deletion of the m principal components associated with 

the dimensions of X that cause colliuearity. Suppose we set the last m eigenvalues to zero, it 

then follows that Zbnb = 0 thus O:b = O. Hence for the p-lll relllaining components, the least 

squares estimate of O:a (principal cOlllPonent estimator of eta) becomes: 

~ = (Z' Z ) -1 Z' Y Ita a a a 

3.7.1 The estimator 

The principal components estimator (;3pc ) is defined by the following 

(3.65) 

hence:3pc is a shrinkage estimator of w hic:h the shrinkage llla trix is Va V~. 

Comment 

Unlike other shrinkage matrices/factors discussed in the preccding sections, the shrinkage ma­

trix for Jpc does not depend on the unknmvn values. This is an important quality of ,i3pc that 

even makes principal components regression more reliable and easier to deal with. 

3.7.1.1 Properties of /3pc 

Expectation 

(3.GG) 
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Bias 

Variance 

But 

Thcrefore 

__ T(, U'.J 
- ~bVb') 

(using 3A) 

~ [V, v, 1 [~" :b ]-2 [ ~: 1 

T7 [3 j :Zv V'[V A -2v' Vi A -:2V;'jV T7' v ar ,Jpc = (J a a aUa a + bUb b a va 

(since Va and Vb are orthogonal.) 

Mean Squared Error 

Total mean squared error 

P-HI 1 
:z '\""' " = (J ~ - + ,0 Y/,y/,.LJ 

i=1 Ai 

The principal components regression procedure includes the following: 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

• Estilllation of the least squares estilllate of Ct to assess significance of different variables. 

• Deletion of the principal components corrC'sponding to the smallest cigcnvaluc( s) 

• Least squares estimation of the remaining cOIuponC'uts. 
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3.7.2 Criteria for eliminating the principal components 

Thl' following decisivl' factors are vital in selection/deletion of the principal components. 

• Small eigerwaliles 

The principal components associated ,vith eigenvalues that are near zero should be 

deleted. If the eigenvalue is close to zero, then the corresponding coefficient has a large 

variance (Rawlings et al., 1998). 

• Significance of individual components 

The individual components should be tested for significance. Less significant components 

should be eliminated (Brown, 1993). The classical F test may be used to evaluate the 

hypothesis that Zb(tb = 0 (Thiart, 1990; Hill et al., 1977). Kendall (1957) recolllmends 

usage of t -tests to test the significance of the components. 

• Corrdation between the response vaTiable and the components. 

Components that are significantly correlated with the response variable should not be 

eliminated. Graphs lllay be used to determine the kind of correlation between the com­

ponents and the response variable; a nearly perfect or a perfect linear relationship implies 

the importance of the corresponding principal component in the model. 

• High variance 

The principal components with high variance should be retained (Jolliffe, 1982). Com­

ponents with small variance arc unlikely to be important in regression (Mosteller and 

Tukey, 1977; Gunst and l\Iason, 1980). However, .Jeffers (1967. p.230) argues that the 

components with slllall variances may possibly be highly correlated with the response 

variable hence turn out to be important in the model. 

• Small prediction eTT"OT 

The principal components for which the regression model has the minimum prediction 

error should be ret ained (I3rown, 1993). 

• Smallmcan squaTed erTOT 

The principal components for which the regression model has the minimum MSE error 

should be retained (Hill et aI., 1977). 

3.8 Summary 

In this chapter, we defined shrinkage C'stimation as a family of biased C'stimation techniques of 

which the ('rror risk is lower than that of least squ<tres estimation when collinearity is a problelll. 
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\Ye brought togdher Stein estilllation, ridge regression. generalized ridge, Lin, generalized Liu 

and principal COlllp()llents regression into a COllllllOIl framework of shrinkage estimation. \Ve 

chamcterizecl each of these lllethods by a uniqne shrinkage factor or lllatrix. Further, the 

properties of each estimator were specified in line with the general properties of the shrinkage 

estimator . 

To wrap up the chapter, \ve sumlllarize the properties underlying the discussed shrinkage es­

tilllators in tables 3.1, 3.2 and 3.3. \Ve provide tables to slUlllllarize the shrinkage factors, 

Tl-.ISE·s. bias. expectations and the variallces of the shrinkage methods considered in this 

chapter. 

3CR 

Shrinkage Factor / Matrix 

(V.6:2V' + kI)-l V.6 2V', 

k>O 

(V.6.:2V' + I)-1 (V .6.2 V' + dI), 

O<d<l 

TMSE 

2,\,P (A I +r1)2 (1 1)2'\'P (3; 
CJ L.i=l A,(A;+1)2 + (- L.i=l (A

I
+1)2 

( ) 2 P ( )2. 2 
2 ,\,P '\ + eli ~ di - 1 {3i 

CJ L.i=l A(A + 1)2 + L..., (A + 1)2 
I I i=l 1 

:2 ,\,p-m 1..-. + :l'Vi V;';'-1 
CJ L.i=1 A, i.J b b,cJ 

Table 3.1: Shrinkage factors and Tl-.ISE's 
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Expectation Bias 

(d sh - 1)3 

c.3 (c - l)J 

-Vi,V;3 

Table 3.2: Expected values and Bias expressions for the biased estimators 

Variance 

Table 3.~): Variallces of biased estimators 
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Chapter 4 

A new approach to ridge shrinkage estimation 

Ridge and gencralized ridge estimation methods are among the mostly favoured and practically 

convenient shrinkage methods of estimation, vital \vhen the OLS cstimates are unreliable. For 

this reason, it is inevitably crucial to review the methods and identify potential improveIllent 

tactics as the need arises. 

From previous discussions, it should be observed that there is a variety of suggestions for 

ridge shrinkage factors all of which are said to playa vital role in ridge regression. For each 

unique ridge shrinkage factor /Illatrix, there exists a corresponding ridge shrinkage method, 

the reliability of which is wholly determined by the shrinkage factor/matrix. In other words, 

each shrinkage factor/matrix determines the goodness and effectiveness of the correspond­

ing ridge shrinkage method and each method is differentiated from the rest by the shrinkage 

factor /matrix. Therefore, it is critically important to look into the best ways in which the 

shrinkage factors may be estimated. 

There is a heated controversy in application of ridge shrinkage methods; different suggestions 

arc emerging in the literature to improve on the existing concepts but there is still no partic­

ular ridge shrinkage Illethod, proven to be generally superior. Noteworthy is the fact that all 

the ridge shrinkage factors are currently dependent on the least squares regression coefficients 

and/or variance. This. from our point of view, is a huge drawback that directly impacts on 

performance of ridge estimators since least squares is unreliable when collinearity is present in 

the data. 

In this chapter. we propose a new convenient method for estiIllating t he ridge and gencralized 

ridge shrinkage factors/matrices. First, we review the current standard criteria through which 

the shrinkage factors arc being estimated and outline the potential hazard of these criteria on 

the existing methods. To conclude the chapter. we suggest a new approach for estimation of 

ridge and generalized ridge shrinkage factors. 
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4.1 The current procedure 

From the prcyiolls chapter, we note that the ridge and geue'ralized ridge shrinkage factors 

dcpend on the unknown parameters \vhieh hcwe to be' chosen or estimated frolll the data. 

Usnally. the llnknowns are estimated using the OLS solutions. Specifically, the coefficients and 

the variance estimates from ordinary least squares estimation are used to estimate the ridge 

and gcneralized ridge shrinkage matrices. 

4.1.1 Ridge 

The ridge shrinkage matrix was previously specified to be G = llT X' X = (V 6 2V' +kI)-l V 6 2V' 

(from 3.18), where k is an unknown parallleter. From a range of suggestions for estimation of 

k provided in chapter 3, we observe that 0-2 and (0: orc3) are essential in finding the unknown 

k. That is 

Label 

Q 

kqm 

k'T,ed 

Expression 

SSRk 
-'-2- + 2trace(Hkl - (n - 2) 

a 

(r - 2)0-2 L A, 

r/31 XI Xi} 

(r - 2)0-2 

/Jtrj 

(TIP Ct2) f, 
L=-l 1 

Equation number 

3.28 

3.30 

:>.31 

3.33 

3.3') 

:3.:>6 

Table 4.1: Traditional ridge constants 
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4.1.2 Generalized ridge 

Previously, \ve specified the follmving shrinkage matrix for generalized ridge regression 

where K is a diagonal matrix of unknown k;$ that have to be estimated. Again, from the 

suggested functions provided in the previous chapter, k;$ depend on the OLS solution. 

I Label Expression Equation number 

3.45 

3.4G 

Table 4.2: Traditional generalized ridge constants 

4.1.3 The hazard of the current procedure 

Estimation of ridge and gelwralitled ridge shrinkage factors from the OLS solution has been in 

application since 1970 when the corresponding estimation methods were first introduced. The 

results have always been and are still the better, compared to those of OLS when collinearity 

is a problem. However, without ruling out this fact, it is critical to take cognisance of the po­

tential harm that the OLS solution has on ridge and generalized ridge (in terms of calculating 

the biasing const ants k / ki ). 

\Yithout unnecessarily repeating the details provided in chapter 2, we emphasize that least 

squares estimation is highly influenced by collinearity; the coefficients tend to be too large, 

extremely sensitive, unstable anel even bear wrong signs. E,'en lllore important is the fact 

that the variances and standard errors of estimates arc inflated hence the estimates deviate 

significantly from the true values (imprecision of the estimates) \vhen the data are collinear. It 

should be unelerstood that imprecision of estimates imply that the estimates are vague and not 

likely to provide the correct information. Hence. it follows logically that ridge and generalized 

ridge solutions of which the shrinkage factors me dependent on the OLS solution are vulnerable 

to collinearity. 

From our point of view, the instability of the OLS solutioll is highly likely to result in erratic 

ridge and generalized ridge shrinkage estimates. This is OIle aspect that has not receinxl 
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attention but which has thc potential to pcrtnrb the ridge estimation methods. In VIeW of 

this. \ye suggest a new procedure for estimating the shrinkage factors independent from the 

OLS solution. 

4.2 The new procedure 

\Ve propose that the solution to principal components, setting the smallest root to zero should 

rather be substituted for the OLS solution in estimation of the shrinkage factors/matrices. 

\\·e use the following criteria to select the alternative for OLS. 

• Robustness to collinearity: 

\Ve splect a procedure that is more stable than OLS and less likely to be impacted on 

by collinearity. Like any other shrinkage estimation procedure, principal components 

regression deleting at least one smallest root is a remedy for collinearity and is less likely 

to be adversely effected by collinearity. By eliminating the dimensions of the X-space that 

are causing the problem, principal components regression removes collinearity instantly 

(chapter 3). 

• Non-dependence on OLS solution: 

\Ve choose a procedure that does not depend on the OLS solution. Unlike most of the 

shrinkage estimators of which shrinkage factors require the OLS solution, the principal 

components shrinkage matrix docs not rely on the OLS solution. 

Since principal components regression meets both criteria, \ye consider it the most eligible 

procedure to substitute the OLS solution in estimation of the ridge and generalized shrinkage 

factors. However the following points should be taken into consideration. 

• \Ve suggest and cmphasize deletion of the smallest root because tllf' stability of principal 

components estimates is observcd when the extremely small singular values are removed 

from the regression model. \Ve are not proposing deletion of more than one roots be­

cause most often, the principal components regression solution stabilizes after deletion 

of the smallest root. Nonetheless, we cannot generalize and rule out the possibility that 

principal component regression deleting more than one roots could also be substituted 

for OLS in estimation of the shrinkage factors. \Vhere necessary, more than one smallest 

roots Illay be set to zero; the important issue is to avoid estimation of shrinkage factors 

from the OLS solution when the data are collincar. 

• If zero singular values are elilllinated, the principal components regression and OLS give 

similar results. hcnce the proposed substitution would not make sellse. The principal 

J--l 
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components estimator heCOlllE'S a :-;hrillkage estilllator ollly whell at least one smallest 

singular value is removed. 

The proposed procedure illl poses changes in t he functions for the llnknmvn parallleters used 

to estimate the ridge and generalized ridge shrinkage factors. \\'e illustrate the changes below 

aud assess performance of the new ridge and gcneralized ridge estimators (those that are based 

on the uew procedure) in the simlliation study (chapter 5). Note that the subscript 'pcdell' 

illlplies the use of the solution for prillcipal components regression, setting the smallest singular 

value to zero. 

4.2.1 Ridge 

Table cl.3 presents the functions for the new proposed parameters for the ridge shrinkage factor. 

I Label Expression 

I 
'.:l 

khk-new 
a pede I 1 

;3pedel1 2 

(!L-new 
,,)'8Hk 
-':l-- + 2trace(ih) - (n - 2) 
a pedell 

A.:l 

khkb-new 
papedell 

A A 

!3~cdell ,Upedell 

Qnew 6' /3 A 2 ,£P A-I , pedell pedell - a pedell i = 1 i 

klw-new 
. A 2 / ,£p-m A 2 A 
pa pedell i = I O:pedell, i 

khsl-new 
A 2 ,£f=1 (AU3pcdellJ

2 

a periell ('£ p A :~2 )2 i=l iiUpedell ( . - ')r 2 ,£P m A 
klwm-new 

7 ~ apcdell i=1 I 
A A 

';3' x' ";(;3 7 pedell j' pedell 

m=the llUIllbcr of the eliminated eigenvalues 

khkbm-new 
(7" - 2)o-~edell 

A A 

;3;)(:del d3pedell 
p-m A') 

!tam-new 
1 L (apCdell ) 

(p - Tn) i= 1 {t~edelli 
A.:l 

kgm-new 
apedell 

(rIP- m 
A 2 ) p~m 

i=l Qpcdell; 

"'med-new 
. (o-~Cdell o-~edell) 

median '.2 , ... , A2 

Ctpcdelll apce/ell >-m 

Table 4.3: New ridge constants 

-1-5 
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4.2.2 Generalized ridge 

Table -!A present the ne,v proposed generalized ridge parameters: 

Label 

k!r-nrw, 

Expression 
" 
CJpcdell 
, .) 

('pedell, 

Table 4.4: Ne,v generalized ridge constants 

A crucial point to take note of is that for 

the condition Ctpeddlp = 0 leads to khk-newp = DC. 

(4.1 ) 

Therefore we propose substitution of min(khk-np.wl"" khk-newp_l) for khk-np.w p = 00 (the pth 

element of the shrinkage matrix) to avoid computational complications. Hence the proposed 

matrix shrinkage is the following 

khk-nICWl 0 0 

o khk-new2 0 
K= 

o 

o 
o 
o 

o o n~in( khk-neWl) ... khk-newp_l) 

\\'e investigate performance of the estimators associated with the above stRted biRsing factors 

in a simulation study; details are provided in chapter 5. \Ve compare the new estilllators 

wit h their corresponding known estimators '(old)' and the rest of other shrinkage estimators 

considered in chapter 3. 

4.3 Summary 

A npw approach to estimation of the unknowns for ridge and generalized ridge shrinkage 

matrices was presented in this chapter. The np",: approach cntails substitution of the OLS 

-1-6 
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solution by the solution from principal components regression. setting the smallest root to 

zero. The new method is expected to improve Oil the existing olle since it dqWllds on a stable 

solution. 

