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Summary. 1 

SUMMARY 

The bioleaching of pyrite has been found to occur via an indirect mechansim. Ferric iron 

leaches the pyrite, and is reduced to ferrous iron. Bacteria such as Thiobacillus ferrooxidans 

oxidise the ferrous iron to ferric iron, thus maintaining a high redox potential. In this thesis, 

the effect of the redox potential on the ferric leach rate was investigated by examining 

previously published data and by developing an experimental technique where dynamic redox 

potential measurements were used to study the kinetics of the sub-process. 

The ferric leach rate of pyrite was found to be of the order of 5 x 1 o-7 moles pyrite per mole 

pyrite per second, which is of the same order of magnitude as rates reported for the 

bioleaching of pyrite over similar ranges of redox potential. The rate decreased as the redox 

potential decreased, in what appeared to be a Butler-Volmer-like manner. This, along with the 

observation that there was no significant effect of the total iron concentration, suggested the 

likelihood of an electrochemical mechanism being operative, with charge transfer at the pyrite 

surface being rate limiting. 
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1. INTRODUCTION 

Bioleaching is recognised as a suitable process for the pretreatment of refractory gold ores. It 

is advantageous over other processing techniques such as pressure leaching, roasting, nitric 

acid digestion and chlorination because it is suitable for the processing of low and complex 

grade ores, involves low capital investment and is environmentally acceptable. Besides the 

treatment of refractory gold bearing ores, bioleaching is also used for copper and uranium 

extraction, and is now being extended to the extraction of other metals like nickel, cobalt and 

cadmium (Torma, 1993). Bioleaching is also associated with acid mine drainage resulting 

from sulfide waste heaps which leads to ground water contamination from mining and 

minerals processing operations. 

Recent research (Boon et a/., 1995) has shown that the bioleaching of sulfide minerals such 

as pyrite occurs via an indirect mechanism. Ferric iron leaches the mineral, producing ferrous 

iron, and the ferrous iron is oxidised to ferric iron by bacteria such as Thiobacillus 

ferrooxidans and Leptospirillum ferrooxidans. By regenerating ferric iron, the bacteria are 

able to maintain a high redox potential in bioleaching systems. The following two equations 

describe the bioleaching of pyrite: 

Chemical ferric leach 

[ 1.1] 

Bacterial oxidation of ferrous iron regenerating ferric iron 

[ 1.2] 

The existence of an indirect mechanism implies that the bacterial and chemical subprocesses 

can be characterised separately, allowing for the independent optimisation of bacterial growth · 

and metabolism and mineral oxidation kinetics. 
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The bacterial oxidation of ferrous iron has been found to be a function of the ferric/ferrous 

ratio (Boon, 1996). In this thesis, it is postulated that the ferric leaching of pyrite is also a 

function of the ferric/ferrous ratio. Although considerable research has been done on the 

ferric leaching of pyrite, the reaction conditions have not been the same as those encountered 

in bioleaching. In particular, the redox potentials were much lower than those maintained by 

bacteria in bioleaching, so the chemical leaching data in the literature cannot be compared 

with bioleaching data. It is necessary to determine the chemical leach rate of pyrite at 

potentials similar to those of bioleaching to conclude that the bacteria do not directly cause an 

increase in the leach rate, but that the rates are a function of the redox potential, which the 

bacteria maintain. 

This project is based on the two-step indirect hypothesis and has the specific objective of 

measuring the ferric leach kinetics of pyrite by following the redox potential of a pyrite 

slurry. 

In this thesis, the reaction between pyrite and ferric iron in sulfuric acid was investigated by 

monitoring the redox potential of an acidic ferric sulfate solution when pyrite particles were 

added to it. The potential is related to the ferric/ferrous ratio by the Nernst Equation, 

Equation 1.3. 

[ 1.3) 

The potential was found to drop during the course of the reaction, which 1s expected 

considering the Nernst Equation and the reaction stoichiometry of Equation 1.1. 

The initial behaviour of such a system, and the effects of changing the total iron concentration 

and the mass of ore were investigated. The form of the dependence of the reaction rate on the 

ferric/ferrous ratio or the potential was compared with literature data, although previously 

published data had been obtained at lower potentials. 

A number of possible mechanistic descriptions of the kinetics were discussed, including the 

applicability of the Butler-Volmer Equation, Equation 1.4 to relate the rate to the potential. 

On this basis, the likelihood of an electrochemical mechanism being operative was assumed. 
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. . ( ( (1- a )F11) ( -aF11)) 1 = •~ exp - exp . 
RT RT 

[ 1.4] 

In summary, the emphasis of this work was to study the chemical ferric leach sub-process 

within the context of the indirect mechanism hypothesis by reconciling previously published 

data and investigating experimental techniques to obtain relevant data. 
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2. LITERATURE REVIEW 

2.1 Oxidation of Sulfide Minerals 

2.1.1 General oxidation processes 

The oxidation of sulfide minerals is important both commercially and environmentally. Sulfide 

minerals must be oxidised to release metal value forming part of the sulfide ore (as in the 

production of copper (e.g. Torma, 1993)). Often sulfides form part of the gangue in an ore 

body and must be oxidised to release metals enclosed (as in the pretreatment of refractory gold 

ores, the sulfide must first be oxidised before leaching of the gold is possible (Brierley, 1994; 

Dew, 1995)). The natural oxidation of sulfides, especially in minerals processing waste 

dumps, leads to the production of acid mine drainage which has major environmental 

consequences. Understanding the fundamentals of sulfide mineral oxidation is thus important. 

Metal sulfides have widely varying physical and chemical properties. Solid state properties 

influence the electrochemical and chemical surface reactions, causing the range of metal 

sulfides to have a very large range in reactivities and reaction mechanisms (Tributsch and 

Bennett, 1981 ). 

Sulfide minerals can be degraded in either oxidative or non-oxidative processes. In non­

oxidative processes, such as treatment with non-oxidising strong acids (Peters and Doyle, 

1989), the sulfur moiety retains its oxidation state, usually forming H2S as a product. In 

oxidative processes, such as occurs in bioleaching systems in the presence of bacteria, like 

Thiobacillus ferrooxidans, the sulfide is oxidised, forming a number of products, depending 

on the mineral and process conditions. All oxidative leaching reactions are exothermic 

(Ahonen and Tuovinen, 1989). 

Pressure oxidation involves heating the mineral (typically to 80 - 250 °C) (Peters and Doyle, 

1989) under conditions of high air or oxygen pressure. These harsh conditions often lead to 

the formation of so2 which is not usually a desired industrial product. 
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Hydrometallurgical treatments generally make use of milder conditions. Unlike most base 

metal oxides, the sulfides do not dissolve easily in mineral acids but require an oxidising 

agent (Dutrizac and MacDonald, 1974). Oxidants such as ferric iron, dissolved oxygen, 

ozone, nitric acid, hydrogen peroxide, chlorate salts, hypochlorites and cupric ions can be 

used, with the differences in kinetics usually attributed to the level of the oxidation potential 

(Peters and Doyle, 1989). The addition of oxidising agents modifies the solution and the 

surface properties of the mineral and the oxidation is controlled by both equilibrium artd 

kinetic reactions at the mineral/solution interface (Fornasiero eta/., 1992). For an oxidant to 

leach a mineral, its potential must be higher than the electrochemical potential of the mineral 

(Riekkola-Vanhanen and Heimala, 1993). The greater the difference in potential between the 

two, the greater will be the driving force for the reaction (Wadsworth, 1987). 

The extent to which sulfide minerals oxidise when simply exposed to air varies depending on 

the mineral and the length of time of exposure. Buckley and Woods (1984) exposed the 

freshly fractured surfaces of a selection of sulfide minerals to air. Galena that was exposed 

for less than a minute was only negligibly oxidised, but with longer periods of exposure lead­

oxyhydroxide and later basic lead sulfate were formed. Bornite (Cu5FeS4) exposed to air 

formed iron oxide while the copper remained as a sulfide species, as did chalcopyrite 

(CuFeS2), but at a much slower rate. Pyrrhotite reacted very quickly to form iron­

oxyhydroxide after only a few seconds exposure. 

Dissolved oxygen oxidation of sulfides is generally kinetically less important than oxidation 

by ferric iron (Wadsworth, 1987). If leaching occurs at elevated pressure, however, it may 

become the dominant oxidant, but oxygen transport could become rate limiting (Wadsworth, 

1987). McKibben and Barnes (1986) found that sulfate ions were the major sulfur reaction 

product during the aqueous oxidation of pyrite with dissolved oxygen. The equation for the 

reaction between pyrite and oxygen is as follows: 

[ 2.1 ] 

Isotopic studies have shown that the sulfate oxygen in Equation 2.1 comes from water, and 

that the dissolved oxygen only acts as an electron acceptor (Taylor et al., 1976). Both 

McKibben and Barnes (1986) and Williamson and Rimstidt (1994) found the reaction order 

for dissolved oxygen in the oxidation of pyrite to be 0.5. The latter authors found that the 
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reaction could not be modelled adequately using a simple, ideal Langmuir adsorption 

isotherm, but that a Freundlich isotherm was more suitable. This is consistent with the non­

uniform attack of the pyrite surface by aqueous oxidants at sites of high excess surface 

energy. 

Ferric iron is commercially a very important oxidising agent since it can be produced in situ 

(Wadsworth, 1987) (for example by bacteria or using oxygen). In an extensive review on the 

ferric leaching of sulfide minerals, Dutrizac and MacDonald ( 197 4) reported that ferric iron 

had been observed to be a much more effective oxidising agent than gaseous oxygen, 

provided the leaching solution was sufficiently acidic to keep the iron in solution. This 

observation was also made by McKibben and Barnes (1986) who showed that the partial 

pressure of oxygen had very little effect on the rate of pyrite oxidation. Moses et a/. (1987) 

also claimed that ferric iron is the direct oxidant of pyrite in both aerobic and anaerobic 

systems. To support this experimental evidence, they discussed that the probability of a 

direct reaction between molecular oxygen and pyrite is low, since pyrite is diamagnetic and 

oxygen is paramagnetic. This reasoning can also be applied to other minerals. Ferric 

leaching generally produces elemental sulfur as a product, although sulfate is 

thermodynamically more stable. Williamson and Rimstidt (1994) list several reports that the 

rate of oxidation of sulfide minerals by ferric iron is larger in chloride than sulfate medium. 

This could be because sulfate ions inhibit the rate determining step or chloride ions catalyse 

it, but this has not been proven. Crundwell (1988) showed passivation of sphalerite in ferric 

sulfate solutions but not ferric chloride solutions. The difference in kinetics in the presence 

of chloride or sulfate ions is likely to be due to complex formation. 

The use of hydrogen peroxide as an oxidant is limited by its rapid anodic decomposition to 

hydrogen ions and oxygen (Wadsworth, 1987). This reaction is catalysed by ferrous iron and 

metallic surfaces, even under alkaline conditions. McKibben and Barnes (1986) found that 

H20 2 was consumed by catalytic decomposition almost as fast as by pyrite oxidation. In the 

reaction with pyrite, only sulfate ions were detected as the sulfur reaction product. 

Chloride or hypochlorite leaching can be applied to sulfides of mercury, molybdenum, 

antimony, copper, zinc, lead and silver. These generally result in a solution of chloro­

complexes and the production of sulfate (Koch, 1975). Although not common, cupric ions 
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can be used in suitable solvents. Cupric ions have been used to leach covellite and chalcocite 

(Koch, 1975). 

As many sulfides are good electrical conductors, it is not surprising that their leaching has an 

electrochemical nature. Leach kinetics can be related to the potential of the solid mineral in 

contact with an aqueous electrolyte (Wadsworth, 1987). If the resistance of the mineral is 

low, the solid essentially assumes a uniform potential throughout and assumes a mixed 

potential determined by associated anodic and cathodic processes. This potential will also 

depend on the properties of the mineral surface. By applying a potential to a sulfide mineral, 

either directly or by use of an oxidant, its anodic dissolution can be controlled. Before any 

dissolution can occur, the mixed potential must exceed the equilibrium potential (or rest 

potential) of the mineral. 

2.1.2 Electrochemical application to mineral oxidation 

Electrochemistry is an important consideration in the study of oxidation of sulfide minerals. 

Before oxidation can occur, a potential exceeding the mineral rest potential must be applied 

to the mineral. Quoted rest potentials are dependent on the experimental conditions under 

which they are measured (e.g. temperature and pH) and are characteristic of the ore used, 

subject to the stoichiometry of the mineral, the presence of impurities and semiconducting 

effects. Literature values are subject to a wide variation (Table 2.1 ). The rest potential is the 

open circuit potential of the mineral. It has been suggested that to accurately measure the rest 

potential, the mineral must be allowed to equilibrate with the electrolyte for 12 hours under 

argon atmosphere to allow the potential to stabilise (Doyle eta/., 1989) .. 

When two sulfide minerals are in contact in aqueous solution, the mineral with the lower rest 

potential becomes anodic and undergoes dissolution, while the mineral with the higher 

potential is galvanically protected and becomes cathodic. The order of nobility of the 

minerals is generally consistent with the rest potentials of the minerals, and the commonly 

accepted galvanic series is as follows: pyrite, chalcopyrite, covellite, chalcocite, galena, 

sphalerite, going from most noble to most active (Natarajan; 1988, and Table 2.1 ). The rate 

of galvanic dissolution also depends on the duration of contact, the anode to cathode surface 

area ratio, the electrolyte (its conductivity, pH, other redox species present etc.) and the 
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presence or absence of bacteria. Generally galvanic interactions are reported to be· enhanced 

by bacteria, so bacteria can improve the selective leaching of certain sulfide minerals 

(Riekkola-V anhanen and Heimala, .1993 ). 

Minerals Rest Potential (mV Conditions Reference 

vs sat. Ag! AgCI) 

Pyrite 497 inoculated, Fe present Natarajan (1988) 

494 with Thiobacillusferrooxidans Jyothi et a/. ( 1989) 

494 with Thiobacillus ferrooxidans Natarajan (1992) 

473.70 sample RCIA Doyle eta/. (1989) 

462 in nutrient medium Dutrizac and MacDonald (1974) 

452.80 sample MCII Doyle eta/. (1989) 

449.50 sampleMDll Doyle eta/. (1989) 

422 Peters (1976) 

419.30 sampleHP2A Doyle eta/. (1989) 

391.75 sample LSIA Doyle et a/. ( 1989) 

387 inoculated, Fe-free Natarajan (1988) 

365.70 sampleHP4A Doyle et a/. ( 1989) 

347 uninoculated Natarajan (1988) 

344 in nutrient medium Jyothi et a/. ( 1989) 

297 to 437 Riekkola-Vanhanen and Heimala (1993) 

Arsenopyrite 287 to 427 Riekkola-Vanhanen and Heimala (1993) 

Chalcopyrite 357 inoculated, Fe present Natarajan (1988) 

287 inoculated, Fe-free Natarajan (1988) 

247 uninoculated Natarajan (1988) 

247 to 397 Riekkola-Vanhanen and Heimala (1993) 

Galena 222 inoculated, Fe present Natarajan (1988) 

67 inoculated, Fe-free Natarajan (1988) 

57 uninoculated Natarajan (1988) 

77 to 197 Riekkola-Vanhanen and Heimala (1993) 

Sphalerite 37 inoculated, Fe present Natarajan (1988) 

27 inoculated, Fe-free Natarajan (1988) 

12 uninoculated Natarajan (1988) 

7 to 107 Riekkola-Vanhanen and Heimala (1993) 

Pyrrhotite -103 to 42 Riekkola-Vanhanen and Heimala (1993) 

Table 2.1 Rest Potentials for Sulfide Minerals 

In mineral leaching systems, the mixed potential is usually of more significance than the rest 

potential. The mixed potential is that potential where the rate of the anodic reaction equals 

that of the cathodic reaction. This means that at the mixed potential, the resistance in the 

external circuit approaches zero. The current flowing at the mixed potential (the mixed 

current) can theoretically be used to determine the mineral leach rate (Jin eta/., 1993). The 



Chapter 2 Literature Review 9 

value of the mixed potential will depend on the mineral rest potential and the potential of the 

electrolyte in which it is suspended (e.g. the ferric/ferrous ratio in a ferric leaching system), or 

in a galvanic couple, the rest potential of the minerals concerned. For minerals in galvanic 

contact, the mixed potential is intermediate between the individual rest potentials (as noted by 

Mehta and Murr (1983) for the pyrite/chalcopyrite couple). In the region of the mixed 

potential, the rates of reverse processes are often ignored. For sulfide minerals, this is 

generally acceptable because the dissolution reactions can be considered irreversible, but the 

assumption is not always valid for other processes such as ferric reduction (Nicol, 1993). 

The mixed potential and mixed current can be determined by measuring polarization curves for 

the anode and the cathode under different experimental conditions by varying the resistance in 

the external circuit from infinity to nearly zero and measuring the electrode potential (Jin et 

al., 1993). The point of intersection between the anodic and cathodic polarization curves 

corresponds to the mixed potential and mixed current for the system. Useful information on 

the reaction mechanism can be obtained from the position of the mixed potential on individual 

polarization curves, especially if the mixed potential lies within, for example, a passivating 

region (Nayak et al., 1995). The Tafel slopes for the anodic and cathodic reactions can be 

useful in distinguishing whether multiple electron transfer is simultaneous or sequential, and 

can thus be used in determination of a reaction mechanism (Pletcher, 1991, pill). This may 

be applicable in determining reaction intermediates in a multi-step reaction, like the formation 

of a final sulfate product from sulfide minerals like pyrite. 

