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Abstract

This work comprises a detailed theoretical and computational study of the boundary value problem for

transversely isotropic linear elastic bodies. The main objective is the development and implementation of

low-order finite element methods that are uniformly convergent in the incompressible and inextensible limits.

The first step in the investigation is a study of the constitutive relation for transversely isotropic elasticity,

and establishment of conditions on the five material parameters under which the relation is pointwise stable.

This forms the basis for a study of well-posedness of the weak displacement-based formulation.

Conforming finite element approximations are studied. The error estimate indicates the possibility of ex-

tensional locking; on the other hand, anisotropy, measured as the ratio of Young’s moduli in the fibre and

transverse directions, plays a role in minimizing or even eliminating volumetric locking behaviour. Ex-

tensional locking is circumvented with the use of selective under-integration, in the context of low-order

quadrilateral elements. Its equivalence with mixed and perturbed Lagrangian methods are shown. A series

of numerical results illustrates the various features of the formulations considered.

In a second approach, interior penalty or discontinuous Galerkin (DG) formulations of the problem are

considered. Low-order approximations on triangles are adopted, with the use of three interior penalty

discontinuous Galerkin methods, viz. nonsymmetric, symmetric and incomplete. It is known that these

methods are uniformly convergent in the incompressible limit for the case of isotropy. This property carries

over to the transversely isotropic case for moderate anisotropy. An error estimate suggests the possibility

of extensional locking, and under-integration of the extensional edge terms is proposed as a remedy. This

modification is shown to lead to an error estimate that is consistent with locking-free behaviour. Numerical

tests confirm the uniformly convergent behaviour, at an optimal rate, of the under-integrated scheme.
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Chapter 1

Introduction

A vast range of natural phenomena and technological innovations can be modelled successfully through

systems of differential equations. These may be ordinary or partial differential equations (PDEs), and either

linear or nonlinear. While techniques exist for finding closed-form solutions of PDEs in some cases, this is not

generally possible. For this reason the development of approximate solution methods and their computational

solution are of great importance in the context of modelling.

The three most widely used methods for the numerical solution of systems of PDEs are the finite element

method, the finite difference method, and the finite volume method. For each of these approaches there

are varieties of special approaches: for example, for the finite element method, in addition to standard

approaches, mixed formulations are popular [9]. Likewise, p- and hp- finite element methods differ from

standard approaches in seeking convergent approximations by progressively increasing the polynomial order

p, or combining the latter with mesh refinement (see for example [5, 7]). More recently, popular variants of

the finite element method include isogeometric formulations [12] and the virtual element method [14].

Many significant developments of the finite element method have taken place in the context of solid mechanics,

with the earliest formulations being developed for problems of linear elasticity. The focus has traditionally

been on problems of isotropic elasticity. Anisotropic materials, however, arise in a variety of natural and

engineering situations, and are worthy of attention. For example, anisotropy is a feature of composite

materials, used in the aerospace, automotive, and other industries. It also occurs naturally in crystalline

structures, geotechnical materials, and in the mechanical properties of biological media such as muscles,

tendons, or bones (see for example [1, 17, 27, 32, 35, 39]). Transverse isotropy is a form of anisotropy

characterized by isotropic behaviour in a plane defined by a given normal vector or fibre direction. Fibrous

or fibre-reinforced structures are generally modelled as transversely isotropic materials. Important early

contributions to the mechanics of fibre-reinforced materials include the works [22, 33, 40]. The monograph

[42] gives a detailed presentation of the mechanics of anisotropic materials. This thesis will focus on finite

element formulations for boundary value problems of linear transversely isotropic elasticity.

There have been various contributions aimed at deriving general forms for the constitutive equations of

1



2 Chapter 1. Introduction

transversely isotropic elasticity. Some examples include the work [30], which uses the representation theorems

in [41] to obtain the elasticity tensor and its inverse, the compliance tensor. In [17], the compliance matrix is

given in terms of engineering constants such as Young’s moduli, Poisson’s ratios, and shear moduli relative to

the fibre direction and plane of isotropy. Conditions for positive-definiteness of the compliance matrix, and

hence for pointwise stability, are derived. Corresponding results for various types of anisotropic materials,

that is, monoclinic, orthotropic, and transversely isotropic, are presented in [28].

In the context of hyperelasticity there has been extensive work aimed at deriving general conditions for con-

structing strain energy functions for transversely isotropic material models. The work [36] develops a form

for the strain energy function in terms of the invariants, such that the strain energy function is polyconvex,

a key criterion for well-posedness of the boundary value problem. The work of [37] presents mathematical

foundations of the derivation of the constitutive relations for transversely isotropic bodies at large strain:

materially stable transversely isotropic energies for soft tissues that satisfy the Legendre-Hadamard condi-

tion are constructed. The development of stable finite element approximations for transversely isotropic

hyperelastic has also received attention, an important early work being [44].

Early work on well-posedness for anisotropic materials has generally taken the form of studies of pointwise

stability and uniqueness of the boundary value problem for linear elasticity. These features are explored in

[23, 24] for materials with the constraint of inextensibility.

There has been little work on the well-posedness of boundary value problems for materials with internal

constraints such as inextensibility, in contrast to the many treatments of incompressibility. The investigation

[3] approaches the problem via a mixed formulation of Hellinger-Reissner type, and establishes conditions

on the elastic constants for the problem to be well-posed for inextensible materials, and also for the case

of orthotropy. Corresponding abstract results have been presented in [15] for the case of non-homogeneous

materials.

In the context of elasticity problems, low-order finite element numerical approximations often lead to locking

for small values of a parameter. Locking refers to a parameter-dependent inability of the finite element

approximation to converge to the exact solution. Some examples are volumetric locking in the incompressible

limit, extensional locking for near-inextensibility, and shear locking when the relevant parameter is the

thickness [26]. The work [6] analyses the strength of locking and robustness of various h-version schemes.

It is known that p- and hp-versions are free from locking when the polynomial degree p ≥ 4 on triangular

meshes (see also [38, 43]).

The use of higher-order approximations generally avoids locking. Alternative approaches that circumvent

locking behaviour include the use of nonconforming methods [18]. A range of mixed methods have been

shown to be uniformly convergent for near-incompressibility (see for example [9] and the references therein),

while the works [16, 29] provide a unified treatment of uniformly convergent formulations using two- or
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three-field approximations, and low-order (quadrilateral) approximations.

Discontinuous Galerkin (DG) finite element methods provide a further powerful example of a class of ap-

proaches to overcome locking behaviour. Important contributions include the works [20, 25]. With the use

of low-order triangles, the DG method for isotropic elasticity is uniformly convergent in the incompressible

limit [20, 45]. For conventional conforming bi- or trilinear approximations on quadrilaterals and hexahedra,

however, it is known [19] that locking occurs; this may be circumvented with the use of under-integration of

the edge terms in the formulation.

Near-inextensibility is studied computationally in the work [4], using Lagrange multiplier, perturbed La-

grangian, and penalty approaches. There have also been a number of computational investigations of trans-

versely isotropic and inextensible behaviour for large-displacement problems [46, 47, 48, 49].

There have not however been systematic analyses and corresponding computational studies of locking-free

behaviour for near-inextensible materials. This topic constitutes the main aim of this thesis: namely, to

investigate stable, locking-free approximations for problems of transversely isotropic linear elasticity. The

emphasis will be on low-order elements, and on conditions for uniformly convergent behaviour in the incom-

pressible and inextensible limits.

Related work has recently been reported in [34], on a virtual element formulation for transverse isotropy:

this formulation is shown computationally to be robust and locking-free in the inextensible limit, for both

constant and variable fibre directions.

After presenting the background material, the constitutive relations for transversely isotropic elastic materials

are formulated and investigated. In particular, conditions for pointwise stability are derived; these play an

important role in determining conditions for well-posedness of the displacement-based weak formulation.

With regard to finite element formulations, two avenues are explored. The first concerns low-order con-

forming finite element approximations. The discrete form of the displacement problem is formulated. The

error estimate reveals that anisotropy can play a role in minimizing or even eliminating locking behaviour,

for moderate values of the ratio of Young’s moduli in the fibre and transverse directions. In addition to

the standard conforming approximation, an alternative formulation, involving under-integration of the vol-

umetric and extensional terms in the weak formulation, is considered. The latter is equivalent to either a

mixed or a perturbed Lagrangian formulation, analogously to the well-known situation for the volumetric

term. A set of numerical examples confirms the locking-free behaviour in the near-incompressible limit of

the standard formulation with moderate anisotropy, with locking behaviour being clearly evident in the case

of near-inextensibility. On the other hand, under-integration of the extensional term leads to extensional

locking-free behaviour.

The second approach concerns low-order DG approximations. Low-order approximations on triangles are
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adopted, with the use of three interior penalty DG methods, viz. nonsymmetric, symmetric and incomplete.

It is known that these methods are uniformly convergent in the incompressible limit. This work focuses on

the behaviour in the inextensible limit. An error estimate suggests the possibility of extensional locking,

a feature that is confirmed by numerical experiments. Under-integration of the extensional edge terms is

proposed as a remedy. This modification is shown to lead to an error estimate that is consistent with the

locking-free behaviour. Numerical tests confirm the uniformly convergent behaviour, at an optimal rate, of

the under-integrated scheme.

The rest of the thesis is organised as follows. In Chapter 2, the constitutive equations for linear transversely

isotropic materials are presented. These are expressed in terms of a set of five primary material parame-

ters, and alternatively in terms of a corresponding set of physically meaningful constants. Conditions for

pointwise stability and strong ellipticity are presented. The weak form of the boundary value problem is

formulated in Chapter 3, and conditions for the existence of unique solutions established. Conforming finite

element approximations are analysed, and the potential for locking behaviour noted. Under-integration is

introduced as a remedy and its equivalence to perturbed Lagrangian and mixed formulations established.

Numerical results that illustrate the conforming and under-integrated formulations are presented in Chapter

4; these verify the extensional locking of the standard formulation and the locking-free behaviour of the

under-integrated formulation. Volumetric locking is shown to be absent for anisotropic materials, with the

usual locking behaviour observed in the isotropic limit. In Chapter 5, corresponding discontinuous Galerkin

formulations for the three interior penality methods are presented, and conditions for well-posedness estab-

lished. The a priori error estimate suggests the existence of extensional locking at the inextensible limit.

Under-integration of the extensional edge term is introduced as a remedy, and the new error estimate sug-

gests a convergent behaviour. A set of numerical examples to illustrate the theory on discontinuous Galerkin

formulations are presented in Chapter 6. Chapter 7 concludes the work.

Two publications are based on the work presented in this thesis. The article

• F. Rasolofoson, B.J. Grieshaber, B.D. Reddy, Finite element approximations for near-incompressible

and near-inextensible transversely isotropic bodies. International Journal for Numerical Methods in

Engineering, 117(6):693-712, 2018.

is based largely on the material in Chapters 2, 3 and 4, while the manuscript

• B.J. Grieshaber, F. Rasolofoson, B.D. Reddy, Discontinuous Galerkin approximations for near-incompressible

and near-inextensible transversely isotropic bodies. In review, available at arXiv:1810.13267.

is based on the material in Chapters 5 and 6.

arXiv:1810.13267
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1.1 General notation

Notation for scalars, vectors and tensors

We make use of a combination of direct (coordinate-free) and indicial notation for vectorial and tensorial

quantities.

Throughout this work, we denote:

Scalars (including, for example, material parameters) with lightface Roman or Greek letters

(a, b, . . . , A,B, . . . , α, β, . . .)

Vectors with boldface letters (a, b, c, . . .)

Second-order tensors with boldface uppercase Roman or lowercase Greek letters

(A,B, . . . ,σ, ε, . . .)

Fourth-order tensors with blackboard bold typeface: A,B,C, . . .

Function spaces with calligraphic typeface: A,B, C, . . .

Subscripts t and l indicate that the parameter is defined in the transverse and longitudinal or fibre direction

respectively.

We also make use of a number of well-established symbols and conventions, for any second order tensor A,

such as the transpose AT , the inverse A−1, the trace trA, and the determinant detA.

Index notation

We make use of a cartesian coordinate system with associated orthonormal basis ei (i = 1, 2, 3) and coordi-

nates xi (i = 1, 2, 3) of a point x.

The Kronecker delta is defined as follows:

δij =

1 if i = j,

0 otherwise.

We adopt the Einstein summation on repeated indices: that is, we write aibi for
∑
i aibi.

For any vectors a and b, and any second order tensors A and B, the scalar products are given by

a · b = aibi,

A : B = AijBij ,
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and the tensor products by

a⊗ b = aibjei ⊗ ej ,

A⊗B = AijBklei ⊗ ej ⊗ ek ⊗ el.

For any fourth order tensor A and any second order tensor T , we have

AT = AijklTklei ⊗ ej .

The gradient of a scalar function u(x1, . . . , xd) is defined by

∇u =
∂u

∂xi
ei,

the gradient of a vector u by

∇u =
∂ui
∂xj

ei ⊗ ej ,

and the divergence of a vector u by

div u = ∇ · u =
∂ui
∂xi

.

Function spaces

Let Ω be an open subset of Rd, with d ∈ {1, 2, 3} the space dimension, with smooth boundary ∂Ω.

We denote by L2(Ω) the set of all real-valued functions defined on Ω such that

∫
Ω

|u(x)|2 dx <∞.

This is a Hilbert space when equipped with the inner product

(u, v)L2(Ω) :=

∫
Ω

u(x)v(x) dx, (1.1)

and corresponding norm

||u||L2(Ω) := (u, u)L2(Ω)

=

(∫
Ω

|u(x)|2 dx
)1/2

. (1.2)
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We define the Sobolev space

H1(Ω) :=

{
u ∈ L2(Ω) :

∂u

∂xj
∈ L2(Ω), j = 1, . . . , d

}
, (1.3)

which is a Hilbert space when equipped with the inner product

(u, v)H1(Ω) := (u, v)L2(Ω) +

∫
Ω

d∑
i=1

∂u

∂xi

∂v

∂xi
dx, (1.4)

and the corresponding norm

||u||H1(Ω) := (u, u)H1(Ω)

=
(
||u||2L2(Ω) + ||∇u||2L2(Ω)

)1/2

. (1.5)

Here and henceforth norms of vector- and tensor-valued quantities are evaluated componentwise: that is,

||∇u||2L2(Ω) =

d∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx.