-1-/ 
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Chapter 5 

The Simulation study 

Shrinkage estimation has received a wide application in statistical research. Hence, a lot of 

papers are available in a variety of journals where shrinkage methods are proven to be effective 

in dealing with the problems attributed to collillearity. An extensive application of shrinkage 

methods over a rallge of problems is considered a necessity to judge the value of the pmerging 

improvements over the old shrillkage methods. 

In this chapter, we review some of the past simulation studies and present a simulation study in 

which we compare performances of 24 biased estimators relative to the OLSE. The estimators 

consist of 2 principal components estimators (deleting one and two roots) 1 the Stein estimator 

of .James and Stein (1961), the generalized Liu estimator and 2 Liu estimators suggested by 

Liu (1993), 14 ridge estimators; 7 of which are based on the new proposed method and 4 

gencralized ridge estimators; of which 2 are based on the new method proposed in this study. 

The chapter is structured to provide: 

(1) Past simulation studies (§ 5.1): 

\Ve review and summarize some of the past simulation studies on comparison of shrinkage 

methods. 

(2) The distinction betwccn this study and past simulation studies is drawn in (§ 5.2). 

(3) The design of the simulation study (§ 5. S): 

\Ve present our simulation study in the follo'vving manner 

The structure of the X matrix (§ 5.3.1), 

The collinearity level of X (§ 5.3.1.1), 

The structure of Y (§ 5.3.2), 

Distributions of error terms llsed to gellerate Y (ti 5.3.2.1) 

(3) The basis for comparison of estimates (fi 5A) 

(J) The sinmlatioll program (~ 5.5) 

S-l 
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5.1 Past simulation studies 

\Ye reviewed 16 simulation studies on shrinkage estimators. For conw'niencc. these studics are 

sllllllllarized in Appendix D. 

In all t he studies 

• OLS was used as a yardstick 

• I\Ieasure of effectivencss ranges from I\ISE, TI\ISE. residual prediction error, relative 

cfficiencies and Pitman measures (column 2 of table D1). 

In these comparisons, all the authors had at least one of the 'ridge family' estimators in the 

list of estimators compared. Thiart (1994) had the most comprehensive list while FU (1998) 

considered one of the recently introduced special cases of ridge, lasso. 

The authors reported that ridge performs the best. However. Thiart (1994) reported that ridge 

estimators outperform OLSE, but that it was not necessarily the best; the author could not 

identify a unique 'best' shrinkage estimator. 

5.2 Why is this study unique? 

In the previous simulation studies very little has been done on performance of shrinkage esti­

mators across different error distributions. In almost all the reported studies, the error terms 

were ahvays assumed normal. \Ve carry out a simulation study in line with Thiart (1994) and 

Thiart et al. (1993) and identify the followillg features that make our study different from 

previous studies. 

• \Ye consider a range of error distributions and different variance levels: four distributions 

and three different variance levels. 

• \Ye propose a new method for estimation of shrinkage factors/matrix. 

• \Ye focus our attention on pcrformallce of 24 shrinkage estimators, including 6 of the 13 

investigated by Thiart ct al. (1993) and Thiart (1994). 

• \Ye use a different method of data generation. For a lincar model 

i = 1 .... 30 

5-2 
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both Thiart et al. (1993) Hnd Thiart (199cl) employed the l\Icdonald allCi GarlarueClu 

(1975) data generation method in which 

i = 1) .... 30 (f n d j = 1. 2, 3 

and 

i = 1, .... 30 and j = cl. 5 

\\·here 

:::;)8 =N(O,l) independent variables 

:l"ij =the ith dement of the /il colullln of X 

Q;S =parameter::; that determine the level of dependencies among the independent 

variable::;. 

HO\vever, we ::;pecify integers for Xl and X:3 and compute the other three colunlIls a::; 

cOlllbinations of the two (§ 5.3). Further, we ::;pecify one arbitrary vector of (3:8 whereas 

Thiart (199cl) ::;dected two;3; eigenvectors of XiX corresponding to the smallest and the 

largc::;t eigenvalues. 

5.3 The design of the simulation study 

5.3.1 Generating the X matrix 

The X lllatrix is an extension of a ::;lllall illustrative example in Rawlings et al. (1998, p.372). 

\Ye extend Rawling's (20 x 4) matrix to a (100 x G) matrix of independent variables. 

The X lllatrix i::; generated as follow::;: 

For n=L ... ,lOO 

• The first colullln consists of ones, thus 

• Column 2 (X2 ) is a sequence of numbers frolll 20:29 \vith an increment of 1, repeated to 

make 100 observations. 

• Colullln 3 is column 2 with 25 ::;ubtracted from it and observations 1 and 11 changed to 

-4 to avoid direct collinearity. 

X;, = X:2 - 25. 

5-3 
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• The fourth C01UUlll is a periodic sequence fUnning (5,-!.3.2.1.2.3A.5,6) repeated to make 

100 obseryations. 

• Colulllu 5 is 5 plus the differeuce betvveeu X:2 aud Xl. To Elyoid direct colliucarity, we 

change observations 54 and 96 to 5 and 2 respectively. 

X.~ = X:2 - X.l + 5 

• The last columu is colulllu 4 with 10 subtracted and observations 38 and 100 both changed 

to 3. 

X6 = Xl - 10 

Thus: 

1 20 -4 5 20 -5 

1 21 -4 4 22 -6 

1 22 -3 3 24 -7 

X= 

1 28 3 5 28 -5 

1 29 4 G 28 3 

One of the primary objectives of this study is to compare different shrinkage estimators when 

there exists extremely high collinearity among the indcpendent variables. Hence, it is critically 

important to ensure existence of extreme collinearity in X before proceeding any further. 

5.3.1.1 Collinearity measures of X 

By observation, we could conclude that the generated X matrix is collinear since some columns 

are generated from others. However, this would not be good enough to expose the magnitude 

of collinearity prescnt in X. Also, we would not even know whether or not the existing level of 

collinearity satisfies the requircments for our objectives. Thus, \ve sunlIllarize the collinearity 

diagnostic results for the standardized X matrix table 5.1. 

\Ve iudicate extreme collinearity in red and italics. From the diagnostics, we conclude that X is 

extrcmely collinear. T\vo of the five VIF valucs are larger than 10, both the last eigenvalue and 

the last singular value are very slllall cOlllpared to others, the coudition number (last condition 

index) is around 50 and the lllci is very close to 1. In addition, the correlation lllatrix, indicates 

four strong bivariate correlations between the following pairs of variables: (Xl and X 2 ), (Xl 

and X.I ), (X:2 and Xl)' and (X3 and X",). 

Looking at the variance proportiolls, it is clear that two cOlllponents with slllall eigenvalues 

contribute more than .50S{ to two regression coefficients: that is. the 5th (last) pc contributes 

5-4 
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more than 99% 1.0 Xl and X2 while the 800()fld l>lSt (1"') contributc»; more t hill! IsIl'X \<) X , 

ami X~. Wc notc wilh eC'rtainty that the i"dcpcnriA"t. ""riabl'" are highly oorrAlatoo. Hen"" 

Wf' ,,"" I.h ~ coll iH ~",r X ma\rix to gene rate the dependent variable Y. 

5.:1.2 Generating the dependent variable, Y 

y Xi},. +, 

where 

It,. is a (Ii x I) w;ctor of true oo"ffi~i ents ~hoscn ""ch t.hat 

l 10 OA 05 0.25 0.3 4.5 i 
• 

anri X i, rlefinerl oy 

wilh X, lwing thp i,h 100 x 1 oo lumn of thA mat rix delilloo earlie r ill thi' d laptt'r. 

, is a ICXl x 1 Yl"\or of random ~rror tl!ffi1' with mean zero, fuwd across rliffprent varianril 

leve l" ((12 2,25 and 100) an d follow;"g ~hhpr Normfll, Laplac~, Ex ponential or Student', I 
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distributions. Our experiment consists of 

24 x 3 x 

estimutors vaTZancc distributions 

levels 

For each experiment. 500 monte carlo simulations (repetitions) are made. 

5.3.2.1 Generating the error terms 

\Ye are keenl.v interested in finding a robust biased estimator that is not tied into normality 

hence our selection of error distributions includes long tailed distributions (non-normal). \Ve 

want to observe \vhethcr or not heavy tailed distributions of error terms influence performance 

of estimators. The biased estilllators are expected to perform outstandingly better than the 

OLSE when the error distribution is long tailed (Student's t) since the latter is too sensitive 

to extreme values. 

All the programming is done in R; it command based statistical software package developed for 

statistical analysis. freely accessible at http://cfan.r-project.org. The pseudo-random variables 

are generated from R built-in functions. The built-in functions generate the random variables 

in the following lllanner: the R pseudo-random generator produces a 32-bit integer whose top 

31 bits are divided by 2:31 to produce a real number in the range (0,1) (details are provided by 

Ripley (1987) and Venables and Ripley (1994)). Once the integers are generated, R uses them 

to produce values from the different distributions. 

Full program details are given in appendix A. 

Normal error terms 

The probability density function of the Normal distribution is given by 

1 _1 (x_I')2 

1x(.7:) = --e 2 a
2 

(JV2ii 
- ex:; < x < Xl, -x < fL < x, (J > 0 (5.2) 

\Yhcre IL and (J represent the mean and the standard deviation, used to specify location of the 

data and the spread of the distribution respectively. In this study, f-L = 0 and (J is varied across 

the three vahles as shown below 

\Ye generate each colllllln of 100 randolll normal error tenllS from the following function 

rnorrn(100, O. (Ji), i = 1,2,3 

where 

(Ji = 0.1414.5.10: corresponding to the variance levels (Jf = 2.25.100 respectively 

5-G 
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I' = E(E) = 0 

II = 100 

Student's t error terms 

The probability dellsity function of the Student's t distribution is defined by 

- x < :E <x. V > 0 

where v is the degrees of freedom. 

(5.3) 

\Ye generate each Student's t error variate as a ratio of a standard norlllal variate to the root 

of a chi-squared variate divided by the corresponding degrees of freedom as shown below. The 

numerator and the dcnominator are independent. 

rnorm(100, 0,1) 
(5.4) 

Jrchisq(100, Vi. nep = O)/Vi 

where Vi represents the degrees of freedom (non-negative) and ncp is the non-centrality para­

meter (non-negative), set to zero. 

The variance expression for a Student's t distributed variable is (J"2 = _"_I - for all even mUll­
v-2 

bers greater than two (v > 2) and zero otherwise. Hence, computation of v (the degrees of 

) 
.) v "2 

freedom from the formula (J"- = ~- requires the condition that (J" > 1. 
v-2 

The Student's t degrees of freedolll used for simulation in this study are computed to be the 

following: 

i 1 2 3 

') 
variance ((J"i) 2 25 100 

2(J""2 
! 4 2.083 2.020 Vi=~ 

(T. -

Table 5.2: The choice of v 

Hellce. we extract the degrees of freedom (Vi) ane! gellerate each of columns of the Studeut's t 

error terms using equation 5.4. 

5-7 
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Laplace error terms 

The Laplace density function is given by 

fx(.r) = ~ 
2c 

_II-al 
e r -00 < J; < OC, -x < a < x. 

Hence the general distribution function may be defined by 

F(J) ~ 1 
1 (I-a) 

- e c 

2 

1 _ (x-a) 

1-- e c 

2 

;1; < (l 

x>a 

with a = mean and c defined such that the variance of X= 2c:2. 

('>0 

\Ye fiud the inverse function of the distribution fUIlction and express the Laplace variable in 

terms of a uniformly distributed variable in the following manner: 

Lpt It = F(.L·) and .r = F(u)-l 

For x < a, 

For .J: > a, 

2u 

In(2u) 

c{ln(2u) } 

II 

2{1-1l} 

In{2(1 - u)} 

c{ln[2(1 - u)]} 

1 (x-a) 

-e c 

2 
(x-a) e-c -

(.J: - a) 

c 
J; - a 

a+c {In(2u)} 

(:J: - 0) 
c 

a-x 

a - c{ln[2( 1-u)]} 

where u is a random ulUuber betweeu 0 and 1 (LL rv U(O, 1)) 

Howe\-er. since the concern in this study is mainly on zero mean distributions, we set a=O and 

cOlllPute the Laplace error values from the following expressions: 

.1' = c In ( 2 II ) fOT 0 <::: 1/ <::: 0.5 ([lid .1' < 0 (5.5) 

5-0 
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and 

.1' = -c In(2[1 - ul) JOT O.5:Su:S1 (Inri .1'>0 (5.6) 

\Yc compute c to correspond to the desired variance lewIs as shown iu table 5.3. 

i 1 2 3 

variance (of) 2 25 100 

fJ OJ 
Ci= -

2 
1 3.536 7.07 

Table 5.3: c estimates for Laplace distribution 

Heuce, we cOlllPute each Laplace error term from 

errlap[i] = Ci * log(2 * TlLnif(l, 0,1)) for .r < ° 
and 

errlap[i] = -Ci * log(2 * (1 - TlLnif(l, 0,1))) for J: > 0 

where rWlif(1. 0,1) = a random number between ° and 1. 

Exponential error terms 

An exponcntially distributed random variable X has the density fuuction 

J: > 0, A> 0. 

1 1 
\vith mean>: and variance A2 ' 

\\'e generate the colulllns of exponential error tenns from the function 

i = 1. 2, 3 

wherc A;S correspond to the three desired variance levels. 

? 1 ? 
Siuce (T{ = A2 ' we equate aT to each of the desired levels of variance and solve for the unknown 

I 

parameter Ai as shown in table 5.4. 

5-9 
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i 1 2 3 

variance (an 2 25 100 

Ai~p 0.707 0.2 0.1 
a z 

Table 5.4: A estimation for Exponential distribution 

One way to generate X would be to find the inverse function of the Exponential distribution 

function 

F(T) = 1 - e- A
£ 

and solve for x. The resulting expression would be 

.r = 
-l7l(1 - u) 

A 

where u is a random llUlllber between zero and one: (u "-' U(O. 1)) 

5.4 The basis for comparison of estimators 

(5.7) 

(5.8) 

The differences bet\'.;een the estimated coefficients and the true coefficients form the basis for 

assessment and comparison of the listed biased estilllation methods. \Ve note from the previous 

chapters that when two or more independent variables are collinear, the OLSE exhibits large 

variance and mean squared error, hence, the bias becomes a requirement for reduction of 

the 1ISE and the variance. In this study, we are mainly concerned with comparison and 

id('ntification of the biased estimators of which the estimates deviate the least from the known 

true parameters, relative to the rest of the ('stilllators considered for simulation. 

The comparison of estimators is based on the following 

• minimulll squared Euclidean distance between the estilllates and the true values (TI'vISE) 

and 

• maxilllulll efficiency of each estimator relative to the OLSE. 