Conventional electrochemical techniques, such as cyclic voltarnmetry, can be used to study 

sulfide minerals (Briceno and Chander, 1988; Chia et al., 1989; Riekkola-V anhanen and 

Heimala, 1993). In these types of studies it is often useful to use mineral electrodes. When 

making mineral electrodes, it is important to avoid altering the composition and the mineral 

surface. Generally, sulfides are sensitive to heat, oxidation and the introduction of ions such 

as Ag + and Cu + from electrical contacts (Peters, 197 6). The form of the electrode affects its 

behaviour depending on whether a particular crystal face is exposed or if the mineral particles 

have been mixed with a binder for immobilisation. 
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Platinum is often used as an inert electrode and can easily attain the redox potential of a 

mineral suspension. Although it is known to become poisoned, it allows good current flow 

and is useful in biological studies because it is non-toxic to bacteria. Graphite electrodes 

have also been used in mineral electrochemical studies (Blake et a/. , 1994, Linge and Jones, 

1993) because they are inert, have a low resistance and are less expensive than platinum. 

Cyclic voltammetry is a technique used to show the existence of intermediates (which often 

cannot be predicted on thermodynamic grounds) in the oxidation or reduction of a sample. In 

cyclic voltammetry, the potential of the mineral is scanned between two limits while the 

current is measured, then the direction of the scan is reversed. Species which are oxidised on 

the forward scan are reduced on the reverse scan. With high scan rates it is possible to 

identify the existence of short lived intermediates that are not normally detected (Crow, 

1994). In leaching systems, the position and shape of the current-voltage curves on 

consecutive cycles changes due to changes in the structure and composition of the mineral 

surfaces caused by dissolution and precipitation (Riekkola-V anhanen and Heimala, 1993). 

Often the peak current decreases with repeated sweeps because of the disappearance of active 

sites (Chia et a/., 1989). The greater the separation between the peaks for the forward and 

reverse scans, the more irreversible the electrode process (Crow, 1994), while the current 

density gives an indication of the extent of passivation. In work done by Riekkola-V anhanen 

and Heimala (1983), a low current density for pyrrhotite indicated a rapid activation and 

passivation of the surface, while chalcopyrite displayed passivation at low potentials, 

dissolution of the passivation layer at higher potentials and active dissolution of the mineral 

at even higher potentials. This is just one example to show that the leach or dissolution rates 

of sulfide minerals are dependent on the mineral electrochemical potential. 

The presence of intermediates in an electrochemical process are indicated by the presence of 

multiple peaks in a cyclic voltarnmogram. If all the electron transfer processes take place in a 

single reaction, then only one oxidation and one reduction peak should be seen. Although 

cyclic voltammetry can detect the existence of these intermediate reactions at suitable scan 

rates, it is difficult to assign specific reactions to specific peaks. This can be attempted using 

thermodynamic data. The half-peak potentials estimated from the voltarnmograms should 

correspond to the standard potential (E0
) for the proposed reaction giving rise to the peak 

(Chia eta/., 1989). 
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-
There are a number of factors to bear in mind regarding the polarization studies of sulfide 

minerals. The polarization curves for irregularly shaped specimens are not as reproducible as 

for polished specimens. It has been found, however, that there was still a general similarity in 

results between irregular and polished samples, so polishing had no major effect on the 

polarization behaviour (Meyer, 1979). 

Sulfides often have a low conductivity, so the voltage drop across the mineral could be 

appreciable. The resistance can be reduced by thinning the sample (Peters, 1976). The 

semiconductor nature of sulfides could also cause them to have non-ohmic junctions (Peters, 

1976). 

It must also be realised that when controlling the potential during oxidation of a sulfide 

mineral, the electron acceptor will probably affect the observed behaviour. It is expected that 

the mineral will behave differently when an external source (e.g. a Pt counter electrode) is 

used as the electron sink to when a redox couple participates in the charge transfer process 

(Doyle eta/., 1989). 

AC impedance measurements are sensitive for measuring mineral reactivities and the state of 

the mineral surface (Bricefio and Chander, 1988, Doyle et a/., 1989). This is however a slow 

technique so is not suitable for investigating rapidly changing systems, and it is often 

necessary to allow the mineral/solution interface to stabilise during a conditioning period. 

Although electrochemical techniques are useful in the characterisation of sulfide minerals, 

they generally lack the specificity to identify the species formed at a mineral electrode surface 

unequivocally. It can be useful to combine them with other techniques like x-ray 

photoelectron spectroscopy (XPS) for a better overall understanding of the electrochemical 

processes (Buckley and Woods, 1984). 
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2.2 Pyrite 

2.2.1 Physical characterisation of pyrite 

Pyrite is an extremely common sulfide mineral, occurring in most sulfide ore bodies. Natural 

pyrite, however, is heterogeneous and even within a single sample there can be large 

differences in stoichiometry, impurity content and physical defects (Doyle et al., 1989). This 

results in a large range of electronic properties. 

Pyrite is an opaque, brass yellow mineral with a metallic lustre. In polished section it is 

generally isotropic. It has a density of 4.6- 5.2 g.cm·3, a Mohr hardness of 6-6.5 and melts at 

about 1171 °C. Pyrite is dimorphic with marcasite, which is very similar to pyrite in 

appearance. The colour of freshly fractured marcasite deepens on exposure to air and a white 

ferrous sulfate powder d0velops on the surface due to the inherent instability of marcasite. 

Marcasite has a less dense crystal structure than pyrite, with a density of 4.88 g.cm·3 (Lowson, 

1982). The transformation from marcasite to pyrite is significantly exothermic at 700 K, with 

an enthalpy oftransformation of about -4.9 kJ.mor1
. 

Euhedral pyrite has a well developed crystal form. The most common crystal forms are the 

cube and the pentagonal dodecahedron (also known as the pyritohedron) (Lowson, 1982). 

The cubic and pyritohedral faces are usually striated with fine lines caused by oscillatory 

growth between the two forms. The crystals are usually extensively twinned, both on a 

macro- and micro-scale, with the direction of twinning controlling the sign of thermoelectric 

properties. 

The crystal structure of pyrite is isomorphic with the natural mineral sulfides of manganese, 

cobalt, copper, zinc, cadmium, osmium, ruthenium and rhodium. Although strictly it cannot 

be classified as 'close-packed', pyrite is a very dense material. Each Fe atom is surrounded by 

six S atoms, and each S atom has one nearest neighbour S atom and three nearest neighbour 

Fe atoms. Pyrite has a variable sulfur deficiency within FeS2.00 to FeS1.94 (Lowson, 1982). 

Marcasite has a lower symmetry than pyrite - it crystallises in an orthorhombic crystal 

structure. 
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Framboidal pyrite consists of non-crystalline grains and agglomerates of non-crystalline grains 

(Lawson, 1982). This type of pyrite is usually heterogeneously dispersed through a host rock, 

and is often associated with mine tailings. Framboidal pyrite is more reactive than massive 

pyrite, with Pugh et al. (1984) reporting a twofold increase in the reaction rate. 

Pyrite is a semiconductor and can occur as n- or p-type material, and even contain p-n junction 

material. The variable nature of the semiconducting properties has been attributed to the 

range in stoichiometry, the lead, cobalt and nickel content and a range of heavy metals 

(Lawson, 1982). In semiconductors, the valence and conduction bands are separate and 

conduction occurs either by electrons in the conduction band (n-type) or holes in the valence 

band (p-type). For pyrite, the band gap is estimated to be between 0.95 and 1.2 eV (Doyle et 

al., 1989). n- and p-type semiconductors exhibit different electrochemical behaviour. For the 

anodic oxidation of pyrite, holes are required and for the cathodic reduction, electrons are 

required, so the rates of these reactions will be a function of the rate at which holes and 

electrons can be supplied to the surface. 

For p-type pyrite, the resistivity decreases with temperature, but for n-type pyrite it increases 

(Lowson, 1982). At room temperature, n-type pyrite has a lower resistivity than p-type and a 

higher Hall mobility. Generally, the resistivity ranges from 10-5
- 10° n.m for n-type and 10-3

-

10° O.m for p-type (Doyle et al., 1989). Besides being a function ofthe semiconducting type, 

the chemical resistivity also varies depending on the crystal direction, and the pressure. There 

is some dispute as to which semiconducting type is more reactive. Doyle et al. (1989) found 

that n-type pyrite generally has a high rest potential and low reactivity, but that once a current 

does pass, it appears to transform the surface to a p-type material, probably through forming 

metal deficient layers. Chia et al. (1989) found that n-type was more easily oxidisable and that 

p-type was more stable. 

As mentioned above, anodic dissolution requires the injection of holes into the valence band 

(mainly of sulfur 3p character) (Doyle et al., 1989). Holes can be provided by photons, which 

explains why the dissolution of many sulfides is promoted by light. When holes are provided 

by a redox couple, the energy levels of the oxidant must overlap with the energy level of the 
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valence band of the pyrite. Hence a powerful oxidising agent may be less effective for a 

particular sulfide than one which gives better overlap of the energy levels (Doyle et al., 1989). 
' 

2.2.2 Ferric leaching of pyrite 

Pyrite is oxidised by ferric iron according to the following equation: 

[ 2.2] 

It has been stated that pyrite does not respond favourably to ferric leaching (Dutrizac and 

MacDonald, 1974) because a very slow rate is observed, but this would be expected when the 

stoichiometry of Equation 2.2 is considered - 14 moles of ferric ions are converted to 15 

moles of ferrous ions in reaction with each mole of pyrite, causing a rapid drop in the redox 

potential according to the Nemst equation (Equation 1.3). 

Several researchers have investigated the ferric leaching of pyrite and other sulfide minerals. 

Experimental details are given in Table 2.2. 

Mathews and Robins (1972) used a gas lift percolator with nitrogen as the circulatory gas to 

study the oxidation of iron disulfide with ferric sulfate. Ferric chloride was also used in some 

of the tests but similar rates were obtained. The effects of temperature, ore mass, volume, 

surface area, pH, total iron concentration and ferric iron concentration were investigated. The 

leach rate was found to be dependent on the ratio of ferric iron to total iron. This result was a 

confirmation of that obtained by Garrels and Thompson (1960) who postulated that the 

instantaneous rate was controlled adsorption of ferrous and ferric ions to the pyrite surface 

and was proportional to the fraction occupied by ferric ions. They used acidic ferric sulfate to 

leach pyrite and monitored the solution redox potential. They found a rapid drop in potential 

initially, followed by a linear drop in potential with time from about 200 minutes into the leach. 

This linear region formed the basis for all their results. Based on their postulate that the 

behaviour of the system was because of adsorption . of ions to the pyrite surface, they 

suggested that the marked increase in the leach rate when the ferric/ferrous ratio approached 

very high values was because the fraction occupied by ferric ions at the pyrite surface probably 

increased in an anomalous fashion as the ferrous ion concentration became very low. They 



Table 2.2 Experimental Details for Ferric Leaching ofPyrite (table in three parts) 

Reference Apparatus Ore pretreatment Leaching rnediwn 

Garrels and Thompson Sluny stirred magnetically Rinsed with 6N HzS04 and distilled water, Fez(S04)3 

1960 then dried with acetone 

Singer and Stumm Leaching under N1,- no detail None discussed Fe(III) 

1967 

Mathews and Robins Gas lift percolator with N1 Prewashed (no detail given) Fez(S04)3 in H2S04 

1972 circulator gas 

Paciorek et al. Sluny in conical flask agitated by Ground and sieved under N2 '61' bacterial growth medium 

1981 reciprocating shaker 

Wiersma and Rimstidt V esse! with overlJ.ead glass stirrer Dry sieved FeChinHCI 

1984 

McKibben and Barnes Pyrite clamped between 2 nylon Very detailed treatment (see text) FeCh 

1986 screens in stirred vessel 

Tal S!uny in beaker stirred None discussed Fez(S04)3 in HzS04 

1986 magnetically 

Zhengetal. Ore clamped between two filter Washed in 6N H2S04 and distilled water, then Fe2(S04)3 in HzS04 

1986 discs with circulation oflixiviant dried with acetone or under vacuum 

Kawakami et al. Stirred batch reactor None discussed FeChinHCI 

1988 

Boogerd et al. Sluny in shake flasks None discussed bacterial growth medium and FeCh in 

1991 HCI 

Williamson and Rimstidt Mixed flow or stirred batch reactor 1 NHC!soak FeChinHCI 

1994 

Size fraction 

+74-149 f.Uil 

-

+ 300-420 f.Uil 

< 38 f.Uil 

+75-150 f.Uil 

+ 125-250 f.Uil 

<38 f.Uil 

+105-250 f.Uil 

<53 f.Uil 

10 f.Uil 

+ 150-250 f.Uil 

Slurry concentration 

-

1 g.£1 

so g.£1 

500 g.£1 

2 g.£1 

3.75 g.£1 

30g.£1 

25 g.£1 

12 g.£1 

5- 10 g.£1 

2g 

-Vt 



Table 2.2 continued 

Reference Temperature Activation energy pH Jnitial(Fe) Tbne In (Fe,. !Fe') range 

Garrels and Thompson 33 ±2 ·c - 0-2 0.0004M 24- 100 hours -6to -2 

1960 

Singer and Stumm - - - 0.003M 4hours -1.2 to 1.8 

1967 

Mathews and Robins 30 •c -70 •c 92kJ.mor' 1.35 0.02M 2hours -0.02 to 1.82 

1972 

Paciorek et al. 28± u •c - not controlled 0.0002M 311 hours -3.75 to -2.83 

1981 

Wiersma and Rimstidt 25 •c 92kJ.mor' 2 0.001 molal 4hours -7.63 to -1.53 

1984 

McKibben and Barnes 30 •c 60.3 kJ.mor 1.89 0.002M 3 hours -1.25 to 2.28 

1986 (McKibben, 1984) 

Tal 60± 1•c - not controlled 0.18M - -0.2 to2.9 

1986 

Zhengetal. 25 •c - - 0.009 - 0.09 M - -6to 2.3 

1986 

Kawakami et al. 60 •c 95 kJ.mor• 1 0.5M 60hours -0.08 to 1.89 

1988 

Boogerd et al. 7o•c - 1.5 0.09M 9hours -0.75 to 1.65 

1991 

Williamson and Rimstidt 25 •c - <3 0.0001 m 0.57to 2.47 

1994 

Typical commercial bioleaching conditions (Van Aswegen, 1993): 

temperature 40-45 oc 
pH 1.2-1.8 

residence time 4days 

W:S 4:1 ..... 
0\ 

[02] 2ppm 



Reference 

Garrels and 

Thompson 1960 
Singer and Stumm 

1967 
Mathews and Robins 

1972 

Paciorek eta/. 1981 

constants 

k = 1.47 X 10" 

for rate in mol.£1.min"1 

Wiersma and Rimstidt k = 1.0 x 10 to 

1984 

McKibben and Barnes 

1986 

Tal 

1986 

Zhengetal. 

1986 

Kawakami et a/. 

1988 

Boogerd et al. 

1991 

Williamson and 

Rimstidt 

1994 

2.7 x 10_. s·' 

rate in mol.kg"1solution.s·' 

k = -10·. 

k = 6.42 mg pyrite .g· .h·' 

n= 0.682 

rate in mg pyrite .g·1.h"1 

rate in llffiOl.kg"1.s"1 

k, = 6.10 k2 = 2.03 

k3 = 3.84 14 = 9l.l 

at348 K 

4 = 0.056 min"' 

~ = 0.33 moe.m·3.min"1 

~ = 19.5 KL = 5.6 

rate in mol.m·2.min"1 

k = 64_± 6 at 70 •c 

rate in mmol.£1.day"1 

I 

k = 1 o""-<J (j:o.s7) 

rate in inol pyrite.m·2.s·1 

DO~resent 
' k = 10.8.S8 (j:O.IS) 

rate in mol pyrite.m"2.s"1 

Nrpurged 

Rate law 

MA [Fe 3
' lexp(1ft-) 

r ••• • = k . -V- . .:..[ F-e-:,c:-:,.-'-1 -[H..:..,:.' 1-=.'7_ •• -:-

dm F•'' 

dt 

k-k(~)t 
r = ---·--·~!.::!•.:.•'_'.!.<! ~--:-

_,_ + k 3 + k 4 (!!!::I){ 
(l'e3+)~ (l'eS+] 

mo.30 
r=k Fe'' 

o.47 mo.Jz 
mFe1 ' H' 

Table 2 2 continued 
Rate law in conunon tenns 

(~)t = K . k ' - k • 1., .. 1 . _M_ 

____L_ + k 3 + k 4(~)t v 
[l'es.Jt (l'eh) 

(FeS 1] (Fe''] 
= K --=---~'--

30+(FeS1] 95+(Fe''] 



Nomenclature used specifically in Table 2.2 

A surface area of reacting solid 

a. molar fraction of pyrite forming sulfur 

d initial particle diameter 

Ea activation energy 

k rate constant 

m molality 

M mass of ore 

M' mass of solution 

n reaction order 

p pyrite density 

[R] concentration of reactive sites 

RFe3+ rate 

ro pyrite concentration 

m2 

m 

kJ.mor1 

sec·1 

mol.kg"1 

kg 

kg 

k -3 g.m 

mol.m-2 

mol. cm·2.min"1 

k -3 g.m 

n g-
'"0 
.-+ 
CD 

'""' N 

t"""' -· .-+ 
CD 

'""' g 
'""' CD 

~ -· ~ 

-00 
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concluded that the rate of oxidation was dependent on the redox potential and not the total 

iron concentration. 