We also define the H1-seminorm by

|u|H1(Ω) := ||∇u||L2(Ω). (1.6)

We define the Sobolev space

H2(Ω) :=

{
u ∈ L2(Ω) :

∂u

∂xj
∈ L2(Ω),

∂2u

∂xi∂xj
∈ L2(Ω), i, j = 1, · · · , d

}
, (1.7)

equipped with the inner product

(u, v)H2(Ω) := (u, v)L2(Ω) + (u, v)H1(Ω) +

∫
Ω

d∑
i,j=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj
dx, (1.8)

and the corresponding norm

‖u‖H2(Ω) := (u, v)H2(Ω)

=

||u||2H1(Ω) +

d∑
i,j=1

|| ∂2u

∂xi∂xj
||2L2(Ω)

1/2

, (1.9)

and seminorm

|u|H2(Ω) :=

 d∑
i,j=1

|| ∂2u

∂xi∂xj
||2L2(Ω)

1/2

. (1.10)
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We define the subspace

H1
0(Ω) :=

{
u ∈ H1(Ω) : u = 0 on ∂Ω

}
. (1.11)

The seminorm | · |H1(Ω) is a norm on H1
0(Ω), equivalent to the standard H1-norm.

Throughout this work, the following notations are adopted:

‖ · ‖0,∗ = ‖ · ‖[L2(∗)]d , ‖ · ‖1,∗ = ‖ · ‖[H1(∗)]d , and ‖ · ‖2,∗ = | · |[H2(∗)]d , (1.12a)

| · |1,∗ = | · |[H1(∗)]d , and | · |2,∗ = | · |[H2(∗)]d . (1.12b)

We use the same notation for vector- and tensor-valued functions whose components are members of L2(∗)
or Hm(∗), with inner products and norms all defined componentwise.



Chapter 2

Transversely isotropic elasticity

In this chapter, we present the constitutive relations for transversely isotropic elastic materials, and analyse

conditions on the material parameters that are required for the corresponding boundary value problems to

be well-posed.

The structure of this chapter is as follows. In Section 2.1, the elasticity tensor for transversely isotropic

linear elastic materials is derived from the strain energy function for the general large deformation case.

The corresponding compliance tensor is then derived in Section 2.2. Expressions for the primary material

parameters are given in terms of physically meaningful alternatives in Section 2.3. Section 2.4 establishes

conditions on the material constants for pointwise stability. Finally, conditions for strong ellipticity of the

material constants are given in Section 2.5.

2.1 The elasticity tensor

Transversely isotropic (TI) materials are characterized by the existence of a single plane of isotropy and

a single axis of rotational symmetry, the normal to the isotropy plane. Let the unit vector a denote the

direction of the axis of rotational symmetry, and set M := a⊗ a.

The elasticity tensor for a linearly elastic transversely isotropic material may be derived by linearization of

the general expression for finite deformations.

Let us consider a body in a motion occupying a domain Ω ⊂ Rd (d = 2, 3) in its reference configuration. The

current configuration Ωt of the body is given by the motion

x = ϕ(X, t) = X + u(X, t),

where x and X parametrize the current and the reference configurations, respectively, and u is the displace-

ment vector (Figure 2.1). The deformation gradient is defined by

9
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x

x

x = φ(X, t)

X

x
u(X, t)

Ω
Ωt

Figure 2.1: Motion of a body from the reference configuration to the current configuration

F := I +∇u,

with I the second-order identity tensor, and the right Cauchy-Green tensor by

C := F TF .

To derive the elasticity tensor for transversely isotropic materials, we start with the hyperelastic formulation,

following Schröder et al. [36]. The strain energy function ψ for a transversely isotropic material is most

generally given as a function of five invariants; that is,

ψ = ψ̂(I1, . . . , I5), (2.1)

where

I1 = trC, I2 =
1

2

(
(trC)2 − trC2

)
, I3 = detC, I4 = tr (CM), and I5 = tr (C2M). (2.2)

The derivatives of the invariants with respect to the right Cauchy-Green tensor C are

∂I1
∂C

= I,
∂I2
∂C

= I1I −C,

∂I3
∂C

= I2I − I1C +C2,
∂I4
∂C

= M ,

∂I5
∂C

= CM +MC.
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The second Piola-Kirchhoff stress S is given by

S := 2
∂ψ̂

∂C
.

We introduce the notation

ψi :=
∂ψ

∂Ii
and ψij :=

∂2ψ

∂Ii∂Ij
= ψji,

so that

S = 2

5∑
i=1

∂ψ

∂Ii

∂Ii
∂C

= 2
(

(ψ1 + I1ψ2 + I2ψ3)I − (ψ2 + I1ψ3)C + ψ3C
2 + ψ4M + ψ5(CM +MC)

)
.

The material tangent modulus or elasticity tensor is defined by

C := 2
∂S

∂C
; (2.3)

therefore,

C =4

(
∂ψ1

∂C
⊗ I + (ψ2 + I1ψ3)I ⊗ I + I1

∂ψ2

∂C
⊗ I + I2

∂ψ3

∂C
⊗ I

− ∂ψ2

∂C
⊗C − ψ3I ⊗C − I1

∂ψ3

∂C
⊗C − (ψ2 + I1ψ3)

∂C

∂C
+
∂ψ3

∂C
⊗C2

+ ψ3
∂C2

∂C
+
∂ψ4

∂C
⊗M +

∂ψ5

∂C
⊗ (CM +MC) + ψ5

∂

∂C
(CM +MC)

)
.

The derivative of ψi with respect to the right Cauchy-Green tensor C is:

∂ψi
∂C

= ψi1
∂I1
∂C

+ ψi2
∂I2
∂C

+ ψi3
∂I3
∂C

+ ψi4
∂I4
∂C

+ ψi5
∂I5
∂C

= (ψi1 + I1ψi2 + I2ψi3)I − (ψi2 + I1ψi3)C + ψi3C
2 + ψi4M + ψi5(CM +MC).

In index notation, we have the following derivatives with respect to the right Cauchy-Green tensor C:

∂Cij
∂Ckl

= δikδjl,

∂CipCpj
∂Ckl

= δikCjl + Cikδjl, (2.4)

∂

∂Ckl
(CipMpj +MipCpj) = δikMjl +Mikδjl.
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Noting that the fourth-order identity tensor is defined by

I = δikδjlei ⊗ ej ⊗ ek ⊗ el,

and two other fourth-order tensors M and P are defined by

M = (δikMjl +Mikδjl)ei ⊗ ej ⊗ ek ⊗ el,

P = (δikCjl + Cikδjl)ei ⊗ ej ⊗ ek ⊗ el,

we can write the derivatives given by (2.4) in tensor notation as follows:

∂C

∂C
= I,

∂C2

∂C
= P and

∂

∂C
(CM +MC) = M. (2.5)

We then have

C =4
(

(ψ11 + 2I1ψ12 + 2I2ψ13 + ψ2 + I1ψ3 + I2
1ψ22 + 2I1I2ψ23 + I2

2ψ33)I ⊗ I

− (ψ12 + I1ψ13 + I1ψ22 + (I2
1 + I2)ψ23 + I1I2ψ33)(C ⊗ I + I ⊗C)− ψ3I ⊗C

+ (ψ13 + I1ψ23 + I2ψ33)(C2 ⊗ I + I ⊗C2) + (ψ14 + I1ψ24 + I2ψ34)(M ⊗ I + I ⊗M)

+ (ψ15 + I1ψ25 + I2ψ35)
(
(CM +MC)⊗ I + I ⊗ (CM +MC)

)
+ (ψ22 + 2I1ψ23 + I2

1ψ33)C ⊗C

− (ψ23 + I1ψ33)(C2 ⊗C +C ⊗C2)− (ψ24 + I1ψ34)(M ⊗C +C ⊗M)− (ψ2 + I1ψ3)I

− (ψ25 + I1ψ35)
(
(CM +MC)⊗C +C ⊗ (CM +MC)

)
+ ψ33C

2 ⊗C2 + ψ34(M ⊗C2 +C2 ⊗M)

+ ψ35

(
(CM +MC)⊗C2 +C2 ⊗ (CM +MC)

)
+ ψ3P + ψ44M ⊗M

+ ψ45

(
(CM +MC)⊗M +M ⊗ (CM +MC)

)
+ ψ55

(
(CM +MC)⊗ (CM +MC)

)
+ ψ5M

)
.

We linearize about C = I to obtain

C = 4
(

(ψ11 + 4ψ12 + ψ2 + 4ψ22 + 2ψ13 + 4ψ23 + ψ33 + 2ψ3)I ⊗ I − (ψ2 + 2ψ3)I

+ (ψ14 + 2ψ24 + 2ψ15 + 4ψ25 + ψ34 + 2ψ35)(I ⊗M +M ⊗ I) (2.6)

+ (4ψ45 + 4ψ55 + ψ44)M ⊗M + ψ5M
)
.

In index notation,

Cijkl = c1δijδkl + c2δikδjl + c3(δijMkl +Mijδkl) + c4MijMkl + c5(δikMjl +Mikδjl), (2.7)
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where

c1 = 4(ψ11 + 4ψ12 + ψ2 + 4ψ22 + 2ψ13 + 4ψ23 + ψ33 + 2ψ3),

c2 = −4(ψ2 + 2ψ3),

c3 = 4(ψ14 + 2ψ24 + 2ψ15 + 4ψ25 + ψ34 + 2ψ35),

c4 = 4(4ψ45 + 4ψ55 + ψ44),

c5 = 4ψ5.

We define an alternative set of five material constants λ, µt, µl, α and β according to

c1 = λ, c2 = −2µt, c3 = α, c4 = β, and c5 = γ := 2(µl − µt).

Then for a transversely isotropic linearly elastic material with fibre direction given by the unit vector a, the

elasticity tensor is given by [30, 41]

C = λI ⊗ I + 2µtI + α(I ⊗M +M ⊗ I) + βM ⊗M + γM . (2.8)

Here λ denotes the first Lamé parameter, the shear modulus in the plane of isotropy is µt, µl is the shear

modulus along the fibre direction. The further material constants α and β do not have a direct interpretation,

though it will be seen that β becomes unbounded in the inextensible limit.

The corresponding linear stress-strain relation for small deformations is then

σ = Cε

= λ(tr ε)I + 2µtε+ α
(
(M : ε)I + (tr ε)M

)
+ β(M : ε)M + γ(εM +Mε), (2.9)

in which σ and ε denote the stress and the infinitesimal strain tensors; tr ε denotes the trace of ε, and

M : ε = εa · a, obtained from the definition of M , gives the strain in the direction of a.

The special case of an isotropic material is recovered by setting α = β = 0 and µl = µt.
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For the particular case in which a = e3, the stress-strain relationship can be written in matrix form as

σ11

σ22

σ33

σ23

σ13

σ12


=



λ+ 2µt λ λ+ α 0 0 0

λ λ+ 2µt λ+ α 0 0 0

λ+ α λ+ α λ+ 2µt + 2α+ β + 2γ 0 0 0

0 0 0 µl 0 0

0 0 0 0 µl 0

0 0 0 0 0 µt





ε11

ε22

ε33

2ε23

2ε13

2ε12


. (2.10)

2.2 The compliance tensor

It is also useful to have available the inverse of (2.9), and to find the compliance tensor S corresponding to

C; that is,

ε = Sσ. (2.11)

We derive here an explicit form for S, using an approach that is more direct than that in [30]. First, from

(2.9) we have

2µtε = σ − (λI + αM)(tr ε)− (αI + βM)(M : ε)− γ(εM +Mε), (2.12)

trσ = λ(tr ε)(tr I) + 2µt(tr ε) + α
(
(M : ε)(tr I) + (tr ε)(trM)

)
+ β(M : ε)(trM) + γ

(
tr (εM) + tr (Mε)

)
= 3λ(tr ε) + 2µt(tr ε) + α

(
3(M : ε) + (tr ε)

)
+ β(M : ε) + 2γ(M : ε)

= (3λ+ 2µt + α)tr ε+ (3α+ β + 2γ)(M : ε), (2.13)

and

M : σ =λ(tr ε)(M : I) + 2µt(M : ε) + α
(
(M : ε)(M : I) + (tr ε)(M : M)

)
+ β(M : ε)(M : M)

+ γ(M : εM +M : Mε)

=λ(tr ε) + 2µt(M : ε) + α
(
(M : ε) + (tr ε)

)
+ β(M : ε) + 2γ(M : ε)

=(λ+ α)tr ε+ (2µt + α+ β + 2γ)(M : ε). (2.14)

We also have

Mσ =λ(tr ε)M + 2µtMε+ α
(
(M : ε)M + (tr ε)M2

)
+ β(M : ε)M2 + γ

(
MεM +MMε

)
=λ(tr ε)M + 2µtMε+ α

(
(M : ε)M + (tr ε)M

)
+ β(M : ε)M + γ

(
(M : ε)M +Mε

)
=(λ+ α)(tr ε)M + (2µt + γ)Mε+ (α+ β + γ)(M : ε)M (2.15)
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and

σM =λ(tr ε)M + 2µtεM + α
(
(M : ε)M + (tr ε)M2

)
+ β(M : ε)M2 + γ

(
εMM +MεM

)
=λ(tr ε)M + 2µtεM + α

(
(M : ε)M + (tr ε)M

)
+ β(M : ε)M + γ

(
εM + (M : ε)M

)
=(λ+ α)(tr ε)M + (2µt + γ)εM + (α+ β + γ)(M : ε)M . (2.16)

Using (2.13) and (2.14), we obtain

 trσ

M : σ

 =

3λ+ 2µt + α 3α+ β + 2γ

λ+ α 2µt + α+ β + 2γ

 tr ε

M : ε


and its inverse  tr ε

M : ε

 =
1

K

2µt + α+ β + 2γ −3α− β − 2γ

−λ− α 3λ+ 2µt + α

 trσ

M : σ

 , (2.17)

where

K = 2(λ+ α)(µt − α) + 2(λ+ µt)(2µt + α+ β + 2γ). (2.18)

Adopting the notations

A =
2µt + α+ β + 2γ

K , B = −3α+ β + 2γ

K , C = −λ+ α

K and D =
3λ+ 2µt + α

K , (2.19)

we substitute into (2.12) the expressions for tr ε and M : ε from (2.17):

2µtε = σ−
(
(Aλ+Cα)I+(Aα+Cβ)M

)
trσ−

(
(Bλ+Dα)I+(Bα+Dβ)M

)
(M : σ)−γ(εM+Mε). (2.20)

From (2.15) and (2.16), we have

σM +Mσ =2
(
(λ+ α)A+ (α+ β + γ)C

)
(trσ)M + 2

(
(λ+ α)B + (α+ β + γ)D

)
(M : σ)M

+ (2µt + γ)(εM +Mε)

=2(λ+ α)(2µt + γ)(trσ)M + 2
(
(λ+ α)B + (α+ β + γ)D

)
(M : σ)M + (2µt + γ)(εM +Mε).

