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Abstract
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Shrinkage estimation is an increasingly popular class of biased parameter estimation techniques,
vital when the columns of the matrix of independent variables X exhibit dependencies or near
dependencies. These dependencies often lead to serious problems in least squares estimation;
inflated variances and mean squared errors of estimates, unstable coeflicients, imprecision and
improper estimation. Shrinkage methods allow for a little bias and at the same time introduce
smaller mean squared error and variances for the biased estimnators, compared to those of un-
biased estimators. However, shrinkage methods are based ou the shrinkage factor, of which
estimation depends on the unknown values, often computed from the OLS solution. We argue
that the instability of OLS estimates may have an adverse effect on performance of shrinkage

estimators.

Hence, a new method for estimating the shrinkage factors is proposed and applied on ridge and
generalized ridge regression. We propose that the new shrinkage factors should be based on the
principal components instead of the unstable OLS estimates. We use the total mean squared
errors of estimates to compare efliciencies of the ridge and generalized ridge estimators associ-
ated with the new method to the well known estimators, namely, the Stein estimator (James
and Stein, 1961), ridge estimators (Hoerl et al., 1975; Lawless and Wang, 1976; Brown, 1993;
Kibria, 2003), generalized ridge estimators (Hoerl and Kennard, 1970a; Troskie and Chalton,
1996), Liu estimators (Liu, 1993), the generalized Liu estimators (Liu,1993) and priucipal com-
ponent estimators deleting two smallest roots (KKendall, 1957). The goal is to try to find the
most efficient estimator and to determine whether or not the estimators associated with the

proposed procedure are better than the existing estimators.
The principal components estimator deleting the smallest root shows an outstanding superiority
over the rest of the shrinkage estimators. Further, the new estimators based on the principal

compornents estimator deleting one root are superior and an improvement over the existing

biased estimators.
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Chapter 1

Introduction

For a long time, regression analysis has been used as the main statistical technique for fitting
equations to data. The technique is widely used in social, biological and physical sciences
(Allison, 1999) to portray the relationship between the variable of interest (dependent) and

one or more other variables (independent variables).

Regression is usually used in prediction or causal analysis to

e develop the functional form for making predictions about the response variable, based

on the independent or explanatory variables and/or

o to determine whether or not the independent variables influence the dependent variable.

Through regression analysis, it is possible to combine more than one variables to produce
optimal predictions of the response variable and to determine the magnitude of the unique

contribution of each independent variable.

Least squares estimation is the most frequently used statistical procedure, favoured for being
unbiased and producing the estimates that have minimum variance. However, sometimes least
squares estimation is plagued by existence of dependencies among the independent variables
and tend to be imprecise and completecly unreliable. It is in such conditions when shrinkage

estimation becomes a necessity.

This study strives towards identification of the most stable and reliable shrinkage estimation
techuique(s), required to curb the problems attributed to dependencies or near dependencies
of independent variables. We view some of the biased estimation methods from a shrinkage
point of view, hoping to get an insight into why they can be expected to perform well when

the data are collinear.
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The specific objectives of this study are the following:

e to propose a new niethod for estimation of the shrinkage factors and assess from the
simulation study whether or not the new method improves on the traditional method
of estimating shrinkage factors. We hope to observe a great improvement since the new

method is based on a considerably stable procedure.

e to bring together 24 biased estimators into a common framework of shrinkage estima-
tion. Our primary aim is to identify the most effective and robust estimator when there
exists extreme collinearity among the independent variables. We consider the following

estimators

* the Stein estimator (James and Stein, 1961),
* 14 ridge estimators (Hoerl et al., 1975; Lawless and Wang, 1976; Brown, 1993;
Kibria, 2003),

* 4 generalized ridge estimators (Hoerl and Kennard, 1970a; Troskie and Chalton,

1996),

* 2 Liu estimators (Liu, 1993),

*

the generalized Liu estimator (Liu,1993) and

* 2 estimators from principal components regression (Kendall, 1957)

In the remaining sections of this chapter, we review the theory behind linear regression, Least
squares estimation and the major problems that may be encountered in the process. In chapter
2, the research problem is defined; collinearity is considered a broad problem from which the
research problem originates. The general issues around collinearity are reviewed and the rem-

edy for collinearity is identified as the main resecarch problem.

Chapter 3 provides the literature review on shrinkage estimation and some of its special cases;
we review the theory behind ridge and generalized ridge regression, Stein estimation, Liu and
generalized Liu estimation and principal components regression. Estimation of the shrinkage
factors is discussed in chapter 4; we look into what is traditionally being done and propose
a new method through which shrinkage factors may be estimated. The simulation study is
introduced in chapter 5; past simulation studies are reviewed and the manner in which our
simulation study contributes to the global issue or the general topic of shrinkage estimation
is specified. The design of the simulation and the simulation program are presented. Chapter
6 presents the simulation results. Finally, an evaluation of the objectives, the conclusions,

recommendations as well as further research arca are provided in chapter 7.



Full program details and some of the important definitions are provided in the appendix in the

following sequence

Appendix A — The R simulation program

- Appendix B — The general theory behind distributions considered in the study

Appendix C — The estimators and estimation methods cousidered for simulation.

1

Appendix D — Past simulation studies.

1.1 The linear model

The standard form of a linear regression model is denoted by the following equation:
Y=X08+¢ (L.1)
where

Y = an (n x 1) vector of observed responses

n = the number of observations

X = an (n x p) full column-rank matrix of covariates, also known as a matrix of fixed
array of independent numbers. If the model has a constant, it will be stated
explicitly and the constant will be represented by a column of ones in the first
column of X. That is ;7 = 1 for i=1, ...n and x;; = the ithrow element and jt*
column element of X.

p = the number of parameters in the model.

&)

= a (p x 1) vector of unknown regression coefficients

e = an (n x 1) a vector of uncorrelated random error terms.

The random error terms account for all the variables (measurable or otherwise) that are not
included in the regression model, with the following properties.
Ele] =0

9 . .
Ele€’} = 0°1, assuming homogeneity.

1.2 The orthogonal form of the linear model

The linear model (1.1) can be reduced to an orthogonal form (canonical form) by usage of the

singular value decomposition (SVD) of X. The SVD of X is defined as follows:

1-3



1.2.1  Singular Value Decomposition (SVD) of X

Let
Xy = a matrix of order (n x p) and rank r(X) = s, for s < p < n,
Unxn and Vyup = orthogonal matrices such that
U Xnxp Voxp = Bnxp (1.2)
where

A = a diagonal n x p matrix whose first s diagonal elements are square roots of eigenvalues

of X'X. also known as the singular values of matrix X.

D, 0
A —
0 0
Db.:Dia,g(\/Xl,...,\/Xs) for s=r(X); Al > VA > VAs >0

VA= the i'" singular value of X and
A; = the i'* eigenvalue of X'X
= (n x n) left singular vectors of X or eigenvectors of X'X

U
V = (p x p) right singular vectors of X or eigenvectors of X X’

Both U and V are orthogonal, imply that U'U = I, and V'V = I, where (') indicates transpose

of the corresponding matrix. In addition, V is said to be orthonormal, meaning that V' = V=1,
where V=1 is the inverse of V.
Hence, in the light of the above and using (1.2), X can be expressed as
_ / .
‘Y”XP - Unannxprxp (15)

If the assumption is that all columns of X are independent (X is of full column rank), then

p
Xop = UnspDopspVaxp = 2, VAt (1.4)
i=1
U =[ui u ...up where w; is the " (n x 1) column of U
V =l vy ...v,] where v is the i'" (p x 1) column of V

uj; = the entry in the 41 row and the i** colummn of U

L h

vj; = the entry in the 4 row and the i* colun of V

A =D,

1-4



1.2.2 The orthogonal model

The orthogonal or canonical form of the linear model (1.1) is defined by the following

Y =XV V'3 +e
=~~~
=Z a  te€ (1.5)
Where

Ed ! s
Z = XoupVpup and a = Vi, By

From (1.4) and (1.5), we derive the following equations for later use in the study.

P
o X = Un,prpxpr/xp - Z Vi (1.6)
i=1
. Z =UA (L.7)
o X'X =VAU'UAV'
‘ P
= VA = Z A\ viv] (1.8)
i=1
. Z'7 =A? (1.9)
. (Z'z) ' = A2 (1.10)
. (X'X) ™t = (vary)!
— (V/)—IAVQ‘/fl
= VA2V (since V=V (1.11)
D
o Trace(X'X) = Z Ai (1.12)
i=1
p
. Trace(Z'Z) =Y N (1.13)
i=1
/ 1 ¢ 1
Trace(X'X)™" = — 1
o race( ) ; Iy (1.14)
/ 1 ¢ 1
Trace(Z'Z)y" =) — 15
. race( ) ; y (1.15)



1.3 The Assumptions underlying linear models

The following assumptions are adhered to linear regression models.

e The response variable is linearly related to the independent variables hence linear regres-

sion estimators are based on a linear equation.

e The observations on the dependent variable are from populations of random variables

with the expectation equal to

E[Y

X] = X3

e The independent variables are known, uncorrelated constants, measured without error.
e Random error terms have zero mean, a common variance and are pairwise independent.
e There are no dependencies among the error terms and the independent variables.

e Y; and r;; are paired observations, both measured on every observational unit.

e For purposes of making significance tests, the dependent variable and the error terms are

assumed to be normally distributed.
e X is a fixed, full column rank matrix (orthogonal); r(X) = p.

Violation of some of the listed assumptions sometimes leads to poor estimation.

1.4 Bias, Variance, Mean Squared error and Total Mean Squared error

Let 3 denote any estimator of 3

1.4.1 Bias
The bias of 3, is defined by the following

Bias[3) = E[3] — 3 (1.16)
where

;3= the true parameter vector.

Positive (negative) values of Bias[3] imply that the estimates of 3 are too much (little) in

favour of what is being estimated. For this reason, unbiased estimators are mostly required.

1-6



1.4.2 Variance

The variance plays a vital role in regression analysis; it is one of the measures of precision of

estimates, hence the basis for assessment of reliability of estimates. By definition
Var[3] = E|(3 - E[8))(3 - E[8]) (1.17)

Small values of Var|3] imply hich precision of estimates and vice versa; thercfore, estimators
) o ' b

whose variances are minimum are mostly desirable.

1.4.3 Mean Squared Error

Mean Squared error (MSE) represents the squared distance between the estimate and the ac-
tual parameter. Like the variance, the MSE is vital in assessing the quality of an estimator;
the smaller it is, the closer the estimates are to the true values. A good estimator may be

characterized by a relatively small MSE (McDonald and Galarncau, 1975).
The MSE can be decomposed into a sum of the variance and the squared bias of the estimator.

By definition,

MSE(3)=E [(8 - 3B - ﬁ)’]

E[«a — B{B) + (B3] - B)(( - E[3) + (B[] - 3)

v

{(g — E[3))(B - E[ﬁ])’} +(E[8] - B)(EF] - 3) +2E((8 — EB)(E[F) - )] (1.18)

(E[3]-8)(E[3)-3)' 0

I
&)

Var|3]
1.4.4 Total Mean Squared Error (TMSE)
The TMSE is another measure of precision of estimates, defined by
TMSE[3] = Trace(MSE[3]) (1.19)

A trace of a matrix is defined as a sum of the diagonal elements of the matrix under consideration.

If A is an (n x n) matrix with eigenvalues A1, ... A,, then Trace[A] = >, A;.

The interpretation of TMSE|J] is similar to that of Var[3] and MSE[J3]: the smaller it is,
the better the estimator and the more precise the estimates are. Importantly, high variances
of estimators may be balanced with the bias; there exists a trade off between the variance and

the bias of estimators.



1.5 Ordinary Least Squares (OLS) Estimation

In regression analysis, there always exists some error, of which the magnitude varies per
estimation method employed and to a large extend, cstimators that are unbiased and have
the minimum variance are mostly favoured. The ordinary least squares estimator (OLSE) is
one such estimator, known to be the best fitting linear unbiased estimator (BLUE) in the sense

of mininmun variance.

In a class of linear unbiased estimators, the least squares estimator has the least variance. This
is a critical factor and the most desirable property because minimal variance implies closeness
to the true parameter, thus accuracy. The least squares regression procedure employs the
criterion that the solution must yield the smallest sum of squared deviations of the observed

response variable from the estimates provided by the solution.

1.5.1 Derivation of the least squares estimator

The OLSE minimizes the residual errors
Yo (Y- Y
=(Y - X3)(Y — X73)
=YY -Y'XB-(XB)'Y +(X3)X3
Differentiation with respect to 3 leads to the following
Y'Y —Y'X3 - ((9);/3)’)/ + (X)'XB) oy ox'x 3

Equating the differential to zero and solving for 3 yields the following;:

2X'X3=2X'Y
X'X3=X'Y
3= (X'X)"'X'Y

VATIU'Y oousing 1.6 and  1.11

f

’
viu;Y
1.20
=1 \/Xl' ( )
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1.5.2 Properties of d
1.5.2.1 Expectation
E[3 = E[(X'X)"'X"Y]
= (X'X)'X'E[X3 + €
= (X'X)"'X'X3 since Ele]=0

=3 (1.21)

1.5.2.2 Bias

Bias|3] = E[3] — 3 =0 from 1.16 (1.22)

1.5.2.3 Variance

Var(3) = Var[(X'X) 1 X'Y]

H

(X' X)X VarlY] X(X'X)7!
= (X' X)X X(X'X)!

o X' X))

= VATV ...using  1.11 (1.23)

1.5.2.4 Mean squared error

MSE[3]) = Var{3] + (E[3] — B)(E|3] — 3) from 1.18

=Var[5]+0

=g* VA2V from 1.23 (1.24)

1.5.2.5 Total mean squared error
TMSE[3] = Trace(MSE{J)])

= Trace(c?(X'X)™1)

5 1
=o* Z X ...using 1.14 (1.25)

i=1 "1

For model (1.5). the orthogonal least squares estimator is denoted by the following

Ga=(2'2)'Z'Y =V'3 (1.26)



1.5.3 Properties of &
1.5.3.1 Expectation
Ela)=E[(Z'2)7'Z'Y]
=(2'2)"'Z' Z«
=« (1.27)
1.5.3.2 Bias
Bias|¢) = Fla] —a =0 (using 1.16) (1.28)

Hence ¢ is an unbiased estimator of .

1.5.3.3 Variance

Var(a) = Var[(Z'2) 1 2'Y]
= (2’27 VarlyY] 2(Z'72)7!
=0(2'2)"!
= o?A? ...using 1.10 (1.29)
1.5.3.4 Mean squared error
MSE[4] = Var[d] + (E[a] — o)(Ela] — @) from 1.18
= Var|d]
=0*A™%  from 1.29 (1.30)
1.5.3.5 Total mean squared error
TAMSE[a] = Trace(MSE|d])

= Trace(oc*(Z'Z)™Y)

p
. 1
2 .
=0 E — .ooustng 115 1.31
=\ g (1.31)

The OLSE has good qualities if it satisfics all the assumptions stated in section 1.3. Violation

of the assumption of independence of the variables results in the OLSE exhibiting high values
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of the variance and mean squared error, being unstable and sensitive to minor changes in
the data. thus being unacceptably unrealistic. This often means that the data vectors for
the predictors are not orthogonal; that is, the matrix X is not full coluimn rank hence there
exist near-dependencies and or dependencies among the columns of X. Some of the reasons or

sources of these dependencies and near dependencies include the following:

e over definition of the model such that the number of observations is less than that of the

variables.
e generating other variables as function of others

These distortions and others usually result in collinearity: a serious problem in regression
analysis, explicitly defined in chapter 2. Under collinear conditions, the least squares estimator
remains unbiased but MSE[3] and Var|3] increase, hence 3 becomes unreliable. It is in these
conditions when shrinkage estimators become a necessity; the 'fly in the ointment’ with the

least squares criterion is its requirement of unbiasedness (Marquardt and Snee, 1975).

1-11



Chapter 2

The Research Problem

Existence of dependencies and near dependencies among the independent variables (collinearity)
has long been studied in statistics but even today, there are still good reasons to study and
identify the potential harm of such conditions on regression modelling. In the event that one or
more independent variables are defined by linear combinations of other independent variables,
the OLSE can become unacceptable; the coefficients may be too large, be of wrong signs and
be extremely sensitive and unstable. Further, the variances and standard errors of estimates
may be inflated, leading to imprecision of the estimates. All these often create difficulties in

inference of the separate influence of the independent variables on the response variable,

The research problem is defined in this chapter. Collinearity is regarded a broad problem from
which the main research problem stems. We narrow our focus to the remedy for collinearity

and instability of least squares estimates.

2.1 Defining the problem

In this thesis, we investigate shrinkage estimation as an alternative to least squares when the
data are collinear. The motivation for this investigation has been induced by the following

facts

e Collinear designs of matrices result in instability of the OLSE, thus unreliability and
inconsistency of the least squares estimates. Failure to remedy collinearity is guaranteed

to result in poor estimation.

e There are lots of shrinkage methods of estimation available but it is not clear which one
is ideal. Most of the currently available shrinkage methods are not robust to collinearity;

the methods are based on an unstable least squares solution.

Hence, we endeavor to solve the above problems by introducing a new procedure/method on

which the shrinkage factors can be based. The new procedure depends on a stable solution
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hence we expect it to be more reliable and cousistent. conipared to the existing procedure. We
setup a simulation study to assess the efficiency of different shrinkage estimators and sclect

the potentially best alternative to least squares estimation.

2.2 Collinearity

Collinearity has long been and still is one of the major problems in statistical research that
arises when there exist near-lincar dependencies among the vectors of explanatory variables

(Wetherill, 1986). If n > 0 is specified such that there exists a column vector

&))

whose elements are not all equal to zero such that

p
ZCJ'XJ' =9 with || 6] < nllcl. (2.1)
j=0

then, collinearity exists among the covariates.

A special case of equation (2.1) for which é = 0 indicates that exact collinearity exists, and if
¢ is very small, the relationship is approximately true hence near-collinearity exists (Thiart,
1994). Variates are collinear if they lie on the same line or if the angle between them is very
small or when the data vectors for predictors are not orthogonal (Hoerl and Kennard, 1980).
Collinearity results when at least one dimeusion of the X-space is poorly defined such that
the dispersion alimost does not exist among the data points in that dimension. In a nutshell,
collinearity describes a set of problems created when some combinations of the columns of
matrix X are nearly zero such that the same information is provided iu more than one way

(redundancy).

Other terms for collinearity are: ill-conditioning (Gunst and Mason, 1977; Belsley et al., 1980;
Belsley, 1987; Walker and Page, 2001; Liu, 2003), non-orthogonality (Farrar and Glauber,
1967; Hoerl and Kennard, 1980; Sundberg, 1993 ), over fitting (Le Cessie and Van Houwelin-
gen, 1992), near collinearity (Mandel, 1982; Stewart, 1987; Thiart, 1994; Firinguetti and
Rubio, 2000), conditioning (Belsley and Oldford, 1986), confluence analysis (Frish, 1934),
multicollinearity ( Hocking et al., 1976; Gunst et al., 1976: Winchern and Churchill, 1978;
Askin and Montgomery, 1980; Dorsett et al., 1983; Guust. 1933; Nomura, 1988; Ohtani, 1986:
Oman, 1991; Troskie and Chalton, 1996; Allison, 1999: Wencheko, 2000), clustering (Grohn
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et al.. 2003), singularity (Stewart, 1987), near singularity and near rank deficiency (Sengupta

and Bhimasankaram, 1997; Knight and Fu, 2000).

2.2.1 Effects of Collinearity

Collinearity plagues multiple regression and other multivariate techuiques. If not corrected for,
it may cause serious problems in least squares regression particularly if the primary intention is
to find separate influences of independent variables. Collinearity makes it virtually impossible

to separate the marginal effects of the independent variables on the response variable.

In collinearity designs of matrices, the X matrix becomes non-orthogonal and is said to be of
less than full column rank (r(X) < p). As a counsequence, some of the singular values of X
become very small and tend to have an adverse impact on the regression coeflicients, variances,
and reliability of estimation in general. An insight into specific effects of collinearity on least

squares is provided below.

2.2.1.1 Unstable least squares estimates and poor prediction

In the presence of collinearity, the least squares estimate of 3 becomes unstable and sensitive

to
e the computational method used, and
e errors in regressor variables (Sengupta and Bhimasankaram, 1997).

Little perturbations in either X or Y may result in unstable least squares coeflicients (Thiart,
1990). This sensitivity and instability of least squares estimators make their predictions and

forecasts generally unreliable.

2.2.1.2 Inflated variances of least squares estimates

Small eigenvalues inflate the variances of the corresponding regression coefficients and lead
to wrong predictions and improper conclusions about the estimated regression coeflicients
(Thiart, 1994; Wetherill, 1986). Inflated variances result in large standard errors of regression
coeflicients, thus statistically insignificant coefficients, which may sometimes not be truly so.

From 1.23, the variance of least squares estimates may be expressed as

Py
Var(3) = o Z U/I'\vl
i=1 M




Hence, in the presence of collinearity, the eigenvalues (Ajs). corresponding to collinear vectors

/
X i v »
become extremely small (near zero) and it follows automatically that, /\—’ and Var(3) become
i
inflated since the denominator is a number close to zero.

2.2.1.3 Unexpected coeflicient signs

It is often assumed that signs of coefficients are known by intuition. However, when the data

are collinear, the coeflicients bear unanticipated signs.

2.2.1.4 Large coefficients

Collinearity leads to unacceptably large coefficients of the correlated variables. We note that

/
R vy
B=yh,

. from 1.20
=1 \/Xi ( )

When collinearity is present in the data, the singular values (\/Xl s) that correspond to collinear

wY

Vi
VA

vectors approach zero, hence, increases, resulting in large values of coefficients.

2.2.2 Collinearity Measures

Several techniques are available in the statistical literature for detecting collinearity however,
there is no particular ideal technique for detection of collinearity therefore more than one
techniques should be used. The most important factor is being able to observe and identify

collinearity in the data.

Before proceeding to the techniques, the following important observation needs to be made.
All the techniques are applied on the correlation form (scaled and centered) of the X matrix.
However, it is also important to note that centering removes the intercept from the models
hence the models in which the intercept plays a vital role may not be practically sound when

the X matrix is centered. Therefore it is sometimes necessary to scale and not center.

e Centering
Centering the X matrix entails subtracting the column means from corresponding elements
of columns of X to eliminate collinearites that may be due to the origins of the predictor

variables.

e Scaling
The columns of a matrix are said to be scaled when each element of the column is divided

by the root of the sums of squares of all the elements in the corresponding column such

o
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that the length of each column of X is one. Scaling ensures uniformity in the measurement

of the predictor variable.