Wiersma and Rimstidt (1984) oxidised pyrite and marcasite at 25 oc with ferric chloride at pH 

2 and monitored the solution redox potential of the mineral slurry. The pretreatment of the 

ore (if any) was not detailed. They observed a very high initial rate (characterised by a rapid 

drop in the redox potential) for which a number of reasons were suggested: rapid dissolution 

of fine particles on the mineral surface or dissolution of a disturbed surface layer, rapid 

adsorption of ferric ions onto reactive sites at the solid surface and the rapid decrease and 

disappearance of a streaming potential at the indicator electrode produced by the relative 

movement of the electrode and solution due to stirring. Because of this behaviour, the first 75 

minutes of data for each run w~re discarded. The rate law was first order with respect to 

ferric iron, and a determination of the activation energy indicated that th.e leaching rate was 

controlled by a surface (chemical) reaction. 

McKibben and Barnes (1986) derived a rate law for the oxidation of pyrite by ferric chloride at 

30 °C. This work was unusual in that the pyrite sample was clamped between two nylon 

screens and the leach solution was circulated. The pretreatment of the ore was very thorough 

to reduce the possibility of measuring anomalously high dissolution rates of fine mineral 

powders on the ore surface or a thin damaged outer zone of material. The ore was first 

crushed and soaked overnight in hot HF to remove silicates, washed in de-ionised water, and 

stored in air before being sieved. The pyrite was cleaned ultrasonically in ethanol for 30 

seconds, then rinsed in 1 M nitric acid for 1 minute, followed by successive rinsing with 

distilled water and ethanol, with a final ethanol rinse to dehydrate the surface. The material 

was then dried with air and stored briefly. Immediately prior to using the ore, it was rinsed 

with 0.1 M HCl to remove any oxidised coating, and then with water. The ore was analysed 

by SEM at particular stages of the preparation. After sieving, a fine powder was visible on the 

surface and there was irregular pitting, possibly from the HF treatment or the rupture of fluid 

inclusions during the crushing. After the nitric acid treatment there was no adhered powder 

and surface pitting and linear fractures were variable from grain to grain. After leaching, much 

of the mineral surface appeared smooth and undisturbed, but the pit edges and cleavage 

fractures seemed more ragged and etched. It is possible that some pits may have formed 
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during the oxidation. It was apparent that oxidation had occurred non-uniformly, occurring 

mainly at the sites of sites of high excess surface energy. 

The rate laws were derived using the initial rate method, which only makes use of the initial 

reaction period. This technique does not require that a rate law be assumed and also the 

changes in surface area and volume over short times can be considered negligible. The 

specific rate of oxidation was found to be proportional to the square root of the ferric 

concentration. 

The effect of the redox potential on the leaching rate has not been directly examined in many 

instances. Tal {1986), however, determined the leach rate of pyrite in a slurry at 60 oc while 

maintaining the redox potential at a constant value using Mn02. There was an increase in 

leach rate with redox potential as expected, but the ratio of ferric to ferrous iron was never 

higher than 23.5, which is much lower than that observed in bacterial leaching. In Tal's work, 

leach rates were given as a function of the ferric/ferrous ratio, but it was not obvious how 

these rates were calculated. 

Zheng et al. ( 1986) also found that the rate was dependent on the potential, and also on the 

total iron concentration. A ferric sulfate lixiviant was circulated through a packed bed of 

pyrite and the potential of this solution was maintained by addition of potassium 

permanganate. The rate of oxidation of ferrous iron by the permanganate was related to the 

rate of pyrite oxidation. The average potential of the inlet and outlet were used in the 

calculations. They found that the rate of pyrite leaching increased with the potential and total 

iron concentration, but became constant at high potentials and high total iron concentrations. 

Again the range of potentials in this work was too low to be relevent to bioleaching (all less 

than 500 mV (Ag/AgCl)). Zheng et al. modelled the reaction using the Hougen-Watson 

'dual-site' model (Hougen and Watson, 1947), which assumes that the rate determining step is 

a chemical one. Competition of ferrous and ferric iron for adsorption on dual active sites on 

the pyrite surface controls the rate. 

Moses et al. (1987) used a stirred batch reactor to study the leaching of pyrite with ferric 

chloride in HCl over a range of pH values from 2 to 9. Pretreatment of the ore was given 

special emphasis and three different methods were discussed. Incomplete cleaning did have a 
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noticeable effect on the leach rate, and different sulfate products were dominant depending on 

the method of pretreatment. By comparing the rates in aerobic and anaerobic systems, it was 

concluded that ferric iron is the preferred oxidant even when oxygen is present. 

Kawakami eta/. (1988) investigated the oxidation of a pyrite slurry by ferric chloride in HCL 

The effect of temperature, pH, pyrite loading, particle size and initial ferrous and ferric 

concentration were investigated. The oxidation rate increased with an increase in temperature 

(from 60- 90 °C) and with pH (from 0- 2) but the apparent increase with pH may have been 

associated with complexation. An increased initial ferric iron concentration increased the rate 

up to a maximum at 1 M (again possibly due to complexation) and the rate was inhibited by an 

increasing ferrous concentration. A decrease in particle size resulted in an increased rate, but 

the dependence on pyrite loading was complicated. In this work, the reaction stoichiometry 

was found to give a ratio of sulfate to elemental sulfur of about 1.3, regardless of experimental 

conditions. In all the experimental work, there was a very fast initial rate which decayed 

quickly with time, which they postulated as being due to a high initial reactivity and the rapid 

disappearance of reactive sites. On this basis a kinetic model was proposed which assumed a 

fast short term reaction at 'reactive sites' and a slower long term dissolution at 'nonreactive 

sites'. 

More recently work was done by Boogerd et a/. (1991) to determine the reaction 

stoichiometry and kinetics in the chemical reaction between pyrite and ferric chloride in a 

bacterial growth medium. They found that the initial reaction rate was a function of 

temperature, ferric ion concentration and pyrite concentration, with an apparent saturation 

with respect to ferric iron and pyrite concentration at each temperature. They derived an 

empirical equation to describe this initial rate where it was assumed that no ferrous iron was 

initially present. The initial rates were apparently derived from the experimental measurement 

of ferrous iron concentration with time, with the initial rate taken as the change in 

concentration over the first hour of leaching. The fact that the rate is likely to be changing 

rapidly within the first hour was not taken into consideration, and the consequent rapid 

production of ferrous iron into the system was not considered in the derivation of the rate 

equation. 
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More information on the reaction mechanism between ferric iron and pyrite has been given by 

Williamson and Rimstidt (1994). These authors used pyrite suspended in nylon mesh, 

surrounded by an oxidising solution of ferric ions, and varied the sulfate and chloride 

concentration, the ionic strength and the dissolved oxygen concentration. In some 

experiments, the solution was purged with nitrogen. It was found that the reaction rate was 

enhanced by dissolved oxygen at high redox potentials but was faster in the absence of oxygen 

at low redox potentials. The concentration of dissolved oxygen had no effect, implying that a 

different reaction mechanism was operative. This is reflected by the reaction orders obtained 

with and without dissolved oxygen. The rate was not influenced by the sulfate or chloride 

concentration, or the ionic strength. The results obtained do not support a simple, site-specific 

adsorption model. On the basis of this and the correlation between rate and redox potential, 

these authors suggested that there was an electrochemical me:.;hanism involving distinct anodic 

and cathodic sites with electron transfer being rate limiting. An electrochemical mechanism is 

also more consistent with the fractional reaction orders obtained, whereas a molecular, 

chemically controlled mechanism does not adequately account for this. 

The redox potentials corresponding to the measured or calculated ferric/ferrous ratio were low 

in all the literature studied, much lower than the redox potential usually maintained by bacteria 

in bioleaching systems ( ,..,670 m V vs Ag/ AgCl (Boon, 1996) ). It is necessary to generate ferric 

leach data at higher redox potentials so that the leach rates of the chemical ferric leach sub­

process can be directly compared with those in bioleaching systems. Also a wide range of 

experimental methods has been used, with different conditions applied (e.g. pH, temperature, 

presence of counterions ), so it is difficult to compare the resulting leach rates and kinetic 

models directly. Some of the literature data has been reworked, however, in a later chapter. 

2.2.3 Electrochemical studies on pyrite 

Pyrite is a suitable mineral to use as an electrode. It is relatively chemically inert and it attains 

its equilibrium potential quickly and reproducibly (Pesic, 1993) but the effects of the mixed 

potential which is established and the change in surface properties during oxidation must also 

be considered. 
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The anodic polarization of pyrite has been investigated by many workers (e.g. Meyer, 1979, 

Doyle et al., 1989). The fact that pyrite is a semiconductor does not seem to have any 

significant effect on the polarization behaviour (Biegler and Swift, 1979; Mishra and Osseo­

Assare, 1988). There has also been some work on the cathodic reduction of oxygen on pyrite 

surfaces (Biegler et a/., 197 6). This becomes important when galvanic coupling occurs 

between pyrite and another sulfide mineral, since pyrite invariably behaves as the cathode in 

such situations. Pyrite has a low overvoltage for hydrogen and oxygen evolution (Peters, 

1976). 

As can be seen in Table 2.1, the rest potential of pyrite lies in the range 297 - 497 mV 

(Ag/AgCl), which is generally higher than for the other common sulfide minerals. A higher 

potential is thus required to oxidise pyrite than most other sulfides. 

It has been shown by scanning potential and cyclic voltammetry experiments that there are 

many intermediates in the oxidation of pyrite (Chia eta/., 1989, Meyer, 1979). The reaction 

products for the anodic oxidation are expected to depend on the applied potential, the pH and 

other factors such as the activities of the ions involved (Doyle et al., 1989). 

Doyle et a/. (1989) found that multiple fast scans indicated the presence of a metal deficient 

surface layer formed on the first anodic polarization. Nayak et a/. (1995) reviewed the 

literature and found that the current-voltage curves had two prominent regions, the first below 

about 0.9 V (SHE) where a positive potential sweep gave a small peak or plateau current, and 

the second at higher potentials where the current rose exponentially. In experimental work 

done by Nayak eta/. (1995), a positive sweep on a pyrite electrode in 0.1 M sulfuric acid 

indicated an initial passivating region (from about 0.330 - 0.625 V SCE) (i.e. the current . 
density was lower than expected). On the reverse sweep this phenomenon was not observed. 

The existence of a thin layer of elemental sulfur was suggested as a reason for the passivation, 

although this was not actually observed. When the dissolution reaction is coupled with a ferric 

reduction, the mixed potential is likely to fall within this passivating region. 

Nayak eta/. (1995) also did separate polarization experiments for pyrite in acid and platinum 

(inert) in ferric sulfate. On the basis of their results, they deduced that the initial dissolution of 

pyrite in very dilute ferric solutions would be influenced by the pyrite rest potential, and at 
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higher ferric concentrations by the mixed potential. In this second case, the leach rate would 

decrease with time, so the initial dissolution would be of a transient character. 

There has been some discrepancy as to whether the primary sulfur reaction product of pyrite 

oxidation is elemental sulfur or sulfate ions, but at higher potentials, there is general consensus 

that sulfate ions are the dominant sulfur species formed (Koch, 1975; Bailey and Peters, 1976; 

Meyer, 1979). This would be expected thermodynamically. Sand et al. (1995) have claimed 

that other intermediate sulfur products, like thiosulfates, are formed during bioleaching with 

Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Thiosulfates disproportionate 

under acidic conditions, producing elemental sulfur and bisulfate ions (HS03") (Vogel, 1957, 

p333), which can undergo further oxidation to sulfate ions. High potentials will favour the 

form?,tion of sulfate ions. 

From constant current and constant potential experiments, Chia et al. (1989) deduced that 

pyrite oxidation was controlled by solid-state diffusion. Fomasiero et al. (1992 ) deduced 

that the oxidation rate is surface controlled on the basis of electrokinetic measurements. 

After oxidation, pits and crevices can be seen on some parts of the pyrite surface while other 

parts seem unaffected (Meyer, 1979). The extent of surface deformation will depend on the 

exact conditions of oxidation, and the length of time for which dissolution had occurred. 

2.3 Bioleaching 

2.3.1 Direct and indirect mechanisms 

There are two proposed mechanisms for the bacterial leaching of sulfide ores. The direct 

mechanism assumes that the bacteria attach to the surface of the mineral particles and facilitate 

leaching in some direct enzymatic way. This involves physical contact of the microorganism 

with the mineral (Rossi, 1990, p. 99). Evidence against direct leaching has been reviewed 

(Sand et al., 1995) with some of the evidence against it being that the bacteria contain a 

considerable amount of iron, even if the mineral substrate is iron deficient, implying that ferric 

iron plays a crucial role in leaching. No rigorous evidence has been given supporting the 

direct mechanism (Rossi, 1990, p.l 00). Biochemical evidence supporting the direct 
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mechanism is not sufficient to describe satisfactorily the interaction that is required between 

the bacteria and the mineral surface for destruction of the mineral lattice to take place (Rossi, 

1990, p.104). Even in the absence of iron, it is possible for another indirect mechanism to 

occur (Crundwell, 1996). Acid attack of the mineral is possible, producing dissolved 

hydrogen sulfide which can be oxidised by the bacteria. 

In the indirect mechanism the bacteria oxidise ferrous iron in solution to ferric iron, which in 

tum leaches the mineral. This two step process can be described by the following two 

equations: an electrochemical leaching reaction and a bacterial regeneration of ferric ions. 

Chemical ferric leach for the case of pyrite: 

[ 2.3] 

Bacterial oxidation of ferrous iron regenerating ferric: 

[ 2.4] 

Keller and Murr (1982) stated that it was not possible to have significant chemical leaching of 

pyrite by acidic ferric sulfate at 30 oc until ferric ion concentrations of more than 2 g . .e -l were 

present, but that leaching was significant under the same conditions when bacteria were 

present. There was, however, no indication of the ratio of ferric to ferrous iron in this work. 

It was noted by Crundwell ( 1996) that this type of experiment could not be used to distinguish 

between the direct and indirect mechanism, because in the absence of bacteria, the reaction is 

often limited by a lack in ferric iron. Nicol (1993) presented findings supporting the indirect 

mechanism for the oxidation of pyrite in acidic sulfate solutions by Thiobacillus ferrooxidans. 

The redox potential during the bacterial oxidation of a pyrite flotation concentrate was 

monitored with time, then a sterile experiment was run with the redox adjusted to the same 

values with H202, and the leach rates were found to be very similar for the bacterial and sterile 

runs. Boon (1996) found that in batch culture experiments with pyrite and leptospirillum-like 

bacteria, the specific oxygen utilisation rate was the same at equal redox potentials for bacteria 

growing on ferrous iron and pyrite so concluded that ferrous iron was the primary substrate 

for the bacteria and that the pyrite was chemically leached by ferric iron. 
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Although kinetic models for the direct and indirect mechanism both appear satisfactory in 

describing the kinetic behaviour of a bioleaching system, it is necessary to distinguish between 

the two mechanisms because the physical meaning of the kinetic parameters is different. In the 

indirect mechanism, different strains of bacteria can be characterized independently of mineral 

oxidation kinetics, allowing for the separate optimisation of each sub-process in the two step 

mechanism. 

2.3.2 Role of bacteria 

In the indirect mechanism, it has been postulated that the role of bacteria in the leaching 

medium is to keep the redox potential high by regenerat1ng ferric ions. (In some sterile 

leaching work (Tal, 1986; Fowler, 1996) the redox has been maintained by adding an oxidant 

such as hydrogen peroxide.) In a pyrite bioleaching system, the redox potential is usually 

maintained at about 670 m V vs Ag/ AgCl (Boon, 1996). 

In the presence of bacteria, it has been claimed that the oxidation of pyrite can occur at rates 

of 20 - 1000 times faster than if no bacteria are present (Dutrizac and MacDonald, 197 4, Boon 

and Heijnen, 1993 ). In using a strain of thermophilic bacteria, Larsson et al. ( 1991) tried to 

gain evidence in support of a bioleaching mechanism. They used a two compartment cell with 

a membrane impermeable to the bacteria and to pyrite separating the two compartments, and 

monitored the leach rate when the bacteria were separated from the ore and when they were in 

contact. The leach rate was much higher when the mineral and the bacteria were not 

physically separated, but on close examination it was found that most of the bacteria were not 

attached to the mineral surface. This finding provided no support for the direct mechanism 

but showed that it is obviously advantageous to have the bacteria in close proximity to the ore. 