For each estimator, we define the relative efficiency to be a ratio of the total meau squared 

error of the OLSE to the total mean squared error of the estimator: denoted by 

RE[J] = _T_jI_S_E_U~3) 
TMSE(d) 

0-10 
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\\'here j is the estimator of \vhich the efficiency is being cOlllPuted, relative' to J. 

The relative efficiencies allow direct comparison of the biased estilllators to the OLSE hence we 

use least squares as a yardstick. \Ve characterize an efficient estimator by a large value of BE. 

From the definition of RE[/i] it should be easy to observe that if TIHSE(j) is smaller than 

TJISE(J), then REP] is expected to be large and vice versa, For simplicity and convenience, 

\VC interpret the magnitude of relative efficiencies in the follmving manner: 

An estimator j is more efficient than the OLSE if RE[J] is greater than 1; greater than 

1 in this context means anything beyond 1.01. Note the following: 

* 1 ~ REP] ~ 1.01 is considered equivalent to 1 and the corresponding estimator /'j is said 

to be similar to the OLSE. 

* Estimators whose RE values are less than 1 (RE < 1) are considered less efficient. 

Based on the 500 repetitions, a biased estimator of which the relative efficiency is the highest 

is said to be the most efficient, compared to other shrinkage estimators. 

The comparison is performed through the following subsequent steps. 

• For each method of estimation, we estilllate the regression coefficients from the simulated 

data and obtain 500 sets of betas. Each set of coefficients is a (p + 1) x 1 column vector. 

• Subsequent to obtaining the coefficients, we compute the squared sum of the difference 

between the obtained coefficients and the prior knmvn coefficients (;3T ). For each method 

of estimation, a sUlllmary of the 500 replications is given as 

(j 500 

L LC,3ji - 3TJ2 
j=II=1 

where 

3j i = the ;th estilllate in the i 1h replication, corresponding to auy of the estiltlators 

uuder consideration 

.3T] = the i h dements of /h· 

• Hence the relative efficiencies are computed from 

(j 500 6 .-iOO 

LL(Jji - 31j)2/ LLUiji -:h;):2 
)=1 i=l j=1 i=l 

where J)i = the ;th ordinary least square's estimate ill the i1h replication. 
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The method of estimatioll that results ill the mlllllllUm Tl\ISE and the lllaxinnull relative 

efficicncy (RE) relative to other met hods is the lllOSt preferred and is considered 'best' in the 

context of this thcsis. 

The 2-1 estimators used in this study are summarized in appendix C. 

5.5 The simulation program 

A Sllll1mary of the R simulation program is provided III this section. \Ve do not specify the 

syntax in this Slllllll1ary but rather concentrate on the fiow of the program or the sequence of 

simulation steps. Full program details are provided in appendix A. 

For each of the fom selected distributions (Normal, Student's t, Laplace and Exponential) and 

each of the three variance levels (CT2 = 2,25 and 100), we nUl 500 simulations. \Ve compute the 

X matrix and error terms in R and store them as Excel files. For each of the 500 simulations, 

the error terms and the X matrix are used to compute the dependent variable. 

The dependent variable and the predictor variables are standardized; X is centred and scaled 

to be in correlation form. \Vith the standardized variables, we do least squares estimation and 

principal components regression deleting no roots, one root and t\VO roots. 

\Ve extract the coefficients and the variance estimates from PCdell and the OLS and compute 

the required unknown parameters for ridge, generalizcd ridge, Stein, Liu and generalized Liu 

estimation methods. The respective estimators are computed and transformed back to the un­

standardized form. Hence the mean squared error, total mean squared error and the relative 

efficiencies for each of the estimators are computed and \\Titten to Excel files. 

\Ve define the relationship between the standarclizecl and the unstandardized regression coef­

ficients by the following expression 

implying that 

where 

J* = a \'ector of standardized coefficicnts 

3 = vector of unstandardizcd coefficients 

.'i.r = the root of the sum of squared colulllns of the centered X. 

8~ = the root of the sum of squared centered obsernltiolls in Y. 
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5.6 Summary 

III this chapt(,L the simulation study was presellt('d and SOllle of tIl(' preVIOUS studies were 

re\-ie\\wl. compared and differentiated from this study. Fnrt h(,L the basis for cOlllpluison of 

estimators alld the silllulation program summary were provided. 
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Chapter 6 

Discussion of Simulation results 

Results of the sinl1llation study are presented and discu::;sed in this chapter. The relative 

efficiencies of 24 shrinkage estimators at three levels of variances of error terms and four 

different distributions are discussed. vVe split up the discussion into the following sub-sections: 

• Overall perforrnance of estimators: we discuss the general performance of shrinkage 

estimator::; relative to the OLSE. Further, the issue of whether or not the new estimators 

improve on the old ones is investigated. 

• Relative perfoT7nance of estimators by variance levels x distributions: the efficiencie::; of 

individual bia::;ed estilllators across the variance level::; and di::;tributions arc discussed. 

• General perforrnance across different families of estimates: the discussion focuses on 

performance and comparison of families of estimators. 

6.1 The Results 

\Ve present the relative efficiencies (REs) of the biased estimators in table 6.1. Except for prin­

cipal component::; regression methods, genemlized Liu and Stein estimation, each estimator is 

represented by the corresponding parameter. The rows correspond to the estimation methods 

and the columns correspond to the distributions and the variance levels. 

\Ve do not tabulate the REs in any particular order since for each variance, the values fluctuate 

acros::; the four distributions hence ::;orting become::; difficult. For each di::;tribution at a partic­

ular level of variance, the large::;t RE value i::; written in italics and coloured in rccl. Further, 

ne\v estilllation methods proposed in this study are highlighted in blue to differentiate them 

from t he rest. 
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6.2 Discussion of results 

6.2.1 Overall performance of estimators 

• 19 out of 2.J biased estimators are more efficient than the 0 LS E at all three variance 

levels and fom distributions. The efficient estimators include all ridge and generalized 

ridge estimators and the Pedell estimator. The Stein estimator and two of the three 

Lin estimators do not show any efficiency at all. regardless of the distribution nor the 

variance level. Further, pedel2 and one of the Lin estimators show efficiency only when 

the level of variance is high and the distributions are not long tailed . 

• The new estimators show an improvement over the corresponding old estimators. The 

following cases are the only exceptions for which no improvement is observed. 

Estimator Distribution Variance level 

khkb--new -Laplace (7:2 = 2 

-Normal 

kl1L'm~new -Exponential (7:2 = 100 

-Laplace 

kam -Normal (7:2 = 100 

Table 6.2: Exceptional cases for improvement 

6.2.2 Relative performance by variance levels x distributions 

\Ve observe an overall positive relationship between the variance of error terms and perfor­

mance of shrinkage estimators relative to the OLSE. The relative efficiencies of estimators 

increase drastically \vhen the variance increases, implying that the biased estimators are more 

advantageous over the OLSE when the variancc is large. 

6.2.2.1 Relative performance when (72 = 2 

\Ve outline the 'best' eight performing estimators in table 6.3. There is a similarity between the 

distributions: pedell, k(!m~new, kl1Vm~new and kgm~lIew arc consistently the fonr most superior 

in all the distributions. This implies that the distributions do not influence performance of the 

estimators when the variance is small. 

6-:3 



Univ
ers

ity
 of

 C
ap

e T
ow

n

1 2 3 cl 5 6 7 8 

N PCden kUl11-1lew k/'wlll-new kgm-new khkb-ncw kmrd-new !(hk-ncw klw-neul 

k gm !\tc-ncw 

I 
Exp peden kam-n('w k/,wm-ncw kgm-new kmed-ncw k gm !\hk--ncw k/w - new 

khkb-new !(tc-new klw-new 

k wn 

I Lap peden kalll-npw kZwm-new kgm-new khkb-new k gm kmf'd-new Ktc-new 

!(hk-new 

t PCden kWH-new kZwlll-new kgm-new khkh-new kmed-new !(tc--ncw kZw-ncw 

!(hk-new 

Table 6.3: Eight 'best' performing estimators, ranked from pt to 8th : 0- 2 = 2 

6.2.2.2 Relative performance when 0-
2 = 25 

There is a significant increase in the REs compared to those of 0-
2 = 2. implying that the 

variance might influence performance of estimators. \Ye summarize eight 'best' performing 

estillmtors over the distributions when 0-
2 = 25 in table 6.4. 

I 
1 2 3 4 5 6 7 8 

N peden !(tc-new K tc !(hk-new kgm-new kmed-new khkb-new kZw-new 

Exp peden 1(/c-new K te Khk-new kgm-new kmed-new khkb-new kZw-new 

Lap peden kZwm-new kgm-new khkb-new kam-new !(te-new Kkk-new kmed-new 

t peden kalil-new kZwm-new kgm-ncw khkb-ncw 1(te-new !(hk-new kmcd-new 

Table 6.4: Eight 'best' performing estimators, ranked from pi to 81h : 0-2 = 25 

• The Pedell estimator is consistently outperforming the rest of the estimators for all 

distributions: a similar result was observed when the variance was small. This might 

be the implication that Pedell is not influenced by ncither the variance level nor the 

distribution. 

• Normal and Exponential distributions are similar, perhaps because the two are of the 

same family. 

• The new estimators are superior to all other estimators except the Pedell estimator; 

implying t hat the new proposed lllethod is effective. 

6.2.2.3 Relative performance when 0-
2 = 100 

Gcnerally. the RE \'ellues arc much higher than those obse1'\"(.'(1 \yhen 0-
2 = 2 and 0- 2 = 25. In 

Table 6.5. t Ilf' 'bcst' eight performing estimators are sUlllmarized over the distributions, when 
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0-:2 = 100. 

1 2 3 4 5 G 7 8 

N !\tc-1lew K t(, !\hk-ncw k/ w - ncw Khk killed PCdell kgm-new 

Exp !{tc-new K tc Khk-ncw klw-ncw Khk kmed PCdell kgm-ncw 

Lap PCdell k/wm-new kgm-new khkb-ncw kam-new !\tc-new !(hk-ncw kmed-new 

t PCdell kam-new k/wm-new khkb-new kgm-new !{tc-new !(hk-IU'w kmed-new 

Table 6 .. 5: Eight 'best' performing estimators, ranked from pi Lo 81h : 0-
2 = 100 

• \Ye observe an incredible performance by the cstimators corresponding to Ktc-new, K tc 

and Khk-new whcn the error terms follow Norlllal and Exponential distributions. 

• There is no significant change in the relative efficiencies for the Student's t distribution; 

the order of performance of estimators is the same for all \·ariance levels. Hence it lllay 

be said that the variance does not play an important role in the Student's t distribution. 

• There is more fluctuation in performance estimators. PCdell and kgm are ranked 7 and 

8 in Normal and Exponential distribution however, for Laplace and Student's t, PCdell 

is dominant and kgm is among the first five 'best' performing estimators. 

6.2.3 General performance across different families of estimators 

• All ridge estimators except Khk (at 0-
2 = 2) perform better than the OLSE at all variance 

levels and distributions. 

• \Ve cannot generalize on the principal componcnts family, hO\vever, we note that the 

PCdeli estimator is outstandingly a good, stable estimator, PCdel2 does not perform 

well hence we do not consider it advantageous in this study. 

• In this study. Stein is not superior to OLS at all orientations; four distributions and three 

variance levels. 

• The Liu family is also not doing too well: none of Liu (,stimators significantly outperforms 

the OLSE. 

6.3 Summary 

In this chapter, we prescnted the simulation resnlts. It has bccn found that not all the shrinkage 

estimators considered in this study are more efficicnt than the OLSE. The PCclell estimator 

is superior to all other estirnators. Also, there is a positive relationship between perforIllallce 
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of estimators and the variance of error tenus. 

Estimators associated \vith the new proposed method arc generally perforllling better than 

(superior to) thp OLSE and other biased estimators. The rE'latiw' efficiencies increase with the 

variance. It has been observed that there is more variation of performance of estimators across 

the four distributions as the variance level increases, implying that the small variance docs not 

infiuence the esimators. 
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Chapter 7 

Summary and Recommendations 

In this chapter, \ve evalnate the objectives of this study, draw conclusions and make reCOIll­

mendations. 

7.1 Evaluation of objectives 

\Ye re-examine the objectives of this study with a view to determine whether or not they have 

been achieved. 

The primary objectives of this study were the follO\ving 

• To propose a new method for estimating the shrinkage factors. 

The motivation for this objective was provoked by the fact that the traditional methods 

are vulnerable to C'ollinearity since the methods depend on OLS, a procedure that has 

been shown to be highly bugged by existence of collinearity. Onr prior expectation was 

that the new method wonld show a significant improvement over the traditional methods 

since the new method is independent of OLS. The results shO\v that the new proposed 

method is indeed an improvement of the traditional methods hence the objective has 

been achieved. 

• To classify 24 biased estimatoTs under one category of shrinkage estimation with a view 

to determine the most effective and robust estimator. 

The desire to achieve this objective was stimulated by the fad that there is currently 

no ontstandingly best performing biased estimator. \Ve hoped to identify one or more 

predominant biased estilllator( s) from the ll('W estilllators. From the resnlts, we observe 

t hat principal components and the ridge family are the 'best' but we still cannot generalize 

on the onbtanclingly snperior estimator, 
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7.2 Conclusions 

\Ve draw the follmving general conclusions: 

• Biased estimators Oldperjonrt the OLSEu,hen collineahty is present in the data. 

The implication of this conclusion is that biased estimators are more reliable and closer 

to the true values than the OLSE when X is not orthogonal. The same conclusion 

\vas reached by Hoerl et al. (1975); 1Iarquardt and Snee (1975); Guilkey and Murphy 

(1975): Lawless anel Wang (1976): Hoerl and K('llnard (1976): Hocking (1976); Gunst 

and 1Iason (1977): Winchen and Churchill (1978): Thiart et al. (1993); Thiart (1994); 

I3reiman (1995); Aldrin (1997); Fu (1998): Kaciranlar and Sakallioglu (2001); Wendwko 

(2001): and Lin (2003). 

• The rW11' proposed procedure leads to a significant improvement in perJormance oj the 

shrinkage estimators. 

From the results, the estimators associated with the new proposed method outperform the 

known estimators, of which the bia,sing factors are based on OLS solution. This implies 

that the Hew method is effective and should be implemented to improve on shrinkage 

est illla t ion. 

• The distribution oj error terms plays a minimal or no role in perjormance oj biased 

estirrwtors. especially when the va'riance is small. 

From the results, \ve observe that for the least variance, the RE values are nearly sim­

ilar for all four distributions. Hence, the distribution of error terms docs not influence 

performance of biased estimators. This conforms with the conclusion drawn by Thiart 

(199cl) . 

• The relative efficiencies increase with the variance. 

\Yt' note from the findings that the relative cfficicncies of biased estimators increase 

considerably as the levels of variance increase. This mcans that the biased estimators 

are affected by the level of variance of error terms: large variances are likely to indicate 

good performance of shrinkage estimators. A similar conclusion was reached by Thiart 

(1990). 

• PCdel1 is optimal Jor the data set used in this study. 