¢ Standardizing
Standardizing means centering and scaling such that the matrix X’X is in correlation

form.

The following techniques are some of the detective measures of collinearity

2.2.2.1 Correlation Matrix

The correlation matrix, denoted by X'X, presents the values of correlations between pairs of
independent variables (bivariate correlations). Correlations close to 1 indicate serious collinear-

ity between the pairs of independent variables.

Despite its importance, the correlation matrix cannot be relied upon for full diagnosis of

collinearity since it cannot detect existence of more than two dependencies in a matrix.

2.2.2.2 Variance Inflation Factors

The i" variance inflation factor (VIF;) (Chatterjee and Price, 1977), is defined by

1

=T
1

(2.2)

where R? is the magnitude of variation in the i" independent variable X;, explained by the
variation in the rest of the independent variables when the regression model is such that X;
is the response variable and other independent variables are the explanatory variables. The
dependencies involving X; and other independent variables is signified by the closeness of R?
to 1, thus a high VIF;. Any variance inflation factor greater than 10 indicates collinearity

(Wetherill, 1986).

Although variance inflation factors may be reliable, they are unable to detect more than two

coexisting dependencies or near dependencies, just like the correlation matrix.

2.2.2.3 Farrar and Glauber Technique

The Farrar and Glauber Technique (Farrar and Glauber, 1967) measures collinearity based on

the following assumptions:
e Matrix X is a sample of size (n) from a p-variate Gaussian (Normal) distribution.

e X has orthogonal columns

W
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This technique employs both the determinant of the correlation matrix, (X’ X ) and the variance
inflation factors. The procedure involves transformation of the determinant of (X’X) and the

use of variance inflation factors as indicators of variates involved in collinearity.

Nonetheless, the Farrar and Glauber technique is usually not used as a statistical test for
collinearity due to the fact that it uses the determinant of (X'X) and the determinant is very
sensitive to scaling hence may not be trusted. The technique also depends on the correlation
matrix and from what we observe from 2.2.2.1, the correlation matrix cannot be entirely relied
upon for diagnosis of collinearity. Further, the technique relies on orthogonality of the X matrix
and from the definition of collinearity and the effect, we note that X becomes non-orthogonal

in the presence of collinearity.

2.2.2.4 Bunch Maps

Bunch Maps (Belsley et al., 1980) are graphical investigations of the possible relationships
among sets of data. They indicate location of dependencies but do not determine the degree
to which regression results are degraded by their presence. However, the bunch maps are not
recommended for use as a major tool in regression because their extension to dependencies

among more than two variates is time consuming and subjective (Belsley et al., 1980).

2.2.2.5 Small eigenvalues

If a matrix has one or more eigenvalucs that are almost zero or too small compared to oth-
ers, then collinearity exists in the data. Small eigenvalues correspond to large elements of

eigenvectors therefore any of the two may be a sign of collinearity (Belsley et al., 1980).

2.2.2.6 A small determinant

A matrix is not invertible or near-singular if its determinant is zero. Near-dependencies and
dependencies can clearly be detected from the determinant that is extremely small such that
the inverse almost does not exist. Since the determinant is generally computed as the product
of the eigenvalues of a square matrix and in the presence of collinearity, it tends to zero and the
matrix becomes singular. Nonetheless, as pointed out under the Farrar and Glauber technique,

the determinant is very sensitive to scaling and cannot be fully relied upon for diagnosis.



2.2.2.7 Condition Number

The condition number (Belsley et al., 1980) of matrix X is the ratio of the largest to the
smallest singular value;
C = </\mar>l/2
/\min

It measures the sensitivity of the solution to small changes in X or Y. A condition number

ereater than 100 indicate extreme collinearity.

2.2.2.8 Condition Index

The condition indices (Belsley et al., 1980) identify the dimensions of the X-space where the
dispersion is limited to cause problems in the least squares solution. The k" condition index

is denoted by

/\ma'L’ 12
kp = : h=1,...
h ( Ah > L ) P

Condition Indices measure collinearity in the following manner

Condition index Collinearity

10 — 30 weak

30 — 100 moderate - strong
1004 extreme

The problem with using condition indices is that it is not easy to identify the columns respon-

sible for collinearity.

2.2.2.9 Multicollinearity index (mci)

The multicollinearity index (Thisted, 1980) is a measure of collinearity that involves the ratios

of the squares of eigenvalues of X’X. The mci is defined by

P2
mer = Z (j\ﬁ)

i=1

where ), is the smallest eigenvalue of X'X.

Values of nici close to 1 indicate high collinearity and mci greater than 2 indicate little or no

collinearity (Thisted, 1980).

0
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2.2.2.10 Variance Decomposition

Unlike the collinearity measures discussed so far, the variance decomposition (Belsley et al.,

1980) makes it possible to identify the colummns of X involved in collinearity. The variance of

4" component of 3 may be defined to be

Dy
Uil

v
Var(3;) = o? REA L using 1.23
Where vj; = the 411 element of the it" eigenvector.

]

The above equation decomposes the variance of the j* coefficient into a sum of components,

each associated with one of the eigenvalues. The variance-decomposition proportion is the

]

variance of the ji* regression coefficient associated with the i component of the decomposi-

tion of j* regression coefficient.

The variance-decomposition proportions are calculated by

(o2 7] ..
W{j:‘—]l ,j=1,...,p (2.3)
@j
where
/ P
v ,
@J‘i: J:\ljl, ¢j:2¢ji ’Lzl,...,’p.
l i=1

We note that when collinearity is present in the data, the eigenvalues corresponding to covariates
involved in dependencies become small. From the equation above, we observe that if the eigen-
values are small, then the variance proportions increase hence, we may identify the columns
involved in collinearity. Collinearity becomes a problem when the variance proportions of at
least two regression coefficients associated with components that correspond to small eigenval-

ues exceed 50%.

2.2.3 Coping with collinearity

There are lots of remedial measures for collinearity reported in the literature. These include
among others additional data (2.2.3.1), deletion of collinear variables (2.2.3.2), transformation
of variables (2.2.3.3), bayesian methods (2.2.3.4), detrending of variables (2.2.3.5), first differ-
euncing (2.2.3.6) and shrinkage estimation (2.2.3.7). It must be emphasized that not all the

remedial measures arc effective; hence,; it is imperative to find the most appropriate.

According to Marquardt and Snee (1975), several methods proposed to handle collinearity arve
usually not met in practice. We maintain that most of the remedial measures of collinearity

suggested in the statistical literature, have recognizable disadvantages that should not just
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be ignored. Failure to recognize these disadvantages is likely to hinder effectiveness of the
corresponding remedial measures. In the light of the above considerations, some of the remedial

measures of collinearity are discussed below and the corresponding shortcomings identified.

2.2.3.1 Additional data

Obtaining additional data or collecting new data is considered one of the methods for solving
collinearity problems. More often, the additional data is taken in the direction of the collinear-

ities such that the X-space is expanded to eliminate the dependencies (Rawlings et al., 1998).

Although the procedure sounds simple, it is usually regarded impractical because

e analysts may not generally be in control of variables to obtain well-behaved data (Jagpal,

1982).

e Data collection may be expensive and/or time-consuming.

2.2.3.2 Deletion of collinear variables

Deletion of the correlated variables reduces collinearity but also reduces the interpretability
of the regression equation. Also, the deleted variables may tend to be the most important

variables of the model, thus improper or false estimation and sometimes biasness may result.

2.2.3.3 Transformation of variables

Although collinearity may sometimes be removed by appropriate transformations of the explanatory
variables (Wetherill, 1986), transformations may completely change the models, thereby lead-

ing to estimation of models that differ from the original.

2.2.3.4 Bayesian methods

The use of a priori information or Bayesian methods of estimation is sometimes useful when
collinearity is a problem (Gruber, 1980). However, Bayesian methods require a priori information

about the distribution of regression parameters which may sometimes not be available.

2.2.3.5 Detrending of variables

Expressing the variables in terms of deviations from their linear trends reduces collinearity
(Gruber, 1980). However, the procedure reduces dependency of Y on X and also changes the

original specification of the regression equation.
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2.2.3.6 First Differences

Expression of the variables in the first differences (the differences between the current and the
previous values) overcomes collinearity (Gruber, 1980). However, the procedure produces even

greater variances of parameter estimates than OLS (Sujan and Condik, 1979).

2.2.3.7 Shrinkage estimation

Shrinkage estimation defines a class of biased methods of estimation, known to shrink the least
squares estimators 3 proportionally towards zero. By allowing for a little bias, the methods
stabilize the regression and provide estimates with smaller variance (a trade off between high
coefficient variances and a little bias) (Le Cessie and Van Houwelingen, 1992). The methods
are vital and critically useful in cases whereby collinearity causes the least squares parameter
estimates to be too large in absolute values (Gruber, 1998). Unlike discrete procedures such as

model selection, shrinkage methods are continuous and therefore do not exhibit high variance

(Hastie et al., 2001)
In a nutshell. shrinkage estimation is more important when the existing dependencies among
the covariates lead to the following problems:

e unstable cocfficients,

e inflated variances, hence large standard errors,

e insignificant coefficients and

e poor prediction and or improper modelling.

Besides being the most practical way to correct for collinearity, shrinkage methods are easy to
deal with. Even more important is the fact that there are lots of shrinkage techniques to choose
from; there is always at least one shrinkage method appropriate to curb problems attributed

to collinearity.

2.3 Summary

In this chapter, the instability of OLS estimates and computation of the shrinkage factors from

the OLS solution were identified as the problems addressed by this thesis.

Collinearity was broadly discussed as a phenomenon from which the main research problem of
this thesis stems. The definition of collinearity, detective measures. effects and the approaches

to collinearity were provided in details. It was noted that presence of collinearity among the



independent variables leads to high variability and computational instability of the OLSE; the
sampling variances of the estimates become very large hence, the distance between the esti-

mates and the true values becomes extremely large.

Several remedial measures for collinearity were provided and the respective disadvantages high-
lighted. Shrinkage estimation was considered a class of the most effective approaches to the

problems attributed to collinearity since it directly reduces the mean squared error of estimates.

From our point view, usage of parameter estimation techniques that minimize the mean square
error of estimates is the most effective way to deal with problems associated with collinearity.
Shrinkage estimation is one such technique, of which the estimates are biased but have smaller
mean squared errors compared to least squares when collinearity is the problem. We stress
that usage of biased methods of estimation in collinear designs of matrices is the most practical

way to reach meaningful conclusions.

0o
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Chapter 3

Ridge and Shrinkage Estimators

We consider shrinkage estimmation a powerful alternative to OLS, for which there is low risk
of imprecision of estimates and poor estimation when collinearity is the problem. Shrinkage
methods result in biased estimates but most importantly, lead to a significant reduction in
the variances and mean squared error values of estimates when the OLS estimates exhibit
high variances. We view shrinkage as the most practically convenient and reasonable way to

estimate the parameters when the least squares estimates are unstable and imprecise.

For each shrinkage method, there is a specific shrinkage factor for which the variances of the
corresponding shrinkage estimates are less thau the variances of the least squares estimates.
By sacrificing a little bias, each shrinkage estimation method reduces the mean squared error
values of estimates, stabilizes the coefficients and produces estimates that are highly precise
and almost accurate. This is one attractive feature of shrinkage estimation methods that makes

them highly important in research application.

This chapter is organized as follows. The general shrinkage estimator and its properties are
defined in the next section. Some of the special cases of shrinkage estimation are discussed
in subsequent sections; specifically, we discuss Stein estimation (Stein, 1956), ridge and gen-
cralized ridge regression (Hoerl and Kennard, 1970a), Liu and generalized Liu estimation
techniques (Liu, 1993) and principal components regression (Kendall, 1957).
For each of the shrinkage methods, we specify the following

* the shrinkage factor,

* the expectation,

* the bias.

* the variance of the estimator,



* the mean squared error of the estimator and

* the total mean squared error.

Considerable attention is drawn to ridge regression and the different ways in which the ridge

biasing constants are selected.

3.1  The shrinkage estimator
We denote the general shrunken estimator 3, by the following
Fsn = dgp 3

= dg (X' X)) XY (using 1.20)

= dsh,VAilU/Y (31)
where
dsp, = a shrinkage factor within the bounds 0 < d, < 1
3 = a vector of least squares coefficients, (defined in § 1.5.1)

V.U and A are defined in § 1.2.1.

3.1.1 Properties of /?Sh
3.1.1.1 Expectation
E[3,4) = Eldsn3)
= dE[3)
= dgp /3 (using 1.21) (3.2)

Hence, shrinkage estimates are biased for g.

3.1.1.2 Bias

Bias[3g) = El3g] = 3 (using 1.16)
— 4,33

== (dsh — 1);3 (33)

3.1.1.3 Variance
Var[3a) = Var[de,s3]
=0 (X'X)! (using 1.23)

sh

= &0t VATV (3.4)

sh



3.1.1.4 Mean Squared Error

MSE|[3a) = Var[3a] + (do, — 1)%35 (using 1.18)
= 2,07 (X' X) " 4 (dgy, — 1)235

=d2,0" VA2V + (dg, — 1)*33 (3.5)

sh

3.1.1.5 Total Mean Squared Error

TAMSE[3,] = Trace]MSE(3q)]  (from 1.19)
2 2 - 1 2 & 22 .
= dg 0 Z x + (dgp, — 1)7 Z;i{ (3.6)
i=1 "1 =1

where A is defined in § 1.2.1.

3.1.2 Desirable qualities of shrinkage estimators

From the properties of Jsp, the following important qualities of biased estimators may be

observed:
(i) Var(3g) = d2,0° VA2V
= dzh V(L’l“ [[}]

Implying that Var[3a] < Var|3] since 0 < dg, < 1,

(ii) The squared length of Bsh is shorter than that of 3. That is
A;;’l 38}1 = d:;)ll ,‘A’?/l/;) < ’Aéllxé

since d2, < 1

sh

(i) TMSE[3.] < TMSE[J]

The Admissibility Condition (Mayer and Willke, 1973) states that a shrinkage estimator
is said to be mean square admissible if and only if there exists a shrinkage factor dg, such

that TMSE[de3) < TMSE[3). This condition is satisfied only when

| 8- Trace(MSE[3))

b 32—~ TMSE]|

3
PR+ TMSEF 33+ Tmce(A[SE[J])

ds h >
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To find out whether or not g is admissible, we minimize 3.6 subject to dgp, equate the

result to zero and finally solve for dg,. If dgp satisfies the above stated condition, then

Jep is mean square admissible, hence TAMSE [33;1] < TAMSE [f]

TMSE[3) = &0 ZZ—+ don —1)2 Y F (from 3.6)

= A%, TMSE|[3] + (de, — 1)? Z 37 (using 1.25)
i=1

We find the partial derivatives of TMSFE [,33;1,] with respect to dgy:

N 2
HTMSE,) e X, 5 L Oy — 1250, )
ddgp, - ddsp, dp,

p
= 2dp0° Z + 2Adg, — 1) > 37
=1

1= l

p
= 2d TMSE(3] + 2(dsp, — 1) > _ 3}

i=1
Thus
NTMSE|3,
o : Bsn]) =0 implies  that
ddsh
~ p N p .
dan TMSE[B) +da, > 87 = 5
i=1 i=1
Hence
P32 33— Trace (1\[SE[,;’]>
dsh =

> N
TMSE[3] + P, 32 ,3/,3+Tmce(z\[5E[3])

Therefore 3y, is mean square admissible thus TIUSE[.}Sh] < Tﬂ[SE[,[}]. This implies
that there is always a shrinkage factor for which the shrinkage estimator is guaranteed

to have a smaller total mean squared error compared to OLSE.

Some of the special cases of shrinkage estimation are discussed below. Their properties stem

from the properties of 3, hence we do not repeat them. Rather, we use the final expressions

from the general properties to specify the properties of each of the cases considered; we simply

substitute appropriate shrinkage factors for dg,.
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3.2 Stein Estimation

Stein estimation is a shrinkage method, first proposed by Stein (1956) and later reviewed by
James and Stein (1961), Dempster (1973), Efron and Morris (1973), Wind (1973), Zellner
and Vanele (1974), Gruber (1979; 1998) to mention a few. The estimation method has long
been used in the statistical analysis to substitute least squares estimation when the OLSE is
unsatisfactory; hence it is still one of the imiportant estimation procedures that may be put

mto practice.

3.2.1 The Stein estimator

Th(? Stein estinlator iS a Shl‘illk&"e estinlator ()f \VhiCll th(‘, Shl‘illk‘d(’ (8 f?tCtOI' d —C Zilld iS deﬁned
s} S sh 5
by the following:

35 =3 for 0<c<l

3.2.1.1 Properties of Bs

From the properties of Bsh, the following may be specified for 3, for which dgp, 1s replaced by c.

Expectation:

E[3,] = ¢3 (from 3.2) (3.7)
Bias:

Bias|3s] = (¢ —1)3 (from 3.3) (3.8)
Variance:

Var[3s] = o*VAT2Y (from 3.4) (3.9)

Mean Squared Error:
MSE[3,) = o>VA2V + (e - 1)%34 (from 3.5) (3.10)

Total Mean Squared Error:

. I | UL
TAMSE[3,) = o Z ot (c— 1) Z 37 (from 3.6) (3.11)

i=1"" i



3.2.2 The Stein shrinkage factor

Examples of the most common suggestions for estimation of ¢ include the following

* James and Stein (1961)
Given that X'X = I, and p > 3, James and Stein proposed the following expression for
c.

(p —2)(n —p)o”

(n—p+ 2),3’/3)

c=max|0, i1l — (3.12)
where

A . - . . . A

0~ is the least squares variance, obtained after fitting the least squares estimator 3,

max(0,a) returns a the largest number in a set of values ranging between 0 and a.

* Sclove (1968)
Sclove modified the above expression by substituting the coefficients from the orthogonal

or canonical form of least squares for 3’3. That is

(p —2)(n —p)o*
(n—p+2)>F | Na?

(3.13)

¢c=rmax|0, |1~

Further, based on the canonical form of the model, Sclove proposed that a subset of the
least squares parameters should be shrunken such that the shrinkage estimator may be
expressed as
1, 0
d;n = 0<e<l,
0 clp_s
where
r eigenvalues are significantly different from zero (rank of X =r) and

¢ only shrinks the last p-r components of 3 that correspond to the smallest cigenvalues.

* Van Houwelingen and Le Cessie (1990)
Van Houwelingen and Le Cessie proposed cross-validation calibration for estimation of

¢. The procedure is carried out in following subsequent steps:

— For all i, compute J_; as a vector of coefficients estiimated from a regression in which

the it" observation has been excluded. That is Y_; = X3
— Perform a single variable linear regression of ¥; on Y_;.

— Use the resulting coeflicient (slope) as an estimate of the shrinkage factor ¢.
g 1 g
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The procedure was further investigated by Le Cessie and Van Houwelingen, 1992; Vach
et al., 2001; Van Houwelingen, 2001; Sauerbrei. 1999. all of who acknowledge that the
procedure overcomes large variances of least squares estimates caused by dependencies

and or near-dependencies of the independent variables.

Breiman’s Garrote
Breiman (1995) defined a procedure for which the corresponding estimators was called

Breiman’s Garrote. For a given threshold ¢ > 0, the Garotte shrinkage factor ¢ is obtained

from
[er 0 0 0]
0 C9 0
C =
0
| 0 0 ¢ |

under a constraint
Z c; <t for ¢; >0

If t is predetermined to be p, that is if t = p, then ¢; = 1 hence c is a diagonal matrix
of ones; ¢ = I,. Thus the Garotte estimator becomes equivalent to 3; if for convenience,
we denote the Garotte estimator by 3%, then 39 = 3 when t=p. On the other hand, if
t is predetermined to be small, then some of the ¢; tend to zero hence the corresponding
coefficients also approach zero. The optimal value of t is selected by crossvalidation (Vach

et al., 2001). That is, t is selected such that the following function is minimized

n

P s 2
> (V= Y rdg0)
j=1

i=1

where 3;{71.)(1‘) is the j'" Garotte estimate, computed from a specific value of t, with the

it observation omitted.

3.3 Ridge Regression

Ridge regression is a shrinkage procedure, originating from a response surface technique known
as ridge Analysis and first introduced by Hoerl (1959). The technique was used to graphically
portray the behaviour of high-dimensional quadratic response surfaces and to locate optimal
regions and the first publication on its application on regression problems was on the chemical

plant data (Hoerl. 1962). This was further extended by Hoerl and Keunard (1968) to include
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Bayesian interpretation of ridge and the comparison of ridge and estimation of 3 when con-

strained to a bounded convex set.

Although ridge analysis had been proved to be important in locating the optimal predicted
variables in spaces of predictor variables, computational instability of least squares estimates
remained a problem when the data were collinear, therefore, Hoerl and Keunard (1970a, 1970b)
proposed and later published a new estimation method (ridge regression), to address problems
that could be attributed to collinearity. The family of estimates given by the ridge biasing
paraweter [k > 0] in the newly introduced ridge regression seemed mathematically similar to
portrayal of quadratic response functions (ridge analysis) hence the analysis built around the

new technique was been labelled ‘ridge regression’ (Hoerl and Kennard, 2000).

Subsequent to its publication, ridge regression was further investigated and given so much at-
tention that it masked ridge analysis, leading to sparse literature on the ridge analysis technique

(Hoerl, 1985).

3.3.1 Definition

Since 1970, the following expressions have been interchangeably used to define ridge regression.

e Ridge regression is a biased estimation technique and a formal procedure that has been
developed to compensate for effects of collinearity (Swindel, 1981; Hawkins and Yin,
2002: Akdeniz et al., 2003; Sundberg, 1993; Walker and Birch, 1988; Gunst, 1980).

e [t is an important estimation technique in the theory of point estimation which provides
estitnators with smaller mean square error than Least Squares when collinearity is present
in the data (Halawa and El Bassiouni, 2000; Ngo et al., 2003; Gunst and Mason, 1977;
Elston and Proe, 1995; Hoerl and Kennard, 1970a).

e Ridge regression is sometimes regarded a restricted or constrained least squares estima-
tion method (Gibbons and McDonald, 1984; Grob, 2003) that may be used to portray

the sensitivity of the estimates to the set of data in use (Hoerl and Kennard, 1970a).

o [t is a classical statistical algorithm that imuposes a penalty or a restriction on the size of
coeflicients to obtain stable results (Le Cessie and Van Houwelingen, 1992; Hong et al.,
2004: Hastie et al., 2001).

o [t is a procedure intended to overcomnue ‘ill-conditioned’ situations, where near dependencies

between columns of X cause:

— near-singularity of the correlation matrix (X'.X) and
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— instability in the parameter estimates (Swindel, 1981).

e Ridge regression is an alternative to least squares estimation, used as a tool to alleviate
collinearity or non-orthogonality (Wan, 2002: Troskie and Chalton, 1996; Hoerl, 1985;

Kidwell and Brown, 1982; Conniffe and Stone, 1973: Thiart, 1990).

e Ridge regression may also be considered an estimation procedure based on the equation
that defines a class of estimators indexed by a scalar parameter (McDonald and Galarneau,
1975).