This would ensure that the redox potential at the surface of the mineral particle would be kept 

high, so that a high leach rate could be maintained. The authors did not consider the 

possibility that the rate could have been limited by transport of iron through the membrane 

separating the bacteria and the ore. Keller and Murr (1982) also observed an increased leach 

rate in the presence of bacteria but again rarely observed any bacterial attachment. It has been 

suggested that the presence of bacteria modifies the electrochemical properties of the pyrite, 

probably due to the presence of substances on the mineral surface. These substances can also 

disturb bacterial activity and the dissolution of pyrite. This change in mineral properties is 
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evident, for example, in the lowering of the rest potential during the bacterial lag phase 

(Mustin et al., 1992). 

The activity of the bacteria is influenced by the conditions under which they are grown. 

Bacterial strains have optimum conditions of temperature, pH etc., and the ferric and ferrous 

concentrations also affect their activity. Increasing the ferric concentration will decrease the 

bacterial specific growth rate because of inhibition (Kelly and Jones, 1978). The opposite 

occurs for an increase in ferrous concentration (Boon and Heijnen, 1993), but there has been 

evidence of substrate inhibition in the presence of excess ferrous iron (Nemati and Webb, 

1996). 

2.3.3 Effect of electrochemist~ on bacteria 

Since it is postulated that bioleaching can be described by two electrochemical half reactions 

(Equations 2.3 and 2.4), it would be expected that electrochemical techniques could be used 

to investigate the fundamentals of bioleaching. The effect of applied potentials and currents 

on the growth and activity of bacteria and on bioleaching rates has been investigated using a 

number of different experimental apparatus, generally involving either a single or double 

compartment electrochemical cell. 

Different electrochemical measuring techniques have been used to deduce the rate of oxidation 

of ferrous to ferric iron by the bacteria and the rate of leaching of the sulfide mineral. In many 

cases the redox potential of a bioleaching system is monitored. An example of such work is 

that by Pesic et al. (1989) where a single electrochemical cell with pyrite and platinum 

indicator electrodes were used. The potential of the indicator electrodes and the redox 

potential of the solution was monitored during the oxidation of ferrous ions with oxygen in the 

presence of Thiobacillus ferrooxidans. The reaction rates were determined using the Nemst 

equation, with the equilibrium potential Eo and the value RT/zF obtained by calibration. 

Aguirre et a/.(1989) made use of an amperometric technique to study the bacterial oxidising 

ability. By controlling the potential at very small values to ensure that most of the iron present 

was in the ferrous form, the current required for the continuous reduction of ferric ions was a 

direct indication of the bacterial activity. Current can be measured very accurately even at 

small values, so this method can be more useful than other methods like the monitoring of 
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ferrous concentration, oxygen concentration or redox potential where big changes in initial 

substrate concentration are required for accurate measurements. 

Boon et al. (1995) determined the effect of the solution redox potential on the ferrous 

oxidation kinetics of Thiobacillus ferrooxidans and found that the rate of oxygen utilisation 

was a function of the ferric to ferrous ratio, the dependence taking the form of Equation 2.5. 

= 
K K [Fe3+] 

1 + • + -· . _. --=----=---
[Fe2+]- [Fe2

+ 1t K 1 [Fe2
+]- [Fe2

+ 1t 

[ 2.5 1 

In similar experiments where pyrite was added stepwise to a bacterial culture at 30 oc, the 

experimental data indicated a relationship between the rate of ferrous production and the 

ferric/ferrous ratio that was of an inverse form to the ferrous oxidation kinetics. There was 

considerable scatter in the results (Figure 2.1) but it is clear that the rate of bioleaching 

increases with an increase in the redox potential. 

Besides simply monitoring the potential, it is useful to impose and/or control it. This type of 

work can be used to determine reaction rates as a function of the potential. This is important 

in trying to measure the kinetics of the bacterial and chemical leach sub-processes in the 

indirect mechanism of bioleaching. 

Two compartment electrochemical cells have been used to constantly regenerate ferrous iron 

which the bacteria can use as a substrate. Blake et a/.(1994) cultured bacteria in the cathodic 

compartment of a cell, and when the bulk of their ferrous substrate had been oxidised, the 

electrochemical reduction of ferric iron was initiated by delivering a current of 30 A at a 

voltage of 4- 7 V. In this way the bacteria would be able to receive an unlimited supply of 

substrate and, in theory, would be able to grow until some other factor became growth 

limiting. When sufficient reduction had occurred, the current was stopped to prevent 

excessive acidification from occurring. There was an enhanced bacterial yield when the 

bacteria were exposed to an applied current. Similar experiments were conducted by Harvey 

(1996). In his work the redox potential was controlled, and ferric iron produced bacterially 

was reduced at the cathode. The current used to maintain the constant redox and the plateau 



Chapter 2 

...... ..-
rJ) ·~ 
Q)";' 

LL. 0 
;:::' E 
N 

Q) 0 LL. E ..... 

Figure 2.1 

Literature Review 29 

2.5E-05 

* 2.0E-05 
l X 

X 

" X X 1.5E-05 X 

>fx~ 
Xx X X 

1.0E-.05 

5.0E-06 

O.OE+OO +-----+----f-----+-----11------4 
500 550 600 650 700 750 

E /mV vs Ag/AgCI 

Rate of ferrous iron production as a function of redox potential in a pyrite 

bioleaching system (Hansford, 1995) 

current reached after about 8 hours was used to determine the oxidation rate, as it was 

assumed that this current corresponded to the exponential growth phase of the bacteria. The 

rate of ferrous oxidation was found to increase with increasing ferrous conc~ntration and 

decreasing ferric concentration. In an application of this type of work, Natarajan (1992) 

applied a potential to a culture of Thiobacillus ferrooxidans and then used the treated bacteria 

in bioleaching tests under applied potentials. Bacterial growth was enhanced when the applied 

potential was such that ferric ions were reduced to ferrous, as a substrate for the bacteria. 

Bioleaching was also enhanced under application of such negative potentials. 

Another interesting application of electrochemical techniques to bioleaching is the study of 

leaching of mineral electrodes in the presence and absence of bacteria and applied potentials. 

After such treatment, the surface morphology of pyrite electrodes was examined by Vargas et 

al. (1993) and the pitting observed was only pronounced when both bacteria were present and 

the anodic polarization potential of the pyrite electrode was high. A similar result was found 

by Munoz et a/.(1995) where a thermophilic microorganism was used in conjunction with an 
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anodic applied potential to leach chalcopyrite. Pitting was predominant at weak areas of the 

mineral. Besides the presence of pits which were similar in size and shape to the bacteria, 

there were also some pits more than ten times larger than the bacteria (Vargas et a/.,1993), 

but there was no evidence of bacteria in these pits. It was postulated that this phenomenon 

was due to an enhancement of the anodic dissolution once a pit had been initiated. 

2.4 Ionic Speciation and its Effect on Redox Potential 

In bioleaching systems, the concentration of iron is usually of the order of 10- 30 g.£"1
. At 

such high concentrations, iron solutions can no longer be considered ideal solutions, as the 

thermodynamics of ideal solutions strictly only apply to infinitely dilute solutions. 

In ideal solutions, the activities of the various electro-active species can be approximated by 

their concentrations. In non-ideal solutions it becomes necessary to use the activities 

themselves. This involves either estimating the activity coefficients or calibrating for the 

system in use. 

At high concentrations, and even more so at elevated temperature, ionic speciation must be 

taken into consideration. Ferrous and ferric iron form many complexes in an aqueous acidic 

sulfate medium, as is the case in bioleaching. The stability constants of these species vary 

(Dry and Bryson, 1988), but generally stronger complexes are formed by ferric iron, probably 

because of its greater charge density. Some of the major species present in bioleaching 

conditions are PeSO/, FeHSO/+, FeS04 and FeHSO/ (Dry and Bryson, 1988). The 

formation of complex species has the effect of reducing the activity of free ferric and ferrous 

ions, which reduces the rate of reaction. This is because complexed ferric sulfate ions have a 

reduced positive charge relative to Fe3+ ions, causing inhibition of electron transfer (Zheng et 

al., 1986). Also they are large and not readily adsorbed on the pyrite surface. 

The Nernst equation relates the measured potential to the ratio of activities of a redox couple. 

It is only valid for a single redox couple, so it must be assumed that a single reaction (e.g. 

ferric to ferrous conversion) dominates the redox reaction and that others such as the 

formation of complexes, have a negligible effect on the overall exchange current density, and 
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therefore the redox potential (Dry, 1984). When the Nemst equation is used for the 

ferric/ferrous couple in bioleach systems, the extent of ionic speciation needs to be predicted 

for both ferric and ferrous species, and it is likely that the proportion of free ferric iron will 

decrease to a greater extent than free ferrous iron as the total ionic strength and temperature 

increases. The prediction of uncomplexed ferric and ferrous activities can be difficult, and not 

necessarily very accurate. 

2.5 Summary 

Based on a review of the literature, much work has been done on the oxidation of sulfide 

minerals using chemical, electrochemical and bioleaching techniques. Electrochemical 

principles can be applied to bioleaching, and can be ur.ed to investigate each of the two sub­

processes in the indirect mechanism. Although there has been a fair amount. of investigation 

into the ferric leaching of pyrite, there is no leach rate data at potentials as high as those 

occurring in bioleaching. It is necessary to gain more information regarding the ferric leaching 

reaction in the bioleaching potential regime to validate the indirect mechanism. 
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3. MATERIALS AND METHODS 

3.1 Ore 

The pyrite used in all the tests was from Durban Roodepoort Deeps (DRD) gold mine. The 

presence of pyrite was confirmed by XRD analysis. Elemental analysis gave 33.3 % Fe and 

50.5 % S by weight (for pure iron disulfide 47% Fe and 53 % S is expected).· The particle 

size distribution (obtained by a Malvern instrument SB.OD) is given in Table 3.1. 

Particle size (JJ.m) % of particles 

106 14.3 

99- 144 39.8 

92- 123 59.1. 

85- 132 72.2 

79- 142 81.4 

Table 3.1 Particle Size Distribution 

The ore was treated in a number of different ways before use, and the pretreatment procedures 

are detailed in Section 5.2. 

3.2 Leaching Solutions 

Analytical grade sulfuric acid and de-ionised water were used to prepare a dilute acid solution 

of pH 1. 5. The iron solutions were prepared by dissolving laboratory grade ferric sulfate and 

AR grade ferrous sulfate in this acid. The exact concentrations of ferrous and ferric iron were 

determined routinely by titration (Appendix 1), and atomic absorption spectrophotometry was 

periodically used to confirm the titration results. 

In some cases the solution potential of the ferric sulfate was raised by electrolysis. This was 

done in a two compartment cell (Appendix 2) with the two compartments separated by an ion 

exchange membrane, or simply by using a glass cylinder as the cathodic compartment and a 

beaker as the anodic compartment, with the two separated by a fritted glass disc. Both the 
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anode and the cathode were made of graphite. The catholyte was dilute sulfuric acid and the 

anolyte was the required concentration of ferric sulfate solution in acid, prepared as above. 

Using a power supply, a current was applied between the electrodes causing the production of 

ferric iron at the anode, and hydrogen at the cathode. During the time span of the electrolysis 

there was no significant diffusion of ferric iron through the flitted disc. 

3.3 Solution Redox Potential 

If it is assumed that the ferric/ferrous exchange current density at the surface of a leaching 

particle is large enough to make the effect of the corrosion current due to leaching of the 

particle negligible, the surface potential of the particle can be considered equal to the redox 

potential of the solution at the surface (Dry, 1984). A measurement of the solution redox 

potential can thus be used to approximate the mineral surface potential. 

A platinum wire-Ag/AgCl combination redox probe (Crison) was used to monitor the solution 

redox potential. The electrode was filled with 3M LiCl solution, rather than the more 

commonly used KCl solution. This was done because .when the electrode is used in a 

ferric/ferrous system over extended time periods, ferric ions in particular can penetrate the frit 

and lead to the formation of precipitates such as jarosites inside the probe. When the probe 

did appear to be contaminated, the filling solution was removed and the probe soaked in HCl, 

then rinsed with distilled water and LiCl before being refilled. 

The measured solution potential can be related to the ratio of free ferric to free ferrous iron in 

an iron solution via the Nemst equation (Equation 1.3). The Nemst equation, however, 

relates the potential to the free ferrous and ferric activities, and the literature parameters Eo 

and RT/zF are ideal values, so the probe must be calibrated for the system in use. Since the 

redox potential is temperature dependent, as is the equilibrium between ferric and ferrous iron, 

the calibrations were carried out at constant temperature (of 25 °C, 40 oc and 60 °C) in a 

jacketed vessel (Figure 3.1). The temperature was controlled by an external water bath. Also, 

since the proportion of free ferric and ferrous species is dependent on the total iron 

concentration as well as the temperature and counter-ions present, calibrations were 

performed at different total iron concentrations. Ferric and ferrous sulfate solutions of similar 
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concentrations were made up. An aliquot of ferric sulfate of a suitable potential was pipetted 

into the jacketed vessel, the redox probe inserted and the system allowed to reach thermal 

equilibrium. Aliquots of the ferrous sulfate solution were added by pipette, the solution was 

well agitated by an overhead glass impeller and the measured redox potential was recorded 

once the system had stabilized. The measured redox potential was plotted against the natural 

logarithm of the ferric to ferrous ratio, and the slope and intercept obtained by regression gave 

the Nemst parameters RT/zF and Eo respectively. All the potential values are quoted with 

respect to the Ag/ Agel reference electrode. 

Because the Nemst equation can strictly only be used for equilibrium situations, the response 

time of the probe was determined to see if it would be suitable to use in a dynamic system. 

The probe was moved from a solution of one potential to that of another potential and the 
~ 

time taken for the probe output to reach a steady value was measured. 
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The redox potential was logged by a PC based data capture system at one second intervals. 

The measurement system is shown in Figure 3 .2. A high input impedance optically isolated 

amplifier was used to couple the electrode to the ADC on a single board microcomputer 

(Randall et al., 1993). The digitised value was transferred to the PC by serial communications 

on request and logged to a data file for subsequent processing. 

Isolation amplifier 
PC 

Microcomputer 

I I 
Data file 

[> ADC 0 

Redox probe 

Figure 3.2 Redox potential measuring system 

3.4 Experimental Procedure 

The dynamic leach experiments were carried out in the same 100 m£ jacketed glass vessel used 

for probe calibration (Figure 3.1). The temperature was controlled at 25 oc using an external 

water bath, and the solution was agitated using a glass impeller driven by an overhead electric 

motor. 50 m£ ferric sulfate solution were pipetted into the vessel and the probe inserted. The 

system was constantly stirred and once thermal equilibrium was reached, a known amount of 

ore (usually about 0.4 g) was added to the system and the redox potential monitored for the 

duration of the leach. The leaching experiments were generally carried out over a period of 

about 20- 30 minutes. 
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The leach rate was determined from an assumed reaction stoichiometry between ferric iron 

and pyrite, the total iron concentration and the measured redox potential. It was assumed that 

no precipitation of reaction products occurred, and that the particle size of the pyrite did not 

change over the course of the reaction, which is a reasonable assumption over short times. 

3.5 Rate Determination 

· There is evidence in the literature that the sulfur moiety in pyrite can form a number of 

products with valency ranging from 0 to +6 (i.e. so to SO/") (Sand et al., 1994). There is also 

evi.dence that the various oxidation states of sulfur can co-exist in the same system. To 

accommodate this in an overall equation, where parallel reactions occur in different 

proportions, the variable n is introduced. 

A general form of the reaction between pyrite and ferric iron can be denoted as follows 

FeS2 + (3n + 2)Fe3+ + 2nH20 ~ (3n + 3)Fe2+ + 2S0~012 + 4nH+ [ 3.1 ] 

for n = 0 to 4. 

With n = 0, only elemental sulfur is formed. 

[ 3.2] 

With n = 4, only sulfate ions are formed. 

[ 3.3] 

We define rFes
2 

as follows: 

dt 
[ 3.4] = = 

d[FeS 2 ] 

where 
d[Fe 2+] 

= - (3n + 3)r FeS = rFe2+ 
dt 2 

[ 3.5] 
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and 
d[Fe 3+] 

= (3n + 2)r Fes2 = rFel+ 
dt 

The Nernst equation 

E 
RT [Fe3+] 

= E +-In 
o zF [Fe2+] 

gives 

dE RT d [Fe3+] RT( l . d(Fe"]_ l . d(Fe'+ ]) 
= -·-In = 

dt zF dt [Fe 2+] zF [Fe3+] dt [Fe2+] dt 

Substituting [ 3.5] and [3.6] in [3.8] : 

or rearrangt.ng 

where 

. and 

dE 

dt 

rFeS2 

RT ((3n + 2) (3n + 3)) 
= zF . r Fes2 • [Fel+] + [Fez+] 

= 

zF dE -·-
RT dt 

(3n + 2) (3n + 3) 
-=-----:----'- + ....:..__ _ ___;_ 
[Fe3+] [Fe2+] 

[Fe2+] = 

[Fe3+] = 

[Fe total] 

[Fe3+] 
1 + .;;;....__~ 

[Fe2+] 
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[ 3.6] 

[ 3.7] 

[ 3.8] 

[ 3.9] 

[ 3.10] 

[ 3.11 ] 

[ 3.12 ] 

The rate of pyrite dissolution can thus be calculated if the rate of change of potential with time 

is known from the measurement of potential as a function of time, provided suitable calibration 

constants in the Nernst equation can be found and if the stoichiometry (i.e. n) is known and 

remains constant throughout the reaction. In this work it was assumed that all the solubilized 

sulfur was present as sulfate ions, i.e. n = 4. The rate expression [ 3.10 ] is thus reduced to 



Chapter 3 Materials and Methods 

rFeS2 
= 

zF dE 
-·-
RT dt 

14 15 
--+-­
[Fe3+] [Fe2+ ] 
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[ 3.13 ] 

zF /R T was determined from the probe calibration and the ferric and ferrous concentrations 

were determined from the measured potential and the total iron concentration. An iterative 

method was used to determine the time-dependent total iron concentration and is detailed in 

Appendix 3. 