The sinllllation results indicate that the PCdel1 estimator is outstanclingly superior to 

all the estimators considered in this study. HmH'wr, some of the stucli(~s do not report 

allY particular better biased estimator relative to others. This illlplies that the efficicncy 
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of a hiased estimator depends on the levpl of collinearity and the shrinkage factor/matrix. 

Alt hongh principal component regression is optimal in this stndy, we cannot generalize 

the resnlts. Furthermore, principal component analysis transforms the data into new 

artificial data-specific variables making the results difficult to interpret in general. In 

contrast, ridge regression deals with variables in their original form, hence it is nmch 

easier for the experimcnter working with the data as all the variables are included in 

t lwir original form in the model. 

• Thc ridge family of estimators is consistently better than other families. 

Apart from Pedell, we observe efficient perfonnance by all ridge and generalized ridge 

estimators. This implies that ridge regression is imperative and should be considered in 

many applications. 

• Liu estimators are not ideal for the data set used in this study. 

The Liu family of estimators performs disastrously at all variance levels. This could 

imply that 

Liu estimators are incapable of handling collinearity problems or 

the effectiveness of biased estimation techniques varies across the kinds of data 

analyzed; meaning that not all the methods are appropriate for usage all the time. 

Owing to the conclusions stated above, we provide the recommendations below. 

7.3 Recommendations 

* Use biased estimation methods in collinear designs of matrices. Biased estimators out­

perform the least squares estimator in the presence of collinearity. 

* \Vhere possible, refrain from using the OLS solution to estimate the biasing factors. 

Rather use the principal components solution instead of OLS. This has a critical impor­

tance in improvement of some of the biased estimation methods, more especially when 

principal components estimates exhibit much stability. 

* In analysis of collinear data, explore different biased estimation met hods to identify one or 

more that best suit the circulllstallces and the problem at hand. Include ridge regres~ion 

in the search for the optilllal biased methocl(s). 
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* Inwstigate further into potential improvelllent of biased/shrinkage estimation and ap­

propriate met hods for cstinmting the biasing factors. 

7.4 Further research 

• \Ye recolllmend further investigations into our new proposed method, using different data 

sets and other orientatioIls. 

• It could be interesting to see pcrformaIlce of new estimators under different collinearity 

lcyels. Perhaps one weak, mediulll and extreme orientations of collincarity could portray 

a better picture. 

• The relationship between thc variance and relative efficiency of biased estimators could 

be pursued further. 

• Further improvelllent of the Ilew proposed lllethod could be investigated. 
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Appendix A 

The Simulation Program 

Details of the program are provided in this appendix. 

This appendix is sub-divided into three main sections. \Ye first provide the program details for 

generating and saving the X matrix, proceed to the error matrices and finally present the main 

program which computes 24 shrinkage estimators and the corresponding relative efficiencies 

(REs) discussed in the simulation chapter. \Ye fix the matrix of independent variables and 

the error teflll matrices. For each distribution, 500 columns of error terms are initially gen­

erated in R, written in Excel Comma Delimited files and then later read back into R from Excel. 

Details of the main program include the following 

• Reading the fixed error terms and a fixed matrix of independent variables from Excel 

Comma Delimited files, 

• Declaration of variables used in the main loop. 

• Computation of least squares estimates and the 24 biased estimators. 1\ISEs, TMSEs and 

REs. 

Included in the program, is a highlight of the program developed for estimation of the ridge 

constants with the PCdell solution. 

Programming in R is sneh that all COlllmpnts and gnidelinps follow a symbol # whereas the 

program commands are the explicit statements. \vritten without the symbol # , hence \ve 

differentiate behveen commands and comments in the same manner to avoid confusion. 
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A.I Program details for generating the X matrix 

\\'e generated the X matrix from the follmving program 

# Generating xl as a 100 x 1 COllUllll of ones. 

x1=lllatrix( L 100.1) 

# Generating x2 at:> a vector of values 20:29, repeated 10 timet:> to make 100 obt:>ervations 

x2=as.lllatrix( rep( c(20:29), 10)) 

# Generating x3 and replacing the pt and 11 th observationt:> by --± to avoid direct collinearity. 

x3=x2-25 

x3=replace(x3, 1 ,--±) 

x3=replace( x3, 11 ,--±) 

# Generating x4 as a vector of values (5,4,3,2,1,2,3,4,5,6), repeated 10 times to make 100 

obsernltions 

x4=c( 5.4,3.2,1,2.3.4,5,6) 

x-±=as.matrix( rep( x4, 1 0)) 

# Generating x5 and replacing the 54th and 96th observationt:> by 5 and 2 respectively. 

x.5=x2-x-±+5 

x5=replace(x5,96,2) 

x5=replace(x5S!,5) 

# Generating x6 and replacing the 38th and 100th obt:>ervatiolls by 3. 

x6=x-±-10 

x6=replace(x6.38,3) 

x6=rcplace( x6, 100.3) 

# Combining the 6 columns into a 6x6 matrix and \vriting the matrix to an Excel comma 

delimited file 'xmatrix'. 

x=cbind(xl.x2.x3,xcl.x5,x6) 

\vrite(x,file="C:/xmatrix.ct:>v" ,nCOlUIlll1=6,appcncl=F) 
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A.2 Program details for error terms 

This program takes about two minutes to generate 500 colulllns of error terms from Laplace, 

Contaminated normaL Exponential and Normal distributions, \vith each distribution varied 

across the variance levels (j2 = 2,25 and 100 respectively. For each distribution and variance 

leveL the program fixes or saves 500 columns in a unique file in drives C and E. 

n=100 

nrep=500 

p=5 

errlap2=matrix(0.n,nrep) 

errlap25=matrix(0.n,nrep) 

errlaplOO=matrix(O,n,nrcp) 

errt2=lllatrix(0.n,nrcp) 

crrt25=matrix(0,n,nrep) 

errt 100=lllatrix(0,n,nrcp) 

errexp2=lllatrix(0,n,nrcp) 

errcxp25=matrix(0,n,nrep) 

crrexp 100=matrix(0,n,nrep) 

errn2=matrix(0,n,nrep) 

crrn25=matrix(0,n,nrep) 

crrnlOO=matrix(O.n.nrep) 

for( i in 1 :urep) 

{ 

for(i in l:n) 

{ 

# error Laplace for (T'2 = 2 

if(O< =r1mif(LO.1)< =0.5) 

{ errlap2 [i,j]= 1 *log(2*runif( 1,0, I))} else 

{ crrlap2[i,j]=-1 *log(2*(1-runif(1,O,1)))} 

# error Laplace for (j2 = 25 

if(0<=nmif(LO.1) <=0.5) 

{ crrlap25 [i . .i] =3.53G*log(2*r1111if(1 ,0.1))} else 

{ errlap25[i.j]=-3.53G*10g(2*(1-runif( LO.1)))} 
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# error Laplace for (Y2 = 100 

if(O< =runif(LO,l)< =0.5) 

{ errlap100 [i,.i] = 7.07*log(2*runif( LO.1))} else crrlapI00[i.j] = -7.07*log(2* (1-

runif( LO.1)))} 

} 

} 

# error t for (YL = 2 

errt2[i . .i] =rnorm( 1 ,0, 1) / sqrt( rchisq( 1 ,4,ncp=O) / -!) 

# error for Student's t for (YL = 25 

errt25[i.j] =rnonll(l ,0, 1) / sqrt( rchisq( 1 ,2.083,n('p=0) /2 .(83) 

# error for Student's t for (Y2 = 100 

errt 100 [i,.i] = rnonn ( 1,0,1) /sqrt( rchisq( 1 ,2.020,ncp=O) /2.(20) 

# error Exponential for (Y2 = 2 

errexp2[i,j]= rexp(l,ratc=0.707) 

# error Exponential for (Y2 = 25 

crrcxp25[i,.i]= rexp(l,rate=0.2) 

# error Exponential for (Y2 = 100 

errcxpI00[i.j]= rexp(l,rate=O.I) 

# error Normal for (Y2 = 2 

errn2 [i,j] =rnonn( 1 ,0,0.1414) 

# error matrix for (Y2 = 25 

errn25 [i . .i] =rnorm( 1 ,0,5) 

# error matrix for (Y2 = 100 

errnl00[i.j]=rnonu(1,0,1O) 

# \\'ritillg the error files iu Excel 

write( errlap2.file=" C: / errlap2.csv·' ,ncohullu=nrep.append=F) 
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write( errlap25.file=" C: / errlap2.5.csv·' ,llcoll111111=nrep.appcncl=F) 

\vrite( crrlaplOO.filc=·' C: / crrlaplOO.csv" ,llcoll111111=nrcp,appelld=F) 

\vTite( errt2.file=" C: / errt2.csv·' .ncolumn=nrep.append=F) 

write( errt25.file=·' C: / errt25.csv·' ,ncollll11n=nrep,append=F) 

write( errt lOO.file=·' C: / errt lOO.csv" ,ncohllllll=nrep,append=F) 

writc( fTrf'xp2.fik=·' C:/crrexp2.csv" ,ncoIUlllll=nrep,append=F) 

write( errcxp25.file=" C: / errcxp25.csv" ,ncolunlll=nrep.appcnd=F) 

write( errexplOO.file=" C: / errexplOO.csv" ,ncoll1111n=nrcp.append=F) 

write( errn2.file=" C: / crrn2.csv'· ,ncoIUIllll=nrep,appcnd=F) 

\vrite( errn25.file=" C: / errn25.csv" ,ncolumn=nrcp,append=F) 

write( errnlOO,file= 0' C: / errnlOO.csv" ,llcolumn=nrep.append=F) 

A.3 The Main Program 

\Ye rcad the error terms and the matrix of independent variables from Excel Comma Delim­

ited files into R, standardize the X matrix and then compute the coefficient estimates from 

Least Squares regression and the 24 shrinkage estimation techniques discussed in the simula­

tion study. \Ye then transform the coefficients back to the unstandardized form and compute 

the corresponding l\Iean Squared Error values and the Relative Efficiencies. 

# Read the X matrix from an excel csv-file "xmatrix" 

xnl=as.lllatrix(read.csv("C:/xlllatrix.csv", sep=" ," ,header=T)) 

# creating the x matrix that cloes not have a constallt 

# Specify the true coefficients 

beta =as.matrix( c(lCl,OA,O.5,O.25,O.3,4.5)) 

# Specify the number of observatiolls, replications and the number of variables in the X llla­

trix. 

n=100 

nrep=500 

p=5 
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# Centre the columns of xm 

center=appl:v( xIll.2, mean) 

xcntr=sweep( xm.2,cellter:' -") 

# Scale the X matrix 

stde=() 

se=O 

for (i ill 1 :llcol (xm) ) 

{ 

stde[i] =sqrt (crossproel(xclltr[,i])) 

} 

stde 

# NB the first element ill stele = zero (corresponding to the intercept) therefore we set 

se=stde[,2:p+ 1] # to exclude the first value 

for(i in l:p) 

{ 

se[i]=stde[i+ 1] 

} 

se 

# Standardize X (with the first column of the centred matrix eliminated) 

Z=sweep( as.lllatrix(xcntr [,-1]) ,2,se," /") 

# Compute the Singular Value Decomposition of Z (the standardized X matrix) 

sv=svd(Z) 

v=sv$ v 

u=sv$ u 

d=(sv$ d) 

eignv=d2 

# Product matrices: (X'X) inverse and (Z'Z) 

xtxinv=solve( t (XIll) o/c*%Xll1) 

ztz=t(Z)7r *7r Z 

\Yc read in the error terms, declRre the variables and procccd to the lllain loop. Note that we 

consider four distributions of error terms and thrce k\Tls of variance. hence the prograllls are 

den'loped such t hat each distribution at each variance l('\'el has its own indC'pcndcllt program 
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to m'oid mistakes. 

Howcvcr. the programs are very similar; computations of estimates follow the exact sallle steps, 

the difference lies in labels used within thc programs and the file names when the information 

is either being written or read from Excel. 

Declaration statements and the main loop for the Normal distribution for (]"2 = 2 

# Read the normal (0,0.1414) error terms from a csv file 'errn2 

errn2=read.csv("' C:/errn2.csv" ,sep=" ",header=F) 

# Declaration statements 

Yll2 

Y 

:vcntr 

xty 

zty 

alpha 

alpha1 

alpha11 

01sn2 

ols 

olscocf 

diffols 

diffhkb 

diffllk Imew 

diffhkbm 

diffllkblllllew 

diffkam 

diffkamlW\V 

diffkgm 

cliffkgnlllew 

diffl.med 

diffkllleclllew 

difHw 

cliff! wnew 

difHWlll 

vector (mode="list" ,length=nrep) 

vector( lllocle=" list" Jength=nrep) 

vector (mode=" list" ,lellgt h=nrep ) 

vector (Illode=" list" ,length =nrep ) 

vector (mode=" list" ,length=nrep) 

vector( lIlode=" list" ,lcngt h=llrep ) 

vector (mode=" list" ,length=nrep) 

vedor(mode=" list" Jength=nrep) 

vector (lllode=" list" ,lengt h = nrep ) 

vector( lllode=" list" ,length=nrep) 

vector ( Illode=" list" ,length=nrep) 

vector ( lllode=" list" Jength=nrep) 

vector (mode=" list" ,lengt h= nrep ) 

vector (lllode=" list" ,lengt h = nrep ) 

vector (Illocle=" list" ,lengt h =nrep ) 

vector( lllode=" list" ,length=nrep ) 

vector ( Illode=" list" ,length=nrcp) 

vector (Illode=" list ., ,lengt h = nrcp ) 

vector (mocle=" list" ,leugt h = nrep ) 

vcctor (mode=" list" ,lengt h= nrcp ) 

vector( mode=" list" ,length=urep) 

vector (moclc=" list" ,lengt h =nrcp ) 

vcctor( lllocle=" list" ,lcngt h=nrcp ) 

vector (lllO( lc=" list" ,lCllgt h=nl"ep ) 

vector ( modc=" list" ,lCllgt h=nrcp) 
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diffi Wlllllf'W 

diffgrhkb 

ciiffgr hk bne\\' 

diffpcclelO 

diffpcdell 

cliffpcciel2 

diffgrtroskie 

ciiffgrtroskienew 

diffstein 

cl i ffi i U llllll 

clifHiud 

diffgliu 

kalllxtxiuv 

kamuewxtxinv 

kglllxtxinv 

kgmnewxtxinv 

kmedxtxillV 

kmecille\vxtxinv 

ridgehkb 

ridgchkbnew 

ridgehkbm 

ridgehk bmnew 

ridgclw 

riclgelwnpw 

ridgclwstd 

riclgelwstdllew 

ridgelwm 

ridgel wmnew 

pcddO 

pccoefdelO 

pcdell 

pccoefdell 

pcdcl2 

liullll1l 

liud 

a"lin 
b 

bta 

vector(lllocle=" list"' .length=nrep) 

vector (lllode= "list" Jcngt h=nrep) 

vector( mode=" list" Jength=nrep) 

vector ( l1lode=" list"' Jength=nrep) 

vector( mode=" list" ,lengt h=nrep) 

vector ( Illode=" list"' ,length=nrep) 