Ideally, ridge regression is an estimation procedure based on adding small positive quantities
(bias, biasing parameters or characterizing scalars (Dwivedi et al., 1980)) to the diagonal of
the correlation matrix of independent variables, hence it produces biased estimators. Although
ridge estimators are biased, they are less affected by small changes in the data and are much
more stable than least squares estimators when prediction vectors are not orthogonal. Ridge
estimates may be used to obtain point estimates with minimum MSE in cases where the

estimates are sensitive to particular sets of data being used (Hoerl and Kennard, 2000).

3.3.2 The ridge estimator

The ridge estimator 3g is a shrinkage estimator for which the shrinkage matrix is defined by:
VAPV + kI 'VAYY k>0

where A and V are defined in section 1.2.1, and k is the ridge constant, also known as the

biasing constant or the shrinkage parameter.

3.3.2.1 Derivation of the ridge estimator

B mwinimizes

n

P
D (Yi= D wyf)
j=1

i=1

subject to
p i
>3 <t (3.14)
J=1

where t is an arbitrary constant and x;; is the element in the it" row and the j* colummn of X.

Equivalently, we may say the ridge estimator shrinks the OLSE by imposing a penalty on their

size as follows:

i=1

n Y4 p
3p = argm'zfn[Z(Y,- - Z -'17ijﬂj)2 + k Z 3,2] (3.15)
P =

3-9



3. . . . . .
where & Z‘?:l 37 is the penalty and £ is a shrinkage parameter that has a direct relationship

with t in (3.14).

Let f(3)=[(Y -~ X3) (Y — X3) + k3]
=YY -Y'X3-3X'Y+3X X3+ ki3
To derive the ridge estimator, we differentiate f(3) once with respect to 3 and equate the

derivative to zero and solve for the uuknown coefficient:

%ﬁ;—) = 9X'Y +2X'X 3+ 2k3 = 0

20X'Y = 2X'XB+2k3 =0

X'Y = (X'X + k)3

Srp=X'X+kD7'XY k>0 (3.16)

3.3.2.2 Relation to OLSE

The ridge solution is a linear transform of least squares solution, where the transform depends
on the biasing parameter k.
Let

W= (X'X+kD! (3.17)
It follows from simple substitution of (3.17) into (3.16) that 3 = WX'Y.
Post-multiplication of W and pre-multiplication of XY by the Identity matrix I = X' X (X'X) !

leads to

3p=WX'X(X'X)"'X'Y
—_———

3
Implying that

Ip=WX'X3
= ((VAZV’ + kI)—IVA‘ZV’)B k>0
Let
G=WX'X=VAV + k) WAV =]~ k(VA>V + kI)7! (3.18)
then
3n=G3 (3.19)
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Hence J3p is a shrinkage estimator of which the shrinkage matrix is G.

Considering the orthogonal form of the linear model (1.5). we may express the ridge estimator

as follows:
Sr=(Z2'Z+kD)'2'2Z3
= (A2 +kD7IA%3 wsing 1.9 (3.20)

Hence for the orthogonal form of the linear model,

S .
/\hlL/f 0 0 0
A2
G 0 o1k 0
0 0
)\)
. 0 0 0 /\_,,-J%IE-

Each i'" element of 3 is shrunk by - ! - implying that
1

Ai

3;
A+ kT

3r, =

1

where Jg, is the ith element of 3 and the " shrinkage factor is

A A
! 0<

1
Ntk Ntk

3.3.2.3 Properties of Br

From the general properties of the shrinkage estimator specified in 3.2, 3.3, 3.4, 3.5 and 3.6,

the following properties may be specified for the ridge estimator 3g.

Expectation
El3p] = G3
= (VAV' + k)"'VA2V'3

= [I —k(VA?V + kI)Al]‘B (using 3.18) (3.21)

Bias

Bias|dp] = (G —1)3

= {(VAQV’ + kD) TIVARY - 1} 3
= —MVANV' + k)78 (using 3.21) (3.22)
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Variance
Var(3g) = c*G(X'X)"'¢’

= ()'—)GVA_ZV/G/
= o2 (1 = K(VAV + k1) YAV (T~ k(VAV 4 k1))
= (VAW 4 kD) IVALV (VAR 4 kD) (3:23)

Mean Squared Error
MSE(3g) = o?GX'X)"'G' + (G - 1)BR(G — 1)

= oH(VAPV/ R TIVAV (VAPV 4RI R (VARV 4R 7 38 (VAPV k1) 1(3.24)

Total Mean Squared Error

N L& A S 32
7 : 2 2 2 e} -
TMSE(JR) =0 E ——(/\’ PN + k E 7(/\_ n A-)2 (3.25)
i=1 \"1 E i=1 \"7¢

3.3.2.4 Other Properties

e There always exists a positive constant k such that the A[SE[,BR] is minimized (Hoerl and
Kennard, 1970a; Marquardt, 1970; Gruber, 1980). The Ridge Existence Theorem (Vinod
and Ullah, 1981) states that in the presence of collinearity, there is always an arbitrary
constant from which the MSE for ridge estimates may be computed to be less than that
of least squares estimates. That is: there exists a constant k [0 < k < (20?/3'3)] such

that
MSE(3R) < MSE(J) (3.26)

Hence in situations whereby the existence theorem holds true, ridge estimators are con-
sidered much more reliable than least squares estimators since minimal AMSE[3] of an

estimator implies that the correspouding estimator is the closest to the true parameters.
e The ridge estimator is not invariant to scaling and other linear transformations.

e The bias of 3p is a function of the orientation of the unknown parameter vector 3 to the
eigenvectors; the bias is minimized when 3 = v; and maximized when 3 = v,; where v,
and v, represent the 150 and the p™ right singular vectors of X (Newhouse and Oman,

1971; Gruber, 1980).
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e The ridge estimator is equivalent to the augmented OLSE: where the augmentation is as

follows:
Y(ipyx1 = Y Xinipyxp = *
0, VI,
where
X = the (n x p) standardized matrix of independent variables

= a (n x 1) vector of response observations
0, = the (p x 1) null vector

I, =a (pxp) identity matrix

vk = the bias, added to each of the standardized explanatory variables, with no ob-

servable effect on the dependent variable (Gruber, 1980; Marquardt, 1970).

3.3.2.5 Selection of k, the biasing parameter

The ridge theory postulates that biasing parameter k should be chosen to minimize mean
squared error of ridge estimators. However, there is no specific biasing parameter assured to
vield good ridge estimates for all unknown coefficient vectors. The optimal k value is a function
of the unknown parameters 3 and ¢ and in practice, k should be estimated from the data or

be determined subjectively (Gruber, 1980).

The literature suggests several ways in which the optimal shrinkage parameter may be chosen

and these include the following:

Ridge Traces

A ridge trace is a graphical presentation or a plot of individual ridge coefficients (BR) versus
the corresponding ridge constants (k), used as a guide for selecting the optimal ridge constant
in a given problem (McDonald, 1980). The procedure was originally suggested by Hoerl and
Kennard (1970a) to investigate a variety of k values and their impact upon changes in ridge

coeflicient estimates.

The ridge trace may be defined as a path through the likelihood space that provides an insight
into the structure of the factor space and the sensitivity of the results to particular sets of data
(Hoerl and Kennard. 2000). It may also be referred to as a two-dimensional plot of the ridge
solutions against the corresponding k parameters in the interval [0.1] that serves to portray the

coniplex interrelationships that exist between collinear prediction variables and their effects on
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the estimation of ;3 (Hoerl and Kennard, 1970a).

The criteria used to examine a ridge trace include stability, magnitudes and sign changes of
the estimated coefficients and the inflation of residual s of squares (McDonald, 1980). All
these are primarily subjective on the range of k plotted for the ridge trace. From the graph,

the optimal biasing parameter k is selected at a point where the traces stabilize.

Disadvantages

- The exercise of running multiple ridge regression models with different k values is time

consuming aud may be tedious.

- There is always an uncertainty in determining the optimal k from the ridge traces. The
optimal value is not obvious from the graph; a rough estimate is usually made, depending

on the stability of the traces.

Other procedures

Besides the ridge traces, there are lots of mathematical equations provided in the statistical
literature for estimation of the optimal k; some of the examples are outlined below. Note that
3 and & represent the OLS coefficients for models (1.1) (standard classical model) and (1.5)

(orthogonal linear model) respectively.

e Hoerl and Kennard (1970a)

~9
g

Khk = =5 (3.27)
¢ max
where
) . . ~ s e
350, = the square of the maximum or largest least squares coeflicient.
~D ) . -
g° = the least squares residual variance
Disadvantage

- kpx depends on 62 and Bﬁmr hence it is likely to be affected by collinearity. If the
data are highly collinear, least squares coefficients tend to be extremely larger than

the true values, leading to false or inaccurate estimation. Further, 3,,,, becomes

the most misleading and inappropriate coefficient to rely ou.
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¢ Mallows (1973)

Mallows proposed that k should be chosen to minimize the following function

SSRy
Cy, = = by 2trace(Hy) — (n — 2) (3.28)

where
SSR. = (Y — X,[}H)/(Y - ‘X"Bn) — Sum of squared residuals using 3x
Hpy=XX'X+k)'X
Disadvantages
- Identifying k that minimizes C'; may not be practically simple. The process could
take too long and be tiresome.

- The act of minimizing C', is vulnerable to erratic computations.

e Hoerl, Kennard and Baldwin (1975)

ag
ko = p (3.29)
where

'3 = the sum of squares of least squares regression coeflicients excluding

the constant.

p = the number of variables in the model, excluding the constant.
~A9 . . . -
6~ = the least squares residual variance.

Disadvantage

- Although kpp is simple to compute, it depends on 62 and 32,,, both of which are

unstable and unreliable in collinear designs of matrices.

e McDonald and Galarneau (1975)

McDonald and Galarneau suggested selection of k such that the squared length of its
corresponding vector of coeflicients equals the squared length of the true parameter.
The suggested unbiased estimator of the squared length of the true parameter is defined
as
p
Q=33-6"> N1 (3.30)
i=1

Selection of k is based on the following rules:
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— Rule 1

Choose k=0 such that 8z = 3. 3 is required for computation of Q.

— Rule 2

Choose k=0 such that 3x = 3 for Q < 0 otherwise choose k to satisfy ,"9’[{/33 =Q
— Rule 3

Choose k = oo so that B = 0 for Q < 0 otherwise choose k to satisfy ,3}?/}3 =qQ

Rules 2 and 3 are alternative default values of k when Q) is negative. From our point of

view. rules 2 and 3 are the same; the implementation rules for each are not clear.

Disadvantages
Although the McDonald and Galarneau procedure is one of the well known methods by

which the ridge constant may be selected, the following disadvantages may be highlighted:

* In highly collinear designs, 3’3 becomes unstable. implying that some parameters
may deviate considerably from the mean, hence elements in (3z) may be also have
high variances (Gruber, 1980).

* 3p3r = Q does not consider a lower bound of the sum of squared coeflicients (4'3)

and in some cases it may lead to negative values (Gruber, 1980).

* In highly collinear data, () may be unstable as a result of the instability of the least

squares solution.

e Iteration (Hoerl and Kennard, 1976)
Shortly after introducing kprp, Hoerl and Kennard developed an iteration on kpgp on the
basis that the squared length of /3 (B’ B) is large when X is collinear, hence kpr, may

potentially be too small. The iterative procedure is summarized below.

,‘"A . - = 1)(32

»} : N /\(j ’3/‘3)

Fn(ko) : B
r(ko) ! [3r (ko)) [Br(ko)]

3;{(/&'1) : ko= 3 p&{
(3R] [3r(kD)]

3 (ki) : ok = - p(}QA
Brkt) t41 [k [Br (k)]

where
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th

k; = the estimate of k on the ' iteration
Sr(k) = a vector of ridge coefficients for the ' iteration,
computed from the k; .
t = the ' iteration
,33(/«[-) S | :>BR(/€,;) is used to estimate k;
2
Initially, 3 is used to estimate ky = %‘; Thew, kg is used in estimating the ridge
b

coefficients in 3r(kg), which in turn, are input in computation of kj, so on and so forth.

The sequence is terminated when

ki+1 —k

L<g=20T",
k; B
Trace(X'X) !
where T" = ﬂi(—)— (Hoerl and Keunard, 1980)
D
Disadvantage

- Iteration is a long process that is open to errors.
Lawless and Wang (1976)

%p
Trace(3' X' X}3)

kiw = po°/ Y AN = (3.31)

where the unknowns are described in the previous sections
Disadvantage

- kyp depends on the least squares solution and may easily be affected by high or

extreme collinearity.

Vinod (1976)
The proposed biasing parameter is selected to minimize index of stability of the relative

magnitudes of parameters (ISRM), defined as

ISRAM (k) = 2; {(pﬁ)/(é ﬁ) - 1} 2 (3.32)

Disadvantage

- Selection of k that minimizes ISRM(k) may be practically a tiresome exercise.
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e Hocking, Speed and Lynn (1976)

o P (N2

kpsg = 67 = 3.33
hsl ( 171/\1) ( )

Disadvantage

- ke depends on the least squares solution and is likely to be impacted on by extreme

collinearity.

e Brown (1993)
Brown made two suggestions for k, originating from the &, and kpgpp, hence we label

them kpyp and kpppm respectively.

—NFZS N
klwm = L_)O'—X;l (334)
rIX'X3

where r=rank(X)

(r —2)6°

— 3.35
53 ( )

kh kbm =

In order for 3.34 and 3.35 to be positive the condition r(X) > 2 has to hold.

Disadvantages

- Both kpgpm and kpwm have high chances of being affected by collinearity since ¢

and 3 are adversely impacted on by collinearity.

e Kibria (2003)

Kibria made the following three suggestions for k; based on the arithmetic mean (am),
&2

the geometric mean (gm) and the median (med) of ( 5) respectively.

i

16
N ) (3.36)
p i=1 @
&2
kgm T (3.37)
( p 1(12)”
~2 ~2
kmed = medz(m(({. ey %) (3.38)
a3 a2

Disadvantage

- Extreme cases of collinearity are likely to have an adverse effect on k,,, and kg, since

the two depend on the least squares solution.
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3.3.3 Ridge regression procedure

Ridge regression generally works with centred and scaled matrices (§ 2.2.2) of independent
variables so that the sum of squares and product matrices are in the correlation form (§ 2.2.2).

The analysis procedure is usually carried out logically in the following subsequent steps:

e Center and scale the matrix of independent variables to standardize the measurement
units and to remove possible collinearities that may involve the intercept. However, it is
important to note that centring removes the constant from the regression model hence
any model in which the constant plays a vital role may lack practical sense when the

constant has been removed. Therefore, it is sometimes essential to scale and not center.
e For selection of k from the suggested formulae,
— Compute Ordinary least squares solutions in terms of the centred and scaled ma-

trices of independent variables.

— Substitute the least squares solutions in at least one of the biasing parameter sug-
gestions provided in the previous section or any other method, not discussed in this

study.

— Compute the ridge solution from the selected biasing parameter
e For selection of k from the ridge traces,

— Compute ridge solutions for different k parameters; k; > 0.

— Plot the ridge estimates against the different k parameters (ridge traces) and select

the optimal biasing parameter

e In this study we transform the solutions correspouding to the optimal k back to the
original form (the unstandardized form) before computing any measures of cfficiencies of

estimators.

3.3.4 Application and accessibility of ridge regression programs

For vears, ridge regression has had a considerable amount of application varying from all fields
of research: marketing scoring models (Malthouse, 1999), molding conditions for thermosets
(Talwar and Ashlock, 1970), price and production (Bettman, 1973), mortality and air pollu-
tion (McDonald and Schwing, 1973), agricultural research (Jefferv and McKinney, 1975) to

mention a few.

In all applications, ridge regression has been proved to be important when dealing with estinia-

tion problems that arise out of collinearity. It produces excellent estimates that are relatively
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simple to calculate (Feig, 1973). The algorithm and computations for ridge regression are
straicht forward and can be made with siimple modifications to a standard linear regression
program. The procedure involves inversion of the matrix X’X + kI instead of a near singular
matrix X' X, where k is sclected to remove the singularity, thus stabilizing the estimators of 3

(Thiart. 1990).

A lot of computer programs have been developed to undertake ridge reeression analysis. For
o O O .

exanple:

e Hoerl (1959) coded a full ridge regression program in FORTRAN IV to compute the

coeflicients for 32 different biasing parameters.

e Bradley and McGaun (1977) wrote RIDGEREG to improve the precision of regression
estimates for nonorthogonal data. It calculates the standardized covariance matrix, its
determinant and the regression coefficients for the parameter (k) varying from 0 to 0.5

in steps of 0.1.

e Gunst (1979) proposed the guide to an efficient programming of biased regression algo-

rithms, taking advantage of the mathematical similarities among them.

e :RIDGE was described by MIT (1975) as a program that implements the main ridge

regression algorithm.
e Bolding and Houston (1974) wrote a Fortran program to compute ridge regression coefficients.

e RRIDGE was developed by Jain et al. (1977) as a Fortran IV program that handles up
to 30 factors, 200 observations and 20 values of k. Its output includes the correlation

matrix, eigenvalues and parameters for different values of the biasing factor, k.

e (Carmer and Hsich (1979); Sinha and Hardy (1979)) described SAS macros for ridge

regression computations.

e Bush (1980) coded a comprehensive FORTRAN IV program to compute ridge regression.

The program computes parameters for various k parameters, including those of:

— (Dempster et al., 1977)

|

(Hoerl et al., 1975)

!

(Kasarda and Shih, 1977)
— (Lawless and Wang, 1976)
— (McDonald and Galarneau, 1975)
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Today, an option for ridge regression is available in most statistical software packages. For
instance, Statistica provides an option for computation of ridge solutions; only k has to be
specified. Also. Eviews and R are other statistical software programs with built-in functions

that allow easy computations aud programuiing.

3.4 Generalized Ridge Regression

The generalized ridge estimation is a shrinkage method, first proposed by Hoerl and Kennard

(1970a) to improve on ridge regression. The improvement is explained by the following:

Previously,
3p = (AP +EDTIA%YS

From the above function, we observe that ouly one value of k is used to shrink all the com-
ponents of 3. Iplying that the components associated with large eigenvalues may possibly
be shrunk more than necessary, and those that are associated with small eigenvalues may be
shrunk less than required. Hence, allowing the choice of different constants may signify an

improvenent.

On this basis, Hoerl and Kennard (1970a) introduced generalized ridge regression, for which
the additive constants vary across the different components of 3. Therefore, the generalized
ridge estimation method is defined as a general form of ridge regression for which the biasing

parameter k is defined by a diagonal matrix of different constants ks, with components k; > 0.

3.4.1 The estimator

Consider the orthogonal linear model (1.5) from which the least squares estimator of « is

defined by
G6=(2'2)'2Yy =V'3  (from 1.26)

The gencralized ridge estimator is defined by:

Gor=(2'Z+K) 'Z'Y (3.39)
where
"k 0 0 0
0 ky 0
K= 0 < ky i=1....p
0
| 0 0k,




Notice that unlike in ridge regression where k is the same for all diagonal entries, gencralized
ridge utilizes different k/s.

3.4.1.1 Relation to Least Squares

In terms of the least squares estimator &, &gp is defined as :

QoR= (AZ + ]&")_]Z/Y
= (A + K)"IAZ

[N

Hence, a¢g is a shrinkage estimator, of which the shrinkage matrix is

A
e 0 00
Ao
Ozom
o .0
A
0 0 0 R

Therefore, the i generalized ridge estimator may be expressed as:
R Ai
AGR; — 87

Ai + &

and the i generalized ridge shrinkage factor may be defined by

3.4.1.2 Properties of generalized ridge estimators

Expectation

Elagr] = (A + K) YA a = (I - K(A* + K) Ha

[l
-
Q2

(3.40)
Bias

Bias[acr] = (0 — D
= —K(A*+K) 'a (3.41)

Variance

2

Var(agr) = 026(Z2'2)71 = 020N (using 1.29)



= (A + K) 'AY A+ K7 (3.42)
Mean Squared Error
MSE(agr) = 02(A* + K) IAY A2+ K) V4 (0 — Dad (6 — 1)
= (AP + K)TIA A+ K) '+ KA+ K) lad K(A* + K) 7' (3.43)
Total Mean Squared Error

p 2. (vik;)?
TAMSE(aqr) ;( \; +k) (/\i+ki)2>
P (0N + k2 |
Z( Nt k)2 ) o

i=1

3.4.2 Suggestions for the optimal set of ks

The optimal set of components k}s leads to the minimum M SFE[a¢r]. We provide the following

suggested formulae for ideal k]s.

* Hoerl and Kennard (1970a;1970b;1980)

(V]

o)
Kok, = — (3.45)
&?
* Troskie and Chalton (1996)
A A
e, — (Ai) _ N (3.46)

C((NG2e?) + 1) Fi+1
Where Fi = \a2j6?
Comment

The fact that kpi, and ki, depend on least squares is a disadvantage since the least squares

solution is unreliable and unstable in collinear designs of matrices.

3.5 Liu Estimation

Liu estimation was proposed by Liu (1993) as one of the shrinkage methods of estimation that
may be used when least squares estimates are unsatisfactory. The method was developed on
the basis that the two mostly common biased methods of estimation, Stein and ridge regression

have the following drawbacks:



e Stein:
Stein shrinks all components of 3 with the same factor hence the Stein estimator does

not behave well in practice (Liv, 1993).

e Ridge:
Computations of ridge shrinkage parameter using suggestions like those of Mcdonald
and Galarneau (1975) and Cy, criterion (Mallows, 1973) complicate estimation of k (Liu,

1993).

This shrinkage method was further investigated by Akdeniz and Kaciranlar, 1995; Gruber,
1998; Liu. 2003; Akdeniz, 2001; Arslan and Billor, 2000; Kaciranlar and Sakallioglu, 2001,
and Kaciranlar et al., 1999 to mention a few. This series of investigations resulted in a lot of

amendments and corrections and an example has been provided at the end of this section.

3.5.1 The Liu estimator

The Liu estimator is defined by the least squares solution to the following linear system:

Y= X (3.47)
where
*ok Y *ok X *ok €
Y(n+p)x1 = dB ’ X(n+p)><p = I ; Cn+pyx1 = «

where d is an arbitrary constant, within the range 0 < d < 1.