In an experimental situation there is considerable scatter in the measured values of potential, 

so that dE/dt is prone to oscillations which are not characteristic of the system itself It was 

thus necessary to 'smooth' the curves ofE versus t which were obtained. A satisfactory curve 

fit of the raw E versus t data could not be found, so the data were converted to the form 

(E(O)/E(t)-1) where E(O) was the initial potential and E(t) was the potential at timet. This 

function was fitted by a function of the form y =A (ln(t))B, by varying the parameters A and 

B. In some cases where the experimentalvariables were changed a great deal, a better fit was 

obtained by the function y = A (ln(t))B + C. The objective function for the curve fitting 

procedure was satisfactorily small, typically in the range 0.0001 to 0.001 for about 1200 data 

points. An example of the curve fitting procedure is given in Appendix 4. 

The fitted values of A and B (and C) were used to calculate the values forE and dE/dt. These 

were substituted into Equation 3. 13 to calculate the rate of dissolution of pyrite in moles of 

pyrite per litre of slurry per second. The rate was normalised by dividing by the initial molar 

concentration of pyrite used in each experiment, assuming a molecular weight of 120 g.mor1
. 

The rates were plotted against the calculated redox potential E. 
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4. PROBE BEHAVIOUR 

4.1 Calibration 

The redox probe was calibrated at different iron concentrations and at 25 °C, 40 oc and 60 °C. 

The calibration curves of measured potential E versus ln([Fe3+]/[Fe2+]) were linear at 25 °C. 

Linear regression was used to determine the Nernst parameters, E0 and RT/zF. Typical values 

are shown in Table 4.1. The parameters differ considerably from the ideal values for standard 

conditions and change with the total iron concentration. This deviation from ideality is to be 

expected because the activities of the free ferric and ferrous iron are affected by the total ionic 

strength. The amount of speciation, particularly of ferric iron, increases with an increase in 

total iron concentration, particularly in a sulfate medium. Complexation with various sulfur 

species will also decrease the amount of free ions pr~sent, and hence affect the measured 

potential. 

Total [Fe] RT/zF Eo correlation 

mot..e"1 mV m V vs Ag/ AgCl coefficient, R2 

0.41 25.89 443.4 0.999 

0.29 24.96 446.9 0.999 

0.18 24.33 449.4 0.999 

0.12 23.61 454.2 0.997 

0.06 23.10 458.7 0.998 

standard values 25.7 573 

Table 4.1 Measured Nernst parameters at 25 °C 

At 40 o C the calibration curve deviated significantly from linearity while at 60 oc it appeared 

parabolic. An increase in temperature is expected to have a large effect on the activity of the 

ions present. This would be more noticeable at high redox potentials where the ferric form is 

dominant. Therefore the concentration of ferrous and ferric ions as determined analytically (at 

25 °C) would not equal the actual concentrations of these species at elevated temperatures. 
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To be able to use the solution redox potential to determine the concentration of ferric and 

ferrous species above 25 oc one needs to be able to accurately determine or predict the 

activities of these ions at the required temperatures. For this reason, all further work was 

carried out at 25 oc where the redox potential could be reliably interpreted. Future work 

would need to include temperatures over the range of about 10 - 50 °C, to cover the range in 

conditions found industrially. There is software available to predict ionic equilibria (e.g. JES.S, 

MINTEQ, ASPEN) and although their application can be limited, these programs could be of 

use in such work. 

4.2 Response Time 

The Nernst equation can strictly only be applied to solutions in equilibrium. In the leach 

system, the solution potential changes continuously so it was necessary to have some 

indication of the probe response time. The response time was defined as the time taken for the 

probe to reach 99% of its final steady state value. The results are given in Table 4.2. For a 

falling redox potential (as occurs during leaching), the probe responds very quickly, with 

larger changes in potential requiring a longer stabilisation period, as expected. In general, the 

probe responds sufficiently quickly to allow the Nernst equation to be used in this pseudo­

equilibrium situation where the potential is decreasing in a continuous manner. Rimstidt and 

Newcomb (1992) also used a combination Pt-Ag/ AgCl redox probe and found the response 

time to be between ten and twenty seconds. 
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Initial Potential Final Potential Time 

m V vs Ag/ AgCl m V vs Ag/ AgCl seconds 

671 608 1 

671 608 2 

671 590 2 

608 590 2 

696 670 1 

689 607 2 

687 590 2 

751 650 3 

802 682 4 

953 672 6 

682 734 5 

590 671 7 

608 671 6 

668 677 5 

607 687 11 

Table 4.2 Probe response time 
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5. DYNAMIC LEACH TESTS 

5.1 Initial Transient Behaviour 

Typical behaviour of the solution redox potential with time is shown in Figure 5. 1. The initial 

drop in the potential was very fast, and slowed down with time. When the rate of chjlllge of 

redox potential was converted to a rate of dissolution usirig Equation 3. 13, the initial large 

change was apparent as a very high initial rate reached within the first 10-30 seconds, then the 

rate decreased as the potential decreased (Figure 5.2). After the initial anomalously high rates, 

the rate of leaching or the corrosion current continued to decrease as the solution redox 

potential decreased, but at a much slower rate, suggesting that the rate of reaction between 

pyrite and ferric iron is a function of the solution potential. 
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Figure 5.1 Redox potential versus time 
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Figure 5.2 Rate versus redox potential 

The initial change in potential, and therefore the calculated initial reaction rate, seemed to be 

anomalously high. A series of leaches was carried out, using initial ferric sulfate solutions of 

different initial redox potential, with all other parameters constant. The graphs ofFigures 5.3 

and 5.4 indicate that there is a transient effect, regardless of the starting potential, but that 

there is an underlying tendency for the rate to increase as the redox potential increases. In 

order to generate leach data for redox potentials in a particular range, it is necessary to start 

leaching at a higher potential so that the initial transient can be ignored. Doyle et al. (1989) 

allowed a 12 hour equilibration period for pyrite electrodes in an electrolyte before any 

electrochemical experiments, because some of the pyrite samples did not have stable potentials 

initially. 
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The causes of this transient and finding ways to eliminate it were investigated. To test 

whether the initial high rate was the effect of fresh contact between the ore and the solution, 

consecutive leaches were carried out. In these tests, the ore was leached for 20 to 30 minutes, 

then the solution was decanted and fresh ferric sulfate solution was added, without washing 

the ore. The results are shown in Figures 5.5- 5.7. The very first leach in each set did behave 

slightly differently, with a slightly higher initial rate, yet subsequent leaches were very similar. 

This indicates that, perhaps with the exception of the first leach, the dissolution of fine surface 

particles or reactive surface layers does not contribute a great deal to the transient rate. It is 

more likely, however, that the first leach shows a slightly different behaviour because of the 

initial difference in the potential of the leaching solution and the pyrite particles. This will be 

discussed in more detail later . 
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The degree of reproducibility of the transient is shown on Figure 5.8. The graphs of potential 

versus time for leach tests started at different starting potentials are not perfectly 

superimposed. The potential drops a little too quickly, then the curves coincide. This 

indicates that the transient is dependent on the initial redox potential of the solution, although 

the curves coincide after very short times, times shorter than the transient period. 

740 -----------------------------·-----·---------~ 

720 

() 700 
C) 

~ 
~ 680 

tJ) 

> 
> 660 

.E 
w 640 

620 

600 
0 200 400 600 800 1000 1200 1400 1600 1800 

Time /seconds 

Figure 5.8 Reproducibility of transients 

A charging effect might also be used to partially explain the transient rate (Bockris and Reddy, 

1970). When the ore is added to a ferric/ferrous solution, non-Faradaic charging occurs at the 

ore-solution interface, forming a double layer of charge. There is a potential difference across 

this double layer, causing the flow of current both from the mineral to the ferric/ferrous couple 

and from the ferric/ferrous couple to the mineral. The net current flow is from the mineral to 

the ferric/ferrous couple, since the solution potential is initially greater than the mineral surface 

potential. This results in the mineral becoming increasingly positively charged, and the 

solution increasing its negative charge, and this has the effect of further reducing current flow 

because of the reduced potential across the double layer. Eventually the net current should 
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reach zero when the potential on either side of the barrier is equal, but the mineral is not 

ideally polarizable but also disintegrating and charged particles are leaving the lattice across 

the double layer. This results in a net corrosion current, the magnitude of which depends on 

the rate at which the charged species can leave the mineral. The charging currents could 

account for the initial rapid drop in solution redox potential, with a greater initial rate expected 

for a large difference in potential between the mineral and the ferric/ferrous solution. The fact 

that pyrite is a semiconductor and that a large mineral surface area is exposed would make the 

length of this initial transient period significant. 

It is also likely that fine particles and rough areas on the pyrite surface will dissolve at elevated 

rates compared to massi\'e pyrite. Other workers who have found high initial rates have 

attributed them to these surface effects. Wiersma and Rimstidt (1984) noticed a sharp drop in 

redox potential when ore was added to ferric chloride. Adding mon; ferric chloride to a half 

completed run did not produce the same initial sharp decrease as in the beginning, but the 

potential increased then continued to decrease with the same slope as it had before the 

addition. Pretreatment of the ore was not detailed in this work, so it is quite likely that the 

oxidation of surface species caused high initial rates. Linge and Jones (1993) observed large 

initial rates in the leaching of arsenopyrite and attributed these high rates in the first half hour 

to an initial oxidation of surface oxides. There was also an ongoing, slower dissolution with 

an irreproducible rate. In the experimental work of this thesis, the ore was pretreated (Section 

5.2) to reduce the possibility of surface fines and oxide layers, but it is still possible that some 

more reactive sites on the pyrite surface were selectively leached initially (possibly accounting 

for the small difference in potential versus time curves for the first leach in a cycle of leaches). 

Another possible reason for observing an initial transient is the formation of a sulfur rich layer 

on the pyrite surface. This has been discussed by Chander and Briceno (1987), Sato (1992) 

and Ralph (1997). A step-wise mechanism is proposed whereby ferrous iron is preferentially 

released from the ore faster than the sulfur moiety can be oxidised. The sulfide attempts to 

reach equilibrium with the solution by adjusting the metal/sulfur ratio, thus altering the 

metal/sulfur activity ratio in the surface layer (Sato, 1992). This results in the formation of a 

sulfur rich layer on the ore, which is consistent with the observation by Doyle et al. (1989) 

that a metal deficient surface layer was formed on the initial anodic polarization of pyrite. The 
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ferrous iron which is released to the solution is responsible for the rapid drop in potential. 

When the stable limit of non-stoichiometry of the sulfide is reached, it can no longer adjust its 

composition so dissolution of the mineral continues according to the expected stoichiometry. 

This hypothesis can also be used to explain why the initial sharp drop in rate is reduced when 

the ore is pretreated by washing and drying. During the washing procedure, the sulfur rich 

layer forms and persists during drying and for a short period of storage. If it is then added to 

a ferric/ferrous solution, the initial drop in potential is reduced. If the treated ore is stored in 

the presence of oxygen for extended periods, the sulfur rich layer becomes depleted by 

oxidation, so the initial surge is again observed. Williamson and Rimstidt (1994) also 

hypothesised that the differences in reaction rates when the ore was washed were due to a 

change in the electrochemical behaviour of the solid, rather than a change in the solution 

properties, but did not have enough data to give conclusive evidence supporting this. 

Nayak et al. (1995) claimed that the initial dissolution of pyrite in ferric sulfate is expected to 

be a transient phenomenon, characterised by a decay in reaction rate with time. This was 

deduced from polarization studies on pyrite: the mixed potential during the reaction between 

pyrite and ferric iron generally falls in the transient passivation region for pyrite oxidation. 

Meyer (1979) also found a similar transient curve on the initial polarization of pyrite from the 

rest potential. These results provide support for an electrochemical explanation for the 

transient. If this is indeed the case, then different masses of ore and different exposed surface 

areas should influence the duration of the transient. 

Further investigation of the transient could involve leaching ore, then removing the ore at a 

certain point and adding it to a leaching solution at the same potential as that from which it 

had just been removed. One would expect there to be no significant. charging current in this 

case. Also conventional electrochemical experiments such as cyclic voltammetry could be 

used to investigate the irreversibility of the reaction between pyrite and the ferric/ferrous 

couple. 

Although the transient has not been thoroughly investigated or conclusively explained, further 

investigation is beyond the scope of this work. The initial high rates are likely to be artefacts 

of the double layer charging, so the initial transient behaviour should not be used to interpret 
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the leach kinetics of pyrite. All the initial data has been shown and has been used in the 

calculation of the rate of leaching, but has not been used in any kinetic interpretations of the 

reaction. 

5.2 Pretreatment Procedures 

The pyrite used in the leaching experiments was treated in a number of different ways after it 

was found that when untreated ore was added to a ferric sulfate solution a very rapid drop in 

the solution potential resulted. Various washing procedures were used, to remove fines from 

the ore surface, and to remove highly reactive sites on the surface, such as rough, jagged 

edges. The ore was washed with distilled water, ferric sulfate or sulfuric acid, and dried in air, 

with or without using acetone to dehydrate the surface. A suspension of the ore in ethanol 

was treated by ultrasound. The graph in Figure 5. 9 shows the potential versus time data for 

untreated pyrite and pyrite washed with distilled water and dried with acetone. Within the 

variability of the experiments, there was no significant difference between the different 

pretreatment procedures, but all lessened the initial sharp drop observed when untreated ore 

was used. For convenience it was decided to simply wash the ore in distilled water, then rinse 

it in acetone and allow it to dry in air for further testwork. 

Williamson and Rimstidt (1994) also noted a change in reaction rate when they rinsed their 

pyrite with a few millilitres of distilled water between experiments. The rate constant dropped 

from one experiment to the next. The large reduction in the rate constant could not be 

explained by the negligible change in surface area of the pyrite. On the basis of these and 

other experiments, Williamson and Rimstidt postulated that the change in rate constant with 

time which they observed was because of a change in the electrochemical behaviour of the 

pyrite, rather than that of the solution. 

Other harsher methods could be investigated, such as soaking the ore in warm HF (McKibben 

and Barnes, 1986) and it could be useful to examine the ore before and after treatment by 

SEM, but such studies have been done and have shown that without pretreatment the pyrite 

surface is coated with fine particles and that surfaces are rough, hence susceptible to rapid 

leaching. Some SEM work done on the pyrite before and after leaching in this work showed 
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similar characteristics on the ore surface (Section 5.8) though with the short term leaching 

experiments there was no noticeable deformation of the surface after leaching. 
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Figure 5.9 Redox potential versus time for washed and unwashed ore 

5.3 Mass Transfer 

At low stirring rates, the reaction between ferric iron and pyrite was under mass transfer 

control. As the stirring rate was increased, there was no significant effect on the rate (Figure 

5.10). A stirring speed which was beyond the mass transfer control regime was chosen and 

used for all the experiments. 
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Figure 5.10 Effect of stirring rate on the measured potential 
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5.4 Reproducibility of Data 

A single experiment was replicated to determine the spread in results. Variability in this work 

was expected, because crushed pyrite is not homogeneous, in terms of its elemental 

composition, surface structure and semiconductor properties. Figure 5.11 shows the 

variability of the reaction rates obtained for a set of experiments where 0. 413 ± 0. 004 g pyrite 

where leached in 50 ml 0.38 M ferric sulfate. The variability in reaction rate normalised to the 

pyrite concentration (assuming a molecular mass of 120 g.mol"1
) is of the order of 7 %. This 

variability represents the uncertainty in the experimental work, since it is much larger than any 

errors associated with the calibration procedure. 
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Figure 5.11 Reproducibility of experiments 

5.5 Total Iron Concentration 

Leaching tests using ferric sulfate solutions of different total iron concentrations but with the 

same starting redox potential were carried out. The effect of the total iron concentration is 

shown in Figures 5.12-5.13. The rate does not appear to depend on the total iron content. 