Assuming that 2µt + γ = 2µl 6= 0, that is,

µl 6= 0, (2.21)

we obtain

εM +Mε =
1

2µt + γ

(
(σM +Mσ)− 2(λ+α)(2µt +γ)(trσ)M − 2

(
(λ+α)B+ (α+β+γ)D

)
(M : σ)M

)
.
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Inserting into (2.20), we obtain

2µtε =σ − (Aλ+ Cα)(trσ)I +
(
2γ(λ+ α)− (Aα+ Cβ)

)
(trσ)M − (Bλ+Dα)(M : σ)I

+

(
2γ

2µt + γ

(
(λ+ α)B + (α+ β + γ)D

)
− (Bα+Dβ)

)
(M : σ)M

− γ

2µt + γ
(σM +Mσ);

assuming

µt 6= 0, (2.22)

we obtain the following strain-stress relation:

ε =
1

2µt

(
σ − (Aλ+ Cα)(trσ)I − (Bλ+Dα)

(
(M : σ)I + (trσ)M

)
+

(
2γ

2µt + γ

(
(λ+ α)B + (α+ β + γ)D

)
− (Bα+Dβ)

)
(M : σ)M − γ

2µt + γ
(σM +Mσ)

)
. (2.23)

In simpler form, we can write this expression as

ε = s1(trσ) I + s2σ + s3

(
(M : σ)I + (trσ)M

)
+ s4(M : σ)M + s5(σM +Mσ). (2.24)

Here

s1 = −Aλ+ Cα

2µt
, s2 =

1

2µt
,

s3 = −Bλ+Dα

2µt
, s4 =

2γ

2µt + γ

(
(λ+ α)B + (α+ β + γ)D

)
− (Bα+Dβ),

s5 = − γ

2µt(2µt + γ)
.

(2.25)

From (2.11) and (2.24), we have

S = s1I ⊗ I + s2I + s3(I ⊗M +M ⊗ I) + s4M ⊗M + s5M . (2.26)

2.3 Material parameters

In this section, we express the five material parameters given in (2.9) in terms of the five independent

physically meaningful constants, Et: Young’s modulus in the transverse direction; El: Young’s modulus in

the fibre direction; νt and νl: respectively Poisson’s ratios for the transverse strain with respect to the fibre
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direction and the plane normal to it; and the longitudinal shear modulus µl. One may further define the

transversal shear modulus µt by

µt =
Et

2(1 + νt)
. (2.27)

Choosing the fibre direction to coincide with the basis vector e3, the compliance relation has the alternate

form [17] 

ε11

ε22

ε33

2ε23

2ε13

2ε12


=



1

Et
− νt
Et

− νl
El

0 0 0

− νt
Et

1

Et
− νl
El

0 0 0

− νl
El

− νl
El

1

El
0 0 0

0 0 0
1

µl
0 0

0 0 0 0
1

µl
0

0 0 0 0 0
1

µt





σ11

σ22

σ33

σ23

σ13

σ12


. (2.28)

The nature of the Poisson’s ratios may be determined by considering some simple loading cases. For the

case of uniaxial stress in the x3-direction, with a = e3, the strains are given by

ε11 = − νl
El
σ33, ε22 = − νl

El
σ33 and ε33 =

σ33

El
. (2.29)

Thus

ε11 = ε22 = −νlε33 , (2.30)

so that νl determines the lateral contraction in the plane of isotropy, as a result of strain in the longitudinal

or fibre direction.

Similarly, considering the case of uniaxial stress in the (transverse) x1-direction, we have

ε11 =
σ11

Et
, ε22 = − νt

Et
σ11, and ε33 = − νl

El
σ11, (2.31)

so that

ε33 = −νl
Et
El
ε11 . (2.32)

Thus, lateral contraction in the fibre direction depends directly on the ratio of Young’s moduli in the fibre

and transverse directions. In the inextensible limit, when El/Et →∞, there is no lateral contraction in the

fibre direction.
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Returning to the strain-stress relation given by (2.23), for the particular case of a = e3, we have



ε11

ε22

ε33

2ε23

2ε13

2ε12


=



1−Aλ− Cα
2µt

−Aλ+ Cα

2µt
−λ+ α

K 0 0 0

−Aλ+ Cα

2µt

1−Aλ− Cα
2µt

−λ+ α

K 0 0 0

−λ+ α

K −λ+ α

K
2(λ+ µt)

K 0 0 0

0 0 0
1

µl
0 0

0 0 0 0
1

µl
0

0 0 0 0 0
1

µt





σ11

σ22

σ33

σ23

σ13

σ12


. (2.33)

Comparing (2.33) with (2.28), the expressions of the engineering constants are given in terms of the material

parameters by

Et =
2µt

1−Aλ− Cα, El =
K

2(λ+ µt)
,

νt =
Aλ+ Cα

1−Aλ− Cα, νl =
λ+ α

2(λ+ µt)
.

(2.34)

From (2.10), we have 

C1111 = λ+ 2µt,

C1122 = λ

C1133 = λ+ α,

C3333 = λ− 2µt + 2α+ β + 4µl,

C3131 = µl.

(2.35)

By inverting (2.28), we have



C1111 =
(El − ν2

l Et)Et
(1 + νt)((1− νt)El − 2ν2

l Et)
,

C1122 =
(ν2
l Et + νtEl)Et

(1 + νt)((1− νt)El − 2ν2
l Et)

,

C1133 =
νl(1 + νt)ElEt

(1 + νt)((1− νt)El − 2ν2
l Et)

,

C3333 =
(1− ν2

t )E2
l

(1 + νt)((1− νt)El − 2ν2
l Et)

,

C3131 = µl.

(2.36)

By comparing (2.35) with (2.36), the material parameters λ, α and β can be written in terms of the engi-
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neering constants as

µl = µl,

λ =
(ν2
l Et + νtEl)Et

(1 + νt)((1− νt)El − 2ν2
l Et)

,

α =

(
Elνl(1 + νt)− ν2

l Et − νtEl
)
Et

(1 + νt)((1− νt)El − 2ν2
l Et)

, (2.37)

β =
E2
l (1− ν2

t )− E2
t ν

2
l + EtEl(1− 2νtνl − 2νl)

(1 + νt)((1− νt)El − 2ν2
l Et)

− 4µl.

Henceforth, we set

El = pEt and µl = qµt . (2.38)

Thus p measures the stiffness in the fibre direction relative to that in the plane of isotropy, and q is the ratio

of the two shear moduli. Using (2.38) the expressions (2.37) become

µl
Et

=
q

2(1 + νt)
, (2.39a)

λ

Et
=

νtp+ ν2
l

(1 + νt)
(
(1− νt)p− 2ν2

l

) , (2.39b)

α

Et
=

(νl − νt + νtνl)p− ν2
l

(1 + νt)
(
(1− νt)p− 2ν2

l

) , (2.39c)

β

Et
=

(1− ν2
t )p2 + (−2νtνl + 2qνt − 2νl + 1− 2q)p− (1− 4q)ν2

l

(1 + νt)
(
(1− νt)p− 2ν2

l

) . (2.39d)

Later, we will consider the special case in which

νl = νt = ν and µl = µt, that is q = 1. (2.40)

In this way, we will focus on behaviour in relation to three independent parameters, viz. (λ, α, β) or

(Et, El, ν), rather than the full set of five parameters. The expressions given by equations (2.39) then

become

µl
Et

=
1

2(1 + ν)
, (2.41a)

λ

Et
=

ν(p+ ν)

(1 + ν)
(
(1− ν)p− 2ν2

) , (2.41b)

α

Et
=

ν2(p− 1)

(1 + ν)
(
(1− ν)p− 2ν2

) , (2.41c)

β

Et
=

(p− 1)
(
(1− ν2)p− 3ν2

)
(1 + ν)

(
(1− ν)p− 2ν2

) . (2.41d)
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Throughout this work, our interest is in the behaviour of the material at near-incompressibility and at near-

inextensibility. Clearly, inextensibility corresponds to the case p→∞, or equivalently β →∞. Note that λ

and α are bounded in the limit p→∞.

We now consider the case of incompressibility, that is, values of the material parameters for which tr ε = 0.

With the assumption (2.40), from (2.28), we have

tr ε =
1

Et

(
1− ν − ν

p

)
σ11 +

1

Et

(
1− ν − ν

p

)
σ22 +

1

pEt
(1− 2ν)σ33.

Assuming σ11, σ22, σ33 6= 0, we have tr ε = 0 if and only if


ν =

p

p+ 1

ν =
1

2

⇔ p = 1 and ν =
1

2
. (2.42)

Thus, incompressible behaviour is possible only for the isotropic case, and corresponds to Poisson’s ratio

ν = 1/2.

The same applies if σ11 = 0 or σ22 = 0. On the other hand, if σ11 = σ22 = 0, incompressible behaviour

occurs for ν = 1/2, independent of p.

For the case in which σ33 = 0, we have tr ε = 0 if and only if

ν =
p

p+ 1
. (2.43)

Thus, for this case, incompressible behaviour occurs for any pair (ν, p) that satisfies (2.43).

Under plane strain conditions, by setting ε22 = 0 and eliminating σ22, we have

tr ε =
1

Et

(
1− ν2 − ν2

p
− ν

p

)
σ11 +

1

pEt

(
1− ν − ν2 − ν2

p

)
σ33.

Assuming σ11, σ33 6= 0, we have

tr ε = 0 ⇔


ν =

p

p+ 1

ν =
p

2

⇔ p = 1 and ν =
1

2
. (2.44)

So, as for the general case, the only possibility for incompressible behaviour is the isotropic case with Poisson’s

ratio ν = 1/2.
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Assuming σ11 = 0, we have

tr ε = 0 ⇔
(
p+ 1

p

)
ν2 + ν − 1 = 0 ⇔ p =

ν2

1− ν − ν2
. (2.45)

Thus, for this case, incompressible behaviour occurs for any pair (ν, p) that satisfies (2.45). If ν = 1/2 then

incompressibility corresponds to the case when p = 1.

Assuming σ33 = 0, we have

tr ε = 0 ⇔ ν =
p

p+ 1
, (2.46)

as for the general case (2.43).

The following table summarizes the conditions on the material parameters for incompressibility. These are

of course pointwise or local conditions.

case values for ν and p

σ11, σ22, σ33 6= 0

σ11 = 0 or σ22 = 0 ν = 1
2 , p = 1

plane strain: σ11, σ33 6= 0

σ11 = σ22 = 0 ν = 1
2 , any p

σ33 = 0
ν = p

p+1

plane strain: σ33 = 0

plane strain: σ11 = 0 p = ν2

1−ν−ν2

Table 2.1: Conditions on ν and p for incompressibility, for various stress states

2.4 Pointwise stability

The condition of pointwise stability is equivalent to the positive definiteness of the elasticity tensor C, that

is,

ε : Cε > 0 for any non-zero second order tensor ε. (2.47)

We write (2.47) in matrix form, that is

εTC ε > 0,
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in which ε = (ε11, ε22, ε33, 2ε13, 2ε23, 2ε33)T and C is a 6× 6 -matrix. Then from (2.10), we have

C =



λ+ 2µt λ λ+ α 0 0 0

λ λ+ 2µt λ+ α 0 0 0

λ+ α λ+ α λ+ 2µt + 2α+ β + 2γ 0 0 0

0 0 0 µl 0 0

0 0 0 0 µl 0

0 0 0 0 0 µt


.

A necessary and sufficient set of conditions for positive definiteness is

µt > 0, µl > 0, (2.48)

and that the 1× 1, 2× 2 and 3× 3 upper left subdeterminants are all positive [28]. That is

λ+ 2µt > 0, (2.49a)∣∣∣∣∣∣λ+ 2µt λ

λ λ+ 2µt

∣∣∣∣∣∣ > 0, (2.49b)

and

∣∣∣∣∣∣∣∣∣
λ+ 2µt λ λ+ α

λ λ+ 2µt λ+ α

λ+ α λ+ α λ+ 2µt + 2α+ β + 2γ

∣∣∣∣∣∣∣∣∣ > 0. (2.49c)

From (2.49b),

(λ+ 2µt)
2 − λ2 = 4µt(λ+ µt) > 0.

From (2.49c),

(λ+ 2µt)
[
(λ+ 2µt)(λ+ 2µt + 2α+ β + 2γ)− (λ+ α)2

]
− λ
[
λ(λ+ 2µt + 2α+ β + 2γ)− (λ+ α)2

]
+ (λ+ α)

[
λ(λ+ α)− (λ+ α)(λ+ 2µt)

]
=4µt

[
(λ+ µt)(λ+ 2µt + 2α+ β + 2γ)− (λ+ α)2

]
> 0.
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Therefore positive definiteness conditions (2.48) and (2.49) maybe rewritten as follows:

µt > 0, µl > 0, (2.50a)

λ+ 2µt > 0, (2.50b)

λ+ µt > 0, (2.50c)

and (λ+ µt)(λ+ 2µt + 2α+ β + 2γ)− (λ+ α)2 > 0. (2.50d)

Using the expressions in (2.39), we now rewrite these conditions in terms of the engineering constants.

From condition (2.50a)1, we have

µt =
Et

2(1 + νt)
> 0. (2.51)

From condition (2.50d), we have

(λ+ µt)(λ+ 2µt + 2α+ β + 2γ)− (λ+ α)2 =
p2E2

t

2
(
(1− νt)p− 2ν2

l

) > 0

⇐⇒(1− νt)p− 2ν2
l > 0. (2.52)

Condition (2.50b) gives

λ+ 2µt =
(p− ν2

l )Et

(1 + νt)
(
(1− νt)p− 2ν2

l

) > 0.

Using (2.51) and (2.52) yield

p > ν2
l . (2.53)

From condition (2.50c), we have

λ+ µt =
pEt

2
(
(1− νt)p− 2ν2

l

) > 0⇒ Et > 0, (2.54)

using (2.52) and (2.53).

Conditions (2.51) and (2.54) then imply

νt > −1. (2.55)

Conditions (2.52) and (2.53) imply

νt < 1. (2.56)
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We summarize as follows: conditions for pointwise stability are

Et > 0, µt > 0, µl > 0, (2.57a)

p > ν2
l , (2.57b)

(1− νt)p− 2ν2
l > 0. (2.57c)

We illustrate these conditions with some special cases.

(a) For the case of plane strain with non-zero strains ε11, ε33 and ε13, we have

C =


λ+ 2µt λ+ α 0

λ+ α λ+ 2µt + 2α+ β + 2γ 0

0 0 µl

 .