vector ( mode=" list" ,length=nrep) 

vector(lllode=" list" ,lcngth=nrep) 

vector( modc=" list" Jength=nrep) 

vector ( ll1ode=" list" Jength=nrep) 

vector (Illocle=" list" ,lcngt h = nrcp ) 

vector( mode=" list" Jength=nrep) 

vector (lllode=" list" ,lengt h =nrep ) 

vcctor( mocle=" list" Jength=nrep) 

vector(rnode=" list" ,lcngth=nrep) 

vector(mode=" list" ,length=nrep) 

vcctor( mode=" list" ,length=nrep) 

vector (mode=" list" ,lcngt h =nrep ) 

vector(lllode=" list" ,kngth=nrep) 

vector( mode=" list" ,length=nrep) 

vcctor( mode=" list" ,lellgth=nrep) 

vector (mocle=" list " ,length = nrep ) 

vector( lllode=" list" Jength=nrep) 

vector (Illode=" list" ,lcngt h =nrep ) 

vector ( lllode=" list" ,length=nrep) 

vector ( Illode=" list" Jength=nrep) 

vector (lllode= "list" ,lengt h = nrcp ) 

vector (lllode=" list" ,lcngt h = nrep ) 

vector(modc=" list" ,lellgth=nrcp) 

vector( ll1odc=" list" ,length=nrcp) 

vector (mode= " list ., ,lengt h = nrep ) 

vector (mocle= ., list" ,lengt h =nrep ) 

vector(mode=" list" ,lcngth=nrcp) 

vpctor( mode=" list" Jengt h=nrep) 

vector( mocle=" list" Jengt h=nr(:'p ) 

vector ( mocic=" list" Jcngt h=nrep) 

vector( Illode=" list" Jengt h=nrpp) 
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btaliuclllllll 

btaliuclcl 

btagliu 

kambta 

kanlllew bt a 

kglllbta 

kgllluewbta 

kmedbta 

kmeciuewbta 

pccoddd2 

rcoetiw 

rcoetiwnew 

trauscocfols 

transpcdelO 

t ranspcdcll 

transpcciel2 

betastein 

kallltrausformecl 

kgmtransformcd 

kIued transformed 

kanlllewtransformed = 

kgmuevvtransformecl = 

kl1ledllewtransforllled= 

pcOtrausformed 

pc 1 trausformed 

pc2transformed 

st eintr Hnsformecl 

Ii \ lllllntransforllled 

Ii \\cl transformed 

gliu transformed 

trHusfonncdhkb 

tnmsformedhkbm 

transformedhv 

trausforllledlwstd 

trausformcdlwm 

gtransforlllcci 

grt transformed 

vector( lllodc=" list" ,leugt h=urep) 

vcctor( lllocle=" list" .lcngth=mcp) 

vector( mode=" list -, ,lengt h=urep) 

vector ( modc= -, list -, .lcugth=nrep) 

vector ( lllode=" list" ,length=nrep) 

vector ( mode= ') list" ,length=mcp) 

vector( mode=)) list" ,length=urep) 

vector( l1lodc=" list" ,lengt h=nrep) 

vector ( mode=" list ') ,lengt h=urep) 

vector (mocle=" list" ,lellgt h =nrep ) 

vector(mocle=') list" ,length=nrep) 

vector (modc=" list" ,leugt h = nrep ) 

vector( IIlode=" list" ,leugth=nrep) 

vector ( Illode=" list -, ,length=nrcp) 

vector (lllode=" list" ,lengt h = nrep ) 

vector ( lllode= " list .. ,length=urep) 

vector (mocle=" lis t" ,leugt h =nrep ) 

vector ( mode=)) list" ,length=nre])) 

vector (modc=" list" ,lengt h =urep ) 

vector (mode=" list" ,leugt h =nrep ) 

vector (lllode=)) list" ,lengt h =nrep ) 

vector (mode=)) list" ,lengt h =urep ) 

vector (Illode=" list" ,leugt h =nrep ) 

vector (mode=" list" ,lcngt h =mep ) 

vector (mode=" list" ) lengt h =nrep ) 

vector(mocle=" list" ,length=nrep) 

vector ( mode=') list" ,lengt h=nrep ) 

vector( lllocle= -) list" ,leugth=nrep) 

vector (modc= ') list -, _1E'llgt h = nrep ) 

vector (mode=" list" ,lengt h = nrep ) 

vector( l1lodc=" list" ,length=nrep) 

vector( mocle=" list" ,length=nrcp) 

vector( mode=" list -, ,lengt h=nrep) 

vector (lllode=" list -, ,lpngt h = nrc]) ) 

vcctor( Illode=" list -, ,lengt h=llrcp) 

vcctor(mode= -'list" .lellgth=urep) 

vector ( modc= -, list -, ,lcngt l1=nr('])) 
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gricigE'coE'f 

grxtxillV 

grtxtxinv 

grtbta 

t rallsformedl wnE'W 

transformE'dlwnE'wstcF 

transformE'dl WlllllE'W = 

gtrausformccinew 

grtuE'wtransformecl 

gridgcll('\V 

gridgenc\vcoE'f 

grllE'wxtxinv 

grtllewxtxinv 

gruewbta 

grtllE'wbta 

khk 

ktroskie 

kaIll 

kgm 

kmE'd 

khkllew 

ktroskienew 

kamllew 

kglllIlE'W 

kIllE'duE'w 

klWllE'W 

klwnE'wstd 

khvmnew 

khkbllew 

khkblllnew 

klw 

khvstd 

klwlll 

khkb 

khkblll 

vector( lllociE'=" list" Jcngt h=nrcp) 

vector(lllode=" list" ,lcngth=nrcp) 

vector (mode=" list " JE'ngt h = nrep ) 

vector ( lllode="' list"' ,1ength=llrE'p) 

vector ( Illode=" list" ,lcngth=nrep) 

vector(ruode=" list" ,length=nrcp) 

vector (mode=" list" Jellgt h = nrE'p ) 

vector (lllode=" list" ,lengt h = nrep ) 

vector ( I1lodE'=" list·, Jcngt h=nrcp) 

VE'ctor (lllode=" lis t" JE'ugt h =urep ) 

vector( lllode=" list" ,length=llrep) 

vcctor( lllode=" list" ,lcngth=nrcp) 

vector(mode="list" ,1ength=llH'p) 

vector ( mode=" list" ,lcngth=nrcp) 

vector ( lllode=" list" ,lellgt h=nrep) 

vector ( l1lode=" list" ,lellgth=nrep) 

vector (mode=" list" .leugt h = nrep ) 

vector (Illode=" list" ,lengt h = nrep ) 

vector (l1lode=" list" ,lengt h= nrep ) 

vector (mode=" list" ,lellgt h=nrep ) 

vector(lllode=" list" ,length=nrep) 

vector (l1lode=" list" ,length = nrep ) 

vector (Illode=" list·, ,lcngt h = llrep ) 

vector ( mode=" list" ,lcngt h = nrep ) 

vector(lllode="list" .lellgth=nrep) 

vector (l1locle=" list" ,lengt h = nrcp ) 

vector (modc=" list" , lE'ugth = nrep ) 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
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(10' 
b 

li llZtZ 

ybar 

SSy 

sIgma 

sigmasq 

sigmal 

sigmasql 

c 

dum 

del 

vector( llloclc=" list" Jellgth=urep) 

solvc(ztz + cliag( l.p,p)) 

o 
o 
o 
o 
o 
o 
o 
o 
() 

Set the :t\ISEs, T:t\ISEs aud REs to zero 

III 0 

lllseols 0 

lllsehkb 0 

msehkbm 0 

IllseIw 0 

IllscIwlll 0 

lllsehkbncw 0 

lllschk bl1l11eW 0 

lllscl wnew 0 

lllsel Wlllnew 0 

IllsepcdclO 0 

Illsepcdell 0 

lllsepcdeI2 0 

lllsegrtroskie 0 

lllsegrhkb 0 

lllsegrtroskienew 0 

msegrhkbncw 0 

lllsestein 0 

lllse Ii UIlllll 0 

lllseliucl 0 

lllsegliu 0 

IllS(, kalll 0 

lllsckgm 0 

lllscklllecl 0 
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lllse kglllncw () 

lllSP kltlecllle\y 0 

tlllseols 0 

tlllschkb 0 

tlllsehkblll 0 

tlllSelW 0 

tlllsclwlll 0 

tlllsehkbnew 0 

tlllsehkbllllle\V 0 

tlllsel\VlleW 0 

tlllselwnmew 0 

tlllsepcclelO 0 

tlllsepccle 11 0 

tmsepcdeI2 0 

tlllsegrtroskie 0 

tlllsegrhkb 0 

tlllsegrtroskienew 0 

tlllsegrhkbnew 0 

tmsestein 0 

tlllseli lllllm 0 

tlllseliud 0 

t lllsegli 11 0 

tmsekam 0 

t lllsekglll 0 

tlllsekmed 0 

tlllsekalllnew 0 

tlllsekgnmew 0 

tlllsekllleclnew 0 

reo Is 0 

rellkb 0 

rehkblll 0 

reIw () 

rehvltl 0 

rehkbllew 0 

rehkblllnew 0 

rclwncw 0 

re I Wlllll('\Y 0 
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rcpccielO 0 

repcciell 0 

repcclel2 0 

regrtroskie 0 

regrhkb 0 

regrtroskieuew 0 

regr hk bne\\' 0 

rcstein 0 

re Ii 1 unlll 0 

reliucl 0 

regliu 0 

rekmn 0 

rekglll 0 

rekmed 0 

re kamnc\v 0 

rekgmnew 0 

reknlE'cincw 0 

for (i in 1: nrep ) 

{ 

Yn2 [[ill =Xlll % *7ci beta+as.matrix( errn2 [,i]) 

# Centre and Scale Yn2 

ybar[i] =lllcan(Yn2[[i]]) 

ycntr[[i]]= Yn2[[i]]-ybar[i] 

ssy [i] = sqrt (crossprod(ycntr[[i]])) 

Y[[i]] =s\veep(ycntr[[i]] ,2.ssy[i]''' /") 

# the product lllatrix (Z Y correlatiou) 

zty[[i]]=t(z)7c * % Y[[i]] 

# LEAST SQUARES 

# NB Both Y and X are standardi",ed 

olsn2[[i]]=lm(Y[[i]] - z) 

# Extract the coefficicnts excluding the ('(Just ant 
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olscoef[[i]] = (olsn2[[i]]$ coef[-l]) 

# tran:-;[orm hack the cocfficicnts. This 

transcoefols[[i]] =olscoef[[i]] *ssy[i] / se 

# \Yrite the transformed coefficients 011 an Excel comma delimited file for reference. 

vyrite(transcocfols[[i]L file = "C:/My docnments/ Simulation/olsn2cocf.csv", 

ncolumns =nrep. append = T) 

# Calculate the differences between the transformed anc! trne coefficients and write them to 

an Excel comma delilllited file. 

diffols[[i]] =transcoefols[[i]]-beta[-l] 

write( diffols[[i]Lfile=" C:jMy documents/Simulation/ 0Isn2diff.csv", 

ncolnmns=nrep.append= T) 

# Calculate the sum of sqnared differences 

mseols=lllseols+diffols[[i]] A 2 

tmseols=sum (mseols) 

# Calculate the relative efficiency of least squares estimates. 

reols= tmseols / t mseols 

# Extract the least squares variance for cOlllPutation of the biasing parameters 

sigma[i] =snmmary( 01sn2 [[i]])$ sigma 

sigmasq[i]=sigma[i] A 2 

# PRINCIPAL COMPONENT REGRESSION 

# PC delete 0 (zero roots deleted: same as OLS). 

\Y=zVc*7c v 

pcdelO[[i]]=lm(Y[[i]] - \V-I) 

alpha[[i]]=pcc!clO[[i]]$ cod 

transpcclelO[[i]] =v% *7c as.matrix( alpha[[i]]) 

pcOtransformecl [[ill =transpcdelO [[i]] *ssy [i] / sc 

\\"rite(pcOtransfonlled[[i]], file = "C:/l\Iy clocnnwnts/SinlUlation/pcdelOn2coef.csv", 

ncolnnms =nrep, append = T) 

cliffpcdelO[[i]] =pcOtransfonnec1 [[i]]-bet a[-l] 
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msepcdclO=JllsepcdclO+ cliffpcdelO[[i]] A 2 

tmsepcdelO=sl1111 (msepcddO) 

rcpcdelO=tlllseols / tmsepcelelO 

\vrite( eliffpcdelO[[i]] .file=" C: /My docllments/ Sinmlation/pcdelOn2diff.csv", 

ncolumns=nrep,append=T) 

# Extracting sigma-squared 

sigma1 [i]=summary(pcdelO[[i]])$ sigma 

sigmasq1[i]=sigma1[i] A 2 

# F statistic 

F[[ill= (eignv*alpha[[i]] A 2)/sigruasq1[i] 

# PC delete1 

# cl =diag(d.p,p) 

cl1=diag( cLp.p) 

d1[p,p]=O 

W1= u7c*7c ell 

pcdell [[ill =lm(Y[[i]] - W1) 

alph1 [[i]]=pcdell [[ill$ coef[-l] 

alph1 [[ill [p]=O 

transpcdell [[ill=v7c *S{, as.matrix( alph1[[ill) 

pel transformed [[i]]=transpcdell [[ill *ssy[i] / se 

writc(pcltransformed[[i]J, file = "C:/My doclll11cnts/Simulation/pcdelln2coef.csv", 

ncolumns =nrcp, append = T) 

diffpcdel1 [[ill =pc1 transformcd[[i]]-beta[-l] 

msepcdcll=msepcdcll + diffpcclell [[ill A 2 

tmsepcdel1 =sum (mscpcclell) 

repcde 11 =tmseols / tmsepcclel1 

writer cliffpcdell [[ill ,file=" C: /My documents/ Simulation/ pcclelln2diff.csv·' , 

ncolumlls=nrcp,appelld=T) 

# PC ddete2 

cl2=d1 

d2[p-l.p-l]=O 

W2= u7c *7c d2 

pceld2[[illi-hu(Y[[ill - W2) 
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alph2[[ill=pcdel2[[ill$ coef 

alph2[[ill [p+ 1]=0 

alph2[[ilJ [p]=O 

transpcdel2[[i]]=vYc*% as.lllatrix( alph2[[i]] [-1]) 

pc2transforllled [[ill =trallspcde12 [[ill *ssy [i] 1 se 

write(pc2trallsforllled[[i]], file = "C:/My documents/Silllulatioll/pcdd2112.csv" , ncollllllllS =nrep, 

append = T) 

diffpcde12[[ill =pc2transforlllcd [[ill- beta[-l] 

lllsepcde12=lllsepcdcl2+ diffpcclel2[[i]] , 2 

tlllsepcdd2=Slllll (lllsepcdel2) 

repcclcl2=tlllseols 1 tlllsepcde12 

wri tc( diffpcde12 [[ill ,filc=" C: II'vIy documents ISilllulatiolll pcdcl2112diff.csv " , 

llcolullllls=llrcp,appelld=T) 