Garrels and Thompson (1960) also found the rate to be independent of the total iron 

concentration, and in the work of Zheng et al. (1992) it also appears that at iron 

concentrations higher than about 0.05 M the rate becomes independent of the iron 

concentration. If there is sufficient ferric iron in the system so as not to be rate limiting, the 

same rate will cause a larger drop in redox potential when the' total iron concentration is less, 
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because an increase in the amount of ferrous iron will have a greater effect on the ratio of 

ferric to ferrous iron. The fact that the rate is independent on the total iron content indicates 

that the reaction is not under chemical or diffusional control, but that it is likely to be under 

electrochemical control, with charge transfer at the mineral surface being rate limiting. · 
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5.6 Ore Mass 

A higher concentration of pyrite, corresponding to a higher surface area, causes a faster drop 

in the potential. This change in the potential drop is to be expected if there is a charging effect 

responsible for the transient rates. When the rate is normalised with respect to the pyrite 

content there is no significant effect of ore concentration on the specific rate over the time 

span of the experiments (Figures 5.14 and 5 .15). This, along with the fact that the total iron 

concentration does not affect the rate, indicates that ihe rate-limiting step is probably electron 

transfer between the ferric iron and the pyrite rather than chemical control by the reactants. 
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5. 7 Reaction Stoichiometry 

In all of the above work, it was assumed that the reaction stoichiometry remained constant and 

that sulfate ions were the only sulfur product. The formation of elemental sulfur is possible, 

especially at low potentials and it is possible that the reaction stoichiometry could change 

during the course of the reaction, or under different experimental conditions. The effect of 

using different values for n, the stoichiometric coefficient in Equation 3.1, on rFeS
2 

is shown 

in Figure 5.16. The leach rate when n had a value of 4 (only sulfate formation) was lower than 

when n was assigned a value of 0 (only elemental sulfur production). Thus the leach rates 

which were obtained in this work represent the lowest possible values, even if reactions of 

different stoichiometries were proceeding simultaneously. It is interesting to note that the rate 

of production of ferrous iron is hardly affected by a change in the reaction stoichiometry, 

because of the relationship between rFe2+ and rFeSf There is an increase in rFe2+ ofless than 

0.03% as n decreases from 4 to 0. This may indicate that the transfer of an electron to ferric 

iron is rate limiting, and that the overall reaction rate is not limited by the oxidation of the 

sulfur species. 
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5.8 Scanning Electron Microscopy 

Before leaching (after washing) most of the pyrite grains appeared smooth, with only a small 

amount of surface deposits (Figure 5.17). After about 20 minutes of leaching, there was little 

change to the surface appearance, although many of the grains appeared smoothed or abraded. 

A sample ofwashed ore was added to a ferric sulfate solution (0.4 M) of redox potential about 

63 0 m V and allowed to leach in a sealed bottle for 6 weeks. After this time, the surface was 

noticeably deformed, with many pits (Figures 5.18-5.20). The surface structure was very 

similar to that of a bacterially leached pyrite sample, indicating that bacterial action is not 

necessary for pitting to occur. A micrograph of bioleached pyrite (Drossou, 1986) is shown 

for comparison (Figure 5.21). 

Figure 5.17 Pyrite before leaching, showing smooth surface 
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Figure 5.18 

Figure 5.20 

Figure 5.21 
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Figure 5.19 

Figures 5.18- 5.20 Pyrite after 

leaching for 6 weeks, showing pits in 

the surface 

Pyrite bioleached for 28 days, showing pits (Drossou, 1986) 
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6. KINETICS OF FERRIC LEACHING OF PYRITE 

6.1 Comparison of Literature Data 

As has been discussed in the literature review, thete has been much investigation into the ferric 

leaching of pyrite. However, the leaching has been carried out at much lower potentials than 

those occurring in bioleaching, and the leach rate has not been linked quantitatively (or 

sometimes even qualitatively) to the redox potential. Previously published work was re­

examined in two ways, to determine whether the rates of reaction between ferric iron and 

pyrite found in the literature can be considered to be a function of the redox potential, as 

hypothesised in this thesis. . The first was to r~··analyse raw experimental data and express the 

rate as a function of the ferric to ferrous ratio. In analysing the literature data it was preferred 

to use the raw data presented and not any derived rate laws or calculated initial rates, because 

different assumptions were used by different researchers, making any meaningful comparison 

difficult. Secondly, the rate laws stated in the literature were used to find the leach rates at 

particular values of the ferric/ferrous ratio. Even though the rate laws were not derived for 

the potential range prevalent in bioleaching, the qualitative trend in the leach rates over a large 

range of potentials was predicted using these laws, to see what types of dependence the rate 

had on the potential. 

6.1.1 Re-analysis of Raw Data 

Data in previously published work by the following authors was re-analysed : 

Wiersma and Rimstidt ( 1984) 

Mathews and Robins (1972) 

McKibben and Barnes (1986) 

Tal (1986) 

Zheng et al. ( 1986) 

Kawakami et al. (1988) 

Boogerd et al. ( 1991) 
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In most cases concentration versus time data were available, and the rate of leaching was 

determined by taking the tangent to ferrous concentration versus time profiles, and converting 

the rates to units of moles of ferrous iron produced per square metre of pyrite per second. 

Conversion between different units is given in Appendix 5. In most cases, assumed rate laws 

were not used because the method of analysis has been found to have a great effect on the 

results (Rimstidt and Newcomb, 1992). Even the use of a simple function to fit concentration 

versus time data can introduce large errors. For example, Rimstidt and Newcomb (1992) used 

data from relatively short times to determine the initial rate of leaching of pyrite by ferric iron, 

but found that they could use a linear relationship between the ferric concentration and time 

for the first 15 minutes of their experiments, or a parabolic fit for the first hour of their 

experiments. Neither fit predicted the measured initial concentration, or the experimental data 

after the initial period. The Arrhenius equation and experimentally determined activation 

energies were used to convert rates obtained at higher temperatures to 25 °C. Table 2.2 in 

Chapter 2 lists the experimental conditions under which the data were obtained, as well as 

activation energies where these were available. Figure 6.1 shows a compilation of the re­

analysed data. 
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Wiersma and Rimstidt (1984) used a dynamic redox potential measurement technique to 

determine the leach rate. Their work, however, was different to the experiments of this thesis 

in a number of ways: ferric chloride was used as the leaching agent, the iron concentration 

was of millimolar level, the solution redox potential was less than 520 mV versus Ag/AgCl, 

the solids concentration was about five times lower and the experiments were carried out over 

much longer times. Wiersma and Rimstidt also observed a very sharp initial change in the 

redox potential and therefore they ignored the first 7 5 minutes of each experiment when 

deriving leach kinetics. The same trend was observed as in this thesis, that is, a very high 

initial rate which decreases as the redox potential decreases. Wiersma and Rimstidt found that 

the leach rate was first order with respect to ferric iron concentration, but it must be 

emphasised that the initial data was ignored, and also the range of redox potentials used were 

much lower than those in this thesis. 

It was assumed that [Fetot]initiai = [Fe3+]initial and that the average particle diameter was 112.5 

J.lffi. The potential versus time data were analysed in the same way as in this thesis, with the 

first available data point after 492 seconds, but the theoretical Eo and RT/zF values as used by 

the authors (E0 = 573 mV (Ag/AgCl) and RT/zF = 25.69 mV) were used, as the potential 

measuring system was not calibrated for the system. A change in these parameters does cause 

a significant change in the rate. 

The data of Mathews and Robins (1972) was available as a plot of ferric iron concentration 

versus time, on a logarithmic scale. Because of the choice of scale, large errors were 

introduced when reading data off the graph. The set of data re-analysed was obtained at 30 oc 
and an activation energy of 92 kJ.mor1 given by Mathews and Robins was used to extrapolate 

the data to 25 °C. The leach rate was calculated from the change in ferric iron concentration 

with time, then multiplied by -15/14 to get the rate of ferrous production. The first data point 

available was after 5 minutes, and the rate of leaching increased very sharply with the redox 

potential. 

McKibben and Barnes (1986) found that the initial rate of oxidation of pyrite by ferric iron 

was proportional to the square root of the ferric iron concentration. Ferrous iron versus time 
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and total iron versus time data were re-analysed for a single experimental run, and the redox 

potential was seen to influence the leach rate (Figure 6.1). 

In the re-analysis, it was assumed that [Fetot] remained constant at 2mM, that [Fe2+]initial = 0 

and that the average particle diameter was 187.5 J.!m. The first available data point was after 

100 minutes. From the available data, the ferric iron concentration profile was determined, 

hence the ratio of ferric to ferrous iron could be determined. The rate of leaching could not be 

deduced simply from the change in ferrous iron concentration with time because of the scatter 

in results. Ins~ead, the curve of ferrous iron concentration versus time was fitted with a 

parabola, as suggested by McKibben and Barnes, with the function 

[Fe2+] = -9x1o-ue + 2x10"5t + 0.035 being the most suitable (Figure 6.2). The rate of reaction 

was found by differentiating this function i.e. d[Fe2+]/dt = -18x10"11t + 2x10"5 
. 

McKibben and Barnes found the initial reaction rate as the value of d[Fe2+]/dt at time zero. 

In the re-analysis of this data, the whole experiment was considered, not just the initial rate. 

Details of the data manipulation are given in Appendix 6. Negative leach rates were 

obtained below about 409 mV (Ag/AgCl). The leach rates were extrapolated to 25 °C 

using an activation energy of 60.3 kJ.mor1 (McKibben, 1984). This activation energy 

is lower than that of Mathews and Robins (1972), Wiersma and Rimstidt (1984) 

and Kawakami et al. {1988) but is similar to that of King and Perlmutter (1977) 

who obtained an activation energy of 52.75 kJ.mor1 for pyrite leaching in 

a FeCh- HCl system. The specific rate of leaching increased as the ferric to ferrous 
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ratio increased, when an entire experimental run was considered. McKibben (1984) found that 

the initial rate did not depend on the ferric/ferrous ratio, but it must be noted that he used the 

initial rate, which has been shown in this thesis to be a transient phenomenon and should not 

be used to deduce rate laws. 

Tal (1986) held the solution potential constant using H202 and quoted leach rates at particular 

values of the ferric/ferrous ratio. Each point on the graph of Tal's data on Figure 6.1 

represents a single experiment. Due to the lack of raw data, the data quoted by Tal could not 

be reworked. The rates were quoted as (mg pyrite).(g pyrite)"1.(hour)"1
. To convert these 

rates to rates per unit surface area, an average particle diameter of 30 J..Lm was assumed, since 

the particle size distribution was given as 87% less than 38 J..Lm. Also, since no activation 

energy was given, it was assumed that the activation energy was 95 kJ.mol"1
, in accordance 

with data of Mathews and Robins (1972), Wiersma and Rimstidt (1984) and Kawakami '21 a/. 

(1988). The rate ofleaching was found to increase as the redox potential increased. 

In the work of Kawakami eta/. (1988), ferrous concentration versus time data were analysed. 

The rate was calculated as the change in ferrous iron concentration divided by the change in 

time. It was assumed that the total iron concentration remained constant at 0.5 M and that the 

average particle diameter was 50 J..Lm. The activation energy was 95 kJ.mol"1
. The first 

available data point was at 30 minutes and this first data point gave an anomalously high rate, 

but this may have been due to the fact that it was assumed that the initial ferrous concentration 

was zero, whereas even a small ferrous concentration could have significantly affected the 

leach rate. Again the leach rate increased with redox potential. This is consistent with the 

observation by the authors that ferrous iron inhibited the leach rate. 

Boogerd eta/. (1991) did kinetic analysis of leaching using initial leach rates. In an analysis of 

the data in this work, the quoted initial rates were not used, but the ferrous iron versus time 

and total iron versus time data that were presented were used to find the dissolution rate 

versus solution redox potential. The first data point available was after one hour of leaching. 

The ferric iron concentration was calculated from the experimentally determined total iron and 

ferrous iron concentrations. The leach rate was calculated as the change in ferrous iron 

concentration with time. Details are given in Appendix 7. No activation energy was given in 
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this work, but there was data available for initial rates at various temperatures. From this data, 

activation energies were calculated and it was found that the activation energy increased with 

a decrease in temperature. At around 30 oc the activation energy was in the region of 

100 kJ.mort, but because of the large spread in values, a value of 95 kJ.mor1 (in accordance 

with Mathews and Robins (1972), Wiersma and Rimstidt (1984) and Kawakami et al. (1988)) 

was used to extrapolate the leach rates from 70 oc to 25 °C. The rates calculated from this 

data are higher than other literature values for a similar range in ferric/ferrous ratio, but the 

trend is still the same i.e. the leach rate increases with an increase in redox potential. 

Although Zheng et al. (1986) did not provide raw data in their work, they did provide data of 

rate versus redox potential. Unfortunately they did not give any form of calibration to convert 

from potential to the ferric/ferrous ratio, and did not explicitly mention the electrode to which 

their quoted poter.cial values were referenced. The qualitative dependence of rate versus 

potential for a set of experiments run at 25 oc with a total iron concentration of0.09 M were 

included in Figure 6.1 for comparative purposes. Again the rate increased with the redox 

potential. 

The objective for re-analysing previously published data was to investigate the validity of the 

hypothesis that the rate of ferric leaching of pyrite is a function of the redox potential. As can 

been seen in Figure 6.1, there was a large variation in the results obtained by different 

investigators but generally the pyrite leach rate increased with an increase in the ferric/ferrous 

ratio or redox potential. In most cases there was an anomalously high initial leach rate 

characterised by a sudden large drop in the redox potential. In many cases this was explained 

by the existence of reactive sites on the ore surface so in many of the original analyses, the 

initial period was ignored because of these high rates. In the case of McKibben and Barnes 

(1986) and Boogerd et al. (1991) the leach rate appeared to reach a maximum at high 

potentials. Zheng et al. (1986) also predicted that a maximum rate would be reached at high 

potentials and this was reflected in their model, but the available data points for rate versus 

potential could also be interpreted as by Tal (1986) where no upper limit of rate is observed 

over the range of potentials used in the experiment. It must be emphasised that a variety of 

experimental techniques were used, and factors such as the leaching medium (ferric sulfate or 

ferric chloride), particle size, iron concentration, temperature and pyrite source could all have 

an effect on the observed leach rate. The spread in the results is thus to be expected. 
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6.1.2 Rate Laws in the Literature 

Rate laws of previously published work and their corresponding rate constants were used to 

find the leach rates at particular ferric/ferrous ratios. The rate of pyrite leaching has been 

related to a range of parameters, including ferric iron, total iron and the ferric/ferrous ratio. It 

must be noted that the rate laws in the literature were derived for conditions often far from 

those encountered in bioleaching, so they would not be expected to be valid in bioleaching 

regions. They were still extended to regions outside of those for which they were derived, to 

see the qualitative dependence of the rate law over a large potential range. 

Wiersma and Rimstidt (1984) found the rate depended linearly on the ferric iron 

concentration. In their work the initial ferric iron concentration was 0.001 molal, and it was 

assumed that the total iron concentration remained constant at this value. A graph of rate 

versus ln([Fe3+]/[Fe2+]) is shown in Figure 6.3 for a number of total iron concentrations. The 

rate is very dependent on the total iron concentration, but follows the shape of a switching 

function, reaching a saturation level at high potentials and tending to zero at low potentials. 

This rate law was derived for values ofln([Fe3+]/[Fe2+]) between about -8 and -5, which 
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Figure 6.3 Rate versus ferric/ferrous ratio, using r = K[Fe3+] from Wiersma and Rimstidt 

(1984) 
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correspond to very low potentials (<500 mV (Ag/AgCl)) and in this region the rate law 

predicts very small rates. In Figure 6.1, where raw data was analysed, the initial rates 

appeared high, but this is probably due to the transient effect noted by Wiersma and Rimstidt 

and also observed in this thesis. 

The rate law of Mathews and Robins ( 1972) relates the rate to the ratio of ferric to total iron. 

Where the total iron is assumed to stay constant, this is essentially the same form of rate law 

as that ofWiersma and Rimstidt (1984) and the behaviour is the same. 