Therefore necessary and sufficient conditions for pointwise stability are

µt > 0,

λ+ 2µt > 0,

and

∣∣∣∣∣∣λ+ 2µt λ+ α

λ+ α λ+ 2µt + 2α+ β + 2γ

∣∣∣∣∣∣ = (λ+ 2µt)(λ+ 2µt + 2α+ β + 2γ)− (λ+ α)2 > 0.

which are (2.50a)1, (2.50b) and (2.52). Hence, conditions (2.57) are valid here.

(b) If we choose p = 1, then equation (2.57b) is equivalent to

|νl| < 1,

and (2.57c) becomes

1− νt > 2ν2
l ⇐⇒ |νl| <

√
1− νt

2
.

Then, for example, for νt = 0.5 we have −0.5 < νl < 0.5.

(c) Assuming νl = νt = ν, the zones of admissible values of p and ν corresponding to the inequalities

(2.57b) and (2.57c) are shown in the cross-hatched areas in Figure 2.2.
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Figure 2.2: Admissible values for p and ν, according to the inequalities (2.57b) and (2.57c)

Remarks

1. From [17], positive definiteness of the compliance matrix is equivalent to

Et > 0, El > 0, µl > 0, (2.59a)

plane stress: ν2
l < p, (2.59b)

plane strain: ν2
l <

1− νt
2

p. (2.59c)

In [28], general conditions for positive definiteness of the compliance matrix are given by

Et > 0, El > 0, µt > 0, µl > 0, (2.60a)

− 1 < νt < 1, (2.60b)

ν2
l < p, (2.60c)

1− 2ν2
l

p
> νt. (2.60d)

It can be seen that these conditions are equivalent to (2.57).

2. For the special case νt = νl and p = 1, we have β + 2γ = 0 and α = 0, so that λ + 2
3µt > 0 and

µl ≥ µt > 0 would ensure pointwise stability, provided only that tr ε 6= 0. This includes the case of

isotropy, for which µl = µt.
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2.5 Strong ellipticity

From [31] the strong ellipticity condition which ensures that the governing differential equations for elasto-

statics problems are completely elliptic is

(m⊗ r) : C(m⊗ r) > 0,

for any real non-zero vectors m and r.

Strong ellipticity conditions can be derived from pointwise stability conditions as can be seen by choosing

ε = m⊗ r. Thus conditions (2.57) are sufficient conditions for strong ellipticity.



Chapter 3

Standard Galerkin finite element

approximations

The conforming Galerkin method is a widely used numerical method for solving differential equations. Well

developed mathematical theory, demonstrated robustness, and simplicity of implementation have made it

the method of choice for many problems. For the case of linear elasticity, mostly studied for isotropic

materials, the method exhibits volumetric locking behaviour when low order elements are used, whereas

uniform convergence is obtained for higher order elements [26]. This chapter explores and presents a detailed

study of the behaviour of transversely isotropic linear elastic bodies with the use of low order conforming

finite elements.

The layout of this chapter is as follows. Conditions for well-posedness of the weak formulation are presented

in Section 3.1. For conforming finite element approximations in Section 3.2, an error estimate is established.

This standard error estimate reveals the role played by anisotropy in mitigating locking behaviour in the

incompressible limit, and it shows the circumstances under which extensional locking may be expected for

low-order elements. In Section 3.3, under-integration is proposed as a potential remedy, and its equivalence

to respectively mixed and perturbed Lagrangian approaches established.

3.1 Governing equations and weak formulation

3.1.1 Governing equations

Consider a transversely isotropic elastic body occupying a bounded domain Ω ⊂ Rd, d = {2, 3}, with bound-

ary ∂Ω having outward unit normal n. The boundary is subdivided into a Dirichlet part ΓD, and a Neumann

part ΓN such that

∂Ω = ΓD ∪ ΓN , and ΓD ∩ ΓN = ∅. (3.1)

27
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A displacement g ∈ [L2(ΓD)]d is prescribed on ΓD, and a surface traction h ∈ [L2(ΓN )]d on ΓN . The body

is subject to a body force f ∈ [L2(Ω)]d.

The body satisfies the following set of equations.

Equilibrium:

− div σ = f ; (3.2)

constitutive equation for linear elasticity:

σ = Cε, (3.3)

where the elasticity tensor C is given by (2.9);

the strain-displacement relation

ε(u) :=
1

2

(
∇u+∇Tu

)
. (3.4)

We consider the displacement-based problem obtained by substituting (3.3) and (3.4) in (3.2), with boundary

conditions

u = g on ΓD, (3.5a)

σn = h on ΓN . (3.5b)

3.1.2 Weak formulation

We set

V := {u ∈
[
H1(Ω)

]d
; u = 0 on ΓD}, (3.6)

which is endowed with the norm

|| · ||V = ‖ · ‖1,Ω.

Taking the inner product of (3.2) with a test function v ∈ V, and integrating by parts, we obtain

∫
Ω

σ(u) : ε(v) dx =

∫
∂Ω

σ(u)n · v ds+

∫
Ω

f · v dx.

To take into account the homogeneous boundary condition (3.5a), we define the function ug ∈ [H1(Ω)]d such

that ug = g on ΓD, and the bilinear form a(·, ·) and linear functional l(·) by

a : [H1(Ω)]d × [H1(Ω)]d → R, a(u,v) =

∫
Ω

σ(u) : ε(v) dx, (3.7a)

l : [H1(Ω)]d → R, l(v) =

∫
Ω

f · v dx+

∫
ΓN

h · v ds− a(ug,v). (3.7b)
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The weak form of the problem is then as follows: given f ∈ [L2(Ω)]d and h ∈ [L2(ΓN )]d, find U ∈ [H1(Ω)]d

such that U = u+ ug,u ∈ V, and

a(u,v) = l(v) ∀v ∈ V. (3.8)

We write the bilinear form as

a(u,v) = aiso(u,v) + ati(u,v),

where, from (2.9),

aiso(u,v) = λ

∫
Ω

(∇ · u)(∇ · v) dx+ 2µt

∫
Ω

ε(u) : ε(v) dx, (3.9a)

ati(u,v) = α

∫
Ω

(
(M : ε(u))(∇ · v) + (∇ · u)(M : ε(v))

)
dx+ β

∫
Ω

(M : ε(u))(M : ε(v)) dx

+ γ

∫
Ω

(
ε(u)M : ε(v) +Mε(u) : ε(v)

)
dx. (3.9b)

Note that aiso(·, ·) and ati(·, ·) are symmetric.

The well-posedness of the weak problem requires the bilinear form to be continuous and coercive, and the

linear functional to be continuous.

We assume that the coefficients in the elasticity tensor C satisfy the conditions (2.57) for pointwise stability.

Continuity. The bilinear form a(·, ·) is uniformly continuous if there exists a constant positive Ca such

that

|a(u,v)| ≤ Ca||u||V ||v||V , ∀u,v ∈ V.

For any u,v ∈ V, we have

|a(u,v)| ≤ |aiso(u,v)|+ |ati(u,v)|.

We start with the isotropic part:

|aiso(u,v)| ≤
∣∣∣∣λ ∫

Ω

(∇ · u)(∇ · v) dx

∣∣∣∣+ 2

∣∣∣∣µt ∫
Ω

ε(u) : ε(v) dx

∣∣∣∣ .
We bound each term on the right hand side, using the Cauchy-Schwarz inequality:∣∣∣∣λ ∫

Ω

(∇ · u)(∇ · v) dx

∣∣∣∣ ≤ |λ|‖∇ · u‖0,Ω‖∇ · v‖0,Ω
≤ |λ|‖∇u‖0,Ω‖∇v‖0,Ω

≤ |λ|||u||V ||v||V
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and

2µt

∣∣∣∣∫
Ω

ε(u) : ε(v) dx

∣∣∣∣ ≤ 2µt‖ε(u)‖0,Ω‖ε(v)‖0,Ω

≤ 2µt‖∇u‖0,Ω‖∇v‖0,Ω

≤ 2µt||u||V ||v||V .

Thus

|aiso(u,v)| ≤ max (|λ|, 2µt)||u||V ||v||V . (3.10)

Next, for the transversely isotropic part, we have

|ati(u,v)| ≤
∣∣∣∣α ∫

Ω

(M : ε(u))(∇ · v) dx

∣∣∣∣+

∣∣∣∣α ∫
Ω

(∇ · u)(M : ε(v)) dx

∣∣∣∣+

∣∣∣∣β ∫
Ω

(M : ε(u))(M : ε(v)) dx

∣∣∣∣
+

∣∣∣∣γ ∫
Ω

ε(u)M +Mε(u) : ε(v) dx

∣∣∣∣ .
We bound each term on the right-hand side as follows:∣∣∣∣α ∫

Ω

(M : ε(u))(∇ · v) dx

∣∣∣∣ ≤ |α|‖M : ε(u)‖0,Ω‖∇ · v‖0,Ω

≤ |α|Cα‖ε(u)‖0,Ω‖∇ · v‖0,Ω

≤ |α|Cα‖∇u‖0,Ω‖∇v‖0,Ω

≤ |α|Cα||u||V ||v||V .

Similarly, we have ∣∣∣∣α ∫
Ω

(∇ · u)(M : ε(v)) dx

∣∣∣∣ ≤ |α|‖∇ · u‖0,Ω‖M : ε(v)‖0,Ω

≤ |α|Cα‖∇u‖0,Ω‖∇v‖0,Ω

≤ |α|Cα||u||V ||v||V ,

∣∣∣∣β ∫
Ω

(M : ε(u))(M : ε(v)) dx

∣∣∣∣ ≤ |β|‖M : ε(u)‖0,Ω‖M : ε(v)‖0,Ω

≤ |β|Cβ‖∇u‖0,Ω‖∇v‖0,Ω

≤ |β|Cβ ||u||V ||v||V ,
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Ω

ε(u)M : ε(v) dx

∣∣∣∣ ≤ |γ|‖ε(u)M‖0,Ω‖ε(v)‖0,Ω

≤ |γ|Cγ‖ε(u)‖0,Ω‖ε(v)‖0,Ω

≤ |γ|Cγ‖∇u‖0,Ω‖∇v‖0,Ω

≤ |γ|Cγ ||u||V ||v||V ,

and finally ∣∣∣∣γ ∫
Ω

Mε(u) : ε(v) dx

∣∣∣∣ ≤ |γ|Cγ ||u||V ||v||V .
Thus,

|ati(u,v)| ≤ C(|α|+ |β|+ |γ|)||u||V ||v||V . (3.11)

Therefore, from equations (3.10) and (3.11), the bilinear form a is continuous with

|a(u,v)| ≤ Ca||u||V ||v||V , (3.12)

where

Ca = C(max (|λ|, 2µt) + |α|+ |β|+ |γ|). (3.13)

Next, we have, using the trace theorem,

|l(v)| ≤ ||f ||0,Ω||v||0,Ω + ‖h‖0,ΓN
‖v‖0,Γ + Ca||ug||V ||v||V ,

≤ ||f ||0,Ω||v||V + C0‖h‖0,ΓN
||v||V + Ca||ug||V ||v||V ,

≤ Cl||v||V . (3.14)

Coercivity. The bilinear form a(·, ·) is coercive on V if there exists a constant positive K such that

a(v,v) ≥ K||v||2V ∀v ∈ V.

Using the matrix notation in Section 2.4, we have

σ(v) : ε(v) = εTC ε.

Given that C is symmetric and positive definite, it has a set of six positive eigenvalues Λi, 1 ≤ i ≤ 6, and a

corresponding set of mutually orthogonal eigenvectors ξi, 1 ≤ i ≤ 6. Thus, C can be written as

C = QTDQ, (3.15)



32 Chapter 3. Standard Galerkin finite element approximations

in which D is a diagonal matrix whose diagonal components are the eigenvalues Λi, and Q is an orthogonal

matrix whose columns are the eigenvectors ξi; that is,

Dij = Λiδij and Qij = ξij . (3.16)

For any vector ε, we define

η := Q ε, (3.17)

then

ε = QTη. (3.18)

Therefore,

εTC ε = ηTQ(QTDQ)QTη

= ηTDη

= ηiDijηj

=
∑
i,j

ηiΛiδijηj

=
∑
i

η2
iΛi

≥ Λmin
∑
i

η2
i

= Λmin|η|2

= Λmin|ε|2,

in which

Λmin = min{Λi, 1 ≤ i ≤ 6}.

Hence, we have

a(v,v) =

∫
Ω

σ(v) : ε(v) dx

≥ Λmin

∫
Ω

|ε(v)|2 dx

= Λmin‖ε(v)‖20,Ω
≥ CΛmin||v||2V (Korn’s inequality).

Hence a is coercive with

K = CΛmin. (3.19)
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3.1.3 Theorem. The problem (3.8) has a unique solution u ∈ V, which satisfies

||u||V ≤ C, where C =
Cl
K
,

where Cl and K are defined by (3.14) and (3.19), respectively.

3.2 Conforming finite element approximations

Suppose that Ω is polygonal (in R2) or polyhedral (in R3), and partitioned into a shape-regular mesh

comprising ne disjoint subdomains Ωe with boundary ∂Ωe and outward unit normal ne. Denote by Th :=

{Ωe}e the set of all elements.

We define the discrete space Vh ⊂ V by

Vh = {vh ∈ V ∩ C(Ω̄) | vh|Ωe
∈ [R1(Ωe)]

d,vh = 0 on ΓD}. (3.20)

Here R1(Ωe) = P1(Ωe) or Q1(Ωe), where P1(Ωe) is the space of polynomials on Ωe of maximum total degree

1, and Q1(Ωe) is the space of polynomials on Ωe of degree 1 in each component.

The discrete problem corresponding to conforming approximations is as follows: find uh ∈ Vh that satisfies

a(uh,vh) = l(vh) ∀vh ∈ Vh. (3.21)

Since the bilinear form a(·, ·) is continuous and coercive and the linear functional l(·) is continuous, from

standard finite element convergence theory [11] we have

||u− uh||V ≤ C1h, (3.22)

in which, using (3.12) and (3.19), the constant C1 is given by

C1 =
C(max (|λ|, 2µt) + |α|+ |β|+ |γ|)

Λmin
. (3.23)

For the special case of an isotropic material, with α, β and γ all equal to zero, one obtains the well-known

λ-dependent bound, with λ→∞ in the incompressible limit.

From (2.39), all three parameters λ, α, and β have the same denominator D := (1 + νt)((1 − νt)p − 2ν2
l ).

Fixing νl = νt = ν and q = 1 for example, we have

D(p, ν) = (1 + ν)((1− ν)p− 2ν2), (3.24)
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which becomes unbounded as

p→ 2ν2

1− ν .