# TRADITIONAL RIDGE AND GENERALIZED RIDGE PARAMETERS 

khkb[i]=siglllasq[i]*(p)/(sum(olscoef[[i]] A 2)) 

khkblll[i] =siglllasq[i]* (p-2)/(Slllll(olscoef[[i]] A 2)) 

klw[i] =sigmasq[i] * (p) 1 (Slllll( olscoef[[i]] A 2*cigllV)) 

klwlll[i]=((p-2)*siglllasq[i]*SUlll(Svd(Z)$ d A 2))/(p*t(olscoef[[i]])% * %(t(Z)% * % (Z))% *% 

olscoef[ [im 

khk[[ill= diag(siglllitsq[iJlalpha[[i]] , 2,p,p) 

ktroskie[[ill= diag((eignv I(F[[i]]+l)),p,p) 

kal1l[[ill= diag((sulll(siglllasq[i]/alpha[[i]] A 2))*(1/p),p,p) 

kglll[[i]]=cliag(sigl1lasq[i]/(prod(alpha[[ill A 2)) A (l/p),p,p) 

kmecl[[ill =diag( lllcdiall( siglllasq[i]1 (( alpha[[ill A 2))) ,p,p) 

# NEW RIDGE AND GENERALIZED RIDGE PARAMETERS 

alph11 [[ill =alph1 [[ill [l:p-1] 

khkbnew[i] =siglllasq 1 [i] *(p) 1 (SUlll( alph 11 [[ill ' 2)) 

khkblllllCW[i] =siglllasq1[i]*((p-1)-2)/(sulll(alph11[[i]] A 2)) 

klwllC'\v[i] =sigmasq 1 [i] *(p) 1 (SUlll( alph1 [[ill A 2*eignv)) 

klwllllle\\-[il = (( (p-1 )-2) *siglllasq 1 [i] *SUlll( swl( z) $d A 2)) 1 (( p-1) *t (alph1 [[ill)'Io *S{ (t( z) % *% 

(z))9l *7c alph1[[i]l) 

kgrtllC1\v[[i]] = diag( eignv 1 (( eigllv* (alph 1 [[i]]2) 1 sigmasq 1 [il) + 1). p.p) 

kmedllcw [[ill =cliag( lllediall( siglllasq 1 [iJl (( alph11 [[i]]2))), p.p) 
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kcUlllle\v[[i]] = cliag( (SUlll (siglllasq 1 [i] / alphII [[ill ~ 2) )*( 1/ (p-I)) ,p, p) 

kgnlllcw[[ill=cliag(sigumsql[il/(prod(alphll[[ill ' 2)) A (I/(p-I)),p,p) 

kgrhknew[[i]]= diag(signmsqI[i]/alphl[[i]] A 2,p,p) 

kgrhkucw[[ill =diag( replace( diag(kgrhkuew[[i]]) ,p,min( diag(kgrhkuew[[i]l) [-p]))) 

# RIDGE COEFFICIENTS, MSEs, TMSEs and REs 

# khkb (Hoerl, Kennard and Baldwin, 1970) 

# Estimates 

ridgehkb[[ill=(solve(ztz +diag( khkb[i],p,p))) % *% zty[[ill 

# transform the coefficieuts back into the unstanciarclizccl form and write them to an excel file. 

transformeclhkb [[i]] =ridgehk b [[i]] *ssy [i] / se 

write(transfonlledhkb[[i]]' file = "C:/My documents/ Final Sil1mlation/hkbn2cocf.csv", 

ncolul1ms =nrcp, append = T) 

# Calculate the differences between the hkb ridge coefficients and true ones. 

cliffhkb[[ill =transformeclhkb[[i]]-beta[-I] 

write( diffllkb [[i]],file=" C: /l'vIy documents/Final Sinmlation/hkbu2diff.csv" , 

ucolumns=nrep,appeud=T) 

COlllPute l'vISEs, TI\ISE and HE for ridgehkb. msehkb=msehkb+diffllkb[[i]] A 2 

tIllsehkb=sUlu(msehkb) 

rehkb=tlllseols/tmsehkb 

# khkbnew) 

# Estimates 

ridgehkbuew[[ill=(solve(ztz +diag( khklmcw[i]'p,p))) 7c *Yc. zty[[ill 

# transform t he coefficients back iuto the unstandardized form and write them to an excel file, 

trausformedhk Imew [[ill =ridgehkbnew [[ill *ssy [i] / se 

write( transforllledhkb[[i]J, file = "C:jl'vIy documents/ Final Simulation/hkbnewn2coef.csv", 

ucolumns =urep, append = T) 

# Calculate the differences behveeu the hkb ridge coefficients aud true oucs. 

diffhkbllew[[ill =transfonlledhkbncw [[ill-beta[-I] 

\vrite( diffllkbuew[[ill ,filc=" C: /I\Iy clocUlueuts/Fiual Sinmlation/hkbne\vu2diff.csv", 
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llcollllllllS=llrep. appC'nd =T) 

COluputC' 1ISEs. T1ISE and RE for ridgehkbncw. msehkbnew=lllsehkblle\v+diff11kbuew[[ill ' 2 

tlllsehkbncw=sUlu( lllsehkbnew) 

rchkbllew=tmscols/tlllsehklmew 

# khkbm (Brown, 1993) 

# Estilllates 

ridgdlkbm[[ill=(solvc(ztz +diag( khkbm[i],p,p)))c;(, * % zty[[ill 

# transform the coefficients back into the llnstalldardized form and write them to an excel file. 

transforrnedhkbm[[ill= ridgehkblll[[i]]*ssy[i]/se 

write(transformedhkbm[[i]J, file = "C:/My documents/Final Silllulatioll/hkbll1Il2coef.csv", 

ncolunllls =nrep, append = T) 

# Computing the deviations of the estimates from the true coefficients 

diff11k bIll [[ill =transforrnedhkbm [[ill-beta[-I] 

# MSE, TMSE and RE 

lllsehkbm=msehkbm+difthkbm[[i]] A 2 

tmschkbm=sum( mschkbm) 

rehkbm=tmseois/tlllsehkbm 

v,ri te( diff11k bm [[ill ,file=" C: /}"Iy documents/Final Simulation/hk blll1l2diffcsv" , 

ncolUllllls=nrpp,append= T) 

# khkbmnew 

# Estilllatcs 

ridgehkblllnc\v[[i]l=(solve(ztz +diag( khkbmnew[i],p.p)))%. * 70 zty[[ill 

# transform the coefficients back into the unstandardized form and write thcm to an excel file. 

transformedhkbmnew[[ill= ridgehkbumew[[i]]*ssy[i]/se 

wri te( transforrlledhkbmnew [[ill, file = "C: /My documents/Final Simulation/hk bmnewn2coef.csv·' , 

ncolulllllS =nrep, append = T) 

# Computing the deviations of the estimates from the true coefficicnts 

diffllkblllne\V [[i]] =transformcdhk bmn8w [[i]]-bet a[-I] 
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# l\ISE. Tl\ISE and TIE 

lllse hkblllncw=lllsehk bnlllew+diffllk blllncw [[i]] A 2 

tmsehk blllnC\v=sum( lllsehkblllncw) 

re hk bnlllew=t lllseols / tmsehk bnlllew 

\vrite( diffhkbnlllew[[ill ,file=" C: /My docUluellts/ Final Sinl1llatioll/hkbmnewn2diff.csv", 

ncolullllls=nrep,append=T) 

# kLW (Lawless and Wang, 1976) 

# Estimates ridgelw[[i]] = (solve( ztz +diag( klw[i],p,p))) 7r * Vc zty[[i]] 

# transforming back the coefficients 

transformcdlw [[ill =ridgclw [[ill *ssy[i] / se 

write( transformedlw[[i]L file = "C: /My documents/Final Sinl1llation/lwn2coef.csv", 

ncolulllns =nrep, append = T) 

# Calculating the differences 

diffiw[[i]] =transforllledlw[[i]]-beta[-l] 

# J\,ISE, Tl\ISE and RE 

lllselw=lllselw+diffiw[[i]] A 2 

tmsc!w=sum(lllselw) 

relw=tmseols/tlllselw 

write( cliffiw[[i]] ,file=" C: /My documents/Final Sinl1llation/lwn2diff.csv", 

ncollmms=nrep,append=T) 
o 

# klwnew 

# Estilllates ridgclwnew[[i]]=(solve(ztz +diag( klwnew[i]'p,p)))% * 7r zty[[ill 

# transforming back the coefficients 

transforllledlwllew [[i]] =ridgelwncw [[ill *ssy [i] / se 

write( transfonnedlwnew[[ill, file = "C: /My documents/Final Silllulation/hvnewn2coef.csv", 

ncolulllns =nrep, appcnd = T) 

# Calculating the differeuces 

diffhvnew[[ill =transformedlwnew[[ill-beta[-l] 

# l\ISE, Tl\ISE ami HE 
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ltlselWIWW=Illselwnew+diffhvncw[[i]] , 2 

tmselwuew=sl1111 (Illsclwnew) 

rel\Vnew=tlllseols/tmselwllew 

write( diffiwn('\v[[i]] ,file=" C: /l'vIy dOClll11ellts/Final Sillmlation/lwnewn2diff.csv", 

ncolumns=nrep,append=T) 

# klwm (Brown, 1993) 

# Estimates 

ridgelwm[[i]]=(solve(ztz +diag( klwm[i],p,p)))% * % zty[[i]] 

# trausforming back the coefficicnts 

transformedlwm [[ill = ridgelwru[[i]] *ssy[i] / se 

write(trausformcdlwru[[i]]' file = "C:jl'vIy doc1Unents/Final Sinmlation/lwmn2coef.csv", 

ncolulllllS =nrep, append = T) 

# Computing the deviations 

difHwm [[i]] =transforIuedlwm [[i]]-beta[-l] 

# 1ISE, Tl'vISE and HE 

lllselwm=mselwm+diffiwru[[i]] , 2 

tl1lsclwm=sul1l( mselwUl) 

rel wm = tmseols / tmsel wm 

write( diffiwm[[i]],file=" C: / l'vIy documents/Final Simulation/hvmn2diff.csv", 

ncolunllls=nrep.append=T) 

# klwmnew 

# Estimates 

ridgclwmne\"'[[i]]=(solve(ztz +diag( klwIlluew[i],p,p)))% * % zty[[i]] 

# transforming back the coefficients 

transformedlwnmew[[i]]= ridgelwmnew[[i]]*ssy[i]/se 

write ( tr ansforInedlwl1lnew [[i]], file = "C: /l'vIy documcnts /F inal Simulation /1 wmnewn2coef.csv" , 

ncoluulllS =nrep, append = T) 

# Computing the deviations 

diffiwmIH:>w[[ilJ =tranSfOrIlledlwmnew[[i]]-beta[-l] 
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# .t\ISE, T.t\ISE and RE 

lllsel wnlllew=lllSf'l\vmnew+diffiwlllncw [[i]] ~ 2 

tlllselwlllncw=slllll( lllselwlllnC\v) 

rel,vllllww=tmseois / tmselwmnew 

write( difHwlllllew[[i]],filc=" C: / My doclUllcnts/Final Silllulation/lwmnewn2diff.csv", 

UCOlUllll1s=nrcp,append=T) 

# Kam (Kibria, 2003) 

# Estimates 

kalllxtxinv[[i]]=solve(ztz + kalll[[i]]) 

kambta[[ill= kamxtxinv[[i]]%*% zty[[i]] 

# transforming back the coefficients 

kamtransfonued [[i]] =kalllbta[ [ill *ssy [i] / se 

write(kallltrallsfonned[[i]L file = "C:/My dOcllments/Sinmlation/kallln2cocf.csv·', 

ncolulllIlS =nrcp, append = T) 

# .t\ISE, TMSE aud RE 

diffkalll[[ill= beta[-l]-kamtransforllled[[ill 

lllsekalll=msckam+diffkalll[[ill A 2 

tlllsckmll=sllm (l1lSekalll) 

rekalll = t lllseo Is / tmsc kam 

write( diffkalll[[i]] ,file=" C: /My dOclllllents/Silllulatiou/kan1ll2diff.csv" , 

ncolulllns=nrep,appeud=T) 

# Kamnew 

# Estimates 

kClmnewxtxiuv[[ill=solve(ztz + kamnew[[i]]) 

kamnewbta[[i]]= kanlllewxtxinv[[ill%*% zty[[i]] 

# transforming back the coefficients 

kamuewtransfonucci [[i]] =kaulllewbta[[i]] *ssy [i] / se 

write(kalllnewtrausfonued[[i]], file = "C: /.t\Iy docUllleuts/Sinmlatiou/kalllnewn2cocf.csv" , 

UCOlllUlllS =nrep, append = T) 

# .t\ISE. T.t\ISE and RE 

cliffkanmcw[[i]] = beta[-l]-kaulllcwtrallsformcd [[ill 
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IllsekanmeW=lllSf'kam +diffkaumew[[i]] , 2 

tlllsckallllH'w=slllll (msckalllIlew) 

rckanme\,,·=tlllseols / tlllse kalllncw 

\vrite( difikalll[[i]].file=·' C: /l'vIy cloCllllleuts/Sinmlatioll/kcunnC\V1l2difLcsv·'. 

ncolullllls=nrep,append=T) 

# Ridge Kibia (Kgm) 

# The Estiltlates 

kgltlxtxinv[[ill=sohT(ztz + kglll[[i]]) 

kglllbta[[i]]= kgltlxtxinv[[i]]%*% zty[[ill 

# The transforlllf'd estimates 

kgmtrallsformed [[ill = kglllhta[ [ill *ssy [i] / se 

write(kgllltransforlllccl [[ill, file = "C: /My doclllllents/Sinmlation/kgllln2cocf.csv" , 

ncolumlls =llrf'P, append = T) 

# l\ISE, Tl\ISE and RE 

difikglll[[ill = bcta[-l]-kgllltransformcd[[i]] 

msekgm=lllsekglll+clifikgm[[ill ' 2 

tlllsekgll1=sulll( lllsekglll) 

re kgl1l = tmseols / tlllsekgl1l 

write( difikgm[[ill ,file=" C:/My documents/Sinmlation/kgnm2diff.csv·', 

ncolumlls=nrep,appcnd= T) 

# (Kgmnew) 

# The Estimates 

kgmllewxtxinv[[ill=solvc(ztz + kgnmcw[[i]]) 

kglllllewbta[[i]]= kgmnewxtxinv[[ill%*% zty[[ill 

# The transformed estimates 

kgnlllewtransfonued [[ill =kglIlllew bta[[i]] *ssy [i] / se 

write(kglllnewtrallsforllled[[ill, file = "C:/l\Iy dOClllllents/SilllUlation/kgmnewn2coef.csv" , 

ncolumns =nrep, apPf'lld = T) 