Thus the Liu estimator is
3 = (X'X + )" (XY +dB3)
= (X'X+ D" YX'X +dI)j
= (VAV' + Iy Y (VALY +dI)3 (3.48)
Let L = (VA2V' + )" Y VAV’ + dI)

Theun, 31 = L3: hence the Liu shrinkage matrix is defined by L.

3.5.1.1 Properties of the Liu estimator
Expectation
E[31] = L5
= (VAV + ) (VA +dI)3 (3.49)
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Bias

Bias|3;) = (L - I)3
= ((VNV’ + )Y VAV - dl) - 1) 3 (3.50)

Variance
Var[3p) = o2L(X' X)L/
=2 (VAV + )" (VA +d)VA?V {(Vsz’ + 1) H(VATYV +dI) / (3.51)
Mean Squared Error
MSE[3] = o L(X'X) 'L + (L - NB3(L — I (3.52)

Total Mean Squared Error

= (A +d)? Rl -
TMSE|3;] = Z o +1)2 +(d—1) ;m (3.53)

3.5.1.2 The choice of d

Liu 1993
Liu suggests the following criteria for selection of the parameter d.
5 52 Sra /A + 1) -
* dpm =1 — p 2/(/\ T 1) (304)

dpn s defined as a point where M SFE[3.] obtains the minimum hence the label mm.
Liu 1993 uses the term 'the minimum MSE estimate’ to refer to d,m.

Disadvantage

— dym depends on 62 and aQ both of which are adversely affected by collinearity.

R . P o1/ +1
* d('l —1— (3_2 : 1=1 A/)( + ) -
=1 /\La:/()‘l + 1)

dq is computed as the minimum of

(3.55)

S S R(
Cp = l

+2tr(Hg) = n+ 2

where SSRy; = Sum of squared residuals from estimation of 3 and
Hy=X(X'X+D) " (X'X +d) X'

Disadvantage

— dy is more likely to be impacted oun negatively by collinearity since it depends on

the least squares solution.



(A‘_2 P (1_! 2 P (“.2 p 1 2
i 1 a2 i .
. 1*1A+1 {(Zl/\le) ,Z]<Al+1>~’§x,}
* dp=1- — — — (3.56)
PP
=1 (/\,' -+ 1)2
Disadvantages

— d is practically complicated and likely to be computed with errors.
— dy depends on 62 and (yf both of which are impacted on by collinearity.
Iteration of d,,,. dg or dy

Liu also proposes iteratiou of either  dym, dyg or dj. For example,

Iteration of d,,,

o Iy = 1—¢6°
“ 0 ”{I~1AA+1/ZA+1}

A . 5} do
A1(do) - o= 1_02{ ?:U +1/Z/\+1 }

) g ? &
d[/(dl). (lg = 1‘0’{ {:1/\ /\ +1 / 2}

where 37 (d;) = a vector of Liu coefficients estimated from the " d.

Initially, the least squares vector of coefficient & is used to estimate dy. Then, dg is used
to estimate the components in 31, (dp), which in turn, are input in computation of dy, so

on and so forth.

The sequence is only terminated when

di — diy < 20713
di
Trace(X'X) !

p

where T =

Disadvantages
- Iteration is time consuming
- The mathematical functions that are being iterated are highly likely

to be muddled in the process.

For simulation, we select d, aund d,,,, since both functions are easy to compute and time

saving.



3.5.2 The modified Liu estimator <Liu-type estimator (3k(l)>

We note without further investigation that Liu (2003) extended the Liu estimation theory by
introducing the estimator called the Liu-type estimator kg Lin 2003 argues that unlike 3.,
3kd includes two constants, k aud d so that k may not just be restricted to small values while

d may be adjusted to reduce the bias that may be introduced by large values of k.

The improved estimate 34 is derived as the least squares solution to the following:

YV =X"3+¢ (3.57)
where
* Y * X * €
Y(n+]>)><1 = <:\/f_]§)[§ ) X(n+p)><p = \/E[ : €mtp)x1 — ¢

Thus the Liu-type estimator is
Jka = (X'X + kI)"HX'Y — dp) (3.58)

where
k and d = parameters; &k > 0 and —oo < d < o respectively and
3 = Any estimator of 3.

Note that for BL,() < d < 1 whereas for /’3;“1, —oc < d < 0.

If we substitute 3 for 3, then

Ja = (X'X + kD)"Y X'X —dI)p

= (VAV' + k)Y VAV —dI)j

From the above equation, (VA2V' + kI)~Y(VA?V' — dI) is the shrinkage matrix.

However, the fact that d is not restricted to small values is a huge drawback. It d is set to be a
positive value close to oo, the diagonal entries of (VA?V' + kI)~ Y (VA?V' —dI) approach —oc
hence, (VA2V' + kI)"Y VA2V’ — dI) does not qualify to be a shrinkage matrix. That is, the
diagonal elements of (VA?V' + k)" (V A2V’ — dI) do not fall within the range 0 < dg, < 1.
Similarly, if d is a large negative value, the diagonal elements of (VA2V' + k1)~ YV A2V’ —dI)

become too large to be considered shrinkage factors.

Further. if we substitute 3p for 3, then

3;"(1 = (.Y/‘Xy + A‘I)_I(X/Y — (1“[?]\))



= (X'X +ED)7T'X'Y —d(X'X + k)™ 3
= 3 - d(X'X +kI)"' 35
= (I —d(X'X +kI) g

By observation, negative values of d inflate 3p while positive values between 0 and 1 lead to

shrinkage of 3p.

From our view point, inflating and or shrinking 35 does not make sense. Ridge coefficients
: & R IS}

are among the mostly favoured and potentially accurate estimates when collinearity is the

problem, hence, inflating or shrinking 8r only destroys the existing good qualities of the ridge

coeflicients.

e Inflating 3p is not a good procedure in that it forces the ridge coeflicients to be too large

relative to the true values.

e Also, from experience, 3p already shrinks 3 enough to correct for the problems attributed

to collinearity. Hence, shrinking 3r implies that 3 is being shrunk more than necessary.

So far, we have only substituted 35 and 3 into 3.58 and the outcome of substitution is not
convineing that Sgq is a good estimator. However, we note without further details that the
following estimators have been practically investigated for substitution into 3.58 for 3 and the

results have shown that Bkd can be regarded a good estimator:
e Ridge estimator (3g) (Liu, 2003),
e Principal component estimator (;'}pc) (Kaciranlar and Sakallioglu, 2001) and
e the M-estimator (Arslan and Billor, 2000).
Further investigation into the matter is beyond the scope of this thesis therefore we simply

note the information for interest’s sake.

3.6 Generalized Liu Estimation

The generalized Liu method of estimation is another shrinkage method, suggested by Liu
(1993) as a general formi of Lin estimation. The method follows the exact same procedure as
Liu except that like in generalized ridge, generalized Liu method substitutes d by a diagonal

matrix of ds. where cach d; estimates a single cocfficient.
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3.6.1 The estimator
The generalized Liu estimator is defined by the following

Jer = (X'X + I)7HX'Y + Dp)

{

= (X'X+1)YX'X +D)p

= (VAW + 1) Y (VA*V' + D)3

where
i 0 0 0]
0 (12 0 : .
D= ' ) 0<d; <1, 1=1.....p
L 0 ... 0 dp ]

Let S = (VA?V' + )" (VA%V' + D)
Then., ;9(; L= S,L;) therefore S is the shrinkage matrix for generalized Liu estimation.

This implies that each i”* clement of 3¢y, is shrunk by

Aiviv, + d;
Aivivl + 1

3.6.1.1 Properties of Bar
Expectation
Eldcr) = 83
= (VA*V' + 1) {VA?V' + D)3 (3.59)
Bias
Bias|3qr] =[S — 1)3
= (VA + " VA + D)~ 1)3 (3.60)
Variance

V(LT[LB)(;L] = O’QSVA;“)V/S/

] /
:U%VAQW+I)qVA%ﬂ+DXVA2VUQVA%”+1)WVA%”+DQ (3.61)
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Mean Squared Error
MSE[3c1) = 0°SVA2V'S +[S — I]3F[S - I (3.62)
Total Mean Squared Error

. PO+ d)? S (d - 1)%8
; 2 .
TJ\[SE[JC =0 E , /\ +1 NZNNEEEY) + E W (363)

i=1

3.6.1.2 Selection of d;

Liu (1993) suggests the following function for estimating the optimal set of components of d;.

A+ 1
di =1-6" (Af_) (3.64)

3.7 Principal Components Regression

Principal components regression (Kendall, 1957) is one of the most widely used shrinkage meth-
ods of estimation. The method entails deletion of the dimensions of the X-space that cause
dependencies among the independent variables. The principal components of X = UAV” are

defined as linear functions of the independent variables specified by the column vectors of V.

Consider the orthogonal linear model (1.5)
Y =Za+c¢

where
e the least squares estimator of a is & = (Z2'Z)"'Z'Y and

e cach column of Z represents one of the principal components.

Suppose we partition Z into [Z, : Zp] such that

e 7, is a matrix of dimension (n x (p —m)), containing p-m principal components corre-

sponding to p-m largest eigenvalues

o 7, is a matrix of dimension (n X m), containing m principal components corresponding

to m smallest eigenvalues.

We can the rewrite equation 1.5 as follows
1

Y=[z z] | "] +

¥

= Zatg + Zpoy + €
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where
aq = a vector of dimension ((p — m) x 1), corresponding to Z,

ap = a veetor of dimension (m x 1), corresponding to Zj,.

From the relationship Z = XV (section 1.2.1), V can also be partitioned into
'IRARA
such that

Z=XV=X [ Vi Vi
- — —~—

(nxp) (px(p—m)) (pxm)

Principal compouents regression entails deletion of the m principal components associated with
the dimensions of X that cause collinearity. Suppose we set the last m eigenvalues to zero, it
then follows that Zyap, = 0 thus «p = 0. Hence for the p-m remaining components, the least

squares estimate of o, (principal component estimator of «,) becomes:

Go = (Z,2,)712Y

3.7.1 The estimator

The principal components estimator (ch) is defined by the following

dpc = Vaty,

=V,V'3 (3.65)

hence 3, is a shrinkage estimator of which the shrinkage matrix is V, V.

Comment

Unlike other shrinkage matrices/factors discussed in the preceding sections, the shrinkage ma-
trix for 3[)(; does not depend on the unknown values. This is an important quality of ch that
even makes principal components regression more reliable and easier to deal with.

3.7.1.1 Properties of fpc

Expectation

E[3pe] = VoV, 3 (3.66)
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Bias
Bias|3p] = (VaVi = )3
A AT (3.67)
Variance

Var[3,] = a*V,VI(X'X) W, V) (using 3.4)

But
(X'X) ! = VA2V
)
, As 0 v,
= |: Va % }
0 A, Vb’
= Vol VI Vil Y
Therefore

Var[3,] = o* Vo VI[VaA 2V + VA, 2VV, V)
=2 (Vo A2V (since 'V, and V, are orthogonal.) (3.68)

Mean Squared Error
MSE[3,e] = 0?(Va A2V + ViV B3V, VY (3.69)

Total mean squared error

p—m
~ . 1 )
TMSE[Bp] =0 ) Tt BV VY 3
i=1 M
_p-m 1
=0* > v FV,\Vi3  since ViV, =1 (3.70)

i=1 71!

The principal components regression procedure includes the following;:
e Estimation of the least squares estimate of « to assess significance of different variables.
e Deletion of the principal components corresponding to the smallest eigenvalue(s)

e Least squares estimation of the remaining components.

3-32



3.7.2 Ciriteria for eliminating the principal components

The following decisive factors are vital in selection/deletion of the principal components.
fw]

e Small eigenvalues

The principal components associated with ecigenvalues that are near zero should be

deleted. If the eigenvalue is close to zero, then the corresponding coefficient has a large

variance (Rawlings et al., 1998).

o Significance of individual components

The individual components should be tested for significance. Less significant components

should be eliminated (Brown, 1993). The classical F test may be used to evaluate the

hypothesis that Zyap, = 0 (Thiart, 1990; Hill et al., 1977). Kendall (1957) recommends

usage of t-tests to test the significance of the components.

o Correlation between the response variable and the components.

Components that are significantly correlated with the response variable should not be

eliminated. Graphs may be used to determine the kind of correlation between the com-

ponents and the response variable; a nearly perfect or a perfect linear relationship implies

the importance of the corresponding principal component in the model.

e High variance

The principal components with high variance should be retained (Jolliffe, 1982). Com-

onents with small variance are unlikely to be important in regression (Mosteller and
p Y g

Tukey, 1977; Gunst and Mason, 1980). However, Jeffers (1967, p.230) argues that the

components with small variances may possibly be highly correlated with the response
Y 1 J gL}

variable hence turn out to be important in the model.

e Small prediction error

The principal components for which the regression model has the minimum prediction

crror should be retained (Browmn, 1993).

o Small mean squared error

The principal components for which the regression model has the minimum MSE error

should be retained (Hill et al., 1977).

3.8 Summary

In this chapter, we defined shrinkage estimation as a family of biased estimation techniques of

which the error risk is lower than that of least squares estimation when collinearity is a problemn.
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We brought together Stein estimation, ridge regression. generalized ridge, Liu, generalized Liu
and principal components regression into a common framework of shrinkage estimation. We
characterized each of these methods by a unique shrinkage factor or matrix. Further, the
properties of each estimator were specified in line with the general properties of the shrinkage

estimator.

To wrap up the chapter, we swinmarize the properties underlying the discussed shrinkage es-
timators in tables 3.1, 3.2 and 3.3. We provide tables to summarize the shrinkage factors,

TMSE’s, bias, expectations and the variances of the shrinkage methods considered in this

chapter.

Shrinkage Factor / Matrix TMSE

3 0<e<1 o? pl/\+((—l) P32

3r (VA2V + kI)"IV A%V, o S e TR o H)
k>0

o b N ¢ D 0'2 iR, 2

Ser (A% + K)7IA? =1 <(A,+i~i>2 * ((A,Jfkj)?)

3 FA _ .f (Aitd li5

3 (VARV' + 1)~ (VA2V + dI), o2y (j+)1 s+ (A= 1) Y0 i
O<d<l

der (VA2V 4+ [)"N(VA2V' + D) prye it di)” i (di = 1)*5¢

JGL Laii=1 Al()‘ +1 Ny L1\ — 1))

Fpe (A o2 Y L+ BV

Table 3.1: Shrinkage factors and TNSE'’s
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Expectation Bias

Ik

3Gr

31,

don i3 (dsn — 1)3

c3 (e—1)3

(VA2V' + kI)" WAV’

| e—

(VAV + k)" IVAY — ]} 15}

(A% + K)"1(A%)a

TN

(A% + K)~1(A?) - 1)0
(VA2V' + )" VARV’ + dI)B (VA2V' + 1) Y VA2V +dI) — 1) 3

(VAR + )" (VARV + D)8

TN TN

[(VA2V' + I)"Y(VA?V' + D)] - 1)5

V,V/3 A

Table 3.2: Expected values and Bias expressions for the biased estimators

Variance

wl |

sh

T
o

»jR

Jcr

3,

Jar

Fpe

d2,0? VA2V

Ao?VAT2Y!

A (VAV + kD)TWVAV VARV k)™
(A% + K) 1A% (A% 4 K) 7

/
2(VAV + 1) Y VAV + d)VAT2V! [(VAZV’ + YV AV + dl)}

/

VAV + D)~ YVAV' + DY VA~V <(VA'~’V’ + )Y VA%V + D))

oAV

Table 3.3: Variances of biased estimators
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Chapter 4

A new approach to ridge shrinkage estimation

Ridge and generalized ridge estimation methods are among the mostly favoured and practically
convenient shrinkage methods of estimation, vital when the OLS estimates are unreliable. For
this reason, it is inevitably crucial to review the methods and identify potential improvement

tactics as the need arises.

From previous discussions, it should be observed that there is a variety of suggestions for
ridge shrinkage factors all of which are said to play a vital role in ridge regression. For each
unique ridge shrinkage factor/matrix, there exists a corresponding ridge shrinkage method,
the reliability of which is wholly determined by the shrinkage factor/matrix. In other words,
each shrinkage factor/matrix determines the goodness and effectiveness of the correspond-
ing ridge shrinkage method and each method is differentiated from the rest by the shrinkage
factor /matrix. Therefore, it is critically important to look into the best ways in which the

shrinkage factors may be estimated.

There is a heated controversy in application of ridge shrinkage methods; different suggestions
are emerging in the literature to improve on the existing concepts but there is still no partic-
ular ridge shrinkage method, proven to be generally superior. Noteworthy is the fact that all
the ridge shrinkage factors are currently dependent on the least squares regression coefficients
and/or variance. This. from our point of view, is a huge drawback that directly impacts on
performance of ridge estimators since least squares is unreliable when collinearity is present in

the data.

In this chapter, we propose a new convenient method for estimating the ridge and generalized
ridge shrinkage factors/matrices. First, we review the current standard criteria through which
the shrinkage factors are being estimated and outline the potential hazard of these criteria on
the existing methods. To conclude the chapter, we suggest a new approach for estimation of

ridge and generalized ridge shrinkage factors.
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4.1 The current procedure

From the previous chapter, we note that the ridge and generalized ridge shrinkage factors
depend on the unknown parameters which have to be chosen or estimated from the data.
Usually. the unknowns are estimated using the OLS solutions. Specifically, the coefficients and
the variance estimates from ordinary least squares estimation are used to estimate the ridge

and generalized ridge shrinkage matrices.

4.1.1 Ridge

. : . . - et 5 _ :

The ridge shrinkage matrix was previously specified to be G = WX'X = (VA?V/+kI) VA2V

(from 3.18), where k is an unknown parameter. From a range of suggestions for estimation of
. - ‘ A~ ~ 5 . . > -

k provided in chapter 3, we observe that ¢< and (& or 3) are essential in finding the unknown

k. That is

Label Expression Equation number
g’ N
khk P 3.27
maxr
SSR
(&3 k t otrace(Hy) —{n-2) 3.28
~2
po
: 3.2
Khkb E 9
Q G-y A 3.30
Rl P62/ AN 3.31
) A J
Kt &2 Zp’l( . 3.33
O aB)?
(r—2)o A
kl wm Z’_ 3.34
T,B’X’Xd
(r—2)6
K kbm — 3.35
33
p .
1 &2
l\(nn, [_) Z <@vlz> 3 3()
i=1 '
52
kgm e 3.37
‘ b ol
(a8
6'2 6.‘.2
Ky ed median 5. T3 3.38
Ay a3

Table 4.1: Traditional ridge constants
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4.1.2 Generalized ridge

Previously, we specified the following shrinkage matrix for generalized ridge regression
- 9 . 5
6= (A% + KN) A2

where K is a diagonal matrix of unknown k}s that have to be estimated. Again, from the

suggested functions provided in the previous chapter, k;s depend on the OLS solution.

Label Expression Equation number
~2
kg, - 3.45
@y
() ,
k 5 3.46
((Nid7/6%) + 1)

Table 4.2: Traditional generalized ridge constants

4.1.3 The hazard of the current procedure

Estimation of ridge and generalized ridge shrinkage factors from the OLS solution has been in
application since 1970 when the corresponding estimation methods were first introduced. The
results have always been and are still the better, compared to those of OLS when collinearity
is a problem. However, without ruling out this fact, it is critical to take cognisance of the po-
tential harm that the OLS solution has on ridge and generalized ridge (in terms of calculating

the biasing constants k/k;).

Without unnecessarily repeating the details provided in chapter 2, we emphasize that least
squares estimation is highly influenced by collinearity; the coefficients tend to be too large,
extremely sensitive, unstable and even bear wrong signs. Even more important is the fact
that the variances and standard errors of estimates are inflated hence the estimates deviate
significantly from the true values (imiprecision of the estimates) when the data are collinear. It
should be understood that imprecision of estimates imply that the estimates are vague and not
likely to provide the correct information. Hence, it follows logically that ridge and generalized
ridge solutions of which the shrinkage factors are dependent on the OLS solution are vulnerable

to collinearity.

From our point of view, the instability of the OLS solution is highly likely to result in erratic

ridge and geuneralized ridge shrinkage estimates. This is one aspect that has not received
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attention but which has the potential to perturb the ridge estimation methods. In view of
this. we suggest a new procedure for estimating the shrinkage factors independent from the

OLS solution.

4.2 The new procedure

We propose that the solution to principal compouents, setting the smallest root to zero should

rather be substituted for the OLS solution in estimation of the shrinkage factors/matrices.

We use the following criteria to select the alternative for OLS.

e Robustness to collinearity:
We select a procedure that is more stable than OLS and less likely to be impacted on
by collinearity. Like any other shrinkage estimation procedure, principal components
regression deleting at least one smallest root is a remedy for collinearity and is less likely
to be adversely effected by collinearity. By eliminating the dimensions of the X-space that
are causing the problem, principal components regression removes collinearity instantly

(chapter 3).

e Non-dependence on OLS solution:
We choose a procedure that does not depend on the OLS solution. Unlike most of the
shrinkage estimators of which shrinkage factors require the OLS solution, the principal

components shrinkage matrix does not rely on the OLS solution.

Since principal components regression meets both criteria, we consider it the most eligible
procedure to substitute the OLS solution in estimation of the ridge and generalized shrinkage

factors. However the following points should be taken into consideration.

e We suggest and emphasize deletion of the smallest root because the stability of principal
components estimates is observed when the extremely small singular values are removed
from the regression model. We are not proposing deletion of more than one roots be-
cause most often, the principal components regression solution stabilizes after deletion
of the smallest root. Nonetheless, we cannot generalize and rule out the possibility that
principal component regression deleting more than one roots conld also be substituted
for OLS in estimation of the shrinkage factors. Where necessary, more than oue smallest
roots may be set to zero; the important issue is to avoid estimation of shrinkage factors

from the OLS solution when the data are collinear.

e If zero singular values are eliminated, the principal components regression and OLS give

similar results, hence the proposed substitution would not make sense. The priucipal
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components estimator becomes a shrinkage estimator only when at least one smallest

singular value is removed.

The proposed procedure imposes changes in the functions for the unknown parameters used
to estimate the ridge and generalized ridge shrinkage factors. We illustrate the changes below
and assess performance of the new ridge and generalized ridge estimators (those that are based
on the new procedure) in the simulation study (chapter 5). Note that the subscript 'pedell’
immplies the use of the solution for principal components regression, setting the smallest singular

value to zero.

4.2.1 Ridge

Table 4.3 presents the functions for the new proposed parameters for the ridge shrinkage factor.