The limit p = 1 corresponds to the case of isotropy, with the well-known limiting value ν = 1/2, for which

λ becomes unbounded, while α = β = 0. For anisotropic materials, though, for which p > 1, it is seen from

(3.23) and (3.24) that the constant C1 in the error bound (3.22) is bounded, so that in principle one has

uniform convergence. This is illustrated in Figure 3.1, which shows the behaviour of C1 as a function of p,

for near-incompressibility. This issue will be explored later numerically, in Chapter 4.
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Figure 3.1: The error bound constant C1 in (3.23) against p, with νl = νt = 0.49995 and q = 1

3.3 Under-integration

Anticipating locking in particular circumstances, we may address this by under-integrating (i.e. using one-

point integration) the terms involving volumetric and extensional deformation. Throughout this section, we

consider only the case where R1(Ωe) = Q1(Ωe) in the discrete space defined by (3.20).

Let x̄ be the integration point and ω̄ the corresponding weight on element Ωe. Here x̄ is the centroidal

coordinate and the weight ω̄ is the measure |Ωe| of the element.

Under-integration of the volumetric term

λ

∫
Ωe

(∇ · uh)(∇ · vh) dx

entails replacing it with

λ(∇ · uh(x̄))(∇ · vh(x̄))ω̄. (3.25)

From (2.39), we see that α is bounded as p → ∞ (the inextensional limit), while β → ∞ as p → ∞. Thus,
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it is likely that extensional locking may occur with Q1 elements. As a potential remedy, we will replace the

extensional term

β

∫
Ωe

(M : ε(uh))(M : ε(vh)) dx

with

β
(
M : ε(uh(x̄))

)(
M : ε(vh(x̄))

)
ω̄. (3.26)

One can easily show that one-point integration is equivalent to projection of the integrand onto the space

of constants. If we define by Π0 the L2-orthogonal projection onto constants, then under-integrating the

volumetric term, as in (3.25), is the same as replacing it with

λ

∫
Ωe

Π0(∇ · uh)Π0(∇ · vh) dx. (3.27)

Similarly, (3.26) is equivalent to

β

∫
Ωe

Π0(M : ε(uh))Π0(M : ε(vh)) dx = β |Ωe|Π0(M : ε(uh))Π0(M : ε(vh)). (3.28)

Defining the bilinear form ā by

ā(u,v) =λ
∑

Ωe∈Th

∫
Ωe

(∇ · u)(∇ · v) dx+ 2µt
∑

Ωe∈Th

∫
Ωe

ε(u) : ε(v) dx

+ α
∑

Ωe∈Th

∫
Ωe

(
(M : ε(u))(∇ · v) + (∇ · u)(M : ε(v))

)
dx

+ β
∑

Ωe∈Th

(
M : ε(uh(x̄))

)(
M : ε(vh(x̄))

)
ω̄

+ γ
∑

Ωe∈Th

∫
Ωe

(
ε(u)M : ε(v) +Mε(u) : ε(v)

)
dx,

the formulation with under-integration of the term involving β is given by

ā(u,v) =λ
∑

Ωe∈Th

∫
Ωe

(∇ · u)(∇ · v) dx+ 2µt
∑

Ωe∈Th

∫
Ωe

ε(u) : ε(v) dx

+ α
∑

Ωe∈Th

∫
Ωe

(
(M : ε(u))(∇ · v) + (∇ · u)(M : ε(v))

)
dx

+ β
∑

Ωe∈Th

|Ωe|Π0(M : ε(u))Π0(M : ε(v)) (3.29)

+ γ
∑

Ωe∈Th

∫
Ωe

(
ε(u)M : ε(v) +Mε(u) : ε(v)

)
dx,

The under-integrated formulation will be explored numerically in Chapter 4.
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3.3.1 Equivalence with perturbed Lagrangian formulation

In [4, 10], a perturbed Lagrangian formulation is proposed as a locking free method for the isotropic linear

elastic problem reinforced by a single family of inextensible fibres. The approach takes as a starting point a

strain energy of the form

W (ε, T, β) = W iso(ε) +W f(ε, T, ρ) (3.30)

in which the isotropic strain energy is

W iso(ε) =
1

2
λ(tr ε)2 + µttr (ε2)

and the strain energy corresponding to the fibres is

W f(ε, T, ρ) = T (M : ε)− 1

2ρ
T 2.

Here ρ is the a penalty parameter, and T is the Lagrange multiplier.

The stress is obtained from

σ =
∂W

∂ε

= λ tr ε+ 2µt ε+ TM . (3.31)

In addition we have the condition
∂W

∂T
= 0,

so that

M : ε− T

ρ
= 0, (3.32)

or

T = ρ(M : ε).

We assume that α = γ = 0 in this section. For T ∈ L2(Ω), where β plays the role of a penalty parameter,

the extensional term in the weak formulation (see (3.9b)) is

ati(T,v) =

∫
Ω

T (M : ε(v)) dx. (3.33)

With a test function ϑ ∈ L2(Ω), we can write the weak form of (3.32) as

∫
Ω

ϑ
(
T − β(M : ε(u))

)
dx = 0.
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The corresponding discrete form with uh ∈ [Q1(Ωe)]
d and Th, ϑh ∈ P0(Ωe) at element level is

∫
Ωe

ϑh
(
Th − β(M : ε(uh))

)
dx = 0.

Since ϑh ∈ P0(Ωe), we have ∫
Ωe

(
Th − β(M : ε(uh))

)
dx = 0.

Since Th is piecewise constant, we have

Th

∫
Ωe

dx = β

∫
Ωe

(M : ε(uh)) dx,

or

Th =
β

|Ωe|

∫
Ωe

(M : ε(uh)) dx.

We substitute in the discrete form of (3.33) to obtain

∫
Ω

Th(M : ε(vh)) dx =
∑

Ωe∈Th

β

|Ωe|

(∫
Ωe

M : ε(uh) dx

)(∫
Ωe

M : ε(vh) dx

)
=
∑

Ωe∈Th

β

|Ωe|

(∫
Ωe

Π0(M : ε(uh)) dx

)(∫
Ωe

Π0(M : ε(vh)) dx

)
=
∑

Ωe∈Th

β

|Ωe|

(∫
Ωe

dx

)(∫
Ωe

Π0(M : ε(uh))Π0(M : ε(vh)) dx

)
=
∑

Ωe∈Th

β

∫
Ωe

Π0(M : ε(uh))Π0(M : ε(vh)) dx, (3.34)

Using the fact thatM : ε(uh) ∈ P1(Ωe), and is integrated exactly using one-point quadrature, the expression

(3.34) is therefore the same as (3.28), so that the perturbed Lagrangian approximation is equivalent to under-

integration of the extensional term.

3.4 An equivalent mixed finite element method

Here we show that the under-integrated formulation in Section 3.3 is also equivalent to a mixed displacement-

tension (u, t) finite element formulation. This is analogous to the well-known displacement-pressure or

Q1 − P0 formulation for incompressibility. We focus here on near-inextensibility.

3.4.1 Governing equations and weak formulation

Returning to (2.9), we write the elasticity relation in the form

σ = −tM + σ̂,
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where

t = −β∇ ·Mu,

and

σ̂(u) = λ(tr ε(u))I + 2µtε(u) + α
(
(∇ ·Mu)I + (tr ε(u))M

)
+ γ
(
ε(u)M +Mε(u)

)
.

We note that

M : ε(u) = ∇ ·Mu.

The governing equations are now

−div σ̂(u) + div (tM) = f , (3.35a)

t = −β∇ ·Mu. (3.35b)

For convenience, we assume an homogeneous Dirichlet boundary condition:

u = 0 on ∂Ω. (3.36)

Taking the inner product of the equilibrium equation (3.35a) with a sufficiently smooth function v, such

that v|∂Ω = 0, and integrating by parts, we obtain

a′(u,v) + b′(v, t) = lf (v),

where a′(·, ·) and b′(·, ·) are defined respectively by

a′(u,v) := λ

∫
Ω

(∇ · u)(∇ · v) dx+ 2µt

∫
Ω

ε(u) : ε(v) dx+ α

∫
Ω

(
(∇ ·Mu)(∇ · v) + (∇ · u)(∇ ·Mv)

)
dx

+ γ

∫
Ω

(
ε(u)M : ε(v) +Mε(u) : ε(v)

)
dx, (3.37)

b′(v, t) := −
∫

Ω

(∇ ·Mv)t dx, (3.38)

and lf (·) is the linear functional defined by

lf (v) :=

∫
Ω

f · v dx. (3.39)

Similarly, multiplying equation (3.35b) with a sufficiently smooth function q and integrating over Ω, we

obtain

−c′(t, q) + b′(u, q) = 0,
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where the bilinear functional c′(·, ·) is defined by

c′(t, q) :=
1

β

∫
Ω

tq dx. (3.40)

We define the function spaces

X :=
[
H1

0(Ω)
]2
, with norm ‖ · ‖X = | · |1,Ω,

and

M := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
, with norm ‖ · ‖M = ‖ · ‖0,Ω.

The weak formulation of the problem is then as follows: find a pair of functions (u, t) ∈ X ×M such that

a′(u,v) + b′(v, t) = lf (v) ∀v ∈ X , (3.41a)

−c′(t, q) + b′(u, q) = 0 ∀q ∈M. (3.41b)

The weak formulation (3.41) is clearly equivalent to (3.8), making allowances for the differences in boundary

conditions.

To obtain the corresponding discrete problem of (3.41), we suppose that Xh ⊂ X and Mh ⊂ M are finite

dimensional linear subspaces of the Hilbert spaces X and M, respectively, and defined as follows:

Xh :=
{
vh ∈ X : vh|Ωe

∈ [Q1(Ωe)]
2 ∀Ωe ∈ Th, vh|∂Ω = 0

}
,

Mh := {qh ∈M : qh|Ωe ∈ P0(Ωe) ∀Ωe ∈ Th} .

Consider the following approximation of the problem (3.41): find (uh, th) ∈ Xh ×Mh such that

a′(uh,vh) + b′(vh, th) = lf (vh) ∀vh ∈ Xh, (3.42a)

−c′(th, qh) + b′(uh, qh) = 0 ∀qh ∈Mh. (3.42b)

From (3.42b), we have at element level

− 1

β

∫
Ωe

thqh dx−
∫

Ωe

(∇ ·Muh)qh dx = 0,

⇒
∫

Ωe

(
1

β
th +∇ ·Muh

)
qh = 0,

⇒
∫

Ωe

1

β
th +∇ ·Muh = 0,

⇒th
|Ωe|
β

= −
∫

Ωe

∇ ·Muh dx.
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Thus, the discrete tension is given by

th = − β

|Ωe|

∫
Ωe

∇ ·Muh dx. (3.43)

We substitute into the discrete form b′(vh, th) to obtain

b′(vh, th) = −
∑

Ωe∈Th

(∫
Ωe

∇ ·Mvh dx

)(
− β

|Ωe|

∫
Ωe

∇ ·Muh dx

)
=
∑

Ωe∈Th

β

|Ωe|

(∫
Ωe

∇ ·Mvh dx

)(∫
Ωe

∇ ·Muh dx

)
=
∑

Ωe∈Th

β

|Ωe|

(∫
Ωe

Π0(∇ ·Mvh) dx

)(∫
Ωe

Π0(∇ ·Muh) dx

)
=
∑

Ωe∈Th

β

∫
Ωe

Π0(∇ ·Mvh)Π0(∇ ·Muh) dx

=
∑

Ωe∈Th

β|Ωe|Π0(∇ ·Mvh)Π0(∇ ·Muh)

which is the same as (3.28). The third line is obtained by recognizing that ∇·Mvh is linear on the element,

so that the integral is integrated exactly using one-point integration.

Comparing with (3.30), we see that the mixed formulation (3.42) is equivalent to the selectively under-

integrated formulation.
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Numerical tests

In this chapter, we present a series of results to illustrate the various features discussed in the previous

chapters. For material parameters that satisfy the pointwise conditions (2.57), we first investigate the

behaviour of compressible and nearly incompressible materials with reference to Table 2.1. Next, we explore

the behaviour of nearly inextensible materials.

Two model problems are presented: Cook’s membrane and bending of a beam.

4.1 Material parameters

All examples are under conditions of plane strain and based on four- and nine-noded quadrilateral elements

with standard bilinear and biquadratic interpolation of the displacement field. We set νl = νt = ν and γ = 0,

and choose values of ν and p that satisfy the conditions (2.57) for pointwise stability (see also Figure 2.2).

As summarized earlier in Table 2.1, for general states of stress in plane strain, incompressible behaviour

occurs only for the case p = 1 and ν = 1/2. To investigate the behaviour at near-incompressibility, we

choose ν = 0.49995. For conditions (2.57b) and (2.57c) to be satisfied, we will require p ≥ 1 for this case.

We are also interested in the behaviour for values of p < 1 and which satisfy (2.57). For this purpose, we

select two values of ν, viz. −0.5 and +0.3, and in accordance with (2.57), consider values of p in the following

ranges:

ν = 0.3 ⇒ p > (0.3)2 = 0.09 and p >
2(0.3)2

1− 0.3
' 0.257,

ν = −0.5 ⇒ p > (−0.5)2 = 0.25 and p >
2(−0.5)2

1 + 0.5
' 0.333.

Define â := ̂(Ox,a), the angle between the x-axis and the fibre direction a. For each problem, the following

41
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range of values for â, also illustrated in Figure 4.1, will be considered:

â =

{
0,
π

8
,
π

6
,
π

4
,
π

3
,

3π

8
,
π

2
,

5π

8
,

3π

4
,

7π

8
, π

}
.

Figure 4.1: Fibre directions at different angles

The results in the examples that follow are for the following element choices:

Exact The analytical solution

Q1 CG The standard displacement formulation of order 1

Q2 CG The standard displacement formulation of order 2

Q1 CG UIλ The standard displacement formulation with under-integration of the volumet-

ric (λ-) term

Q1 CG UIβ The standard displacement formulation with under-integration of the exten-

sional (β-) term

Q1 CG UIβλ The standard displacement formulation with under-integration of the volumet-

ric and the extensional terms

The diameter of an element Ωe is defined by h := diam{Ωe}.

4.2 Cook’s membrane

The Cook’s membrane test consists of a tapered panel fixed along one edge and subject to a shearing load

at the opposite edge as depicted in Figure 4.2. The applied load is f = 100 and Et = 250. This test problem

has no analytical solution. A mesh of 32 elements per side is used. The vertical tip displacement at corner C

is measured. To investigate locking of the proposed formulations, we compare the results with those obtained

using the standard Q2-element.
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Figure 4.2: Cook’s membrane geometry and boundary conditions

Figures 4.3 and 4.4 show semilog plots of the tip displacement vs p for various fibre directions for ν = 0.3

and ν = −0.5 respectively. For small values of p, (0.35 ≤ p ≤ 3) as shown in the left figures, the conforming

method Q1 CG is uniformly convergent. For high values of p, (4 ≤ p ≤ 107), as shown in the right figures, the

conforming Q1 CG shows locking behaviour, which is avoided when the extensional term is under-integrated

(Q1 CG UIβ). Also shown are curves for the standard Q2-element, which appears to exhibit locking at

higher values of p, for particular fibre angles.