# l\ISE. Tl\ISE and RE 

difikgllllle\v[[i]l = beta[-l]-kgnmcwtrallsforlllcd [[ill 

msekglllnew=lllsckglllllew+difikglllnew [[ill A 2 
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tmsekgmnCW=Slll11 (lllsekglllnCW) 

re kgnllleW= t lllseols / tlllse kgl1111eW 

writc( diffkglllncw [[ill ,file=" C: /l\Iy doeUlllents/Sinllllation/kgnlllewn2c1iff.csv·' , 

neOlUllll1s=nrep,append=T) 

# Kmed(Kibria, 2003) 

The estimates 

kllledxtxinv[[i]]=solve(ztz + kmed[[i]]) 

kmedbta[[ill= kllledxtxinv[[i]]%*% zty[[i]] 

kmed transformed [[i II =kmed bta[ [ill *ssy [i] / se 

write(kmedtransformed[[ill, file = "C:/My doeuments/Simulation/kmecln2coef.esv", 

ncolllmns =nrep, append = T) 

# Computing the MSE, TMSE and RE values 

diffklllCd [[ill= beta[-l]-kmedtransformecl [[ill 

lllsekmed=lllsekmcd +diffkmcd [[ill A 2 

t msekmed =Sllm (lllsekmed) 

rekmed = tmseols / t msekmed 

wri te( diffkllled [[ill ,file=" C: /My documents /Silllulation/kmedn2diff.esv" , 

neol umns= nrep, append = T) 

# kmednew 

The estimates 

kmednewxtxinv[[i]]=solve(ztz + kmednew[[i]]) 

kmednewbta[[ill= kmednewxtxinv[[ill%*% zty[[ill 

kmednewtransformed [[i]] =kmedllewbta[ [i]] *ssy [i] / se 

write(kmednewtransfonlled [[ill, file = "C: /My doeuments/Sinmlation/kmednewn2eoef.csv", 

ncolunms =nrcp, append = T) 

# COlllPuting the l\ISE, TMSE and RE values 

diffkmeclnew [[i]] = beta[-l]-kmednewtransformed [[ill 

msekmednew=msekmednew+diffkmednew[[i]] A 2 

tlllsckmcdnf'w=Slll11( msekmednew) 

rekmedncw=tlllseols/tlllseklllednew 

write( diffklllednew[[i]] ,file=" C: /My doeumeuts/Silllldation/kmednewn2diff.csv", 

ncolllllllls=nrcp,append=T) 
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# GENERALIZED RIDGE 

# khk (Hoerl and Kennard, 1970a) 

# Esimatcs 

grxtxillv[[i]]=solvc(ztz + khk[[i]]) 

grbta[[ill= grxtxinv[[i]]7c *% zty[[i]] 

# transform the coefficif'nts back into the unstandardized form and write them to Rn excel file. 

gtransformed [[i]] =gr btR[ [ill *ssy [i] / se 

write(gtransformcd [[i]L file = ., C: /My doc1ll11ents/Final Sillmlation/ grhkbn2cocf.csv", 

ncolumlls =nrep, append = T) 

# khknew 

# Esimates 

grnewxtxinv[[ill=solve(ztz + khknew[[i]]) 

grncwbta[[ill= grnewxtxinv[[ill% *% zty[[ill 

# transform the coefficients back into the unstandardizcd form and write them to an excel file. 

gnewtransformed [[ill = grnew bta[ [ill *ssy [i] / se 

write(gllewtransformed [[ill, file = "C: /My documents/Final SinlUlation/ grhkbllewn2cocf.csv" , 

ncolumns =nrep, append = T) 

# 1ISE, T1ISE and RE 

diffgrhkbllf'W [[ill = beta[-l]-gnewtransformed [[ill 

msegrhkbncw=Illsegrhkbllew+cliffgrhkbnew[[ill ~ 2 

tmsegrhkbnew=slllll( msegrhkbnew) 

regrhkbnew=tmseols/tmsegrhkbnew 

writc( diffgrhkbnew[[ill ,file=" C: /My documents/Final Simulation/ grhkbncwn2diff.csv" , 

ncolullllls=nrep,append= T) 

# ktroskie (Chalton and 'froskie, 1996) 

# Esilllates 

grtxtxinv[[ill=solvc(ztz + ktroskie[[i]]) 

grtbta[[i]]= grtxtxinv[[i]]% *% zty[[i]] 

grttransfonned [[ill = grt bta[[ill *ssy [i] / se 

writc(grttransforrnecl[[i]L file = "C:/ My dOC1ll11cllts/Fillal Silllulation/grtn2coef.csv", 
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ncolUlllns =nrcp, appelld = T) 

# 1ISE. T1ISE and RE 

diffgrtroskie[[i]] = beta[-l]-grttransformcd [[ill 

lllsegrtroskie=lllsegrtroskic+diffgrtroskic[[i]] A 2 

tmsegrtroskie=sul1l (msegrtroskie) 

regrtroskie=tmseols / tlllsegrtroskie 

write( diffgrtroskic[[i]] ,file=" C:/My docUTllents/Final Simulation/ grtn2diff.csv" , 

llcoIUllllls=nrep,appellcl=T) 

# ktroskienew 

# Esil1latf's 

grtnewxtxinv[[ill=solve(ztz + ktroskicncw[[iJ]) 

grtnewbta[[ill= grtnewxtxinv[[ill% *% zty[[i]] 

grtnewtransformed [[ill = grtncwhta[ [ill *ssy [i] / sc 

write(grtnewtransformed[[i]J, file = "C:/ My docnmellts/Final Silllulation/grtnewn2coef.csv", 

llcolul1lns =nrep, append = T) 

# MSE, Tl\ISE and RE 

diffgrtroskienew [[ill = heta[-l]-grtnewtransforlllecl [[ill 

msegrtroskiellew=l1lSegrtroskiellew+cliffgrtroskienew[[i]] A 2 

tl1lscgrtroskiene\v=sllln( msegrtroskienew) 

regrtroskienew=tl1lseols / tmsegrtroskiencw 

wri te( diffgrtroskiencw [[i]] ,file=" C: /My documents/Final Simulation/ grtllewn2diff.csv" , 

llcolumns=nrep,appencl=T) 

# STEIN ESTIMATION 

# The stein constants (Jallles and Stein, 19(1) 

C[i]=llla."\:(O, 1-( (p-2) *( n-p) *sigl1lasq/ (n-p+ 2) *( sllln( olscoef[[ill)) A 2)) 

# Esimates 

betastcin[ [ill =c [i] *olscoef[[ill 

stcintrallsformecl[[i]] = bctastein [[ill *ssy[i] / sc 

write( stcintransformed [[i]L file = "C: /My docul11E'nts/ Simulation/ steilln2coef.csv·' , 

llcollllnns =nrep, aPIwncl = T) 

# 1ISE, T1ISE and RE 
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cliffstcill [[ill =stcintransforllled [[i]]-bcta[-l] 

lllsestein=lllsestein+diffstein[[ill A 2 

tlllscsteill=slllll (lllsestein) 

rest ein =tlllseols / tlllsestein 

write( diffstein [[i]].filc=" C: /lv1y documents/Simulation/ steinn2diff.csv", 

ncohllllns=urep,appeud=T) 

# LID ESTIMATION 

# The Liu constant (dum; Liu, 1993) 

dllln[i] = l-sigmasq[i] * (Slllll( 1 / eignv*( eignv+ 1)) /Slllll( alpha[[ill A 2/ (eignv+ 1) A 2)) 

# Esimates 

liuztz=solve( ztz + diag( 1 ,p,p)) 

lillll1n[[i]] =zty [[ill + (diag( cllllU[i] ,p,p)% *% olscoef[[i]]) 

btaliuclnm[[i]] =liuztz% *% liunm[[i]] 

Ii unmtransformed [[i]] = bt ali udllln [[ill *ssy [i] / se 

wri te(li u11lntransformecl [[i]], file = "C: /My documents /Silllula tion/ Ii umnn2coef.csv" , 

ncolumns =nrep, append = T) 

# 11SE, T11SE and RE 

diffiiunm[[ill = beta[-l]- liulIlutransfor11lecl[[ill 

lllseliumn=lllseliulllll+diffiiumn[[i]] A 2 

tmseli Ul11n=SUlll (mseliullm) 

reliumn=tlllseols / tlllseli unlll 

write( difHiu11ln[[ill ,file=" C: /My documents/Simulation/ liulllnn2diff.csv", 

ncolunms=nrep,append= T) 

# del(el criterion; Liu, 1993) 

The constants 

dcl[i] = l-siglllasq[i] *(sum(l / (cignv+ 1)) / Slllll( cignv*alpha[[ilJ A 2/ (eignv+ 1) A 2)) 

# Esimates 

liud[[ill=zty[[i]]+( diag( dd[i] ,p,p )%*% olscoef[[ill) 

btaliudd[[i]] =liuztz7c *% liucl[[ill 

lillcltransfoflllcd [[ill = btalillcld [[ill *ssy[i] / se 

write(liucltrausforllled[[ill, file = "C:/l'v1y cioclllllcnts/SiulUlation/ liudn2coef.csv·', 

ncolulllns =urep, append = T) 
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# l\ISE, Tl\ISE and RE 

difHiud[[i]]= beta[-l]- lincltransfoflned[[i]] 

l1lsdincl=lllselind+difHiucl[[i]] , 2 

tmseliuc!=s1Ull( mse Ii ue!) 

re Ii ud=tlllseols / tmseli ue! 

write( diffiind[[i]] ,file=" C:/My docnmcnts/Sinmlation/lindn2diff.csv··, 

ncolunms=nrep,append= T) 

# GENERALIZED LID 

# The generalized Lin constant (Lin, 1993) 

dg[[i]]= 1-( siglllasq[i] *( cignv+ 1) / (eignv*alpha[[i]] , 2)) 

# The estimates 

glin[[i]]=zty[[i]]+( diag( dg[[i]] ,p,p )%*% alpha[[i]]) 

btaglin[[i]] =liuztz% *o/c gliu[[i]] 

gliutransforllled[[i]] = btagliu[[i]] *ssy[i] / se 

write(gliutransformecl[[i]L file = "C:/My documents/ Sil1lulation/glinn2coef.csv", ncolul1lns 

=nrep, append = T) 

# l\ISE, Tl\ISE and RE 

diffgliu[[i]]= beta[-l]- gliutransformed[[i]] 

Illseglin=lllsegliu+diffgliu[[i]] , 2 

tl1lsegli u=sum( l1lsegli u) 

regli u=tlllseols / trnsegli 11 

write( diffgliu[[i]] ,file=" C: /My documents/Simulation/ glinn2diff.csv" , 

nCOlnll111s=nrep,append=T) 

} 

mse=cbind( (lllseols), (lllsehkb), (lIlsehkbl1l), (mselw), (lllsdwlll), 

(l1lsegrtroskie), (rnsegrhkb), (l1lschkbllew), (lllsehkblllllew), (mselwnc\v), (lllselwnmew), 

(msegrtroskiencw). (msegrhkbnew), (Illsepcdell), (Illsepcdcl2), 

(ltlseliuml1l), (mseliuc!), (lllsegli u), (msestein), (Illsekalll), (msekgm), (Illsekmed), (lllsekamnew), (lllsekglllne, 

lllse=lllatrix( mse,p,25) 

write(t(mse), filc = "C:/My dOCUlllcllts/Sinllllation/lllSE'1l2.csv·', 

ncolnnms =25, append = T) 

tIllsE'=cbind ( (tIllseols), (tmsehk b ), (tlllschk bIll). (tlllselw), (tlllsehvIll). 
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(tlllsegrtroskic). (tlllsegrhkb), (tlll::;ehkblleW), (tmschkhllllH'W), (tlllSc!Wne\v). (tlllsclwlllnCW), 

(tlll::;cgrtroskielle\V). (tlll::;cgrhkblleW), (tlll::;epcclell), (tlllsepcclcl2), 

(tlllseliullllll). (tlllseli llcl). (tIllseglill), (tmSe::;teill). ( t lll::;ckalll), (trmekglll), 

(tlllsckllled). (tlllsckamnew), (tlllsekglllllew), 

(tlllsekmednc\v) ) 

writc(t(tlllse), file = "C:jMy docmnents/Sillmlatioll/tl1lscn2.csv", 

ncollllllns =1, append ='1') 

re=cbilld( (reols), (rehkb), (rchkblll), (relw), (rclwlll), 

(regrtro::;kic). (regrhk b), (rehkbnew), (rehkblllllew), (relwnew), (relwllluew), 

(regrtroskicncw), (regrhkbnew), (repcdel1), (repcde12), 

(reliulllm), (reliucl), (regliu), (restein), (rekam), (rekgm), (rckmed), (rekamncw), (rekgnlllew), (rekmedncw)) 

write(t(re), file = "C:/J\Iy docuIllcnts/Sinmlation/re1l2.csv", 

ncohullns =1, append =T) 
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Appendix B 

Distributions 

A sUlllmary of the general notion underlying the probability distributions used in the sim­

l11ation study is presented. vVe first highlight the most important concepts in probability 

distribution theory and statistical inference alld later describe each of the distributions used 

ill the simulatioll study. 

B.l Fundamental concepts of probability distributions 

Ideally, probability distributiolls are critically illlPortant in several practical problems; par­

ticularly in description of random variables and the corresponding patterns. The following 

concepts playa vital role in the theory of probability and its application. 

B.l.l Discrete and continuous probability distributions 

The probability distributions associated with random variables that take on a countable llum­

ber of values are discrete probability distributions alld those that are associated with an un­

countable llumber of values are contilluous. vVe refer to the corresponding functions as mass 

and dellsity functions, denoted by p(:l:) and f(:1') for discrete and continuous probabilities re­

specti\"ely. 

Important ly, for a discrete random variable X t hat assumes the values :rj, 

• 0:::; p(:rd :::; 1 V :l:i 

• L p(Xj) = 1 
all ,ri 

Silllilarly. for a continuous random variable X that takes Oll values that rauge between a and 

b (a:::;.1":::;b), 

• f (.r) 2: 0 
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• .lb f(.r)d(.r) = 1 

Probability distributions associated with one random variable are llsllally referred to as llni­

variate \yhereas those that are associated with IllOl'(' than one randoIll variable are known as 

nlllltivclxiate distributions. A bivariate distribution is a special case of multivariate distribution 

where t\',·o randoIll variables are considered simultaneously. 

B.1.2 Distribution Function 

If X is a continuous randolll variable with the density function f (:r) or a discrete random vari­

able with the lllass function p(:J:) , then the function that gives the probability that X takes on 

values less than or equal to x is called the distribution function, denoted by F(:1:). 

Suppose u and x are randolll variables such that 

1L F(x) 

x G(u) 

.r G(F(x)) 

u F(G(F(x))) 

then, in statistical terms, we say inverse distribution function F(:r)-l maps inversely from u 

into x. 

If the derivative exists, the distribution function associated with X may be differentiated once 

with respect to x to give the probability density function of x. 

f(x) = d(~(x)) 
ax (B.1) 

In this thesis; we use some of the inverted distribution functions F(:r)-l to generate error 

terms from some of the distributions. 

B.1.3 Moments 

Generally. the nth moment taken about an arbitrary point b is defined by 

01' 

Special cases of which b = 0 and b = 11 are referred to as raw aud ccntralmomcnts respectively . 