Label Expression
O pedell
khk—new —/?—BFF—
dprdellmax
SSR
Crew FoR B 2trace(Hy) — (n — 2)
p(,dell

L papcdel 1
hkb—new
3 pedel 1/61)(’d€ll

Qnew rﬁpcdelldpcdell p(‘dellzl~1 At
Fruw—new P5§cden/ S (Y;)cdpll A
K nst—new 2 s St 1 NiBpeden,)?
(0o Mo )?
( 2) P(dell ?:1"1 )\i

klwm —new x
7 pcdell XX JPC(IEH

m=the number of the eliminated eigenvalues

(T - 2)&56(16“

khkbm~new

)))( df’ll/jPCdC“
1 p—m ~2
. pedelt
Aam~new ) Z (52
(p - TTL) i=1 Qpcdelli
)
k Opcdell
gm—new p—m ~2 )—lm
( i=1 Qp( dell
)
o2
. pcd( 1 pedel 1
Koned—new medmn( R =
pcdell t ap(?(lellpfm

Table 4.3: New ridge constants



4.2.2  Generalized ridge

Table 1.4 present the new proposed gencralized ridge parameters:

§=1-K(A +K)"'=(A2+ K) A?

Label Expression
~2
k Upz?(lell—’
hk—new; 9
(lpcdelll

(A)

Kt net g
c—new; ((/\iaf)gdelli/al%ﬂ]en) + 1)

Table 4.4: New generalized ridge constants

A crucial point to take note of is that for

cdel 1 (41)

>

> e

khk—newi =

Q>
t

pedell;

the condition dpegerr, = 0 leads to kpg new, = 0.

Therefore we propose substitution of min(kpx—new,: - - - khk—newp;l) for kpk—new, = 0o (the pth

element of the shrinkage matrix) to avoid computational complications. Hence the proposed

matrix shrinkage is the following

khkfncwl 0 0 0 W
0 khk—newz 0
K = '
0 .. 0
0 f 0 min(kng—new - - Khk—new,_1) |

We investigate performance of the estimators associated with the above stated biasing factors
g I g

in a simulation study; details are provided in chapter 5. We compare the new estimators

with their corresponding known estimators '(old)” and the rest of other shrinkage estimators

considered in chapter 3.

4.3 Summary

A new approach to estimation of the unknowns for ridge and generalized ridge shrinkage

matrices was presented in this chapter. The new approach entails substitution of the OLS
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solution by the solution from principal components regression, setting the smallest root to
zero. The new method is expected to improve on the existing one since it depends on a stable

solutionn.



Chapter 5

The Simulation study

Shrinkage estimation has received a wide application in statistical research. Hence, a lot of
papers are available in a varicty of journals where shrinkage methods are proven to be effective
in dealing with the problems attributed to collinearity. An extensive application of shrinkage
methods over a range of problems is considered a necessity to judge the value of the emerging
improvements over the old shrinkage methods.

In this chapter, we review some of the past simulation studies and present a simulation study in
which we compare performances of 24 biased estimators relative to the OLSE. The estimators
consist. of 2 principal components estimators (deleting one and two roots), the Stein estimator
of James and Stein (1961), the generalized Liu estimator and 2 Liu estimators suggested by
Liu (1993), 14 ridge estimators; 7 of which are based on the new proposed method and 4
generalized ridge estimators; of which 2 are based on the new method proposed in this study.

The chapter is structured to provide:

(1) Past sirnulation studies (§ 5.1):
We review and summarize some of the past simulation studies on comparison of shrinkage

methods.
(2) The distinction between this study and past simulation studies is drawn in (§ 5.2).

(3) The design of the simulation study (§ 5.3):

We present our simulation study in the following manner

— The structure of the X matrix (§ 5.3.1),
— The collinearity level of X (§ 5.3.1.1),
— The structure of Y (§ 5.3.2),

— Distributions of error terms used to generate Y (§ 5.3.2.1)
(3) The basis for comparison of estimates (§ 5.4)

(4) The simulation program (§ 5.5)

[
[
—



5.1 Past simulation studies
We reviewed 16 simulation studies on shrinkage estimators. For convenience, these studics are
summarized in Appendix D.
In all the studies
e OLS was used as a yardstick

e Measure of effectiveness ranges from MSE, TMSE, residual prediction error, relative

efficiencies and Pitman measures (colunn 2 of table D1).

In these comparisons, all the authors had at least one of the ridge family’ estimators in the
list of estimators compared. Thiart (1994) had the most comprehensive list while FU (1998)

considered one of the recently introduced special cases of ridge, lasso.

The authors reported that ridge performs the best. However, Thiart (1994) reported that ridge
estimators outperformi OLSE, but that it was not necessarily the best; the author could not

identify a unique 'best’ shrinkage estimator.

5.2 Why is this study unique?

In the previous simulation studies very little has been done on performance of shrinkage esti-
mators across different error distributions. In alimost all the reported studies, the error terms
were always assumed normal. We carry out a simulation study in line with Thiart (1994) and
Thiart et al. (1993) and identify the following features that make our study different from

previous studies.

e We consider a range of error distributions and different variance levels; four distributions

and three different variance levels.
e We propose a new method for estimation of shrinkage factors/matrix.

e Ve focus our attention on performance of 24 shrinkage estimators, including 6 of the 13

investigated by Thiart et al. (1993) and Thiart (1994).

e We use a different method of data generation. For a linear model

Y, = 3y + Fril + Boxin + B3rin + By + Fsxis + o€ 1=1....30



both Thiart et al. (1993) and Thiart (1994) employed the Mcdonald and Garlarncan

(1975) data generation method in which

vy = (1— af)%zu + oz i=1,....30 and j=1.2,3

and

rp=(1—ad)iz;+azg i=1,....30 and j=4.5

[

where

2 ;8 =N(0.1) independent variables

x;j =the it" element of the j

column of X
a;s =parameters that determine the level of dependencies among the independent

variables.

However, we specify integers for X; and X3 and compute the other three columns as
combinations of the two (§ 5.3). Further, we specify one arbitrary vector of 3/s whereas
Thiart (1994) selected two 3] eigenvectors of X' X corresponding to the smallest and the

largest eigenvalues.

5.3 The design of the simulation study

5.3.1 Generating the X matrix

The X matrix is an extension of a small illustrative example in Rawlings et al. (1998, p.372).
We extend Rawling’s (20 x 4) matrix to a (100 x 6) matrix of independent variables.

The X matrix is generated as follows:

e The first column consists of ones, thus
)(1 =1
e Column 2 (X5) is a sequence of numbers from 20:29 with an increment of 1, repeated to

make 100 observations.

e Columm 3 is column 2 with 25 subtracted from it and observations 1 and 11 changed to
-4 to avoid direct collinearity.
X3 =Xy —25.

A
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e The fourth colunn is a periodic sequence running (5,4.3.2.1.2,3.4,5,6) repeated to make

100 observations.

e Colummn 5 is 5 plus the difference between X, and X ;. To avoid direct collincarity, we
change observations 54 and 96 to 5 and 2 respectively.

X;=Xo - X, +5

e The last column is column 4 with 10 subtracted and observations 38 and 100 both changed

to 3.
Xg=X;,—-10
Thus:

(1 20 -4 5 20 —5 ]
1 21 -4 4 22 -6
1 22 -3 3 24 -7

X =
1 28 5 28 =5
129 4 6 28 3

One of the primary objectives of this study is to compare different shrinkage estimators when
there exists extremely high collinearity among the independent variables. Hence, it is critically

important to ensure existence of extreme collinearity in X before proceeding any further.

5.3.1.1 Collinearity measures of X

By observation, we could conclude that the generated X matrix is collinear since some colunmns
are generated from others. However, this would not be good enough to expose the magnitude
of collinearity present in X. Also, we would not even know whether or not the existing level of
collinearity satisfies the requirements for our objectives. Thus, we suimmarize the collinearity
diagnostic results for the standardized X matrix table 5.1.

We indicate extreme collinearity in red and italics. From the diagnostics, we conclude that X is
extremely collinear. Two of the five VIF values are larger than 10, both the last eigenvalue and
the last singular value are very small compared to others, the condition number (last condition
index) is around 50 and the mei is very close to 1. In addition, the correlation matrix, indicates
four strong bivariate correlations between the following pairs of variables: (X and X»), (X
and Xy), (X5 and Xy), and (X3 and X5).

Looking at the variance proportions, it is clear that two components with sinall eigenvalues

contribute more than 50% to two regression coefficients: that is. the 5 (last) pe contributes
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Tabde 5.1; Collincarily disgrcsties {for standarhzoed] X

mote than 9% to X; and X> while the second last (44"} contributes more than 8% o X,

and Xs. We nole wilth cerlainly that the independent variables are highly correlated. Hemee

we use the collinear X matrix to generate the dependent variable Y,

5.3.2 Generating the dependent variable, Y

The response variable iz generated from the following model:
¥ X .'r‘..f'_r + €

where
3 is a (6 2 1) veetor of true coefficients chosen such that

# |10 04 05 025 03 45 ]

4

and X is defined by

X [)::1 X oK o X W

with X, being the ¢ 100 % 1 columm of the matrix defined carlier in 1his chapler.

e isoa 100 = 1 veelor of random crror lerms: with mean zero, fixed across different variance

levels (2 2,25 and 100) and following cither Normal, Laptace, Exponential or Student’s 1

(]
¥
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distributions. Our experiment consists of

24 X 3 X 4
estimators variance distributions
levels

For each experiment, 500 monte carlo simulations (repetitions) are made.

5.3.2.1 Generating the error terms

We are keenly interested in finding a robust biased estimator that is not tied into normality
henece our selection of error distributions includes long tailed distributions (non-normal). We
want to observe whether or not heavy tailed distributions of error terms influence performance
of estimators. The biased estimators are expected to perform outstandingly better than the
OLSE when the error distribution is long tailed (Student’s t) since the latter is too sensitive

to extreme values.

All the programming is done in R; a command based statistical software package developed for
statistical analysis, freely accessible at http://cran.r-project.org. The pseudo-random variables
are generated from R built-in functions. The built-in functions generate the random variables
in the following manner: the R pseudo-random gencrator produces a 32-bit integer whose top
31 bits are divided by 2! to produce a real number in the range (0,1) (details are provided by
Ripley (1987) and Venables and Ripley (1994)). Once the integers are generated, R uses them

to produce values from the different distributions.
Full program details are given in appendix A.

Normal error terms
The probability density function of the Normal distribution is given by

1 C1G-w?
fX(.r):—Qe 2 o2 —oo <<, —x<pu<se, o>0 (5.2)
oV 2m

Where ;o and o represent the mean and the standard deviation, used to specify location of the
data and the spread of the distribution respectively. In this study, p = 0 aud o is varied across

the three values as shown below

We generate each column of 100 random normal error terms from the following function
rnorm(100,0,0;), i=1,2,3

where

o; = 0.1414. 5. 10: corresponding to the variance levels o7 = 2.25. 100 respectively
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j=E()=0
n = 100

Student’s t error terms
The probability deusity function of the Student’s t distribution is defined by

{I[(v + 1)/2]}
(rv)20(v/2)[1 + (22 /v)])w+1)/2

—o<er<oo, v>0 (5.3)

fx(x)=

where v is the degrees of freedon.

We generate each Student’s t error variate as a ratio of a standard normal variate to the root
of a chi-squared variate divided by the corresponding degrees of freedom as shown below. The

numerator and the denominator arc independent.

rnorm(100,0, 1)

5.4
Vrehisq(100, v, nep = 0) /v, (5-4)

where v; represents the degrees of freedom (non-negative) and ncp is the non-centrality para-

meter (non-negative), set to zero.

The variance expression for a Student’s t distributed variable is o2 = for all even num-
v —
bers greater than two (v > 2) and zero otherwise. Hence, computation of v (the degrees of

v

freedom) from the formula o2 = 5 requires the condition that o2 > 1.

The Student’s t degrees of freedom nsed for simulation in this study are computed to be the

following:
i 1 2 3
variance (o?) 2 25 100
2
v = — 4 2.083 | 2.020
= a; — 1

Table 5.2: The choice of v

Hence, we extract the degrees of freedom (v;) and generate each of columns of the Student’s t

error terms using equation 5.4.

[\Ba}
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Laplace error terms

The Laplace density function is given by

fxx)y=— e "« —xo<r<x, —x<a<x, ¢>0

e ¢ r<a

1—= e ¢ T >a

. N . ,
with a = mean and ¢ defined such that the variance of X= 2¢~.

We find the inverse function of the distribution function and express the Laplace variable in

terms of a uniformly distributed variable in the following manner:

Let u= F(r)and r = F(u)~':

For & < a,
1 G-a
= —e c
u 2
2u = e ¢
In(2u) = (z—a)
c
cAln(2u)} = r—a
x = atc {In(2u)}
For x > a,
u = 1-— %e*g
2{1 — u} = e 2
n{2(l —w)} = _lz=a)
c
cAln2(1 —uw)]} = a—uw
x = a-c{In2(1-0)]}

where u is a random number between 0 and 1 (u ~ U(0, 1))

However. since the concern in this study is mainly on zero mean distributions, we set a=0 and

compute the Laplace error values from the following expressions:

r=c In(2u) for 0<u<05 and <0 (5.1

[}
(1)
—
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and
r=—c [n2)1 —u]) for 05<u<1l and x>0 (5.6)

We compute ¢ to correspond to the desired variance levels as shown in table 5.3.

1 1 2 3
variance (o?) 2 25 100
2
a =13 1 3.536 | 7.07

Table 5.3: ¢ estimates for Laplace distribution

Hence, we compute each Laplace error term from

errlapli] = ¢; x log(2 x runif(1,0,1)) for z <0
and
errlapli] = —c¢; * log(2 * (1 — runif(1,0,1))) for z > 0

where runif(1,0,1) = a random number between 0 and 1.

Exponential error terms
An exponentially distributed random variable X has the density function

flz) = e M x>0, A>0.

i 1
with mean — and variance -3
A A

We generate the columns of exponential error terms from the function
rexp(100, A;), i=1,2,3
where Ais correspond to the three desired variance levels.

. 2 2 : :
Since o7 = VA we equate o7 to each of the desired levels of variance and solve for the unknown

t
parameter A; as shown in table 5.4.



variance (o) 2 25 100

0.707 0.2 0.1

Table 5.4: A estimation for Exponential distribution

One way to generate X would be to find the inverse function of the Exponential distribution

function
Fa)=1-eN x>0 (5.7)

and solve for x. The resulting expression would be

- —In(l —w)
r= 0 (5.8)

where u is a random number between zero and one; (u ~ U(0, 1))

5.4 The basis for comparison of estimators

The differences between the estimated coefficients and the true coefficients form the basis for
assessment and comparison of the listed biased estimmation methods. We note from the previous
chapters that when two or more independent variables are collinear, the OLSE exhibits large
variance and mean squared error, hence, the bias becomes a requirement for reduction of
the MSE and the variance. In this study, we are mainly concerned with comparison and
identification of the biased estimators of which the estimates deviate the least from the known
true parameters, relative to the rest of the estimators considered for simulation.

The comparison of estimators is based on the following

e minimum squared Euclidean distance between the estimates and the true values (TMSE)

and
e maximum efficiency of each estimator relative to the OLSE.
For each estimator, we define the relative efficiency to be a ratio of the total mean squared

error of the OLSE to the total mean squared error of the estimator; denoted by

_ TMSE(3)

. 3
E[3 = —222
TMSE(3)



where 3 is the estimator of which the efficiency is being computed. relative to 3.

The relative efficiencies allow direct comparison of the biased estimators to the OLSE hence we
use least squares as a yardstick. We characterize an efficient estimator by a large value of RE.
From the definition of RE[3] it should be easy to observe that if TAISE(3) is smaller than
TASE (3) then RE [;’] is expected to be large and vice versa. For simplicity and convenience,

we interpret the magnitude of relative efficiencies in the following manner:

An estimator 3 is more efficient than the OLSE if RE[&] is greater than 1; greater than

1 in this context means anything beyond 1.01. Note the following:

* 1< RE [;’] < 1.01 is considered equivalent to 1 and the corresponding estimator 3 is said

to be similar to the OLSE.
* Estimators whose RE values are less than 1 (RE < 1) are considered less efficient.

Based on the 500 repetitions, a biased estimator of which the relative efficiency is the highest
is said to be the most efficient, compared to other shrinkage estimators.

The comparison is performed through the following subsequent steps.

e For cach method of estimation, we estimate the regression coefficients from the simulated

data and obtain 500 sets of betas. Each set of coefficients is a (p + 1) x 1 column vector.

e Subsequent to obtaining the coefficients, we compute the squared sum of the difference
between the obtained coeflicients aud the prior known coeflicients (r). For each method

of estimation, a sununary of the 500 replicatious is given as

500

6
> (3= Bry)?

j=1l:=1

where

3;; = the j" estimate in the i'® replication, corresponding to auy of the estimators

under consideration

h

3. = the j'* elements of 37.

e Hence the relative efficiencies are computed from

6 500 o B 800 .
B)BEMSEMTD 9D BT M
j=1i=1 j=li=l

where .3;; = the j ordinary least squares estimate in the /' replication.



The method of estimation that results in the minimum TMSE and the maximum relative
efficiency (RE) relative to other methods is the most preferred and is considered "best’ in the

context of this thesis.
The 24 estimators used in this study are summarized in appendix C.

9.9 The simulation program

A summary of the R simulation program is provided in this section. We do not specify the
syntax in this summary but rather concentrate on the flow of the program or the sequence of

simulation steps. Full program details are provided in appendix A.

For each of the four selected distributions (Normal, Student’s t, Laplace and Exponential) and
each of the three variance levels (o = 2,25 and 100), we run 500 simulations. We compute the
X matrix and error terms in R and store them as Excel files. For each of the 500 simulations,

the error terms and the X matrix are used to compute the dependent variable.

The dependent variable and the predictor variables are standardized; X is centred and scaled
to be in correlation formi. With the standardized variables. we do least squares estimation and

principal components regression deleting no roots, one root and two roots.

We extract the coefficients and the variance estimates from PCdell and the OLS and compute
the required unknown parameters for ridge, generalized ridge, Stein, Liu and generalized Liu
estimation methods. The respective estimators are computed and transformed back to the un-
standardized form. Hence the mean squared error, total mean squared error and the relative

efficiencies for each of the estimators are computed and written to Excel files.

We define the relationship between the standardized and the unstandardized regression coef-

ficients by the following expression

3 X (éI)
(sy)

3% % (Sy)

g =
(52)

implying  that 8=
where

3% = a vector of standardized coefficients
3 = vector of unstandardized coeflicients
s, = the root of the sum of squared columns of the centered X.

s, = the root of the sum of squared centered observations in Y.

o
—
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5.6 Summary

In this chapter, the simulation study was presented and some of the previous studies were
reviewed. compared and differentiated from this study. Further, the basis for comparison of

estimators and the simulation program swnmary were provided.



Chapter 6

Discussion of Simulation results

Results of the simulation study are presented and discussed in this chapter. The relative
efficiencies of 24 shrinkage estimators at three levels of variances of error termis and four

different distributions are discussed. We split up the discussion into the following sub-sections:

e Querall performance of estimators: we discuss the general performance of shrinkage
estimators relative to the OLSE. Further, the issue of whether or not the new estimators

improve on the old ones is investigated.

o Relative performance of estimators by variance levels x distributions: the efficiencies of

individual biased estimators across the variance levels and distributions are discussed.

o General performance across different families of estimates: the discussion focuses on

performance and comparison of families of estimators.

6.1 The Results

We present the relative efficiencies (REs) of the biased estimators in table 6.1. Except for prin-
cipal components regression methods, generalized Liu and Stein estimation, each estimator is
represented by the corresponding parameter. The rows correspond to the estimation methods

and the columns correspond to the distributions and the variance levels.

We do not tabulate the REs in any particular order since for each variance, the values fluctuate
across the four distributions hence sorting becomes difficult. For each distribution at a partic-
ular level of variance, the largest RE value is written in italics and coloured in red. Further,
new estimation methods proposed in this study are highlighted in blue to differentiate them

from the rest.
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Table 6.1: Relative clliciencies of 24 biased ostimator and the OLST. The mast superior

estimators are is indicated by red, families of eslimators indicated by braces and labels and

new estimators indicated by blue,



6.2 Discussion of results

6.2.1 Overall performance of estimators

e 19 out of 24 biased estimators are more efficient than the OLSE at all three variance
levels and four distributions. The efficient estimators include all ridge and generalized
ridge estimators and the PCdell estimator. The Stein estimator and two of the three
Liu estimators do not show any efficiency at all, regardless of the distribution nor the
variance level. Further, PCdel2 and one of the Liu estimmators show efficiency only when

the level of variance is high and the distributions are not long tailed.

e The new estimators show an improvement over the corresponding old estimators. The

following cases are the only exceptions for which no improvement is observed.
o o

Estimator | Distribution | Variance level
Fhib—new -Laplace g2 =9
-Normal
Ktwm—new -Exponential | % = 100
-Laplace
| kam -Normal o2 = 100

Table 6.2: Exceptional cases for improvement

6.2.2 Relative performance by variance levels x distributions

We observe an overall positive relationship between the variance of error terms and perfor-
mance of shrinkage estimators relative to the OLSE. The relative efficiencies of estimators
increase drastically when the variance increases, implying that the biased estimators are more

advantageous over the OLSE when the variance is large.

6.2.2.1 Relative performance when ¢? = 2

We outline the ’'best’ eight performing estimators in table 6.3. There is a similarity between the
distributions: PCdell, kum—new, Klwm—new and Egn_yew are consistently the four most superior
in all the distributions. This imiplies that the distributions do not influence performance of the

estimators when the variance is small.
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[(hkfnew

I 2 3 1 5 6 7 8
N PCdell A'amfnelu klwmfn,ew k_qunew khkbfncw kmcdfnew [{h,k~new klwfnew
kgm I‘ytcfrlew
Exp PCdell k(un—nc w klwm —new kgm —new kmeck new kgm ]\7}1 k--new klw~n,ew
k'hk,bfnew Aytcfnew k[wvn,ew

Kam

Lap PCdell kamfnew klwm—new kgm—new khkb—new }fgm km(%(lfnew R'tcfnew
I(h k—new

t PCdell  kam-—new  Ktwm—new kgm—new Ehkb-new  Kmed—new Btemnew Ktw—new

Table 6.3: Eight 'best’ performing estimators, ranked from 1% to 8" ¢

6.2.2.2 Relative performance when o? = 2

5

2

=2

There is a significant increase in the REs compared to those of o= = 2, implying that the

variance might influence performance of estimators. We summarize eight 'best’ performing

estimators over the distributions when o2 = 25 in table 6.4.