Figure 4.5 shows semilog plots of the tip displacement vs p for various fibre directions, and for the various

element choices. For moderate values of p (1 ≤ p ≤ 5), the Q1 CG formulation behaves well away from p = 1,

with evidence of locking behaviour as p→ 1. This corresponds to the well-known volumetric locking, which

is avoided when the volumetric term is under-integrated (Q1 CG UIλ). Notice that for Q1 CG UIβ there is

still locking, as the locking is purely volumetric. For higher values of p (10 ≤ p ≤ 105), the Q1 CG method

shows locking behaviour as p gets bigger, and convergent behaviour is seen with Q1 CG UIβ . Notice that

under-integrating only the volumetric term (Q1 CG UIλ) has no effect since the locking is purely extensional.

Q1 CG UIβλ shows locking-free behaviour everywhere.

Figure 4.6 shows tip displacements for various fibre orientations, where the degree of anisotropy is fixed at

p = 105 (top) and p = 107 (bottom). Note the poor performance of Q2 CG. Similar behaviour is reported

in [34]. Whether this indicates mild locking would depend on further parameter-explicit analysis, which is

currently absent for the transversely isotropic problem at near-inextensibility.
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â = π/4
Q2 CG

Q1 CG

Q1 CG UIβ

0.
35

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
2

1.
5

1.
7

2 2.
3

2.
5

2.
8

3

p
0

2

4

6

8

10

12

14

16

18

V
er

ti
ca

l
ti

p
d

is
p

la
ce

m
en

t
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Figure 4.3: Tip displacement vs p for the Cook’s membrane problem, with ν = 0.3
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Figure 4.4: Tip displacement vs p for the Cook’s membrane problem, with ν = −0.5
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Figure 4.5: Tip displacement vs p for the Cook’s membrane problem. Moderate (left) and high values of p
(right), with ν = 0.49995
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Figure 4.6: Tip displacement for Cook’s membrane problem measured at different fibre orientations, for
p = 105 (top) and for p = 107 (bottom), with ν = 0.49995
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4.3 Bending of a beam

Figure 4.7: Beam geometry and boundary conditions

We consider the beam shown in Figure 4.7, subject to a linearly varying load along the edge CD. The

horizontal displacement u is constrained at node B, while the node A is constrained in both directions. The

beam has length L = 10 and height h = 2 and the applied load has a maximum value f = 3000. Here,

Et = 1500. The boundary conditions are u(0, y) = g(y),

v(0,−h2 ) = 0,

where

g(y) = −f
h
S31

(
y2 − h2

4

)
.

The compliance coefficients Sij are given in Appendix A. The analytical solution is


u(x, y) = −2f

h

(
S11xy +

1

2
S31

(
y2 − h2

4

))
,

v(x, y) = −f
h

(
S21

(
y2 − h2

4

)
− S11x

2

)
.

The linearly varying load f̂ with maximum f is

f̂(y) = −2f

h
y.

A mesh of 80×16 elements is used, and the vertical displacement at corner C is measured. Locking behaviour

is investigated by comparison with the analytical solution.

Figures 4.8 and 4.9 show semilog plots of the tip displacement vs p for various directions fibre for ν = 0.3
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Figure 4.8: Tip displacement vs p for the beam problem, with ν = 0.3
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Figure 4.9: Tip displacement vs p for the beam problem, with ν = −0.5
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and ν = −0.5 respectively. For small values of p, (0.35 ≤ p ≤ 3) as shown in the left figures, the conforming

method Q1 CG is convergent. For high values of p, (4 ≤ p ≤ 107), as shown in the right figures, the

conforming Q1 CG shows locking behaviour which is avoided when the extensional term is under-integrated

(Q1 CG UIβ).

In Figure 4.10, which shows semilog plots of tip displacement for different values of p, with various fibre

direction. The same behaviour as appears for the Cook’s example is seen, i.e. for moderate values of p away

from p = 1 (approximately, 1 < p ≤ 5), there is locking-free behaviour with Q1 CG UIλ (left figures). For

high values of p, purely extensional locking with Q1 CG is overcome by using Q1 CG UIβ (right figures).

Q1 CG UIβλ shows locking-free behaviour for any value of p.
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â

0

20

40

60

80

100

V
er

ti
ca

l
ti

p
d

is
p

la
ce

m
en

t

p =107

Exact

Q2 CG

Q1 CG

Q1 CG UIβλ

Q1 CG UIβ
Q1 CG UIλ

Figure 4.11: Tip displacement for the beam problem measured at different fibre orientations, for p = 107

and ν = 0.49995

Figure 4.11 shows tip displacements for various fibre orientations where the degree of anisotropy is fixed at

p = 107. Extensional locking of Q1 CG is observed except for the angles 0 and π/2. For the angle π/2 no

locking is observed. This can be accounted for by two factors: first, with this orientation the property of

near-inextensibility in the vertical direction has a negligible effect on the bending-dominated deformation;

and secondly, as previously discussed, the presence of anisotropy serves to circumvent volumetric locking.
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â = 3π/4

Figure 4.10: Tip displacement vs p for the beam problem. Moderate (left) and high (right), with ν = 0.49995
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The following set of results, Figures 4.12-4.13, show convergence plots of H1-relative error for the fibre

orientations considered, and for values of p = 1.0001 (left figures), 3 (middle figures) and 104 (right figures).

The H1-relative error is defined by

erelative :=
‖u− uh‖1,Ω
‖u‖1,Ω

. (4.1)

For p = 1.0001, left figures, Q1 CG UIλ and Q1 CG UIβλ show optimal convergence for any fibre direction

at the superlinear rate 1.83.

For p = 3, middle figures, all formulations at any fibre direction are superlinearly convergent at rate 1.7.

For p = 104, right figures, optimal convergence at the rate 1.86 for Q1 CG UIβ and Q1 CG UIβλ, and poor

convergence for Q1 CG and Q1 CG UIλ are shown. When the fibre direction is at an angle π/2, the error

plots show convergence at the superlinear rate 1.64 for Q1 CG.
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Figure 4.12: Comparison of relative H1-errors for conforming and under-integrated elements on quadrilater-
als, for fibres at angle 0 (left) and π/4 (right), with ν = 0.49995. For p = 1.0001 (top), p = 3 (middle) and
p = 104(bottom)
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Figure 4.13: Comparison of relative H1-errors for conforming and under-integrated elements on quadrilater-
als, for fibres at angle π/2 (left) and 3π/4 (right), with ν = 0.49995. For p = 1.0001 (top), p = 3 (middle)
and p = 104(bottom)





Chapter 5

Discontinuous Galerkin methods

In this chapter, we investigate the use of interior penalty discontinuous Galerkin (IPDG) formulations for

transversely isotropic linear elasticity. The objective is to construct discontinuous Galerkin (DG) formula-

tions that are uniformly convergent in the incompressible and inextensible limits. The study focuses on the

use of low order triangles, though much of the analysis is valid in two and three dimensions.

The outline of this chapter is as follows. In Section 5.1, various notations and the DG space are presented.

The DG formulations are introduced in Section 5.2, their well-posedness established, and an a priori error

bound derived. The likelihood of extensional locking is deduced from the error estimate, and an alternative

formulation, based on selective under-integration, is introduced and analyzed in Section 5.3. The resulting

error bound has a structure similar to that for the bound corresponding to isotropic elasticity, suggesting

the locking-free behaviour of this formulation.

5.1 Notation

Discretization. The domain Ω is partitioned into a triangular/tetrahedral conforming mesh, comprising

Ne disjoint subdomains Ωe. The boundary ∂Ωe of each element consists of edges/faces E, with outward unit

normal ne. The set of all elements is denoted by Th := {Ωe}e, e ∈ {1, . . . , Ne}.

We define the following diameters:

hE := diam(E), he := diam(Ωe), and h := max
Ωe∈Th

{he},

and boundaries on edges or sets of edges:

57
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ΓD the set of all Dirichlet boundary edges

ΓN the set of all Neumann boundary edges

Γi the set of all interior boundary edges

ΓiD the union of all interior edges and all Dirichlet boundary edges

Γ the union of all interior edges, all Dirichlet boundary edges, and all Neumann boundary edges

∂Ωie the set of all interior edges of a given element Ωe

∂ΩDe the set of all Dirichlet boundary edges of a given element Ωe

∂ΩiDe the union of all interior edges and all Dirichlet boundary edges of a given element Ωe

Jumps and averages. Let Ωi,Ωe ∈ Th be two neighbouring elements, sharing an interior edge E =

∂Ωi ∩ ∂Ωe, and let n be the outward normal to Ωi.

Define the following product space:

[T (Γ)]d :=
∏

Ωe∈Th

[L2(∂Ωe)]
d.

For any vector quantity v ∈ [T (Γ)]d and any second order tensor τ ∈ [T (Γ)]d×d, we define the jumps

bvc = (vi − ve)⊗ n, [v] = (vi − ve) · n, bτ c = (τi − τe)n,

and the averages

{v} =
1

2
(vi + ve), {τ} =

1

2
(τi + τe),

where subscripts i and e denote values on the elements Ωi and Ωe, respectively.

For an element at edge Ωe, the jumps are

bvc = v ⊗ n, [v] = v · n, bτ c = τn,

and the averages

{v} = v, {τ} = τ .

Note that we have

[{·}] = 0, [[·]] = 0, {{·}} = {·} and {[·]} = [·].

Discrete space and norm. We define the discrete space VhDG by

VhDG :=
{
v ∈ [L2(Ω)]d : v|Ωe

∈ [P1(Ωe)]
d, ∀ Ωe ∈ Th

}
, (5.1)
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where P1(Ω) is the space of polynomials on Ω of maximum total degree 1.

The space VhDG is endowed with the norm (see for example [19, 45])

||u||2DG :=
∑

Ωe∈Th

‖ε(u)‖20,Ωe
+

1

2

∑
E∈ΓiD

1

hE
‖buc‖20,E . (5.2)

5.2 Discontinuous Galerkin finite element approximations

5.2.1 Discontinuous Galerkin formulation

The derivation of the DG formulation follows the idea proposed in [2]. We start by multiplying the equilibrium

equation (3.2) with a test function v, and by integrating over an elemental domain Ωe to obtain

−
∫

Ωe

div σ(u) · v dx =

∫
Ωe

f · v dx.

By applying integration by parts, we get

∫
Ωe

σ(u) : ε(v) dx =

∫
∂Ωe

σ(u) : v ⊗ n ds+

∫
Ωe

f · v dx.

Summing over all elements,

∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx =
∑

Ωe∈Th

∫
∂Ωe

σ(u) : v ⊗ n ds+
∑

Ωe∈Th

∫
Ωe

f · v dx.

Next, we use the ”magic formula” (see [19]) to write

∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx =
∑
E∈Γ

∫
E

{σ(u)} : bvc ds+
∑
E∈Γi

∫
E

bσ(u)c · {v} ds+
∑

Ωe∈Th

∫
Ωe

f · v dx.

We assume that the exact solution is smooth (u ∈ [H2(Ω)]d) and the stress is continuous, giving

bσ(u)c = 0,

which leaves us with

∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx =
∑
E∈Γ

∫
E

{σ(u)} : bvc ds+
∑

Ωe∈Th

∫
Ωe

f · v dx.
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We add a term to symmetrize the problem and get

∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx =
∑
E∈Γ

∫
E

{σ(u)} : bvc ds+
∑
E∈Γ

∫
E

{σ(v)} : buc ds+
∑

Ωe∈Th

∫
Ωe

f · v dx,

noting that buc = 0 from the smoothness of the exact solution.

We add a stabilization term to obtain the symmetric interior penalty formulation

∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx+
∑
E∈Γ

∫
E

k

hE
Cbuc : bvc ds =

∑
E∈Γ

∫
E

{σ(u)} : bvc ds+
∑
E∈Γ

∫
E

{σ(v)} : buc ds

+
∑

Ωe∈Th

∫
Ωe

f · v dx,

where k is a non-negative stabilization parameter.

Finally, to obtain the full IPDG formulations, we apply the boundary conditions given by (3.5), and introduce

a parameter θ such that

∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx−
∑

E∈ΓiD

∫
E

{σ(u)} : bvc ds+ θ
∑

E∈ΓiD

∫
E

buc : {σ(v)} ds+
∑

E∈ΓiD

∫
E

k

hE
Cbuc : bvc ds

=
∑

Ωe∈Th

∫
Ωe

f · v dx+
∑
E∈ΓN

h · v ds+ θ
∑
E∈ΓD

∫
E

(g ⊗ n) : σ(v) ds+
∑
E∈ΓD

∫
E

k

hE
C(g ⊗ n) : (v ⊗ n) ds.

Here θ is a switch that distinguishes the three methods, (θ = 1 for the Nonsymmetric Interior Penalty

Galerkin (NIPG) method, θ = −1 for Symmetric Interior Penalty Galerkin (SIPG), and θ = 0 for Incomplete

Interior Penalty Galerkin (IIPG)).

The general IPDG weak formulation is as follows [19, 45]:

for all v ∈ VhDG, find uh ∈ VhDG such that

ah(uh,v) = lh(v), (5.3)

where

ah(u,v) =
∑

Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx−
∑

E∈ΓiD

∫
E

{σ(u)} : bvc ds+ θ
∑

E∈ΓiD

∫
E

buc : {σ(v)} ds

+
∑

E∈ΓiD

∫
E

k

hE
Cbuc : bvc ds, (5.4)
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and

lh(v) =
∑

Ωe∈Th

∫
Ωe

f · v dx+
∑
E∈ΓN

∫
E

h · v ds+ θ
∑
E∈ΓD

∫
E

(g ⊗ n) : σ(v) ds

+
∑
E∈ΓD

∫
E

k

hE
C(g ⊗ n) : (v ⊗ n) ds. (5.5)

Here the elasticity tensor C is as defined in (2.8), and the stress tensor σ is as defined in (2.9).