• Raw moments 

The nth ltloment about zero (raw mOlllent) is defined by 

or 
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The first ra\,' moment JL~ = ~ :Lp(x) or J .1'f(.1')d(.r) = E(X) for discrete and contin­

uous variables respectively. 

• Central moments 

The Tl th moment taken about the mean (ccnt ral moment) is defined by 

or Jl n = L(x ~ p)7I p (.z;) 

The second centralmomellt is also known as the variance 

I '2 
P'2 =. (T ~ iL) f(x;)rl(:r) or ~ ') . '2 P2 = L..Jr ~ p)-p(.z;) = E[(.z; ~ p.) ] 

B.1.4 Skewness 

Skewness defines the degree of asymmetry of a distribution. If the distribution is long tailed 

to the left (has a long tail to the left of the maximuIll), the function has negative skewness 

otherwise it is positively skewed. 

\Vhere iL'2 and P3 are the second and third central moments respectively. 

B.1.5 Kurtosis 

Kurtosis is the degree of peakedness of a distribution, denoted by 

k 
~ it.., 
~ '2 

iL'2 

The follmving bounds apply for k 

• k > 3 
implies that the distribution is highly peaked (leptokurtic), 

• k < 3 
refiects a fiat-topped distribution (platyknrtic) and 

.k=3 

shows a moderately peaked distribution (mesoknrtic) 
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B.2 Distributions 

In this section, we describe the distributions used in the simulation stndy. \Ve learn from the 

statistical literature that the least squares estimator performs poorly when t he error terms are 

not normal. Hence, we consider a selection of some of the ske\vecl and sYlllmetric distributions 

to observe whether or not the distribution of error terms plays a role in performance of es­

timators: Thiart (1994) observed constant efficiencies of estimators hence, no significant role 

played by the distributions except for one (slash), of \vhich the \"ariance docs not exist. 

\Ve select four distributions, nalllely; Normal, Contaminated normal, Laplace and Exponen­

tial, of which variances exist and are defined in the s1Ulllnary table at the end of this chapter. 

Uniform distribution is used as an input to other distributions. 

The corresponding moments are provided in the slUmuary table. 

B.2.1 Uniform Distribution 

Uniform random numbc'l"s within the interval [0,1] arc similar to random numbers between 0 

and 1. 

The uniform density function is denoted by 

f(.r). { 

1 

b - a' 
0, :z;<a aT 

+b l' 2 (b-a)2 A uniformly distributed variable has mean !L = a 2 ane vanance (J" = ----rr- In this study, 

we use the uniformly distributed random variables to generate error terms from some of the 

distributions. 

B.2.2 Normal Distribution 

The Normal distribution (Gaussian) is one of the best known continuous distributions in sta­

tistics. The normal density function is defined as 

1 I (x_p)2 

fCr) = ~-e-2~ 
(J"V2T. 

- 00 < ;); < 00. -::x; < JI < x. 0 < (J" (B.2) 

\Ve refer to the two parameters JI and a as the mean and the standard deviation, used to specify 

location of the data and the spread of the distribution respcctively. The Normal distribution 

has a bell-shape that flattens when (J" increascs. 
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A special case for a Normal distribution in which I' = () and CJ = 1 is known as the standard 

norlllal distribution, the den:::;ity function of which is given b.v 

l' f ( .r) = ((C C - X2" 

v2IT 
- 00 < J: <00. 

B.2.3 Contaminated Normal Distribution 

The contaminated normal distributed variable is a sum of two weighted, normally distributed 

variables with independent values of If, and CJ. For example; a variable Y = W1YI + W2Y2 has 

a Contaminated normal distribution if the follmving conditions hold. 

T T ') (2) • }" I rv ~\ (p I, CJI) and Y2 rv N IL2, CJ 2 and 

• the weights sum to 1 (W1 + W2 = 1); W1,1L'2 > 0 

The density function of Y is defined by 

W1 
f(y) = yI2ii 

CJI IT 
e + e (B.3) 

.) .) 

The mean and variance of Yare W11'.1 + W21l2 and WI CJj + W2CJ:2 respectively. 

B.2.4 Laplace Distribution 

The Laplace distribution is the distribution of the difference bebveen two independent variables 

with identical Exponential distributions. A variable X has the Laplace distribution if its density 

function is defined by 

1 _Ix-al 
f(;l:) = - c c 

2c 
-00 < J; <00, -00 < CL < 00, 0 < c (B.4) 

\Vhere 

a = the mean or the location parameter and 

c = the scale parameter greater than zero, defined such that the variance of X is 2c2 . 

B.2.5 Exponential Distribution 

The Exponential distribution i:::; usually used to model the interval of time bdween events and 

the density depends Oil A. If events are occurring randomly with an average rate of A per unit 

of time, then the length of time is exponentially distributed wit h the density function denoted 

by 

.r 2: 0, A > 0 (B.5) 
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B.2.6 Moments, Skewness and Kurtosis 

In summary, \ve tabulate the expressions for ltlOlllC'nts, skewnC'ss anel kurtosis for the distribu­

tions nnder cOllsideration. \Ve llse the following notation: 

• It't = the first rcnv moment or the mean. 

• lir = the rth central mOlllent. 

• f/2 = the 2nd central moment or the variance. 

• J{ = Kurtosis 

• S = Skewness 

IL'1 lir Il2 K S 

Uniform o+b (b-fLY r even (Ii-of 2. 0 :2 2r(r+l) ~ ;) 

0, r odd 

Normal !L 
r!a T 2 3 0 

(r/2)'2 r / 2 eJ 

Cont. Normal Wl/Ll + W21i 2 
r!(Wl"r +W2"~) .) 2 :3[wl"i+w 2"il 0 (r /2)'2 r /2 WleJj + W2eJ2 2 2 

Wl"l +W2"2 

Laplace a r!cr r even 2c2 6 0 

0, r odd 

Exponential 1 _....L + r(l-lr-J) 1 9 2 X AT A );2" 

Table B.1: l\Ioltlents 

B.3 Standardizing the variables 

vVe transform the variables to the standard form in tlw follmving nHUlllE'r. 

Consider the following re~r('ssioll model 

I3-G 
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Centring 

Subtract the meall of each variable from the correspolldillg \'ariable. De cautions to add alld 

snbtract the sallle terms to keep the model in its original forlll. That is 

Let 

Then 

y~ = .-30 + ,dlXi! + (hXi2 + f3:3X i:{ + ;3. j X d + (3,S'\;iS + .31 (Xii - ./Yil ) + .:3:2 (Xi2 - Xd+ 

,-h(Xi3 - Xi:» + lJ4(Xi4 - x.i<!) + (lopes - ./Y i .S) + Ei 

~ =,30 +31 (Xii - Xid + !h(Xi2 - X i2 ) + ,3:3 (Xi3 - X d ) + 3 1(Xi4 - Xi.!) + (3S (Xi5 - X i5 ) +Ei 

Scaling 

Divide and lllultiply each factor by the square root of the stun of squares of the corresponding 

centred variable as indicated below. 

(Yl-f)J~:'(Yl-Y)2 _ !3] (Xll-XidJ~~(Xll-XiJ)2 ;h(XirXI2)J~~(Xi2-Xi2)2 
J~~(Yl_Y)2 - j~:'(Xil-XI1l2 + J~;'(Xi2-Xi2)2 + 

;h(Xi3-Xi3h/~;'(XI.1-Xi3)2 + Jl(X'1-X'4)J~;'(XirX,tl2 + 
J~:'(X,rXi3)2 J~~(XirXi4)2 

i30(Xll-X i f» j~;'(XI5-XI5)2 

J~:'(XI5-XI5)2 

\Ye can silllplify the above expressiolls as follows; 
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Let 

n 

"'("': _ y- )2 8 y i = ~ I, 

For j = 1, .... 5 and i = 1, ... n 

Let 
3* = Jj(sn) 

) (Sy;) 

Then, the regression model ill which Y and X are standardized may be expressed as 

Y * '3* v* + * i =; j ·'\.ij E j = 1, ... ,5 and i = 1 ... , n 
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Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix C 

Estimators and estimation methods considered 

Name 

Least Squares 

General Shrinkage 

Stein 

Ridge 

Generalized Ridge 

Lin 

Generalized Lin 

Van Homvelingen and Le Ccssie 

Principal components 

Expression 

(X'X)-lX'y 

(X' X + Iq-l X'y 

(X' X + I)-I (X'y + el/3) 

(X'X + I)-l(X'y + DJ) 

c3 

Table C.l: Notation 

C-l 

Symbol 

/3 

13cR 

/JCL 

{JvHIC 
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OLS Ordinary Least Squares 

Rhkh Ridge regressioll 'with k = kh/;:b 

Rhkh-lle\V Ridge regression Kith k = khkb-ncw 

Rhkblll-llew Ridge regression \vith k = khkblll-ncw 

Rhkblll Ridge regression with k = k hkbm 

Rlw-new Ridge regression with k = k/w- new 

Rhv Ridge regression \vith k = k/w 

Rlwlll Ridge regression with k = k/wm 

RlKlll-new Ridge regression with k = k'wm-new 

Rkalll-new Ridge regression with k = kom-new 

Rkgm-new Ridge regression with k = kgm-new 

Rkmed-new Ridge regression with k = kmcd--new 

Rkam Ridge regression with k = k am 

Rkgm Ridge regression with k = k gm 

Rkmecl Rjdge regression with k = k meri 

GRhk Ridge regression with K = Kit/;: 

GRhk-new Ridge regression with K = Kh/;:-new 

GRtc Ridge regression with K = K tc 

GRtc-new Ridge regression with K = K tc- new 

Linmm Lin estilllation with d = duun 

Lind Lin estilllation with d = del 

Glin Generalized Lin estilllation 

Stein Stein estilllation by Jallles and Stein (1961) 

PCdell Principal componcnts regression deleting one root 

PCdcl2 Principal components regression deleting two roots 

Table C.2: Estilllation lllethods and ahbreviations 

C-2 
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Parameter 

. _ (1'_2)&2 
Ahkbm - ~,~--

3',3 

k = 1 ",",p (~) am p L.,/=1 0i 

c = nuu; (0 11 - (p-2)(1I-jJ)~2 J) , l (n-p+2)Wf3) 

Estimation Method 

Rhkb 

Rkhkblll 

Rklw 

Rklwl1l 

Rkalll 

Rkgm 

Rkmed 

GRtc 

GRhk 

Liullllll 

Liud 

GLiu 

Stein 

Table C.3: Traditional parameters 
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Parameter 

A 'J 
l}(TI~cdd 1 

kl 'L,'-ne w = ---c;l-'-------
, "p- ':2 A 

L..i=l Ctpcdrll, i 

( 2) ':2 "p-l A 
T - apcdell L..i=l i 

klwm-nrw =, A 

T i3~cdell X I X Pprdell 

p-m ':2 

1 ""' (aprdell ) 
kWTI-new = -(---) ~ :2 

P - Tn i=l &pcddl i 

([I p-m (),:2 ) p~m 
i=l pedelI, 

A') 

k - l' ( apcdell ) 
med - mec zan ':2 A:2 

npcdel II' ' , , , npedell p-l 

':2 
a pede/1 
',2 
npedel1, 

Estimation Method 

Rhkb-llew 

Rkhkblll-llew 

Rklw-llCW 

Rklwlll-llew 

Rkalll-llE'W 

Rkgm-llcw 

RklllE'd -llew 

GRhk-llCW 

GRtc-new 

Table C.4: New parameters 
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Appendix D 

Past simulation studies 

Author 

Hoerl et al. (1975) 

Marquardt and Snce (1975) 

Guilkey and l'vlurphy (1975) 

Lawless and \Vang (1976) 

Hoerl and Kennard (1976) 

Hocking (197G) 

Measure Methods compared 

TMSE - Ridge (khkh ) 

- OLS 

Residual - Ridge, 

prediction - OLS, 

error - Generalized inverse 

(l'vIarquardt (1970), 

- All possible subsets 

TMSE - Generalized ridge, 

- OLS, 

- Directed ridge 

MSE -Ridge, 

- Generalized ridge. 

- Principal componC'nts. 

- OLS 

TMSE - Ridge, 

- OLS 

MSE -Ridge. 

- Best Sl1 bsct select iou. 

- Principal compOllents. 

- OLS 

D-1 

Superior 

- Ridge 

- Generalized inverse 

- Ridge 

- Directed ridge 

-Ridge 

-I\idge 

- Ridge, 

- Principal 

com ponf'nts 
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Gunst andl\Iason (1£)77) 

\\'inchen and 

Churchill (1978) 

Thiart et a!. (1993) 

Thiart (1994) 

Tl\ISE 

TMSE 

Relative 

Efficiencies 

Relative 

Efficiencies 

- Ridge. 

- Latent root 

(I-hnvkins.1973) . 

- Principal components, 

- OLS 

- OLS, 

- Ridge (k/w, khk . 

k hkb , l\Icdonald and 

Galarneau (1975)) 

- Ridge, 

- Principal cOlllPonents, 

- Generalized ridge, 

- .J ackknife 

(Quenouille 19.56; 

Tukey, 1958), 

- Fractional principal 

components (Mayer 

and Willke, 1973) 

- Ridge, 

- Principal compollents, 

- Generalized ridge, 

- .T ackkllife 

(Qllenollille 1956; 

Tllkey, 1958), 

- Fractional principal 

components (l\Iayer 

and Willke, 1973), 

- Lp norm 

D-2 

- Ridge, 

- Principal 

compollents 

- All ridge 

except khk 

- All biased 

estimators; 

no outstanding 

estimator 

-All biased 

estimators; 

no outstanding 

estimator 



Univ
ers

ity
 of

 C
ap

e T
ow

n

BreimCln (1995) 

Aldrin (1997) 

Fu (1998) 

Kaciranlar and 

Sakalliogln (2001) 

\ Vcncheko (2001) 

Lin (2003) 

Prediction 

error 

Prediction 

error 

IvISE 

MSE 

Pitman 

measure 

of nearncss 

(Pitman, 

1937) 

T\ISE 

- nounegative garrote 

(Breiman, 1995). 

- OLS, 

- Ridge, 

- Subset selection 

- ridge 

- Stein, 

- Partial least squares, 

- Variable selcction, 

- Length modified ridge 

(Aldrin, 1997) 

- Bridge estimation 

(Frank and 

Friedman, 1993), 

- Least absolute 

shrinkage and 

selection operator 

(Lasso) (Tibshirani, 1996), 

- OLS and 

- Ridge regression 

- r-d class (Kaciranlar 

and Sakallioglu, 2001), 

- Lin (Liu, 1993), 

- OLS, 

- Principal 

components, 

- Principal components, 

- Ridge, 

- OLS, 

- Shrinkagc 

- Priucipal componcnts. 

- Ridge, 

- OLS. 

- Liu-type (Lin. 2003) 

D-3 

Table D.1: case studies 

-Ridge 

-Ridge, 

-Bridge 

- r-d class 

- Ridge 

-Liu-type 