1 2 3 4 5 6 7 8
N PCdell  Kiepew Kye Kk new k'gmfnew Fmed—new  Khkb—new  Klw—new
Exp PCdell Ky pew Kic Khk new kg7717718w Emed—new  Khkb—new  Klw—new
LE‘LI) PCdell klwmfnew kgmfnew khkbfnew kamfnew ]{tc—new I(hk—new kmedfnew
t PCdell kumfnew klwm—new k'gm~new khkb—new [(tcAnew [('hkfnew kmed—new

Table 6.4: Eight ’best’ performing estimators, ranked from 1% to 8": o2 =25

e The PCdell estimator is consistently outperforming the rest of the estimators for all

distributions: a similar result was observed when the variance was small. This might

be the implication that PCdell is not influenced by neither the variance level nor the

distribution.

e Normal and Exponential distributions are similar, perhaps because the two are of the

same family.

e The new estimators are superior to all other estimators except the PCdell estimator;

implying that the new proposed method is effective.

6.2.2.3 Relative performance when ¢ = 100

. 2
Generally. the RE values are much higher than those observed when ¢ = 2 and ¢ = 25. In

Table 6.5. the hest™ eight performming estimators are sununarized over the distributions, when
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o2 = 100.

1 2 3 4 ) 6 7 8
N Kiecnew Kie Kipenew  Kw—new  Kng Kmed PCdell kgm—new
Exp Kie—new Kic Kpionew  Klw—new Ky, Kined PCdell kgm—new
Lap PCdell krwm—new kgm~n,ew Eoko—new Kam-new Ficenew Knk—new Kmed—new

t PCdell kam—new Klwm—new

kh,kb—new

l‘v'gmfnew

th~ne’w

[(hk—new

kmedfnew

Table 6.5: Eight ’best’ performing estimators, ranked from 1% to 8*: o2 = 100

e We observe an incredible performance by the estimators corresponding to Kie_pew, Kie

and K- e when the error terms follow Normal and Exponential distributions.

e There is no significant change in the relative efficiencies for the Student’s t distribution;

the order of performance of estimators is the same for all variance levels. Hence it may

be said that the variance does not play an important role in the Student’s t distribution.

e There is more fluctuation in performance estimators. PCdell and kg, are ranked 7 and

8 in Normal and Exponential distribution however, for Laplace and Student’s t, PCdell

is dominant and kg, is among the first five best’ performing estimators.

6.2.3 General performance across different families of estimators

o All ridge estimators except Ky, (at o2 = 2) perform better than the OLSE at all variance

levels and distributions.

e We cannot gencralize on the principal components family, however, we note that the

PCdell estimator is outstandingly a good, stable estimator. PCdel2 does not perform

well hence we do not consider it advantageous in this study.

e In this study, Stein is not superior to OLS at all orientations; four distributions and three

variance levels.

e The Liu family is also not doing too well; none of Liu estimators significantly outperforms

the OLSE.

6.3 Summary

In this chapter, we presented the simulation results. It has been found that not all the shrinkage

estimators considered in this study are more cfficient than the OLSE. The PCdell estimator

is superior to all other estimators. Also, there is a positive relationship between performance

6-5




of estimators and the variance of error terms.

Estimators associated with the new proposed method are generally performing better than
(superior to) the OLSE and other biased estimators. The relative efficiencies increase with the
variance. It has been observed that there is more variation of performance of estimators across
the four distributions as the variance level increases, implying that the small variance does not

influence the esimators.
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Chapter 7

Summary and Recommendations

In this chapter, we evaluate the objectives of this study, draw conclusions and make recom-

mendations.

7.1 Evaluation of objectives

We re-examine the objectives of this study with a view to determine whether or not they have

been achieved.

The primary objectives of this study were the following

e To propose a new method for estimating the shrinkage factors.
The motivation for this objective was provoked by the fact that the traditional methods
are vulnerable to collinearity since the methods depend on OLS, a procedure that has
been shown to be highly bugged by existence of collinearity. Our prior expectation was
that the new method would show a significant improvement over the traditional methods
since the new method is independent of OLS. The results show that the new proposed
method is indeed an improvement of the traditional methods hence the objective has

been achieved.

o To classify 24 biased estimators under one category of shrinkage estimation with a view
to determine the most effective and robust estimator.
The desire to achieve this objective was stimulated by the fact that there is currently
no outstandingly best performing biased estimator. We hoped to identify one or more
predominant biased estiimator(s) from the new estimators. From the results, we observe
that principal components and the ridge family are the "best’ but we still cannot generalize

on the outstandingly superior estimator.
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7.2

Conclusions

We draw the following general conclusions:

Biased estimators outperform the OLSE when collinearity is present in the data.

The implication of this conclusion is that biased estimators are more reliable and closer
to the true values than the OLSE when X is not orthogonal. The same conclusion
was reached by Hoerl et al. (1975); Marquardt and Snee (1975); Guilkey and Murphy
(1975): Lawless and Wang (1976); Hoerl and Kennard (1976): Hocking (1976); Guust
and Mason (1977): Winchen and Churchill (1978): Thiart et al. (1993); Thiart (1994);
Breiman (1995); Aldrin (1997); Fu (1998); Kaciranlar and Sakallioglu (2001); Wencheko
(2001); and Liu (2003).

The new proposed procedure leads to a significant improvement in performance of the
shrinkage estimators.
From the results, the estimators associated with the new proposed method outperform the
known estimators, of which the biasing factors are based on OLS solution. This implies
that the new method is effective and should be implemented to improve on shrinkage

estimation.

The distribution of error terms plays a minimal or no role in performance of biased
estimators. especially when the variance is small.
From the results, we observe that for the least variance, the RE values are nearly sim-
ilar for all four distributions. Hence, the distribution of error terms does not influence
performance of biased estimators. This conforms with the conclusion drawn by Thiart

(1994).

The relative efficiencies increase with the variance.
We note from the findings that the relative efficiencies of biased estimators increase
considerably as the levels of varlance increase. This means that the biased estimators
are affected by the level of variance of error terms; large variances are likely to indicate
good performance of shrinkage estimators. A similar conclusion was reached by Thiart

(1990).

PCdell is optimal for the data set used in this study.
The simulation results indicate that the PCdell estimator is outstandingly superior to
all the estimators considered in this study. However, some of the studies do not report

any particular better biased estimator relative to others. This implies that the efficiency



of a biased estimator depends on the level of collinearity and the shrinkage factor/matrix.

Although principal component regression is optimal in this study, we cannot generalize
the results. Furthermore, principal component analysis transforms the data into new
artificial data-specific variables making the results difficult to interpret in general. In
contrast, ridge regression deals with variables in their original form, hence it is much
easier for the experimenter working with the data as all the variables are included in

their original form in the model.

o The ridge family of estimators is consistently better than other families.
Apart from PCdell, we observe efficicut performance by all ridge and generalized ridge
estimators. This implies that ridge regression is imperative and should be considered in

many applications.

e Liu estimators are not ideal for the data set used in this study.
The Liu family of estimators performs disastrously at all variance levels. This could

imply that

— Liu estimators are incapable of handling collinearity problems or

— the effectiveness of biased estimation techniques varies across the kinds of data

analyzed; meaning that not all the methods are appropriate for usage all the time.

Owing to the conclusions stated above, we provide the recommendations below.

7.3 Recommendations

Use biased estimation methods in collinear designs of matrices. Biased estimators out-

perform the least squares estimator in the presence of collinearity.

Where possible, refrain from using the OLS solution to estimate the biasing factors.
Rather use the principal components solution instead of OLS. This has a critical impor-
tance in improvement of some of the biased estimation methods, more especially when

principal compouents estimates exhibit much stability.

In analysis of collinear data, explore different biased estimation methods to identify one or
more that best suit the circumstances and the problem at hand. Include ridge regression

in the search for the optimal biased method(s).
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7.4

Investigate further into potential improvement of biased/shrinkage estimation and ap-

propriate methods for estimating the biasing factors.

Further research

We recommend further investigations into our new proposed method, using different data

sets and other orientations.

It could be interesting to see performance of new estimators under different collinearity
levels. Perhaps one weak, medium and extrenie orientations of collinearity could portray

a better picture.

The relationship between the variance and relative efficiency of biased estimators could

be pursued further.

Further improvement of the new proposed method could be investigated.
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Appendix A

The Simulation Program

Details of the program are provided in this appendix.

This appendix is sub-divided into three main sections. We first provide the program details for
generating and saving the X matrix, proceed to the error matrices and finally present the main
program which computes 24 shrinkage estimators and the corresponding relative efficiencies
(REs) discussed in the simulation chapter. We fix the matrix of independent variables and
the error term matrices. For each distribution, 500 columns of error terms are initially gen-

erated in R, written in Excel Comma Delimited files and then later read back into R from Excel.

Details of the main program include the following

¢ Reading the fixed error terms and a fixed matrix of independent variables from Excel

Conummna Delimited files,
e Declaration of variables used in the main loop.

e Computation of least squares estimates and the 24 biased estimators, MSEs, TMSEs and

REs.
Included in the program, is a highlicht of the program developed for estimation of the ridee
fe) ) O [e3 O o

constants with the PCdell solution.

Programming in R is such that all comments and enidelines follow a symbol whereas the
o o o y
program commands are the explicit statements, written without the svinbol # |, hence we

differentiate between commands and comments in the same manner to avoid confusion.
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A.1 Program details for generating the X matrix

We generated the X matrix from the following program

# Generating x1 as a 100 x 1 column of ones.

x1l=matrix(1,100.1)

# Generating x2 as a vector of values 20:29, repeated 10 times to make 100 observations
x2=as.matrix(rep(c(20:29),10))

# Generating x3 and replacing the 15 and 11" observations by -4 to avoid direct collinearity.
x3=x2-25

x3=replace(x3,1,-4)

x3=replace(x3,11,-4)

# Generating x4 as a vector of values (5,4,3,2,1,2,.3,4,5,6), repeated 10 times to make 100
observations

xd=as.matrix(rep(x4,10))

# Generating x5 and replacing the 54 and 96" observations by 5 and 2 respectively.
xHh=x2-x4+45
xb=replace(x5,96,2)

xb=replace(x5,54,5)

# Generating x6 and replacing the 38" and 100" observations by 3.
x6=x4-10

x6=replace(x6.,38,3)

x6=replace(x6,100.3)

# Combining the 6 columns into a 6x6 matrix and writing the matrix to an Excel comma
delimited file 'xmatrix’.
x=cbind(x1,x2.x3,x4.x5,x6)

write(x.file="C:/xmatrix.csv” ,ncolumn=6,append=F)
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A.2 Program details for error terms

This program takes about two minutes to generate 500 colummns of error terms from Laplace,
Contaminated normal, Exponential and Normal distributions, with each distribution varied
across the variance levels 02 = 2,25 and 100 respectively. For each distribution and variance

level, the program fixes or saves 500 colummns in a unique file in drives C and E.

n=100
nrep=500

p=>5

errlap2=matrix(0.n,urep)
errlap25=matrix(0.n,nrep)
errlap100=matrix(0,n,nrep)
errt2=matrix(0,n,nrep)
errt25=matrix(0,n,nrep)
errt 100=matrix(0,n,nrep)
errexp2=matrix(0,n,nrep)
errexp25=matrix(0,n,nrep)
errexpl00=matrix(0,nnrep)
errn2=matrix(0,n,nrep)
errn25=matrix(0,n,nrep)

errn100=matrix(0.n,nrep)

for(i in l:nrep)
{
for(i in 1:n)
{
# error Laplace for 0% = 2
if(0< =runif(1,0,1)< =0.5)
{ errlap2[i.j]=1*log(2*runif(1,0,1))} else
{ errlap2[i,j]=-1*log(2*(1-runif(1,0,1)))}

# error Laplace for o2 = 25
if(0<=runif(1,0,1)<=0.5)
{ errlap25[i.j}=3.536*log(2*runif(1,0,1))} else

{ errlap25|i.j}=-3.536*log(2*(1-runif(1,0.1)))}



# error Laplace for o2 = 100
if(0< =runif(1,0,1)< =0.5)
{ errlapl00[i,j]=7.07*log(2*runif(1,0.1))} else errlapl00[i,j]= -7.07*log(2*(1-
runif(1.0.1)))}

# error t for 02 =2
errt2[i,j]=rnorm(1,0,1)/sqrt(rchisq(1,4,ncp=0)/4)

# error for Student’s t for 02 = 25
errt25i.j]=rnorm(1,0,1)/sqrt(rchisq(1,2.083,ncp=0)/2.083)

# error for Student’s t for o2 = 100
errt100[i.jjJ=rnorm(1,0,1)/sqrt(rchisq(1,2.020,ncp=0)/2.020)
# error Exponential for 02 = 2

errexp2[i,j]= rexp(1l,rate=0.707)

# error Exponential for o2 = 25

errexp25[i,j]= rexp(1l,rate=0.2)

# error Exponential for o2 = 100

errexpl00[i.j]= rexp(1,rate=0.1)

# error Normal for o2 = 2

errn2[i,jl=rnorm(1,0,0.1414)

# error matrix for o2 = 25

errn25[i.j]=rnorm(1,0,5)

# crror matrix for o? = 100
errn100{i.j]=rnorm(1,0,10)

# Writing the error files in Excel

write(errlap2.file="C: /errlap2.csv” ,ncolumn=nrep.append=F)
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write(errlap25.file="C:/errlap25.csv” neolmmn=nrep.append=F)

write(errlap100.file="C:/errlap100.csv” ncoluimn=nrep,append=F)

write(errt2.file="C:/errt2.csv” ncolumn=nrep.append=F)
write(errt25.file="C:/errt25.csv” ,ncolumn=nrep.append=F)

write(errt 100.file="C:/errt100.csv” ,ncohumn=nrep,append=F)

write(errexp2.file="C:/errexp2.csv” neolumm=nrep,append=F)
write(errexp25.file="C:/crrexp25.csv” ncolumn=nrep.append=F)

write(errexpl00.file="C:/errexp100.csv”,ncolumn=nrep.append=F)

write(errn2.file="C:/errn2.csv” ncolumn=nrep,append=F)
write(errn25.file="C:/errn25.csv” ncolumn=nrep.append=F)

write(errn100,file="C:/errn100.csv” ,ncolumn=nrep.append=F)

A.3 The Main Program

We read the error terms and the matrix of independent variables from Excel Comma Delim-
ited files into R, standardize the X matrix and then compute the coefficient estimates from
Least Squares regression and the 24 shrinkage estimation techniques discussed in the simula-~
tion study. We then transformn the coefficients back to the unstandardized form and compute

the corresponding Mean Squared Error values and the Relative Efficiencies.

# Read the X matrix from an excel csv-file "xmatrix”
xm=as.matrix(read.csv(”C:/xmatrix.csv”, sep="." header=T))

# creating the x matrix that does not have a constant

# Specify the true coeflicients
beta =as.matrix(c(10,0.4,0.5,0.25,0.3,4.5))

# Specify the nunber of observations, replications and the nwnber of variables in the X ma-
trix.

n=100

nrep=>500

p=>5



# Centre the columns of xm
center=apply(xm.2,mean)

xentr=sweep(xm.2,center,”-”)

# Scale the X matrix

stde=0

se=()

for(i in l:ncol(xm))

{

stde[i]=sqrt(crossprod(xcutr[,i]))

}

stde

# NB the first element in stde = zero (corresponding to the intercept) therefore we set
se=stde[,2:p+1] # to exclude the first value
for(i in 1:p)

{

seli]=stde[i+1]

}

se

# Standardize X (with the first column of the centred matrix eliminated)

Z=sweep(as.matrix(xcntr[,-1]),2,se,” /7)

# Compute the Singular Value Decomposition of Z (the standardized X matrix)
sv=svd(Z)

v=sv$ v

u=sv$ u

d=(sv§ d)

eignv=d2

# Product matrices: (X’X) inverse and (Z’Z)
xtxinv=solve(t(xm)%*%ximn)

wtz=t(2)%* %L
We read in the error terms, declare the variables and proceed to the main loop. Note that we

consider four distributions of error terms and three levels of variance, hence the programs are

developed such that each distribution at each variance level has its own independent program
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to avold mistakes.

However. the programs are very similar; computations of estimates follow the exact sanie steps,
the difference lies in labels used within the programs and the file names when the information

is either being written or read from Excel.

Declaration statements and the main loop for the Normal distribution for ¢% = 2

# Read the normal (0,0.1414) error terms from a c¢sv file errn2

errn2=read.csv("C:/errn2.csv” sep="" header=F)

# Declaration statements

Yn2 = vector (mode="list” length=nrep)
Y vector(mode="list” length=nrep)
yentr veetor(mode="list” length=nrep)
xty vector(mode="list” length=nrep)
zty vector(mode="list” length=nrep)
alpha vector(mode="list” length=nrep)
alphal vector(mode="list” length=nrep)
alphall vecetor(mode="list” length=nrep)
olsn2 vector(mode="list” length=nrep)
ols vector(mode="list” length=nrep)
olscoef vector(mode="list” length=nrep)
diffols vector(mode="list” length=nrep)
difthkb vector(mode="list” length=nrep)
diffbkbnew vector(mode="list” length=nrep)
diffhkbm vector(mode="list” length=nrep)
diffhkbmnew vector(mode="list” .length=nrep)
diftkam vector(mode="list” length=nrep)
diffkamnew vector(mode="list” length=nrep)
diffkgm vector(mode="list” length=nrep)
diffkgmnew vector(mode="list” length=nrep)
diffkmed vector(mode="list” length=urep)
diftkimednew vector(mode="list” length=nrep)
difflw vector(mode="list” length=nrep)
ditwnew vector(mode="list”.length=nrep)
difflwim vector(mode="list” length=nrep)
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diffwmnew
diffgrhkb
diffgrhkbnew
diffpedel0
diffpedell
diffpedel2

diffgrtroskie

diffgrtroskienew

diffstein
diffliumm
diffliucl
diffgliu
kamxtxinv
kamnewxtxinv
kgmxtxinv
kgmnewxtxinv
kmedxtxinv
kmednewxtxinv
ridgehkb
ridgehkbnew
ridgehkbm
ridgehkbmnew
ridgelw
ridgelwnew
ridgelwstd
ridgelwstdunew
ridgelwm
ridgelwmnew
pedelO
pceoefdel(
pedell
pecoefdell
pedel2

liumm

liuel

glin

bta

veetor(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list" length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mmode="list” length=nre

vector(mode="list” length=nrep
vector(mode="list” ,length=nrep
vector(mode="1ist” .length=nrep
vector(mode="1ist” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep

vector(mode="list” length=nrep

vector(mode="list” .length=nrep

vector(mode="list” length=nrep

(
(
(
(
(
(
vector(mode="list” length=nrep
(
(
(
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep

vector(mode="1list” length=nrep

(
(
(
véctor(modc:” list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nre

vector(mode="list” length=nre

vector(mode="list” length=nrep
vector(mode="list” length=nrep

)
)
)
)
)
)
)
p)
)
)
)
)
)
)
)
)
)
)
vector(mode="list” length=nrep)
)
)
)
)
)
)
)
)
)
)
)
)
)
p)
D)
)
)
)

vector(mode="list" length=nrep
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btaliudmm
btaliudcl

btagliu

kambta
kamnewbta
kguibta
kgmnewbta
kmedbta
kmednewbta
pecoefdel2
rcoeflw
reoeflwnew
transcoefols
transpedel0
transpedell
transpedel2
betastein
kamtransformed
kgmtransformed
kmedtransformed

kamnewtransformed

kgmnewtransformed

kmednewtransformed=

peOtransformed
pcltransformed
pc2transformed
steintransformed
linmmtransformed
lincltransformed
gliutransformed
transformedhkb
transformedhkbm
transformedlw
transformedlwstd
transformedlwm
gtransformed

grttransformed

vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=urep
vector(mode="list” length=nrep
vector(mode="list” length=nrep
vector(mode="list” length=nrep

vector(mode="list” length=urep

vector(mode="list” length=nrep

vector(mode="1ist”,
vector(mode=""list”
vector(mode="1ist”
vector(mode="1ist”
vector(mode="1list”
vector(mode="1ist”

vector(mode="list”

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”,
vector(mode="list”
vector(mode="list”
veetor(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list"
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list’
vector(mode="list”
vector(mode="list"
vector(mode="list"
vector(mode="list”

vector(mode="list”.
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length=nrep

Jength=nrep

Jength=nrep
Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=urep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep
Jength=nrep
Jength=nrep
Jength=nrep
Jength=nrep
Jength=nrep
Jength=nrep

Jength=nrep

"length=nrep
Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Jength=nrep)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

Jength=nrep



gridge =
eridgecoef

arxtxinv =
ertxtxinv =
arbta =
arthta =
transformedlwnew =

transformedlwnewstd=

transformedlwmmnew

gtransformednew =

grtnewtransformed
gridgenew =
gridgenewcoef =
grnewxtxinv
grtnewxtxinv =
grnewbta

ertnewbta =
khk

ktroskie =
kam =
kgm =
kmed =
khknew =
ktroskienew

kamnew =
kgmnew =
kmednew =
klwnew =
klwnewstd =
klwmnew =
khkbnew

khkbmnew =
klw

klwstd =
klwim =
khkb =
khkbm =

vector(mode="l1ist"

vector(mode="1ist”

(
(
vector(
(

vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list
vector(mode="list”
vector(mode="list”
vector(mode="list”,
vector(mode="list”
vector(mode="list”
vector(mode="list”
vector(mode="list”

vector(mode="list”

vector(mode="list”

vector(mode="1ist”

mode="1list”

mode="1ist”

Jength=nrep
Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep
Jength=nrep

Jdength=unrep

Jength=nrep

Jength=nrep

Jength=nrep

Jength=nrep

length=urep

Jength=nrep

Jength=nrep

Jength=nrep
Jength=nrep
Jength=nrep

Jength=nrep

Jength=nre

Jength=nrep

vector(mode="list” length=nrep

(
(
(
(
vector(
(
(
(
(

)
)
)
)
)
)
)
)
)
)
)
)
)
" length=nrep)
)
)
)
)
)
)
)
)
)
p)
)
)
)

vector(mode="list” length=urep

0
0
0
0

0
0
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dg = vector(mode="list" length=nrep)
liuztz = solve(ztz + diag(l.p.p))

ybar =
SSY =
sigma =
sigmasq =
sigmal

sigmasql =

C

o o o O o o <o O

dmn =

—
[

del =

Set the MSEs, TMSEs and REs to zero
111 = 0

mseols = 0

msehkb = 0
msehkbm = 0

mselw = 0

mselwm

msehkbnew =
mschkbmnew
mselwnew
mselwmnew =
msepcdel( =
msepcdell =
msepcdel2 =
msegrtroskie =

msegrhkb =

o o O O o o o o o o o

msegrtroskienew =
msegrhkbnew = 0
msestein = 0
mselinmm 0
mseliucl = 0
msegliu = 0
msckam = 0
msekgm = 0

mseckmed = 0



msekgmnew
msekmednew
timseols
tmsehkb
tmsehkbm
tmselw
tmselwin
tmsehkbnew
tmsehkbmnew
tmselwnew
tmselwmunew
tmsepedel0
tmsepedell
tmsepcdel2
tmsecgrtroskie
tmsegrhkb
tmsegrtroskienew
tmsegrhkbnew
tmsestein
tmselinmm
tmseliucl
timseglin
tmsekam
tmsekgm
tmsekmed
tmsekamnew
tmsekgmmnew
tmsekmednew
reols

rehkb

rehkbm

relw

relwin
rehkbuew
rehkbmnew
relwnew

relwmnew

o O O O O o o o o o cCc o o Cc

Cc O O O o O Cc o o o o o o o cCc o c o o o

o O
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—
<~

repedel0 =

—
j—]

repedell =
repedel2 —
regrtroskie -
regrhkb -
regrtroskienew =
regrhkbnew —
restein -
relinmm —
reliucl =

regliu =

O O O O O o o <o O

rekam =

j]

rekgm =
rekmed
rekamnew =

rekgmnew

o O C© O

rekmednew =

for (i in lmrep)