Boogerd et al. ( 1991) used an empirical rate equation of the following form: 

= K. [FeS2 ] • [Fe
3
+] 

30 + [FeS2 ] 95 + [Fe3+] 
[ 6.1) 

Figure 6.4 shows a comparison of the rate law predictions with the experimental results which 

were analysed as discussed above in Section 6.1.1. The rate law is of the same qualitative 

trend as the experimental points, reaching a maximum value at higher ferric/ferrous ratios, but 

it does not fit very well quantitatively. It must be remembered though that the rate law was 

derived from the initial rates of many such sets of data, and the parameters obtained would be 

those suitable for most of the experimental data, and not necessarily comply to one 

experimental run. 
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It was stated by McKibben (1984) that there was no dependence of the initial leach rate of 

pyrite on the redox potential. Initial rates, however, are prone to include the effects of 

transients, so this statement is possibly incorrect. McKibben and Barnes (1986) derived a rate 

law from initial rate data. Their ferrous iron concentration versus time data were fitted with a 

parabola, and the initial rate was the value of the derivative of the parabolic function as time 

tended to zero. A rate determined in this manner would be affected by the presence of an 

initial transient, as this would affect the function used to fit the data. As can be seen from 

Figure 6. 5 the rate law predicts rates which are much higher than those obtained by re­

analysing experimental data. This is not surprising. however, since the rate law predicts initial 

rates, which are expected to be higher. 
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The rate law suggested by Tal (1986) is different to those mentioned above. The dependence 

was as follows: 

= K( [FeJ+ ]J o.682 

[Fel+ 1 [ 6.2] 

This rate law predicts a continuous increase of rate with the ferric/ferrous ratio (Figure 6.6), in 

the same way that the electrochemically based Butler-Volmer equation would (Section 6.3), 

without reaching a limiting value: The qualitative trend for the experimental data was as 
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predicted, but correlation was not good for higher redox potentials. Tal acknowledges that at 

higher potentials there is some discrepancy in the rate law. 
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Figure 6.6 Experimental data and rate law of Tal (1986) 

Zheng et al. (1986) expressed the rate of ferric leaching of pyrite as a function of the 

ferric/ferrous ratio as well as the total iron concentration. The rate law at constant sulfate 

concentration is as follows: 

(
[Fe2

+ ])~ 
k -k 

1 z [FeJ+] 
= K·------------------~ 

1 ([Fe
2
+ ]Ji ---=-. + kJ + k4 3 

[FeJ+ ]i [Fe +] 

[ 6.3] 

This model is the Hougen-Watson 'dual-site' rate expression based on the Langmuir­

Hinshelwood adsorption isotherm. In this model, ferric and ferrous iron compete for 

adsorption on dual active sites on the surface and the driving force for the reaction is assumed 

to be the surface concentration of adsorbed species rather than the concentration of species in 

solution. This rate law thus predicts chemical control of the rate (rather than diffusional or 

electrochemical). The rate law fits the given data of Zheng et a/. very well (Figure 6. 7) but 

predicts that the rate becomes constant at high potentials (in the region of 700 mV (SHE)). 

This is not necessarily the case, for the data published do not explicitly show this behaviour. 
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Another dependence on the ferric/ferrous ratio has been given by Williamson and Rimstidt 

{1994). These authors compiled rate data over a large range of ferrous and ferric 

concentrations and a range ofln([Fe3+]/[Fe2+]) of about -3.6 to 5.7. Two different rate laws 

were proposed, allowing for the presence of dissolved oxygen and for purging with nitrogen. 

These laws are as follows: 

[Fel+ )o.9J A 
= 10-6.07 . -

[Fe:z+ lo.4o V [ 6.4) 

in the presence of dissolved oxygen 

[ 6.5) 

for a nitrogen-purged solution. 

These rate laws predict a rate which increases with redox potential, not reaching a saturation 

level. In the presence of dissolved oxygen, the rate increases at a slower rate (Figure 6.8). 

This type of rate dependence is similar to that expected in an electrochemical system where the 

Butler-Volmer equation applies. Williamson and Rimstidt suggest that there is indeed an 

electrochemical mechanism involved in ·the oxidation of pyrite, involving electron transfer as 

the rate determining step. 
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The above analysis of literature leaching rates and rate laws indicates that it could be valid to 

express the rate as a function of the ferric/ferrous ratio (or potential), rather than as a function 

of other commonly used parameters such as ferric iron. Most of the rate laws· show a similar 

trend when related to the ferric/ferrous ratio, even though they were not derived at high 

potentials. The rate is low at low potentials, then has a rapid increase, reaching a maximum in 

most cases. It is also evident that there are no rate laws in the literature which are suitable to 

predict the rate of ferric leaching of pyrite in the case of bioleaching, where the potentials are 

high. 

In addition to reworking the experimental data of other researchers, representative data of this 

thesis were analysed according to the derived literature rate equations. McKibben and Barnes 

(1986) deduced that the pyrite dissolution rate depended on the square root of the ferric iron 

concentration. Using their method, the ferrous concentration versus time data was fitted with 

a parabola, and the initial rate determined by taking the derivative of the fitted equation at time 

zero. A parabolic fit of representative data of this thesis was not satisfactory at short times. 

Nevertheless, the log of the initial rate determined in this way was plotted against the log of 

the initial ferric iron concentration, and qualitatively the same trend was observed as by 

McKibben and Barnes : the initial rate increased with the ferric iron concentration. Such a 
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plot is shown in Figure 6.9, where the slope of the graph is 0.35, indicating that the initial rate 

is a function of the ferric iron concentration raised to the power 0. 3 5, which is less than that of 

McKibben and Barnes. This type of comparison, however, is purely qualitative, because the 

experiments of McKibben and Barnes were run over much longer times where the ferric iron 

concentration changed substantially, and also the parabolic fit used did not fit my data well at 

very short times, because of the initial transient effect. If one considers a plot of rate versus 

the square root of ferric concentration, without plotting the transient, the non-linear 

dependence is clear (Figure 6.1 0). 
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Wiersma and Rimstidt ( 1984) claimed a dependence of the rate on the ferric concentration, but 

this also did not appear to be the case. Perhaps at low redox potential values and after long 

times (from which they deduced the dependence) this could be considered an approximate rate 

dependence. 

Mathews and Robins (1972) also predicted a linear dependence on ferric iron. They proposed 

the rate equation 

which can be integrated to 

d[Fe3+] 

dt 
= - k(Fe3+] 

[Fe3+] 
In = - kt 

[Fel+ lo 

[ 6.6) 

[ 6.7 J 

implying that a plot of the logarithm of the ratio of ferric iron to the initial ferric iron 

concentration against time should be linear. Figure 6.11 shows that in the case of my work, 

this is not the case, even after sufficient time for any transient effects to be over. Again the 

time scale of Mathews and Robins experiments was much longer and the ratio of ferric to total 

iron changed a great deal, unlike in this thesis where the change was very small. In this thesis, 

the initial ferric iron concentration could be approximated by the total iron concentration 

because of the high redox potentials used. 
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Tal's data (1986) fitted the rate law 

[ 6.8) 

In plotting the logarithm of the rates obtained in my work against the logarithm of the 

ferric/ferrous ratio, this rate law was not validated, but possibly over longer times and at lower 

values of the ferric/ferrous ratio it would hold. 

Boogerd et al. ( 1991) used an empirical model to describe ferric leaching of pyrite. Their 

model was of the form 

[FeS1 ) [Fe3
+ I 

r = a · · _..:;---;:--
b + [FeS1 ) c + [Fe3+) 

[ 6.9) 

and this equation fitted my data reasonably well, although the parameters a, b and c were very 

different to those ofBoogerd et al .. Unfortunately this type of model is not particularly useful 

since it is empirical and not mechanistically based. 

Williamson and Rimstidt (1994) and Zheng et al. (1986) suggested that the rate of ferric 

leaching of pyrite was a function of the ratio of ferric to ferrous iron. Williamson and Rimstidt 

suggested that an electrochemical mechanism was operative, with charge transfer being rate 

limiting. Two different but similar rate laws were proposed, one in the presence of dissolved 

oxygen and one in a nitrogen purged system. The rate law in the presence of dissolved oxygen 

. was found to fit only some of the data of this thesis well, but predicted a rate higher than the 

initial transient rate, which is not feasible. Zheng et al. (1986) proposed that the rate was a 

function of the potential and the total iron concentration, but their model was based on a 

purely chemical mechanism. The form of the model was suitable to predict the results in this 

thesis, but did not serve to elucidate any electrochemically based mechanism. Also the model 

makes use of four variable parameters, and these took on a wide range of values when the 

model was used to fit data of different experimental runs in this thesis. 
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6.2 Bioleaching versus Sterile Rates 

As a comparison between typical bioleaching rates and the chemical leaching rates obtained in 

this work, a typical curve of specific rate of dissolution versus the redox potential was 

superimposed on the plot of Figure 2.1 (Hansford, 1995) and is shown in Figure 6.12. 

Excluding the initial transient, the potential range covered in this work falls in the region of the 

potentials found in pyrite bioleaching systems. Higher potentials will still need to be 

investigated. Bearing in mind that the chemical and bioleaching experiments were carried out 

with different experimental arrangements and with different pyrite, there is a remarkable 

agreement in the magnitude of the rates. Although other bioleaching data is available in the 

literature (e.g. Mustin et a/., 1992, Chang and Myerson, 1982), it is not of a suitable form to 

test whether the potential is the rate-controlling parameter. The comparison with the data of 

Hansford (1995), however, indicates that it is possible to achieve characteristic bioleaching 

rates in an abiotic system provided that the redox potential is kept sufficiently high. 
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6.3 Kinetic Models 

There are several ways in which the reaction rate between ferric iron and pyrite can be 

measured, and several ways in which the data can be analysed. Unfortunately, the rate laws 

and rate constants derived from different experimental techniques (as seen in the literature 

analysis in this thesis) and different methods of analysis (Rimstidt and Newcomb, 1992) are 

subject to a wide variation, qualitatively and quantitatively. Ideally, the rate law should be 

consistent with all experimental data, irrespective of how it was derived, and should be valid 

over a large range of experimental conditions. 

Often rate laws are empirical and not explicitly related to the reaction mechanism. Usually this 

is the case because the reaction mechanism is complex or poorly understood. In the reaction 

between ferric iron and pyrite, various models have been proposed (Table 2.2) but few are 

mechanistically based. Those which are deserve further discussion. 

Zheng et al. (1986) found the Haugen-Watson 'dual-site' rate expression provided a suitable 

fit to their data. This approach is valid when the rate determining step is purely chemical and 

assumes that the driving force for the reaction is the surface concentration of adsorbed species 

rather than the concentration of species in solution. Essentially the model describes the 

competition of ferric and ferrous iron for adsorption on dual active sites on the pyrite surface. 

When a ferric ion is adsorbed onto two adjacent active sites an activated ferric complex is 

formed. This is decomposed by electron transfer to produce an activated complex of ferrous 

iron, which also decomposes to allow the desorption of ferrous ions back into the solution. 

The rate limiting step is the chemical reaction on the pyrite surface. The model predicts that 

the rate of pyrite oxidation increases with an increase in the redox potential, and this was 

supported experimentally. The model also predicts that at high potentials the rate will be 

independent of the potential, but the experimental data available did not show this. It was 

noted by Zheng et a/. that their experimental data could also be fitted by several other curves. 

The same model was used to fit some typical data of this thesis, but it was found that the rate 

constants were subject to a large variation, and were also completely different to those 

obtained by Zheng et a/.. In some cases the model did not appear suitable. 
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.. 
Williamson and Rimstidt (1994) had a different approach to modelling their rate data. Instead 

of fitting a theoretically based equation to the experimental data, they determined rate laws by 

multiple linear regression and then explained the possible mechanistic implications. 

Williamson and Rimstidt expressed the rate as a function of the ratio of ferric to ferrous iron, 

te. 

[ 6.10 ] 

In formulating a mechanism it was necessary to know whether the process was 

electrochemical or one involving molecular adsorption. They found that a simple Langmuir 

isotherm model for competitive site-specific adsorption between ferric, ferrous and hydrogen 

ions was not suitable to explain the kinetics since they could not demonstrate saturation of the 

mineral surface by ferric iron , even over a six order of magnitude range in ferric iron 

concentration. It was possible to fit tb":; rate by a Freundlich type isotherm with a multilayer, 

non site-specific interaction between pyrite· and aqueous ferric iron. This, togethe·: with the 

correlation of the rate with the potential supports an electrochemical mechanism, with electron 

transfer being rate limiting. This is consistent with the activation energies in the literature 

which indicate that there is a chemical rather than a physical rate determining step. The 

mechanism postulated implies that electrons from the mineral are transferred to the ferric iron 

within a zone of solvent near the mineral surface. 

The model of Boon et at. (1995) for bacterial ferrous oxidation, Equation 2.5, is based on 

microbial enzyme kinetics with product inhibition. An inverse of this type of model was 

adapted to describe the chemical oxidation rate, i.e. 

r = 
[Fe2+] 

K+B-­
[Fe3+] 

[ 6.11 ] 

This model is a simple function of the ferric/ferrous ratio, predicting an increase in the rate 

with the redox potential. The form of the model, however, suggests a saturation of the rate at 

a particular point, without suggesting a reason for this behaviour. The rate could become 

limited due to mass transfer limitations, insufficient reactant concentration or electron transfer 

control, yet these factors are not considered in such a model. In the chemical leaching system 
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it is also necessary to take account of the fact that leaching will only occur once the rest 

potential of the mineral has been reached. Also, the rate is predicted to tend to zero as the 

potential tends to zero, yet it is known that leaching can only occur once the potential at the 

mineral surface is higher than the rest potential of the mineral. This is not reflected by this 

model. The model does fit the experimental data of this thesis well in most cases, and the 

range in the values of the parameters max, B and K is not too large. The model is also very 

simple, with a simple dependence on the ferric/ferrous ratio. 

The results of this work and that of others (e.g. Garrels and Thompson, 1960; Williamson and 

Rimstidt, 1994) suggest that the reaction between ferric iron and pyrite is under 

electrochemical control. The leaching of other sulfide minerals has also been described by 

electrochemical theory. Crundwell (1987) described the kinetics of the oxidative dissolution 

of sphalerite by an electrochemical mechanism where charge transfer from the mineral to the 

aqueous oxidant is rate limiting. Verbaan and Huberts (1988) also used an electrochemical 

model to describe the kinetics of leaching synthetic nickel sulfide (NhS3). Electrochemical 

models are generally based on the Butler-Volmer equation which quantitatively describes 

reactions which are limited by charge transfer at an interface. The Butler-Volmer equation 

(for a single electron transfer reaction in Equation 6.12) is a kinetic expression relating the 

current flow to the overpotential at a surface. The current is essentially the rate of electron 

transfer at the surface, in this case the corrosion current, which controls the reaction rate in an 

electrochemical reaction. It would be mechanistically valid to model the ferric leaching of 

pyrite by an equation ofthe form of the Butler-Volmer equation . 

. ( ((1- a)F11) (-aF11)) = 1
0 

exp - exp 
RT RT 

[ 6.12 ] 

The values 11 and a in Equation 6.12 determine the interrelationship between the rate of the 

charge transfer reaction and the potential difference across the interface. 11 is the overpotential, 

which is the difference between the equilibrium potential and the applied potential. a is the 

transfer coefficient (or in the case for single step reactions, the symmetry factor) and is an 

intrinsic characteristic of the charge-transfer reaction and determines what fraction of the 
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electrical energy resulting from the displacement of the potential from equilibrium affects the 

rate of electrochemical transformation (Bockris and Reddy, 1970). Not all of the potential 

difference across the double-layer at the interface actually causes the reaction. For a single 

step reaction, the symmetry factor is defined as the distance along the reaction co-ordinate 

between the initial and activated states divided by the distance along the reaction co-ordinate 

between the initial and final states. It has a value of about 0.5 for single electron transfers. 

When this is the case, the current/overpotential curves is symmetrical, so equal magnitudes of 

the overpotential on either side of zero produce equal currents, and equal oxidative and 

reductive currents should produce equal overpotentials. Significant deviation of the transfer 

coefficient from 0.5 is likely only under conditions where experimental confirmation is difficult 

due to the effects of mass transport limitations on any measurement (Pletcher, 1991 ). The 

symmetry factor for the reduction of ferric iron to ferrous iron at a platinum electrode has 

been shown to be 0.58 (Bockris and Reddy, 1970). 

In the Butler-Volmer equation the current or rate of charge transfer is predicted to increase 

(or decrease) continually as the potential increases (or decreases, respectively) without 

reaching a saturation current. This is unlikely in reality, since at extreme potentials the rate is 

likely to be limited by processes other than the rate of charge transfer at the solution/mineral 

interface, e.g. diffusion of reactive species to the interface, the build-up of a passivating film, 

the occurrence of side reactions etc. The Butler-Volmer equation does take the rest potential 

of the mineral into account. Although at extremely high redox potentials a Buder-Volmer 

type model is inadequate, the potentials reached in bioleaching are not likely to lie outside the 

region of validity for this type of model. 

Some ofthe experimental data ofthis thesis were modelled by a Buder-Volmer type equation, 

of the following form by minimising the sum of squares of the error between the experimental 

data and the model predictions: 

r = ro(exp(a~(E-E')}-exp((t-a)~(E-E')}) [ 6.13 1 
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Four parameters can be varied: ll, ex., E' and P (=zFIRT). Theoretical values for ex. and zFIRT 

can be used but these do not necessarily represent the system correctly. Figure 6.13 shows a 

comparison between the model prediction and a typical set of data. 

2.0E-05 -r--------------------·---, 

Experimental data 

1.5E-05 

,........ .... 
N' 

CJ) ~ 
<1>'7 u..-

.;::' ~ 1.0E-05 
N • 

Q) 0 
lt: E 

Butler-Volmer model 

S.OE-06 

O.OE+OO +---+---+-~r--+--+---+--+-~1----+--~ 
600 610 620 630 640 650 660 670 680 690 700 

E /mV vs Ag/AgCI 

Figure 6.13 Fit of the Butler-Volmer Equation (Equation 6.13) to experimental data. 

Model parameters: ex.= 0.46 

ro = 4.8 x 10"8 (mol Fe2+).(mol FeS2)"1.s-1 

E' = 413 mV (Ag/AgCl) 

zFIRT = 39 mV- 1 

If all the parameters are allowed to vary simultaneously, the initial values assigned to the 

parameters have a great effect on their final solutions. A number of solutions is possible for an 

equally good fit of the Butler-Volmer function to the experimental data. The range of possible 

solutions is too large to be able to make any deductions from this method. 