We note that it is possible to assign different stabilization parameters to the different terms in the stabilisa-

tion. Thus alternatively, we can define the bilinear form and the linear functional

âh(u,v) =
∑

Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx−
∑

E∈ΓiD

∫
E

{σ(u)} : bvc ds+ θ
∑

E∈ΓiD

∫
E

buc : {σ(v)} ds

+ kλλ
∑

E∈ΓiD

1

hE

∫
E

[u][v] ds+ kµµt
∑

E∈ΓiD

1

hE

∫
E

buc : bvc ds

+ kαα
∑

E∈ΓiD

1

hE

∫
E

(
(M : buc)[v] + [u](M : bvc)

)
ds (5.6)

+ kββ
∑

E∈ΓiD

1

hE

∫
E

(M : buc)(M : bvc) ds

+ kγγ
∑

E∈ΓiD

1

hE

∫
E

(bucM +Mbuc) : bvc ds,

and

l̂h(v) =
∑

Ωe∈Th

∫
Ωe

f · v dx+
∑
E∈ΓN

∫
E

h · v ds+ θ
∑
E∈ΓD

∫
E

(g ⊗ n) : σ(v) ds

+ kλλ
∑
E∈ΓD

1

hE

∫
E

(g · n)(v · n) ds+ kµµt
∑
E∈ΓD

1

hE

∫
E

g · v ds

+ kαα
∑
E∈ΓD

1

hE

∫
E

(
(M : g ⊗ n)(v · n) + (g · n)(M : v ⊗ n)

)
ds (5.7)

+ kββ
∑
E∈ΓD

1

hE

∫
E

(M : g ⊗ n)(M : v ⊗ n) ds

+ kγγ
∑
E∈ΓD

1

hE

∫
E

(
(g ⊗ n)M +M(g ⊗ n)

)
: v ⊗ n ds,

where kλ, kµ, kα, kβ and kγ are non-negative stabilization parameters.

In what follows, we confine attention to homogeneous bodies, so that the fibre direction a is constant.
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5.2.2 Continuity

The bilinear form ah(·, ·) is continuous with respect to the DG-norm || · ||DG if there exists a positive constant

C such that

|ah(u,v)| ≤ C||u||DG||v||DG, ∀u,v ∈ VhDG.

We have

|ah(u,v)| ≤
∣∣∣∣∣ ∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx

∣∣∣∣∣+

∣∣∣∣∣ ∑
E∈ΓiD

∫
E

{σ(u)} : bvc ds
∣∣∣∣∣+

∣∣∣∣∣ ∑
E∈ΓiD

∫
E

buc : {σ(v)} ds
∣∣∣∣∣

+

∣∣∣∣∣ ∑
E∈ΓiD

∫
E

k

hE
Cbuc : bvc ds

∣∣∣∣∣ . (5.8)

We bound each term at the right hand side:

∣∣∣∣∣ ∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx

∣∣∣∣∣ ≤
( ∑

Ωe∈Th

||σ(u)||20,Ωe

)1/2( ∑
Ωe∈Th

||ε(v)||20,Ωe

)1/2

≤ C
( ∑

Ωe∈Th

||ε(u)||20,Ωe

)1/2( ∑
Ωe∈Th

||ε(v)||20,Ωe

)1/2

≤ C||u||DG||v||DG

∣∣∣∣∣ ∑
E∈ΓiD

∫
E

{σ(u)} : bvc ds
∣∣∣∣∣ ≤

( ∑
E∈ΓiD

hE ||{σ(u)}||20,E

)1/2( ∑
E∈ΓiD

1

hE
||bvc||20,E

)1/2

≤ C
( ∑

Ωe∈Th

he||σ(u)||20,∂ΩiD
e

)1/2( ∑
E∈ΓiD

1

hE
||bvc||20,E

)1/2

≤ C
( ∑

Ωe∈Th

||ε(u)||20,Ωe

)1/2( ∑
E∈ΓiD

1

hE
||bvc||20,E

)1/2

≤ C||u||DG||v||DG

Similarly, ∣∣∣∣∣ ∑
E∈ΓiD

∫
E

buc : {σ(v)} ds
∣∣∣∣∣ ≤ C||u||DG||v||DG
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∣∣∣∣∣ ∑
E∈ΓiD

∫
E

k

hE
Cbuc : bvc ds

∣∣∣∣∣ ≤ k
( ∑
E∈ΓiD

1

hE
||Cbuc||20,E

)1/2( ∑
E∈ΓiD

1

hE
||bvc||20,E

)1/2

≤ C
( ∑
E∈ΓiD

1

hE
||buc||20,E

)1/2( ∑
E∈ΓiD

1

hE
||bvc||20,E

)1/2

≤ C||u||DG||v||DG

Thus,

|ah(u,v)| ≤ C||u||DG||v||DG,

in which C is a constant dependent on material parameters λ, µt, α, β and γ.

5.2.3 Consistency

Given the exact solution u ∈ [H2(Ω)]d, the problem (5.3) is consistent if for any v ∈ VhDG

ah(u,v)− lh(v) = 0.

The proof of consistency is straightforward and may be carried out in a single argument for all three cases.

Let u ∈ [H2(Ω)]d be the exact solution of the problem; then we have

[u] = 0, and buc = bσ(u)c|E = 0 ∀ E ∈ Γi,

and

buc = g ⊗ n and [u] = g · n on ΓD.

Therefore, we can write

ah(u,v)− lh(v) =
∑

Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx−
∑

E∈ΓiD

∫
E

{σ(u)} : bvc ds−
∑

Ωe∈Th

∫
Ωe

f · v dx−
∑
E∈ΓN

∫
E

h · v ds.

The exact solution u satisfies the weak form, so that

∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx =
∑

Ωe∈Th

∫
Ωe

f · v dx+
∑

Ωe∈Th

∫
∂Ωe

σ(u) : v ⊗ n dx

=
∑

Ωe∈Th

∫
Ωe

f · v dx+
∑
E∈Γ

∫
E

{σ(u)} : bvc ds+
∑
E∈Γi

∫
E

bσ(u)c · {v} ds

=
∑

Ωe∈Th

∫
Ωe

f · v dx+
∑

E∈ΓiD

∫
E

{σ(u)} : bvc ds+
∑
E∈ΓN

∫
E

h · v ds.
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Hence, we can conclude that the problem is consistent.

5.2.4 Coercivity

The bilinear form ah is coercive if, for any v ∈ VhDG, there exists a positive constant K such that

ah(v,v) ≥ K‖v‖2DG.

To prove coercivity, each IP method will be investigated separately, as different approaches are used for each

of them.

The bilinear form ah(·, ·) define by (5.8) which uses a fixed stabilization parameter k for all stabilization

terms is used here.

NIPG (θ = 1) For the non-symmetric IPDG case, for any v ∈ VhDG, we have

ah(v,v) =
∑

Ωe∈Th

∫
Ωe

σ(v) : ε(v) dx+
∑

E∈ΓiD

∫
E

k

hE
Cbvc : bvc ds. (5.9)

The proof of coercivity in Section 3.1.2 also holds for v ∈ VhDG so that

∫
Ωe

σ(v) : ε(v) dx ≥ Λmin‖ε(v)‖20,Ωe
. (5.10)

By choosing ε = bvc in (3.18), we have for v ∈ VhDG

∑
E∈ΓiD

∫
E

k

hE
Cbvc : bvc ds ≥ kΛmin

∑
E∈ΓiD

1

hE
‖bvc‖20,E .

Therefore,

ah(v,v) ≥ Λmin
∑

Ωe∈Th

‖ε(v)‖20,Ωe
+ kΛmin

∑
E∈ΓiD

1

hE
||bvc||20,E

= K||v||2DG (5.11)

with

K = Λmin min {1, 2k} > 0. (5.12)

We conclude that the bilinear form is coercive for the NIPG case.
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SIPG (θ = −1) For the SIPG case, the bilinear form can be written as follows, for any v ∈ VhDG:

ah(v,v) =
∑

Ωe∈Th

∫
Ωe

Cε(v) : ε(v) dx− 2
∑

E∈ΓiD

∫
E

{Cε(v)} : bvc ds+
∑

E∈ΓiD

∫
E

k

hE
Cbvc : bvc ds. (5.13)

Note that since the elasticity tensor C possess major symmetries and is positive definite, then there exists a

unique square root C1/2 such that, for any second-order tensors A and B, we have:

CA : B = C1/2A : C1/2B. (5.14)

We have

A :=− 2
∑

E∈ΓiD

∫
E

{Cε(v)} : bvc ds

=− 2
∑

E∈ΓiD

∫
E

C1/2{ε(v)} : C1/2bvc ds.

Thus,

A ≥− 2

( ∑
E∈ΓiD

‖h1/2
E C1/2{ε(v)}‖20,E

)1/2( ∑
E∈ΓiD

‖h−1/2
E C1/2bvc‖20,E

)1/2

≥− 2

( ∑
Ωe∈Th

he‖C1/2ε(v)‖20,∂ΩiD
e

)1/2( ∑
E∈ΓiD

‖h−1/2
E C1/2bvc‖20,E

)1/2

(using (C.3d))

≥− 2C

( ∑
Ωe∈Th

‖C1/2ε(v)‖20,Ωe

)1/2( ∑
E∈ΓiD

‖h−1/2
E C1/2bvc‖20,E

)1/2

(using (C.3a))

≥− Cε
( ∑

Ωe∈Th

‖C1/2ε(v)‖20,Ωe

)
− 1

ε

( ∑
E∈ΓiD

‖h−1/2
E C1/2bvc‖20,E

)

=− εC
∑

Ωe∈Th

∫
Ωe

C1/2ε(v) : C1/2ε(v) dx− 1

ε

∑
E∈ΓiD

1

hE

∫
E

C1/2bvc : C1/2bvc ds

=− εC
∑

Ωe∈Th

∫
Ωe

Cε(v) : ε(v) dx− 1

ε

∑
E∈ΓiD

1

hE

∫
E

Cbvc : bvc ds.

Therefore, we have

ah(v,v) ≥ (1− εC)
∑

Ωe∈Th

∫
Ωe

Cε(v) : ε(v) dx+

(
k − 1

ε

) ∑
E∈ΓiD

1

hE

∫
E

Cbvc : bvc ds.

We set the coefficient in the first term to a constant m > 0, let ε =
1−m
C

, and restrict m to 0 < m < 1 to

ensure ε > 0.
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Then

2

(
k − 1

ε

)
≥ m⇔ k − C

1−m ≥
m

2

⇔ k ≥ m

2
+

C

1−m.

With this choice of k, we have

ah(v,v) ≥ m
( ∑

Ωe∈Th

∫
Ωe

Cε(v) : ε(v) dx+
1

2

∑
E∈ΓiD

1

hE

∫
E

Cbvc : bvc ds
)

≥ mΛmin

( ∑
Ωe∈Th

‖ε(v)‖20,Ωe
+

1

2

∑
E∈ΓiD

1

hE
‖bvc‖20,E

)

= K‖v‖2DG, (5.15)

with

K = mΛmin. (5.16)

Therefore, we can conclude that the bilinear form ah is coercive for SIPG.

IIPG (θ = 0) The corresponding bilinear form is written as follows, for any v ∈ VhDG:

ah(v,v) =
∑

Ωe∈Th

∫
Ωe

Cε(v) : ε(v) dx−
∑

E∈ΓiD

∫
E

{Cε(v)} : bvc ds+
∑

E∈ΓiD

∫
E

k

hE
Cbvc : bvc ds.

The only difference between this form and the SIPG bilinear form is the coefficient in the second term; thus

the proof of coercivity for IIPG case is identical to that for the SIPG case up to a constant.

We summarize these results.

5.2.5 Theorem. The bilinear functional ah(·, ·) defined in (5.3) is coercive if:

(a) when θ = 1, k > 0;

(b) when θ ∈ {0,−1},
k ≥ m

2
+

C

1−m,

where C is a positive constant to be calculated, and 0 < m < 1.

5.2.6 Error bound

As shown in [45], one has uniform (λ-independent) convergence for the isotropic problem when linear triangles

are used. We present here a corresponding bound for transversely isotropic materials, assuming a constant
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fibre direction a.

To establish the bound, we adopt the same approach as in [45]; that is, splitting the error using the linear

Crouzeix-Raviart interpolant ([13, 21]) Πeu ∈
[
P1(Ωe)

]d
, for u ∈

[
H2(Ωe)

]d
, which is defined by

Πeu(x̄E) :=
1

hE

∫
E

u ds ∀ E ∈ ∂Ωe, (5.17)

where x̄E is the midpoint of edge E.

The corresponding global interpolant Π :
[
H2(Ωe)

]d → VhDG is defined by

Πu|Ωe
= Πeu ∀ Ωe ∈ Th.

5.2.1 Proposition. The interpolant has the following properties:

∫
E

(u−Πeu) ds = 0, (5.18a)∫
E

(u−Πeu) · ne ds = 0, (5.18b)∫
Ωe

∇ · (u−Πeu) dx = 0, (5.18c)∫
Ωe

M : ε(u−Πeu) dx = 0. (5.18d)

Proof. The proofs of (5.18a), (5.18b) and (5.18c) are given in [45], and repeated here.

To prove (5.18a), by definition, for u ∈
[
H2(Ωe)

]d
, we have

∫
E

u ds = hEΠeu(x̄E),

thus it follows directly.

To prove (5.18b), we have

∫
E

(u−Πeu) · ne ds = ne ·
∫
E

(u−Πeu) ds = 0 · ne = 0.

For (5.18c), using Green’s formula, we have

∫
Ωe

∇ · (u−Πeu) dx =

∫
∂Ωe

(u−Πeu) · ne ds =
∑

E∈∂Ωe

∫
E

(u−Πeu) · ne ds = 0.
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For (5.18d), using integration by parts, we have

∫
Ωe

M : ε(u−Πeu) dx =

∫
∂Ωe

(u−Πeu)⊗ ne : M ds−
∫

Ωe

(∇ ·M) · (u−Πeu) ds = 0.

5.2.2 Proposition. The following interpolation error estimates hold:

‖u−Πeu‖0,Ωe + he|u−Πeu|1,Ωe ≤ Ch2
e|u|2,Ωe , (5.19a)

|u−Πeu|2,Ωe
= |u|2,Ωe

, (5.19b)

‖∇ · (u−Πeu)‖0,Ωe ≤ Che|∇ · u|1,Ωe , (5.19c)

|∇ · (u−Πeu)|1,Ωe
= |∇ · u|1,Ωe

, (5.19d)

‖M : ε(u−Πeu)‖0,Ωe
≤ Che|M : ε(u)|1,Ωe

, (5.19e)

|M : ε(u−Πeu)|1,Ωe
= |M : ε(u)|1,Ωe

(5.19f)

where C > 0 is in each case a constant independent of he and u.

Proof. The proofs for (5.19a)-(5.19d) are given in [45] and repeated here.

Proof of (5.19a). From the standard interpolation estimate,

‖u−Πeu‖0,Ωe
≤ Ch2

e|u|2,Ωe
,

and

|u−Πeu|1,Ωe ≤ ‖u−Πeu‖1,Ωe ≤ Che|u|2,Ωe ,

which gives (5.19a).