{

Yn2[[i]]=xm%*% beta+as.matrix(errn2[,i})

# Centre and Scale Yn2
ybar[i]=mean(Yn2{[i]])

yentr[[i]]=Yn2[[i]]-vbarli]
ssy(i]= sqrt(crossprod(ventr([i]]))

")

Y[[i]]=sweep(ventr([[i]},2.ssyli],

# the product matrix (Z Y correlation)

atyl[il]=t(z)% * % YI[i]]

# LEAST SQUARES
# NB Both Y and X are standardized

olsu2[[i]]=Im(Y[[il] ~ z)

# Extract the coeflicients excluding the constant
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olscoef[[i]]=(olsn2[[i]|$ coef]-1])

# transform back the coefficients. This

transcoefols|[i]|=olscoef[[i]| *ssy|i] /se

# Write the trausformed coefficients on an Excel comma delimited file for reference.
write(transcoefols([i]], file = "C:/My documents/ Simulation/olsn2coef.csv”,

ncolumns =nrep, append = T)

# Calculate the differences between the transformed and true coefficients and write them to
an Excel comma delimited file.

diffols]fi]|=transcoefols[[i]]-beta[-1]

write(diffols[[i]],file="C:/My documents/Simulation/ olsn2diff.csv”,

ncolumns=nrep.append=T)

# Calculate the sum of squared differences
mseols=mseols+diffols([i]] = 2

tmseols=sum(mseols)

# Calculate the relative efficiency of least squares estimates.

reols=tmseols/tmseols

# Extract the least squares variance for computation of the biasing parameters
sigmal(i]=summary (olsn2[[i]])$ sigma

sigmasq[i]=sigmali] =~ 2

# PRINCIPAL COMPONENT REGRESSION

# PC delete 0 (zero roots deleted: same as OLS).

W=z%*% v

pedelO[[i]]=lm(Y[[i]] = W-1)

alphal[i]]=pecdel0{[i]]$ coef

transpedel0{[i]]=v%*% as.matrix(alphal[i]])

pcOtransformed|[i]|=transpedelO[[i]] *ssy[i] /se

write(peOtransformed[[i]], file = 7C:/My documents/Simulation/pedelOn2coef.csv”,
ncolumns =urep, append = T)

diffpedel0[[i)]]=pcOtransformed|[i]]-beta[-1]



msepedel0=msepcdelO+ diffpedelOf[i}] = 2

tmsepcdel)=sum(msepcdel()

repedel0=tmseols/tmsepcdel)

write(diffpedel0[[i}].file="C: /My documents/ Simulation/pedelOn2diff.csv”,

ncolumns=nrep,append="T)

# Extracting sigma-squared
sigmal[i]=summary(pcdelO[[i]])$ sigma

sigmasql[i]=sigmalli] = 2

# F statistic
F[i]]= (eignv*alphalfi]] = 2)/sigmasql][i]

# PC deletel

# d =diag(d.p,p)

dl=diag(d.p.p)

d1[p,p]=0

Wil= u%*% dl

pedell[[ij]=Im(Y[[i]] ~ W1)

alphl{[i]]=pcdell{[i]]$ coef]-1]

alphl1{[i]][p]=0

transpedell[[i]j=v%*% as.matrix(alph1]i]])
pcltransformed|{i]]=transpcdell[[i]] *ssyli]/se

write(peltransformed([i]], file = ”C:/My documents/Simulation/pcdelln2coef.csv”,
ncolumns =nrep, append = T)

diffpedell[[i]]=pcltransformed|[i]]-betal-1]

msepcdell=msepcdell+ diffpedell{[i]] = 2

timsepedell=sum(msepedel1)

repedell =tmseols/tmsepcdell

write(diffpedel1[[i]},file="C:/My documents/ Simulation/pcdelln2diff.csv”,

ncolumns=nrep,append="7T)

# PC delete2

d2=dl

d2[p-1.p-1]=0

W2= u%*% d2
pedel2[[i]]i-lm (Y]] ~ W2)
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alph2[[i]]=pedel2[[i]|$ coef

Alph2{[][p-+1]=0

alph2{[i]][p]=0

transpedel2({i]]=v%*% as.matrix(alph2{[i}][-1])

pc2transformed [[ij]=transpedel2[[i]]*ssy(i] /se

write(pc2transformed|[[i]], file = " C: /My documents/Simulation/pedel2n2.csv”, ncolumns =nrep,
append = T)

diffpedel2{[i]j=pc2transformed|[i]]-beta[-1]

msepedel2=msepedel2+ diffpedel2{[i]] ~ 2

timsepedel2=sum (msepedel2)

repedel2=tmseols/tmsepcdel2

write(diffpedel2[[i]],file="C:/My documents/Simulation/pcdel2n2diff.csv”,

ncolumns=nrep,append=T)
# TRADITIONAL RIDGE AND GENERALIZED RIDGE PARAMETERS

khkb{il=sigmasq[i]*(p)/(sum(olscoct[[i]] ~ 2))
khkbmli] :sio‘masq[i}*(p—2)/(sum(olscoef[[ 1" 2)

klwli|=sigmasq[i]*(p)/(sum(olscoef[[i]] ~ 2*eignv))
klwmli]=((p-2)*sigmasqli| *sum(svd(Z)$ d " 2))/(p*t(olscoef[[i])% * %(t(Z)% * % (Z))% *%
olscoefl]i}])

khk{[i]]= diag(sigmasqli]/alphal[i]] ~ 2,p,p)

ktroskie[[i]]= diag((eignv /(F[[i]]+1)),p,p)

kam[[i]|= diag((sum(sigmasqli]/alpha[[i]] ~ 2))*(1/p),p.p)
kem|[i}]]=diag(sigmasqli]/(prod(alphal[i]] ~ 2)) ~ (1/p).,p.p)
kmed[[i]|=diag(median(sigmasq(i] /((alpha[[i]] ~ 2))).p,p)

# NEW RIDGE AND GENERALIZED RIDGE PARAMETERS
alph11{[i]]=alph1[[i]][1:p-1]

khkbuewli]=sigmasql[i]*(p)/(sum(alph11[[i]] = 2))

khkbmunew[i] =sigmasql[i]*((p-1)-2)/(sum(alphl1{[i]] ~
klwnew|[i]=sigmasql[i]*(p)/(sum(alph1(fi] - 2*(10nv))
klwmnewl[i]=(((p-1)-2)*sigmasql[i]*sum(svd(z)$d = 2))/((p-1)*t (alphl[[i]})%*% (t(z)%*%
(2))%*%alphl{[i]])

kertnew([i]]= diag(eignv /((eignv*(alph1[[i]]2)/sigmasql[i])+1).p.p)
kimednew][i]]=diag(median(sigmasq1[i}/((alph11[[i]]2))),p.p)
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kamuew|[i]]= diag((sum(sigmasql[i]/alph11{[i]] = 2))*(1/(p-1)).p.p)
kgmne\\[[lﬂfdlao (sigmasql[i]/(prod(alph1l[[i]] = 2)) = (1/(p-1)).p.p)
kgrhknew[[i)]= diag(sigmasqlli]/alphl[[i]] = 2.p.p)
kgrhknew([i]]=diag(replace(diag(kgrhknew|[i]]),p,min(diag(kgrhknew][i]])[-p])))

# RIDGE COEFFICIENTS, MSEs, TMSEs and REs

# khkb (Hoerl, Kennard and Baldwin, 1970)
# Estimates
ridgehkb{[i]]=(solve(ztz +diag( khkbli].p,p))) % *% zty([i]]

# transform the coefficients back into the unstandardized form and write them to an excel file.
transformedhkb|[i]|=ridgehkb[[i]]*ssy[i] /se
write(transformedhkbl[i]], file = "C:/My documents/ Final Simulation/hkbn2coef.csv”,

ncolumus =nrep, append = T)

# Calculate the differences between the hkb ridge coefficients and true ones.
diffhkb]fi]|=transformedhkb][i]]-beta[-1]
write(diffhkbl[i]],file="C:/My documents/Final Simulation/hkbn2diff.csv”,

ncolumns=nrep,append=T)

Compute MSEs, TMSE and RE for ridgehkb. msehkb=msehkb+diffthkbl[[i]] ~ 2
tmsehkb=sum(msehkb)

rehkb=tmseols/tmsehkb

# khkbnew)
# Estimates
ridgehkbnew{[i]]=(solve(ztz +diag( khkbnew(i].p,p))) % *% zty[[i]]

# transform the coefficients back into the unstandardized form and write thein to an excel file.
transformedhkbnew|[i]]=ridgehkbnew][i]] *ssy[i]/se
write(transformedhkbl[[i]], file = ”C:/My documents/ Final Simulation/hkbnewn2coef.csv”,

ncolumns =nrep, append = T)
# Calculate the differences between the hkb ridge coefficients and true ones.

diffhkbnew|[i]]=transformedhkbnew][i]]-beta[-1]
write(difthkbnew([i]].file="C:/My documents/Final Simulation/hkbnewn2diff.csv”
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ncolumns=nrep.append=T)

Compute MSEs, TMSE and RE for ridgehkbnew. msehkbnew=msehkbnew+diffhkbunew([i]] * 2
tmsehkbnew=sum(msehkbnew)

rehkbnew=tmseols/tmsehkbnew

# khkbm (Brown, 1993)
# Estimates
ridgehkbm|[i]j=(solve(ztz +diag( khkbmli],p,p)))% * % zty][{i]]

# transform the coefficients back into the unstandardized form and write them to an excel file.
transformedhkbm/[[i]]= ridgehkbm[fi]]*ssy[i]/se
write(transformedhkbm/[[i]], file = ”C:/My documents/Final Simulation/hkbmmn2coef.csv”,

ncolumns =nrep, append = T)

# Computing the deviations of the estimates from the true coefficients

difthkbm([i]]=transformedhkbm([i]]-beta[-1]

# MSE, TMSE and RE

msehkbm=msehkbm+diffhkbm][[i]] ~ 2

tmschkbm=sum(mschkbm)

rehkbm=tmseols/tisehkbm

write(diffhkbml([i]].file="C:/My documents/ Final Simulation/hkbmn2diff.csv”,

ncolunns=nrep,append=T)

# khkbmnew
# Estimates
ridgehkbmmnew|[i]]=(solve(ztz +diag( khkbmnewli],p.p)))% * % zty|[[i]]

# transform the coeflicients back into the unstandardized form and write them to an excel file.
transformedhkbmnew[[i]]= ridgehkbmnew([i]]*ssyli]/se
write(transformedhkbmnew([i]], file = 7 C: /My documents/Final Simulation/hkbinewn2coef.csv”,

ncolumns =nrep, append = T)

# Computing the deviatious of the estimates from the true coefficients

diffhkbmnew{[i]]=transformedhkbmnew/[i]}-beta[-1]
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# MSE. TMSE and RE

msehkbmnew=msehkbmnew+difthkbmmew({[i]] = 2

tmsehkbmnew=sum(mschkbmnew)

rehkbmmnew=tmseols/tmsehkbimew

write(diffhkbmuew([i]].file="C:/My documents/ Final Simulation/hkbmnewn2diff.csv”,

ncolumns=nrep,append=T)

# kLW (Lawless and Wang, 1976)
# Estimates ridgelw[[i]]=(solve(ztz +diag( klw[i],p,p)))% * % zty[[i]]

# transforming back the coefficients
transformedlw|[i]|=ridgelw][i]|*ssy[i]/se
write(transformedlw([i]], file = ”C:/My documents/Final Simulation/lwn2coef.csv”,

ncolumns =nrep, append = T)

# Calculating the differences

difflw{[i]]=transformediw|[i]]-beta[-1]

# MSE, TMSE and RE

mselw=mselw+diflw[[i]] ~ 2

tmselw=sum(mselw)

relw=tmseols/tmselw

write(difflw[[i]].file="C:/My documents/Final Simulation/lwn2diff.csv”,

(o]
ncolumns=nrep,append=T)

# klwnew
# Estimates ridgelwnew][[i]]=(solve(zstz +diag( klwnew(i],p.p))% * % ztyl[i]]

# transforming back the coetlicients
transformedlwnew][[i}]=ridgelwnew|[i]| *ssy[i] /se
write(transformedlwnewl|[i]], file = "C:/My documents/Final Simulation/lwnewn2coef.csv”,

ncolhumnns =nrep, append = T)

# Calculating the differences

diffwnew|[i]|]=transformedlwnew|[i]]-betal-1]

# MSE, TMSE and RE
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mselwnew=mselwnew-+diflwnewl[i]] =~ 2

tmselwnew=swu(mselwnew)

relwnew=tmseols/tmselwnew

write(difflwnew([[i]],file="C:/My documents/Final Simulation/lwnewn2diff.csv”,

ncolumns=nrep,append=T)

# klwm (Brown, 1993)
# Estimates
ridgelwm|[i]]=(solve(ztz +diag( klwmli],p,p)))% * % zty|{i]]

# transforming back the coefficients
transformedlwm|[i]]= ridgelwm][[i]]*ssy/[i]/se
write(transformedlwni([[i]], file = ”C:/My documents/Final Simulation/lwmn2coef.csv”,

ncolumns =nrep, append = T)

# Computing the deviations

difflwm([ij]=transformedlwm|[i]]-betal-1]

# MSE, TMSE and RE
mselwm=mselwm+diflwm|[i]] ~ 2
tmselwm=sum(mselwmn)
relwm=tmseols/tmselwm

write(difflwm/[[i]],file="C:/ My documents/Final Simulation/lwmn2diff.csv”,

ncolumns=nrep.append=T)

# klwmnew
# Estimates
ridgelwmnew([i]}=(solve(ztz +diag( klwmnewli],p,p)))% * % zty[[i]]

# transforming back the coefficients
transformedlwnmnew/([i]]= ridgelwmunew|[i]]*ssy[i]/se
write(transformedlwmnew([i]}, file = *C:/My documents/Final Simulation/lwmunewn2coef.csv”,

ncolutns =nrep, append = T)

# Computing the deviations

difflwmnew/([i]}=transformedlwmnew|[i]]-beta[-1]



# MSE, TMSE and RE

mselwmnew=mselwmnew-+difflwmnew([i]] = 2

tuselwmnew=sun(mselwmnew)

relwmnew=tmseols/tmselwmnew

write(diflwmnew([i]].file="C:/ My documents/Final Simulation/lwmnewn2diff.csv”,

ncolumns=nrep,append=T)

# Kam (Kibria, 2003)
# Estimates
kamxtxinv([i]]=solve(ztz + kam[[i]])

kambtal[[i]]= kamxtxinv][[i]]%*% zty|[i]]

# transforming back the coeflicients
kamtransformed|[i]]=kambtal[i]|*ssy[i] /se
write(kamtransformed[[i]], file = "C:/My documents/Simulation/kamn2coef.csv”,

ncolumns =nrep, append = T)

# MSE, TMSE and RE

diftkam[[i]]= beta[-1]-kamtransformed|[i]]
msekam=msckam+diffkam][[i]] = 2

tmsekam=sum(msekani)

rekam=tmseols/tmsekam

write(diffkam[[i]],file="C:/My documents/Simulation/kamn2diff.csv”,

ncolumns=nrep,append=T)

# Kamnew
# Estimates
kamnewxtxinv[[i]]=solve(ztz + kamnew][i]])

kamnewbtalfi]]= kamnewxtxinv([i]]%*% zty][i]]

# transforming back the coeflicients
kamnewtransformed[[i]|=kamnewbtal[i]] *ssy[i] /se
write(kamnewtransformed|[i]], file = ”C:/My documents/Simulation/kamnewn2coef.csv”,

ncolumns =nrep, append = T)

# MSE. TMSE and RE

diffkamnew[[i]]= beta[-1]-kamnewtransformed][i]]
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msekamnew=mseckani+diffkamnew{[i]] ~ 2
tmsckamnew=sum(msekamnew)

rekamnew=tmseols/tmsekamnew

write(diffkam|[i}].file="C:/My documents/Simulation/kamnewn2diff.csv”,

ncolumns=nrep,append=T)

# Ridge Kibia (Kgm)
# The Estimates
kgmxtxinv|[i]]=solve(ztz + kgmli]])

kgmbta[[ij]= kgmxtxinv[[i]]%*% zty([i]]

# The transformed estimates
kgmtransformed|[i]j=kgmbtal[i]] *ssy][i] /se
write(kgmtransformed([i]], file = ”C:/My documents/Simulation/kgmn2coef.csv”,

ncolumns =nrep, append = T)

# MSE, TMSE and RE

diftkgm[[i]|]= beta[-1]-kgmtransformed]]i}]
msekgm=msekgm+diftkgm|[i]] ~ 2

tmsekgm=sum(msekgm)

rekgm=tmseols/tmsekgm

write(diffkgm|[i]],file="C:/My documents/Simulation/kgmn2diff.csv”,

ncolumns=nrep,append=T)

# (Kgmnew)
# The Estimates
kgmnewxtxinv{[i]|=solve(ztz + kgnmewl][i]])

kgmmnewbta[[ij]= kgmnewxtxinv[[i]]%*% zty|{i]]

# The transformed estimates
kgmnewtransformed[[ij]]=kgmnewbta[[i]] *ssy/[i] /se
write(kgmnewtransformed([i]], file = ”C:/My documents/Simlation/kgmnewn2coef.csv”,

ncolumns =nrep, append = T)

# MSE. TMSE and RE
difftkgmnew|[i]j= beta[-1]-kgmnewtransformed[[i]]

msekgmnew=msekgmnew+diftkgmnew|[ij] ~ 2
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tmsekgmnew=sum(msekgmnew)
rekgmnew=tmseols/tmsekgninew
write(diffkgmnew([i]].file="C:/My documents/Simulation/kgmnewn2diff.csv”,

ncolumns=nrep,append=T)

# Kmed(Kibria, 2003)

The estimates

kmedxtxinv[{i]|=solve(ztz + kmed[[i]])

kmedbtal[i]j]= kmedxtxinv[[i]]%*% =zty|[i]]

kmedtransformed|[i]|=kmedbta[[i]|*ssy[i] /se

write(kmedtransformed|[i]], file = "C:/My documents/Simulation/kimedn2coef.csv”,

ncolumns =nrep, append = T)

# Computing the MSE, TMSE and RE values

diffkmed[[i]]= beta[-1]-kmedtransformed][i]]
msekmed=msekmed+diffkmed[[i]] ~ 2

tmsekmed=sum(msekmed)

rekmed=tmseols/tmsckmed

write(diffkmed][[i]],file="C:/My documents/Simulation/kmedn2diff.csv”,

ncolumns=nrep,append=T)

# kmednew

The estimates

kmednewxtxinv|[i}]=solve(ztz + kmednew][i}])

kmednewbta[[i]]= kmednewxtxinv][i]]%*% zty{[i]]

kmednewtransformed [[ij|=kmednewbta[[i]|*ssy[i] /se

write(kmednewtransformed[[i]}, file = ”C:/My documents/Simulation/kmednewn2coef.csv”,

ncolumns =nrep, append = T)

# Computing the MSE, TMSE and RE values

diffkmednew([i]]= betal-1]-kmednewtransformed|[i]]
msekmednew=msekmednew-+diffkmednewl|[i]] ~ 2
tmsekmednew=sum(msekmednew)

rekmednew=tmseols/tmsekmednew

write(diffkmednew([i}] file="C:/My documents/Simulation /kmednewn2diff.csv”,

ncolumns=nrep,append=T)



# GENERALIZED RIDGE
# khk (Hoerl and Kennard, 1970a)

# Esimates
grxtxinv([i]|=solve(ztz + khk[[i]})
grbta[fi]]= grxtxinv[{i]]% *% zty][i]]

# transform the coefficients back into the unstandardized form and write them to an excel file.
gtransformed([i]]=grbtal[i] | *ssy[i]/se
write(gtransformed[[i]], file = "C:/My documents/Final Simulation/grhkbn2coef.csv”,

ncolumns =nrep, append = T)

# khknew

# Esimates
grnewxtxinv([i]J=solve(ztz + khknew|[i]])

grnewbtal[i]]= grnewxtxinv([i]]% *% zty[i]]

# transform the coefficients back into the unstandardized form and write them to an excel file.
gnewtransformed|[i]]=grnewbtal[i]]*ssy|i] /se
write(gnewtransformed|[[i]], file = 7 C: /My documents/Final Simulation/grhkbnewn2coef.csv”,

ncolumns =nrep, append = T)

# MSE, TMSE and RE

diffgrhkbnew|[i]]= beta[-1]-gnewtransformed|[i]]
msegrhkbnew=msegrhkbnew-+diffgrhkbnew([i]] = 2
tisegrhkbnew=sum(msegrhkbnew)

regrhkbnew=tmseols/tmsegrhkbnew

write(diffgrhkbnew([i]],file="C:/My documents/Final Simulation/grhkbnewn2diff.csv”,

neolumns=nrep,append=T)

# ktroskie (Chalton and Troskie, 1996)
# Esimates

grxtxinv{[i]]=solve(ztz + ktroskie[[i]})
grtbta[{i]]= grtxtxinv[[i]]% *% zty][i]]
grttransformed|[i]] =grtbta[[i]]*ssyli] /se

write(grttransformed([[i]], file = "C:/ My documents/Final Simulation/grtn2coef.csv”,
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ncolumns =nrep, append = T)