In an attempt to find reasonable constant values for all the parameters, the variables were fixed 

at chosen values, or held between chosen limits. 
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First a. and zF/RT were held constant at their theoretical values, 0.5 and 39 mV1 respectively. 

With this restriction, no feasible fit could be found for most of the experimental data. This 

indicates that the system is not ideal and strictly theoretical treatment is not feasible. Limiting 

a. to between 0.4 and 0.6 and zF/RT to between 37 and 42 mV1 produced more acceptable 

results in general. ro was still subject to a large variation (1.2xl0"8 
- 7.4 xl0·8 mol Fe2+.(mol 

FeS2)"1.s·\ 50% variation) and E' fell in the range 286- 422 mV (Ag/AgCl) (15% variation). 

When only a. was held constant at 0.5, the other parameters were subject to a large variation, 

depending on their initial values. In many cases the final solutions were not feasible. This was 

also the case when both a. and E' were held constant. When only f3 = zF/RT was held constant 

at 0.039 V 1 (its theoretical value), the curve fitted the experimental data well in each case, but 

there was a large range in values of the parameters ro (3.5xl0"8 to 8.5xl0"8 mol Fe2+.(mol 

FeS2)"1.s·1 
), a. (0.38 to 0.68) and E' {310 to 542 mV vs Ag/AgCl). There was no apparent 

trend in the values of the constants with the total iron concentration or ore concentration. 

When E' was fixed in addition to zF/RT, a. retained its value while ro adjusted to give the best 

fit. The higher E', the higher r0 • 

There was no apparent trend in the values of the constants with the total iron concentration or 

ore concentration. Although no constant values could be found for the parameters, they do 

fall in a reasonable range, and are not physically meaningless. 
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7. CONCLUSIONS 

In this thesis the ferric leaching of pyrite was investigated within the context of the multi-step, 

indirect mechanism of bioleaching. 

A survey of the literature showed that although there ~::: considerable previously published work 

on the ferric leaching of pyrite, the investigations were carried out at potentials much lower than 

those in bioleaching. Also, few researchers had related their observed leach rates to the 

ferric/ferrous ratio or redox potential. This indicated that further work was necessary to 

determine the rate of reaction between pyrite and ferric iron at high redox potentials as a function 

of the potential. 

An experimental technique was developed to determine the leach rate as a function of the redox 

potential. The experimental work showed that the redox potential dropped sharply when pyrite 

was added to an acidic ferric sulfate solution. The sharp initial drop was found to be of a transient 

character, probably due to a number of effects. These could include the rapid dissolution of 

highly reactive surface sites, a non-Faradaic charging effect and the formation of a non­

stoichiometric, sulfur-rich surface layer. 

The leach rate increased as the potential increased. The total iron concentration and the mass of 

ore used did not appear to have any significant effect on the rate. The effect of the surface area of 

the ore was not investigated, but it would be useful to compare leach rates expressed as a rate per 

unit surface area. 

The leach rates were similar in magnitude to bioleaching rates at similar potentials. This 

observation supports the indirect mechanism of bioleaching as it indicates that the presence of .. ~ \ .... 
bacteria does not cause a higher leach rate because of a direct reaction between the bacteria and 

the mineral, but rather that the bacteria function to maintain . the~ :f>Otential at a high value, ·· .. "'-' 
improving conditions for the ferric leaching reaction. 

. -
I' 
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Although previously published data were not in a suitable range of redox potentials to be directly 

comparable with results of this study, rate data in the literature were expressed as a function of 

the ferric/ferrous ratio, and it was noted that in general the rate increased with the potential. Even 

when previously published rate laws were plotted as a function of the potential, this trend was 

observed. 

It appears that in the results of thesis and of previously published work, the rate is very low at low 

potentials, increases in an apparent exponential manner, and in many cases reaches a maximum at 

high potentials. It is feasible that the rate will reach an upper limit at high potentials, but the cause 

of the limitation is not clear. The hypothesis based on that suggested by Boon et a/. (1995) 

predicts such an upper limit, but possible reasons for this limitation are not obvious. A model 

following the Butler-Volmer equation is mechanistically more realistic. 

In future work it is recommended that the leach rate is determined at constant potential either by 

using an in situ regeneration of ferric iron by use of an electric current, or by circulating the 

lixiviant through a packed or fluidised bed of ore and regenerating ferric iron outside the reaction 

vessel. 

It is also necessary to investigate the effect of temperature, bearing in mind that the solution 

properties (e.g. complexation) are temperature dependent. Temperature is an important 

parameter, especially in commercial applications, since an increase in temperature will increase the 

reaction rate, which can lead to an increase in productivity. 
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ANALYTICAL METHODS 

Determination of Ferrous and Total Iron 

The following solutions were used in the determinations: 

Potassium dichromate solution 

About 10 g K2Cr20 7 was dried in an oven at about 105 oc for 1-2 hours. About 8.8 g of the dried 

K2Cr20 7 was dissolved in 2 f. distilled water, to form a standard solution of concentration about 

0.015 M. 

Concentration (mol.£"1
) = mass in grams/ (294.20 g.mor1 x V) 

Spekker acid solution 

450 ml concentrated (98 %) sulfuric acid and then 450 ml concentrated (85 %) phosphoric acid 

were slowly added to 1200 ml distilled water with stirring. The solution was allowed to cool 

before transferring to a storage bottle. 

Ferric acid solution 

300 ml spekker acid solution and 600 ml concentrated (32 %) hydrochloric acid were slowly 

added to 1200 ml distilled water with stirring. The solution was allowed to cool before 

transferring to a storage bottle. 

Stannous chloride solution (5 %) 

50 g stannous chloride (SnCh) was weighed out into a 100 ml beaker. 50 ml concentrated (32 %) 

hydrochloric acid was added and the solution was heated to about 50 oc and agitated until all the 

salt had dissolved. After cooling, the solution was diluted to I f. with distilled water and stored in 

a glass container with a few granules of tin metal. 
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Mercuric chloride solution (saturated) 

1 f distilled water was added to 50 g mercuric chloride (HgCh) and agitated for 2 hours. If all 

the mercuric chloride dissolved, a further small amount was added and the solution was agitated · 

for a further 2 hours. 

Barium diphenylamine sulfonate indicator 

1.0 g barium diphenylamine sulfonate (C2Ji2oBaN206S2) was weighed out in a 250 ml beaker. 

100 ml concentrated (98 %) sulfuric acid was added and the solution was agitated until the salt 

had completely dissolved. 

Procedures 

Sample Preparation 

The samples used in thf; titrations were clear solutions. Generally 5 ml or 10 ml aliquots were 

suitable, depending on the concentrations of iron present. 

Fean titration 

The required aliquot was pipetted into a conical flask. Spekker acid was added (10 ml), followed 

by 3-4 drops of barium diphenyl sulfonate indicator. The sample was titrated with potassium 

dichromate until the first permanent colour change from orange to purple. 

Fe(total) titration 

The required aliquot of sample was pipetted into a conical flask. Ferric acid was added (30 ml) 

and the solution was heated to boiling point. Stannous chloride was added dropwise until the 

yellow colour of the solution disappeared. One extra drop was added and the total amount of 

stannous chloride added recorded. The solution was cooled to room temperature and mercuric 

chloride solution (10 ml) was added, forming a silky white precipitate. If no precipitate formed, 

too little stannous chloride was added, and if the precipitate was heavy and grey, too much 

stannous chloride was added. In either case the experiment had to be aborted. 4-8 drops of 
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barium biphenylamine sulfonate indicator were added and the sample was titrated with potassium 

dichromate until the first permanent colour change from yellow/green to purple. 
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Ferric Leaching of Pyrite with an Electrochemical Regeneration of Ferric Iron 

FERRIC LEACHING OF PYRITE WITH AN ELECTROCHEMICAL 

REGENERATION OF FERRIC IRON 

In an endeavour to leach pyrite at a constant redox potential, a current was used to regenerate 

ferric iron that was consumed by leaching. A two compartment electrochemical cell with the two 

compartments separated by an anion exchange membrane (Selemion membrane AMV) was used 

(See Figure A2.1). Each compartment had a capacity of about 3 litres. The anode and cathode 

were rectangular blocks of graphite (Ell or grade 18 from Le Carbonne ), approximately 15 x 10 x 

0.5 em in dimension. Ferric sulfate leaching medium was used in the anodic compartment, while 

sulfuric acid (pH 1.5) was used in the cathodic compartment. 

Power 
Supply 

+ -

Anodic 
Compartment 

Figure A2.1 Experimental cell 

Cathodic 
Compartment 

C1illl Fe2(S04) 3 

!fij H2S04 

Membrane . . 
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to iron 
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Ferric Leaching of Pyrite with an Electrochemical Regeneration of Ferric Iron 

A current was applied to oxidise ferrous iron to ferric iron at the anode, and the membrane 

prevented the reverse reaction from occurring at the cathode. To compensate for the redox 

potential decrease resulting from leaching, a variable current is required, because the rate of 

leaching changes with time and with redox potential. In this work, however, constant currents 

were used because there was no feedback mechanism to control the current. 

In the presence of an oxidising current, the equations derived in Section 3. 5 must be modified as 

follows: 

and 

Hence from the Nemst equation 

and 

nF dE ni ( 1 1 ) 
RT. dt - FV [Fe3+] + [Fe2+] 

rFeSl = 14 15 
--+-­
[Fe3+] [Fe2+) 

[ A2.1] 

[ A2.2] 

[ A2.3] 

[ A2.4] 

The measured change in potential in the presence of a current can thus be divided into two parts: 

that corresponding to ferrous oxidation by the current and that corresponding to ferric reduction 

by leaching. 
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Ferric Leaching of Pyrite with an Electrochemical Regeneration of Ferric Iron 

[ A2.5] 

where 

[ A2.6] 

and 

(
dE) RT ni ( 1 1 ) 
dt current = nF . FV [Fe3+] + [Fe2+] 

[ A2.7] 

Ideally, the rate of dissolution of pyrite can be determined by monitoring the solution redox 

potential, if the current is accurately known. It is essential to know the current efficiency of the 

system to be able to calculate what proportion of the applied current is utilised in converting 

ferrous to ferric iron. 

The current efficiency was found to be very low, especially when the iron concentration was low 

(because of the insufficiency of charge carriers) and when the currents were high (probably due to 

side reactions occurring). The redox potential also had a large effect on the current efficiency. At 

high redox potentials, the concentration of ferrous iron is low, so the current efficiency drops 

accordingly. It is thus important to quote the current efficiency with respect to the iron 

concentration, current and redox potential. The effect of stirring rate and temperature were not 

investigated. 

There was a lot of variability in calculating the current efficiency, as was noticed by repeating 

experiments. Because of this, the current efficiency was determined immediately before each 

leaching test. 
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Ferric Leaching of Pyrite with an Electrochemical Regeneration of Ferric Iron 

When pyrite was added to the anodic compartment, the redox potential immediately dropped, 

then reached a plateau or a turning point, and started rising again. This initial drop was probably 

a transient effect, caused by the charging effect expected when a solid is added to a solution of a 

different potential. The leaching rates were calculated at the plateau or turning point, where the 

current was assumed to perfectly balance the leach rate (dE/dt = 0). In some cases, no plateau or 

turning point was reached but the change in potential with time was very slow, and the average. 

slope was used to calculate the leaching rate. Ideally both methods should be acceptable, but it 

would be preferable to be able to quote the leach rates at a point where the applied current exactly 

balanced the leach rate. 

The behaviour of the potential was not reproducible. There appeared to be a transient effect 

when the ore was added, as has been noticed in the dynamic leach tests discussed in Chapter 4. 

Also any uncertainties in measurements of the volume, current and current efficiency had a large 

effect on the determination of the leach rate. As a result, no reliable results were gained from this 

work. 

The membrane was slightly damaged after continuous exposure to the abrasive pyrite. This 

damage was not visible to the naked eye, but could be seen at 10 x magnification under a light 

microscope. Damage was only evident on the side of the membrane exposed to ore. It still 

remained impervious to ferric and ferrous iron so was considered suitable for further use. The 

membrane also developed a slightly orange colour after being in contact with the ferric solution. 

It is likely that precipitates had formed in the membrane, and to remove these, the membrane was 

soaked in dilute HCl and a reducing agent (ascorbic acid) for about 1.5 hours. This cleaning 

procedure did not seem to have any detrimental affect on the membrane. 

In principle, this method of determining the leach rate at a constant redox potential is valid, yet it 

is prone to experimental difficulties and is strongly dependent on theoretical interpretation. 
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VARIATION IN TOTAL ffiON CONCENTRATION 

d[Fetot I d[Fe2
+ I d[Fe3

+ I 1 d[Fe2
+ I zF dE -[Fe2+ I 

__;;,_ _ __:_ = + = = - ---=-3::--....::.__-

dt dt dt 15 dt RT dt (14 !Fe+ I + 15) 
[Fe 2+ I 

[ A3.11 

Since [ A3.2] 

we have 

d[F~tot I zF dE -[Fetot I 
dt = RT dt ([Fel+) + 1)(14[Fel+) + 15) 

[Fel+) [Fe2+) 
[ A3.3l 

~(I [F tot))_ 1 d[Fetotl = zF dE -1 
dt 

8 
e - [Fetotl dt RT dt ([Fe3+1 + 1)(14[Fe3+1 + 15) 

[Fe2+) [Fe2+) 
[ A3.41 

Hence the following equation can be used iteratively: 

[ A3.51 

It should be noted that the variation of total iron concentration over the course of the experiments 
was extremely small, of the order of0.04 %. 
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CURVE FITTING OF POTENTIAL VERSUS TIME DATA 

The raw E versus t data were smoothed by fitting a function of the form y = A(ln(t))8 to 

(EinitiaiiE( t) -1). A typical example is given below. 

Figure A4 .1 shows the experimental and calculated potential values for a leaching experiment 

with 0.38 g pyrite added to 50 ml 0.375 M ferric solution. The two curves can hardly be 

distinguished. The values of A and B were 6.6 x 10-4 and 2.49 respectively, with an objective 

function of 0. 0003 for the 1600 data points. 
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Figure A4.1 Experimental and calculated potential versus time data 



Appendix5 Conversion between Rate Bases 

CONVERSION BETWEEN RATE BASES 

The following equations were used to convert all literature rates to common bases: 

(m 2FeS1 ).mol-1 = [(m 1FeS1 ).kg-1
] • [0.12kgFeS 2 .mol-1

] 

1td2 
= 3 • [0.12kgFeS2 • mol-1

] 
p.1t d6 

6 -1 
= - · [0.12kgFeS2 • mol ] 

pd 

Note: Assumptions 
reaction stoichiometry remained constant as in Equation 3.3 
molar mass of pyrite= 120 g.mor1 

density of pyrite = 5000 kg.m-3 

100 

spherical particles were assumed and used to calculate the geometric surface area 



Appendix 6 Data from McKibben and Barnes ( 1986) 

DATA FROM McKIBBEN AND BARNES (1986) 

Reaction conditions: 

t t 30 oc empera ure 

pH 1.89 

pyrite mass 3 g 

slurry volume 800 ml 

particle size +125-250 J..lm 

[Fe]totai 2 mM 

[Fe2+] versus time data were plotted, and fitted with the function 

[Fe2+] = -9xl0·11e + 2x10-5t+0.035. 

The rate was found by differentiating this function i.e. d[Fe2+]/dt = -18x10-11t + 2x10"5
. 

[Fe3+] was calculated as the difference between [Fe]total and [Fe2+]. 

Time [Fe2+] [Fe3+] d[Fe2+]/dt 

s mM mM mol..e"1.s"1 

0 0 2 2E-08 

5610 0.185 1.815 1.9E-08 

11220 0.315 1.685 1.8E-08 

28020 0.611 1.389 1.5E-08 

33660 0.648 1.352 1.39E-08 

39240 0.722 1.278 1.29E-08 

85260 1.279 0.721 4.65E-09 

60840 1.333 0.667 9.05E-09 

96420 1.296 0.704 2.64E-09 

114420 1.407 0.593 -6E-10 

120000 1.519 0.481 -1.6E-09 

125580 1.556 0.444 -2.6E-09 

101 
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DATA FROM BOOGERD et al. (1991) 

Reaction conditions: 

temperature 70 °C 

pH 1.5 

pyrite mass 0.44 g 

slurry volume 50 ml 

particle size 10 J.lm 

The variation of ferrous and total iron with time were given. [F e3+] was calculated as the 

difference. The rate was calculated as the change in ferrous concentration with time. 

Time [Fe2+] [Fe]tot [Fe3+] d[Fe2+]/dt 

s mM mM mM mol..e"1.s"1 

0 0 93.3 93.3 

3600 15 93.3 78.3 4.17E-06 

7200 30 93.9 63.9 4.17E-06 

10800 42.9 94.4 51.5 3.58E-06 

14400 49.1 95.1 46 1.72E-06 

18000 55.4 96.1 40.7 1.75E-06 

21600 58.9 96.7 37.8 9.72E-07 

25200 61.2 96.7 35.5 6.39E-07 

28800 62.9 96.7 33.8 4.72E-07 

32400 65.6 96.7 31.1 7.5E-07 