# MSE. TMSE and RE

diffgrtroskie[[i]]= beta[-1]-grttransformed([i]]
msegrtroskie=msegrtroskie+diffgrtroskie[[i]] ~ 2
tmsegrtroskie=sum(msegrtroskie)

regrtroskie=tmseols/tmsegrtroskie

write(diffgrtroskie[[i]],file="C:/My documents/Final Simulation/grtn2diff.csv”,

ncolumns=nrep,append=T)

# ktroskienew

# Esimates

grtnewxtxinv([i]]=solve(ztz + ktroskienew/[i]])

grtnewbta[[i]]= grtnewxtxinv([i]]% *% zty(]i]]

grtnewtransformed|[i]]=grtnewbtal[li]] *ssy/[i] /se

write(grtnewtransformed([i]], file = ”7C:/ My documents/Final Simulation/grtnewn2coef.csv”,

ncolumns =nrep, append = T)

# MSE, TMSE and RE

diffgrtroskienew|[i]]= beta[-1]-grtnewtransformed|[i}]
msegrtroskienew=msegrtroskienew-+diffgrtroskienew([i]] = 2
tmsegrtroskienew=sum(msegrtroskienew)

regrtroskienew=tmseols/tmsegrtroskiencw

write(diffgrtroskienew|[i]],file="C:/My documents/Final Simulation/grtnewn2diff.csv”,

ncolumns=nrep,append=T)

# STEIN ESTIMATION
# The stein constants (James and Stein, 1961)

c[ij=max(0,1-((p-2)*(n-p)*sigmasq/ (n-p+2)*(sum(olscoef[[i]])) " 2))

# Esimates

betastein|[i]|=c[i]*olscoef][[i]]

steintransformed|[i]|=bctastein|[[i]]*ssy[i] /sc

write(steintransformed[[i]], file = 7 C:/My documents/ Simulation/steinn2coef.csv”,

ncolunns =nrep. append = T)

# MSE, TMSE and RE



diffstein|[i]]=steintransformed|[i]]-betal-1]
msestein=msestein+diffstein[[i]] ~ 2

tmsestein=sum(msestein)

restein=tmseols/tmsestein

write(diffstein[i]].file="C:/My documents/Simulation/ steinn2diff.csv”,

ncolumns=urep,append=T)

# LIU ESTIMATION
# The Liu constant (dmn; Liu, 1993)
dmnl[i]=1-sigmasq[i}*(sum(1/eignv*(eiguv+1)) /sum(alpha[[i]] ~ 2/(eignv41) = 2))

# Esimates

liuztz=solve(ztz + diag(l,p,p))

linmn([{i]]=zty|[[i]]+(diag(dmn(i],p,p)%*% olscoef][i]])

btalindmn{[i]]=liuztz%*% liumn{i}]

linmntransformed([ij]=btalindmn[[i]|*ssy[i] /se

write(liumntransformed(i]], file = ”C:/My documents/Simulation/ linmnn2coef.csv”,

ncolumns =nrep, append = T)

# MSE, TMSE and RE

difffiumn{[i]]= betal-1}- limmntransformed|[i]]
mseliumn=mseliumn+diffiinmn|[[ij]] ~ 2

tmseliumn=sum(mseliumn)

reliumn=tmseols/tmseliumn

write(diffliumn([i]},file="C:/My documents/Simulation/ llumnn2diff.csv”,

ncolumns=nrep,append=T)

# dcl(cl criterion; Liu, 1993)
The constants

dclfij=1-sigmasq[i]*(sum(1/(eignv+1)) /sum(eignv*alpha[[i]] = 2/(eignv+1) ~ 2))

# Esimates

liuel{[i]}=zty][[i]]+(diag(dcl]i},p,p) %*% olscoef][i]])

btaliudcl[[i)]=linztz%*% liucl[[i]]

liucltransformed|[ij]]=btaliudcl[[i]] *ssy[i] /se

write(lincltransformed[[i]], file = "C:/My documents/Simulation/ liucln2coef.csv”,

ncolumns =urep, append = T)



# MSE, TMSE and RE

diffliucl[fi]]= betal-1]- lincltransformed|fi]]
mselincl=mseliucl4+difHiucl[[i]] =~ 2

tmseliucl=sum(mseliucl)

reliucl=tmseols/tmselincl

write(diffliucl[[i]],file="C:/My documents/Simulation/livcln2diff.csv”,

ncolumns=nrep,append=T)

# GENERALIZED LIU

# The generalized Liu constant (Liu, 1993)

dgl[[i]]=1-(sigmasq[i]*(cignv+1)/(eignv*alphal[i]] ~ 2))

# The estimates

gliu[i]j=zty ]+ (diag(dg][.p:p)%*% alphal(]]

btaglin{[i]]=liuztz%*% gliu][i]]

gliutransformed|[ij]=btagliu[[i]]*ssy[i] /se

write(gliutransformed[fi]], file = ”C:/My documents/ Simulation/gliun2coef.csv”, ncolumns

=nrep, append = T)

# MSE, TMSE and RE

diffgliu[[i]]= betal-1]- gliutransformed][i]]

mseglinu=msegliu+diffgliu[[i]] ~ 2

tmsegliu=sum(msegliu)

regliu=tmseols/tmsegliu

write(diffgliuf[i]],file="C:/My documents/Simulation/gliun2diff.csv”,
ncolumns=nrep,append=T)

}

mse=cbind((mseols),(msehkb),(insehkbm),(mselw), (mselwm),
(msegrtroskie),(msegrhkb),(msehkbunew),(msehkbmnew),(mselwnew), (mselwmnew),
(msegrtroskienew),(msegrhkbnew), (msepcdell ),(msepedel2),
(mseliumm),(mseliucl),(msegliu),(msestein ), (msekam),(msekgm),(msekmed), (msekamnew),(msekgmnev

mse=matrix(mse,p,25)

write(t(mse), file = "C:/My documents/Simulation/msen2.csv”,

ncolumns =25, append =T)
tmse=cbind((tmseols),(tmsehkb), (tmsehkbin). (tmselw), (tmselwin ).
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tmsegrtroskie),(tmsegrhkb), (tmsehkbnew), (tmschkbmmnew). (tmselwnew), (tinselwimnew),
tmsegrtroskienew).(tmsegrhkbnew),(tmsepcdell ), (tmsepedel2).

(
(
(tmseliumm).(tselinel), (tmsegliun), (tmsestein). (tmsekam), (tmsekgm),
(tmseknied), (tmsekamnew),(tmsekgninew),

(

tisekmednew))

write(t(tmse), file = 7C:/My documents/Simulation/tmsen2.csv”,

ncolumns =1, append =T)

re=cbind((reols),(rehkb).(rehkbm),(relw),(relwm),
(regrtroskie),(regrhkb),(rehkbnew),(rehkbmunew),(relwnew),(relwmnew),
(regrtroskienew),(regrhkbnew),(repedell ), (repcedel2),

(reliumm),(relincl),(regliu),(restein),(rekam),(rekgm),(rekmed), (rekamnew),(rekgmnew),(rekmednew))

write(t(re), file = "C:/My documents/Simulation/ren2.csv”,

ncolumns =1, append =T)
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Appendix B

Distributions

A summary of the general notion underlying the probability distributions used in the sim-
ulation study is presented. We first highlight the most important concepts in probability
distribution theory and statistical inference and later describe each of the distributions used

in the simulation study.

B.1 Fundamental concepts of probability distributions

Ideally, probability distributions are critically important in several practical problems; par-
ticularly in desecription of random variables and the corresponding patterns. The following

concepts play a vital role in the theory of probability and its application.

B.1.1 Discrete and continuous probability distributions

The probability distributions associated with random variables that take on a countable num-
ber of values are discrete probability distributions and those that are associated with an un-
countable number of values are continuous. We refer to the corresponding functions as mass
and density functions, denoted by p(x) and f(x) for discrete and continuous probabilities re-

spectively.
Importantly, for a discrete random variable X that assumes the values x;,

[ ] 0 § ])(;L’,‘) S 1 v €T

d > plai)y=1

all  x;

Similarly. for a continuous random variable X that takes on values that range between a and

b (a < <bh),

. flr) =0
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b
o / flr)d(x) =1
v a
Probability distributions associated with one random variable are usually referred to as uni-
variate whereas those that are associated with more than one random variable are known as
multivariate distributions. A bivariate distribution is a special case of multivariate distribution

where two random variables are considered simultaneously.

B.1.2 Distribution Function

If X is a continuous random variable with the density function f(x) or a discrete random vari-
able with the mass function p(z), then the function that gives the probability that X takes on

values less than or equal to x is called the distribution function, denoted by F(x).

Suppose u and x are random variables such that

u = F(x)

r = G(u)

v = GPE)
u = FG(F(x))

then, in statistical terms, we say inverse distribution function F(z)~! maps inversely from u

mto x.

If the derivative exists, the distribution function associated with X may be differentiated once

with respect to x to give the probability density function of x.
(B.1)
In this thesis, we use some of the inverted distribution functions F(z)~! to generate error
terms from some of the distributions.
B.1.3 Moments
Generally, the n'® moment taken about an arbitrary point b is defined by
/ (2= 0" f@)d(z)  or > (@ —b)"pla)
Special cases of which b = 0 and b = p are referred to as raw and central moments respectively.

¢ Raw moments

The n'* moment about zero (raw moment) is defined by
1, = /;It”f(J:)d(;L') or W, = Z.L’”]}(.‘I‘)
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The first raw moment jf = > ap(x) or [ rf(a)d(x) = E(X) for discrete and contin-

uous variables respectively.

e Central moments

The n'* moment taken about the mean (central moment) is defined by

o = [@—p @) or =3 = 0)"p)

The second central moment is also known as the variance
po= [a—pPf@a@) o= 3= (@) = Bl =)

B.1.4 Skewness

Skewness defines the degree of asymmetry of a distribution. If the distribution is long tailed
to the left (has a long tail to the left of the maximum), the function has negative skewness

otherwise it is positively skewed.

H3
3/2
/1'2/

Where 5 and pg are the second and third central moments respectively.

B.1.5 Kurtosis

Kurtosis is the degree of peakedness of a distribution, denoted by

)
k=1
M

The following bounds apply for k

o k>3

implies that the distribution is highly peaked (leptokurtic),

o k<3
reflects a flat-topped distribution (platykurtic) and

e k=3

shows a moderately peaked distribution (mesokurtic)
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B.2 Distributions

In this section, we describe the distributions used in the simulation study. We learn from the
statistical literature that the least squares estimator performs poorly when the error terms are
not normal. Hence, we consider a selection of some of the skewed and symmetric distributions
to observe whether or not the distribution of error terms plays a role in performance of es-
timators: Thiart (1994) observed constant efficiencies of estimators hence, no significant role

played by the distributions except for one (slash), of which the variance does not exist.

We select four distributions, namely; Normal, Contaminated normal, Laplace and Exponen-
tial, of which variances exist and are defined in the summary table at the end of this chapter.

Uniform distribution is used as an input to other distributions.

The corresponding moments are provided in the sunnmary table.

B.2.1 Uniform Distribution

Uniform random numbers within the interval [0,1] are similar to random numbers between 0

and 1.

The uniform density function is denoted by

1
, a<x<b
f(z) = b—a
0, r<a or x>Db
. a2 .
A uniformly distributed variable has mean p = agb and variance o° = (blg I In this study,

we use the uniformly distributed random variables to generate error terms from some of the

distributions.

B.2.2 Normal Distribution

The Normal distribution (Gaussian) is one of the best known continuous distributions in sta-
tistics. The normal density function is defined as

1 1 (zmw?
R

f(.l?):—Qie 2752 —o<r<oo, —x<pu<x, 0<o (B.2)
ov2w

We refer to the two parameters ;1 and o as the mean and the standard deviation, used to specify
location of the data and the spread of the distribution respectively. The Normal distribution

has a bell-shape that flattens when ¢ increases.
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A special case for a Normal distribution in which ¢ = 0 and ¢ = 1 is known as the standard
normal distribution, the density function of which is given by

1 22

flx)= ) — 00 < x < 00,

V2T

B.2.3 Contaminated Normal Distribution

The contaminated normal distributed variable is a sum of two weighted, normally distributed
variables with independent values of ;1 and . For example; a variable Y = wY] + wsY5 has

a Contaminated normal distribution if the following conditions hold.
o Y| ~ N(p1,0}) and Yz ~ N(p2,0%) and

e the weights sum to 1 (wy; + we = 1);  wy, w2 >0

The density function of Y is defined by

_(y1*u})2 _(yﬁfﬁt‘))2
wl 202 1U2 202 ¢
—— . e 1 + — (& 2 B3
/) o\V2m ooV 2T (B.3)

. ) ) .
The mean and variance of Y are wjpy + wapn and wyoy + waos respectively.

B.2.4 Laplace Distribution

The Laplace distribution is the distribution of the difference between two independent variables
with identical Exponential distributions. A variable X has the Laplace distribution if its density

function is defined by

flo)=— e <, —co<r<oe, —x<a<oo, 0O0<c (B.4)

Where
a = the mean or the location parameter and

¢ = the scale parameter greater than zero, defined such that the variance of X is 2¢2.

B.2.5 Exponential Distribution

The Exponential distribution is usually used to model the interval of time between events and
the density depends on A. If events are occurring randomly with an average rate of A per unit
of time, then the length of time is exponentially distributed with the density function denoted

by

fr) = Ae™™ x>0, A>0 (B.5)

=
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B.2.6 Moments, Skewness and Kurtosis

In summary, we tabulate the expressions for moments, skewness and kurtosis for the distribu-

tions under consideration. We use the following notation:
o 1} = the first raw moment or the mean.

th central moment.

o iy = ther
e o = the 214 central moment or the variance.

o K = Kurtosis

e S = Skewness

1 Ly fto K S

Uniform fg—t—’ % r even “’I?Q 9) 0
0, r odd

Normal L T’;)j’zﬁz— o2 3 0

Cont. Normal wjp + wapen %17%5—) wlaf + 'wgag % 0

Laplace a rlc” 1 even 2¢2 6 0
0, r odd
Exponential 3 —% + ’"(foﬁ + 9 9

Table B.1: Moments

B.3 Standardizing the variables

We transform the variables to the standard form in the following manner.

Consider the following regression model

Yi= 30+ I X+ BXe+ 5Xin + 51Xu+ 35X + ¢
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Centring
Subtract the mean of each variable from the corresponding variable. Be cautious to add and

subtract the same terms to keep the model in its original form. That is

Y =30+ 31 Xi + 39X+ ﬁqu + 81X + 85 X5 + 31( X1 — Xi1) + 3o(Xio — Xio)+
33(Xis — Xiz) + Ba(Xua — Xia) + 85(Xis — Xiz) + €
Let
Jo =Y =3+ 1K + 5Xio + B3 X + 31X+ F5 X

Then
Vi = o+ 81X — Xi1) + Bo(Xiz — Xio) + 83(Xis — Xiz) + 31(Xis — Xi) + 35(Xi5 — Xis) + &

Yi—Y = 31(Xi — X))+ Bo( Ko — Xio) + B3(Xiz — Xi3) + 31( Xy — Xia) + 35(Xis — Xis5) + 6.

Scaling
Divide and multiply each factor by the square root of the sum of squares of the corresponding

centred variable as indicated below.

z })\/ 71 _Y 61 zl_le)\/ Xi1— Ll 2 32(\12 \/Z (Xzz +
\/Z ()’ ),)2 \/Z" Ll)) \/EI(XIZ XLZ)Z

B3(Xiz—Xig)\/ D1 (Xus—Xi3)? n (X=X /Do ( Xz4 X.)?

\/Zn 13— Xi3)? \/Z Xia—X

B35 (X5 — ‘/Z”(Xl, X;5)?
\/Z

We can simplify the above expressions as follows;



Let

}r* o (Y'l - Y)
MY - Y)?
X5 = (X — Xiy)

¥) n Ny
Vi (Xij — Xy)?

Sri = \jZ(XU - Xy)?

i

113

syi= | 2 (Y=Y

i

For j=1,...,0andi=1,...n
Let

x _ F(sai)

3] B Esyi)

Then, the regression model in which Y and X are standardized may be expressed as

Y =3 X+ e j=1,...,5 and i=1...,n

B-8



Appendix C

Estimators and estimation methods considered

Name

Least Squares

General Shrinkage

Stein

Ridge

Generalized Ridge

Liu

Generalized Liu

Van Houwelingen and Le Cessie

Principal components

Expression
(X' X)"1X'Y

ds /LB

o3
(X'X +kI)7'X'Y
(X'X + K)"'X'Y

(X'X + 1)1 (XY +d3)

(X'X +1)"Y(X'Y + D3)

o
GJ)

Zp—'rn Ui Ci
i=1 A

Table C.1: Notation



OLS Ordinary Least Squares
Rhkb Ridge regression with k = kypy,

Rhkb-new

Ridge regression with k = kppp—new

Rhkbm-new

Ridge regression with & = Eptpm—new

Rhkbm Ridge regression with k = kpgom
Rlw-new Ridge regression with & = kjy_new
Rlw Ridge regression with k& = kyy,
Rlwm Ridge regression with k = kjym

Rlwm-new

Ridge regression with & = kjym—new

Rkam-new

Ridge regression with k = kgm—new

Rkgm-new

Ridge regression with & = kg _pew

Rkmed-new

Ridge regression with k = kyeq—new

Rkam

Ridge regression with k = kg,

Rkgm Ridge regression with k = kg,
Rkmed Ridge regression with & = kjpeq
GRhk Ridge regression with K = Ky,
GRhk-new Ridge regression with K = Kp_new
GRtc Ridge regression with K = K.
GRtc-new Ridge regression with K = K pew
Linmm Liu estimation with d = d,,,m,
Liucl Liu estimmation with d = d
Gliu Generalized Liu cstimation
Stein Stein estimation by James and Stein (1961)
PCdell Principal comiponents regression deleting one root
PCdel2 Principal components regression deleting two roots

Table C.2: Estimation methods and abbreviations




Parameter
)

. _ po

}‘hkb = 33

3 _ (r
}‘hkbm - 33

klw = p&Q/ Z &,%/\i

(r—2)5? 2 :,\1

klwm = NTDE

N 1 P &2

}\/(1777 - 5 i=1 <EZZ>

k 5

gm = I
([T_, ad?

. . 6’2

kipeqa = median Aol

yoonh

<2

. a

knk, = &

P
NTE LA+

_ "D Laie
dmm =1l-0 7 a2 t1)?
i=1 z

HERYICERY,

L XabF/ (At 1)?

da=1- 654

_ .  (p=2)(n=p)5*
c=max (0, {1 D5 })

Estimation Method

Rhkb

Rkhkbm

Rklw

Rklwm

Rkam

Rkgm

Rkmed

GRte

GRhk

Liumm

Liucl

GLiu

Stein

Table C.3: Traditional parammeters
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Parameter
. [)é-;(}(k’[l
k/lkbvnew =%

‘))p(?de[ 14 3})(3(1(#1

7 2

. _ (/ B 2)apndell
khkbm—new = A/*‘—g—
“pedel1Ppedel t

~2
k _ pnp(:dell
lw—new — =1 5

Zi:l Xpedel1; Ai

52 p—1
(7” B 2)Upcdell Zi:l /\i
ar Iy A
7“,)’ pedel 1‘X X ﬁjpcdell

klwm—new =

p—m , 2
¥ = 1 Upcdell
k(unfnew = Z .

(p—m) %

P i=1 pedel;

~2
o O pedell
gm — 1
(=" 62 =T
i=1 pedell;
~2

) dell

kmed = median — pcmw
a2 a2
pedelly> -+ Fpedelly

&;C(iell
k‘hkfnewi =5

(@

“pedell;

o
((/\fd;)cdelll/(}éc(lell> +1)

ktcl =

Estimation Method

Rhkb-new

Rkhkbm-new

Rklw-new

Rklwm-new

Rkam-new

Rkgm-new

Rkmed-new

GRhk-new

GRte-new

Table C.4: New parameters
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Appendix D

Past simulation studies

Author
Hoerl et al. (1975)

Marquardt and Snee (1975)

Guilkey and Murphy (1975)

Lawless and Wang (1976)

Hoerl and Kennard (1976)

Hocking (1976)

Measure Methods compared
TMSE - Ridge (kjip)
- OLS
Residual - Ridge,
prediction - OLS,
error - Generalized inverse
(Marquardt (1970),
- All possible subsets
TMSE - Generalized ridge,
- OLS,
- Directed ridge
MSE -Ridge,
- Generalized ridge,
- Principal components,
- OLS
TMSE - Ridge,
- OLS
MSE -Ridge.

- Best subset selection,

- Principal components,

- OLS

D-1

Superior

- Ridge

- Generalized inverse

- Ridge

- Directed ridge

-Ridge

-Ridge

- Ridge,
- Principal

(‘()111})011(’,11‘[8



Gunst and Mason (1977)

Winchen and

Churchill (1978)

Thiart et al. (1993)

Thiart (1994)

TMSE

TMSE

Relative

Efficiencies

Relative

Efficiencies

- Ridge,

- Latent root
(Hawkins.1973),

- Principal comiponents,

- OLS

- OLS,

- Ridge (ki kne
knip. Medonald and
Galarneau (1975))

- Ridge,

- Principal components,

- Generalized ridge,

- Jackknife
(Quenouille 1956;
Tukey, 1958),

- Fractional principal
components (Mayer
and Willke, 1973)

- Ridge,

- Principal components,

- Generalized ridge,

- Jackknife
(Quenouille 1956;
Tukey, 1958),

- Fractional principal
components (Nayer
and Willke, 1973),

- Ly norm

D-2

- Ridge,
- Principal

components

- All ridge

except kpp

- All biased
estimators;
no outstanding

estimator

-All biased
estimators;
no outstanding

estimator



Breiman (1995)

Aldrin (1997)

Fu (1998)

Kaciranlar and

Sakallioglu (2001)

Wencheko (2001)

Liu (2003)

Prediction

Crror

Prediction

error

MSE

MSE

Pitman
measure

of nearncss
(Pitman,
1937)

MSE

- nounegative garrote

(Breiman, 1995),

- OLS,

- Ridge,

- Subset selection

- ridge

- Stein,

- Partial least squares,
- Variable selection,
- Length modified ridge

(Aldrin, 1997)

- Bridge estimation
(Frank and
Friedman, 1993),

- Least absolute
shrinkage and
selection operator

(Lasso) (Tibshirani, 1996),

- OLS and

- Ridge regression

- r-d class (Kaciranlar
and Sakallioglu, 2001),
- Liu (Liu, 1993),

- OLS,

- Principal

components,

- Principal components,

- Ridge,
- OLS,

- Shrinkage

- Principal components,

- Ridge,
- OLS,

- Liu-type (Liu. 2003)

D-3

Table D.1: case studies

-Ridge

-Ridge,

-Bridge

- r-d class

- Ridge

-Liu-type