Proof of (5.19f). Setting U = u−Πeu, then since Πeu ∈
[
P1(Ωe)

]d
, it follows that

|U |2,Ωe = |u|2,Ωe , (5.20a)

|∇ ·U |1,Ωe
= |∇ · u|1,Ωe

, (5.20b)

and |ε(U)|1,Ωe = |ε(u)|1,Ωe . (5.20c)

With a constant fibre direction a, it follows from (5.20c) that

|M : ε(U)|1,Ωe
= |M : ε(u)|1,Ωe

. (5.21)
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Applying Proposition A.2.12 in [45] to U gives

‖U‖22,Ωe
≤ C

(
|U |22,Ωe

+
∑

E∈∂Ωe

∣∣∣∣∫
E

U ds

∣∣∣∣2
)

= C|u|22,Ωe
.

Applying Proposition A.2.11 in [45] to ∇ ·U gives∥∥∥∥∇ ·U − 1

|Ωe|

∫
Ωe

∇ ·U dx

∥∥∥∥
0,Ωe

≤ Che|∇ ·U |1,Ωe
,

and with (5.18c) and (5.20)2 we obtain (5.19c).

Proof of (5.19e). Lemma A.3 in [45] applied to M : ε(U) gives∥∥∥∥M : ε(U)− 1

|Ωe|

∫
Ωe

M : ε(U) dx

∥∥∥∥
0,Ωe

≤ Che|M : ε(U)|1,Ωe
.

With (5.18d) and (5.21), we obtain (5.19e).

Let u ∈
[
H2(Ωe)

]d
be the exact solution to the problem (5.3), and uh ∈ VhDG its corresponding finite element

approximation. The approximation error is denoted by

e := u− uh.

Let us define

η := u−Πu, and ξ := Πu− uh,

so that in particular ξ|Ωe
∈ [P1(Ωe)]

d.

Thus,

e = η + ξ,

and the DG-norm of the error is

||e||2DG ≤ ||η||2DG + ||ξ||2DG.

To obtain the error bound, each term is bounded separately.

Starting with ||η||2DG, since η ∈ VhDG, we have, from (5.2),

||η||2DG =
∑

Ωe∈Th

‖ε(η)‖20,Ωe
+

1

2

∑
E∈ΓiD

1

hE
‖bηc‖20,E .
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Using (C.3b) and (C.3d),

||η||2DG ≤ C
( ∑

Ωe∈Th

‖∇η‖20,Ωe
+
∑

Ωe∈Th

∑
E∈∂ΩiD

e

1

hE
‖η‖20,E

)
≤ C

( ∑
Ωe∈Th

|η|21,Ωe
+
∑

Ωe∈Th

(
h−2
e ‖η‖20,Ωe

+ |η|21,Ωe

) )
≤ C

∑
Ωe∈Th

h2
e|u|22,Ωe

. (5.22)

Next, we bound ||ξ||2DG. From consistency of the bilinear form ah, we have

ah(e, ξ) = 0.

Thus,

ah(ξ, ξ) = ah(e− η, ξ) = −ah(η, ξ).

From coercivity of the bilinear form ah, we have

|ah(ξ, ξ)| ≥ K||ξ||2DG.

Thus,

|ah(η, ξ)| ≥ K||ξ||2DG. (5.23)

It then suffices to find an upper bound to |ah(η, ξ)|. For that, the technique is to extract a factor of ||ξ||DG,

leaving some function in terms of η which will be bounded by norms of the exact solution u from each term

using the interpolant estimates given by (5.19).

It is also useful to note that ξ ∈ [P1(Ω)]d so that ε(ξ),∇ · ξ, and ∇ξ are constants.

We have

|ah(η, ξ)| ≤ |aisoh (η, ξ)|+ |atih (η, ξ)|,

where the isotropic part is bounded as follows (see [19]):

|aisoh (η, ξ)| ≤ C||ξ||DG
( ∑

Ωe∈Th

h2
e

(
µ2
t |u|22,Ωe

+ λ2|∇ · u|21,Ωe

))1/2

. (5.24)
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For the transversely isotropic part, we have

|atih (η, ξ)| ≤

|α|
∣∣∣ ∑

Ωe∈Th

∫
Ωe

(M : ε(η))(∇ · ξ) + (∇ · η)(M : ε(ξ)) dx
∣∣∣+ |β|

∣∣∣ ∑
Ωe∈Th

∫
Ωe

(M : ε(η))(M : ε(ξ)) dx
∣∣∣

+ 2|γ|
∣∣∣ ∑

Ωe∈Th

∫
Ωe

ε(η)M : ε(ξ) dx
∣∣∣+ θ

∣∣∣ ∑
E∈ΓiD

∫
E

{σti(ξ)} : bηc ds
∣∣∣

+ |α|
∣∣∣ ∑
E∈ΓiD

∫
E

{(M : ε(η))I + (∇ · η)M} : bξc ds
∣∣∣+ |β|

∣∣∣ ∑
E∈ΓiD

∫
E

{(M : ε(η))M} : bξc ds
∣∣∣

+ |γ|
∣∣∣ ∑
E∈ΓiD

∫
E

{ε(η)M +Mε(η)} : bξc ds
∣∣∣+ k|α|

∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

(
[η](M : bξc) + (M : bηc)[ξ]

)
ds
∣∣∣

+ k|β|
∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

(M : bηc)(M : bξc) ds
∣∣∣+ k|γ|

∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

(bηcM +Mbηc) : bξc ds
∣∣∣.

From the properties of the interpolants, we have

∫
Ωe

(M : ε(η))(∇ · ξ) dx = (∇ · ξ)

∫
Ωe

(M : ε(η)) dx = 0 (using (5.18d))∫
Ωe

(∇ · η)(M : ε(ξ)) dx = (M : ε(ξ))

∫
Ωe

(∇ · η) dx = 0 (using (5.18c))∫
Ωe

(M : ε(η))(M : ε(ξ)) dx = (M : ε(ξ))

∫
Ωe

(M : ε(η)) dx = 0 (using (5.18d)).

Since

σti(ξ) = α
(
(M : ε(ξ))I + (∇ · ξ)M

)
+ β(M : ε(ξ))M + γ

(
ε(ξ)M +Mε(ξ)

)
∈ [P0(Ωe)]

d×d,

it follows that ∫
E

{σti(ξ)} : bηc ds = {σti(ξ)} :

∫
E

bηc ds = 0 (using (5.18a)).
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Therefore, we have

|atih (η, ξ)| ≤

2|γ|
∣∣∣ ∑

Ωe∈Th

∫
Ωe

ε(η)M : ε(ξ) dx
∣∣∣︸ ︷︷ ︸

I

+ |α|
∣∣∣ ∑
E∈ΓiD

∫
E

{(M : ε(η))I + (∇ · η)M} : bξc ds
∣∣∣︸ ︷︷ ︸

II

+ |β|
∣∣∣ ∑
E∈ΓiD

∫
E

{(M : ε(η))M} : bξc ds
∣∣∣︸ ︷︷ ︸

III

+ |γ|
∣∣∣ ∑
E∈ΓiD

∫
E

{ε(η)M +Mε(η)} : bξc ds
∣∣∣︸ ︷︷ ︸

IV

+ k|α|
∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

(
[η](M : bξc) + (M : bηc)[ξ]

)
ds
∣∣∣︸ ︷︷ ︸

V

+ k|β|
∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

(M : bηc)(M : bξc) ds
∣∣∣︸ ︷︷ ︸

V I

+ k|γ|
∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

(bηcM +Mbηc) : bξc ds
∣∣∣︸ ︷︷ ︸

V II

. (5.25)

We now bound each term in (5.25).

First, a bound for I:

I = 2|γ|
∣∣∣ ∑

Ωe∈Th

∫
Ωe

ε(η)M : ε(ξ) dx
∣∣∣

≤ 2|γ|
( ∑

Ωe∈Th

‖ε(η)M‖20,Ωe

)1/2( ∑
Ωe∈Th

‖ε(ξ)‖20,Ωe

)1/2

≤ C|γ|
( ∑

Ωe∈Th

‖ε(η)‖20,Ωe

)1/2( ∑
Ωe∈Th

‖ε(ξ)‖20,Ωe

)1/2

(since |εM |2 ≤ C|ε|2)

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

‖∇η‖20,Ωe

)1/2

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

|η|21,Ωe

)1/2

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

h2
e|u|22,Ωe

)1/2

(using (5.19a)).
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Next, a bound for II, which we split into two terms IIa and IIb. Using triangular inequality, we have:

IIa := |α|
∣∣∣ ∑
E∈ΓiD

∫
E

{(M : ε(η))I} : bξc ds
∣∣∣

≤ |α|
( ∑
E∈ΓiD

hE‖{(M : ε(η))I}‖20,E

)1/2( ∑
E∈ΓiD

1

hE
‖bξc‖20,E

)1/2

≤ C|α|‖ξ‖DG
( ∑
E∈ΓiD

hE‖{M : ε(η)}‖20,E

)1/2

≤ C|α|‖ξ‖DG
( ∑

Ωe∈Th

he‖M : ε(η)‖20,∂ΩiD
e

)1/2

(using (C.3d))

≤ Cα‖ξ‖DG
( ∑

Ωe∈Th

‖M : ε(η)‖20,Ωe
+ h2

e|M : ε(η)|21,Ωe

)1/2

(using (C.3b))

≤ C|α|‖ξ‖DG
( ∑

Ωe∈Th

h2
e|M : ε(u)|21,Ωe

)1/2

(using (5.19e) and (5.19f)).

and

IIb := |α|
∣∣∣ ∑
E∈ΓiD

∫
E

{(∇ · η)M} : bξc ds
∣∣∣

≤ |α|
( ∑
E∈ΓiD

hE‖{(∇ · η)M}‖20,E

)1/2( ∑
E∈ΓiD

1

hE
‖bξc‖20,E

)1/2

≤ C|α|‖ξ‖DG
( ∑

Ωe∈Th

he‖∇ · η‖20,∂ΩiD
e

)1/2

(using (C.3d) and |(∇ · v)M |2 ≤ |∇ · v|2)

≤ C|α|‖ξ‖DG
( ∑

Ωe∈Th

‖∇ · η‖20,Ωe
+ h2

e|∇ · η|21,Ωe

)1/2

(using (C.3b))

≤ C|α|‖ξ‖DG
( ∑

Ωe∈Th

h2
e|∇ · u|21,Ωe

)1/2

(using (5.19c) and (5.19d)).
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Term III is bounded as follows:

III = |β|
∣∣∣ ∑
E∈ΓiD

∫
E

{(M : ε(η))M} : bξc ds
∣∣∣

≤ |β|
( ∑
E∈ΓiD

hE‖{(M : ε(η))M}‖20,E

)1/2( ∑
E∈ΓiD

1

hE
‖bξc‖20,E

)1/2

(since |(M : ε)M |2 ≤ |M : ε|2)

≤ |β|‖ξ‖DG
( ∑
E∈ΓiD

hE‖{M : ε(η)}‖20,E

)1/2

≤ C|β|‖ξ‖DG
( ∑

Ωe∈Th

he‖M : ε(η)‖20,∂ΩiD
e

)1/2

(using (C.3d))

≤ C|β|‖ξ‖DG
( ∑

Ωe∈Th

‖M : ε(η)‖20,Ωe
+ h2

e|M : ε(η)|1,Ωe

)1/2

(using (C.3b)

≤ C|β|‖ξ‖DG
( ∑

Ωe∈Th

h2
e|M : ε(u)|21,Ωe

)1/2

(using (5.19e) and (5.19f)).

The term IV is split into two terms, IVa and IVb:

IVa := |γ|
∣∣∣ ∑
E∈ΓiD

∫
E

{ε(η)M} : bξc ds
∣∣∣

≤ |γ|
( ∑
E∈ΓiD

hE‖{ε(η)M}‖20,E

)1/2( ∑
E∈ΓiD

1

hE
‖bξc‖20,E

)1/2

≤ |γ|‖ξ‖DG
( ∑
E∈ΓiD

hE‖{ε(η)}‖20,E

)1/2

(since |εM |2 ≤ C|ε|2)

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

he‖ε(η)‖20,∂ΩiD
e

)1/2

(using (C.3d))

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

he‖∇η‖20,∂ΩiD
e

)1/2

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

‖∇η‖20,Ωe
+ h2

e|∇η|21,Ωe

)1/2

(using (C.3b))

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

|η|21,Ωe
+ h2

e|η|22,Ωe

)1/2

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

h2
e|u|22,Ωe

)1/2

.
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Following similar steps, we have

IVb := |γ|
∣∣∣ ∑
E∈ΓiD

∫
E

{Mε(η)} : bξc ds
∣∣∣

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

h2
e|u|22,Ωe

)1/2

.

Term V is split into two terms, Va and Vb.

Va := k|α|
∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

[η](M : bξc) ds
∣∣∣

≤ k|α|
( ∑
E∈ΓiD

1

hE
‖[η]‖20,E

)1/2( ∑
E∈ΓiD

1

hE
‖M : bξc‖20,E

)1/2

≤ C|α|‖ξ‖DG
( ∑
E∈ΓiD

1

hE
‖[η]‖20,E

)1/2

(since |M : bξc|2 < C|bξc|2)

≤ C|α|‖ξ‖DG

 ∑
Ωe∈Th

∑
E∈∂ΩiD

e

2

hE
‖η‖0,E

1/2

(using (C.3c))

≤ C|α|‖ξ‖DG

 ∑
Ωe∈Th

∑
E∈∂ΩiD

e

2

hE
‖η‖0,E

1/2

(using (C.3c))

≤ C|α|‖ξ‖DG
( ∑

Ωe∈Th

h−2
e ‖η‖0,Ωe

+ |η|1,Ωe

)1/2

(using (C.3b))

≤ C|α|‖ξ‖DG
( ∑

Ωe∈Th

h2
e|u|22,Ωe

)1/2

(using (5.19a)).

Following similar steps, we have

Vb := k|α|
∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

[ξ](M : bηc) ds
∣∣∣ ≤ Cα‖ξ‖DG( ∑

Ωe∈Th

h2
e|u|22,Ωe

)1/2

.
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To bound the term V I, we have

V I = k|β|
∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

(M : bηc)(M : bξc) ds
∣∣∣

≤ k|β|
( ∑
E∈ΓiD

1

hE
‖M : bξc‖20,E

)1/2( ∑
E∈ΓiD

1

hE
‖M : bηc‖20,E

)1/2

≤ C|β|‖ξ‖DG
( ∑
E∈ΓiD

1

hE
‖bηc‖20,E

)1/2

(since |M : bηc|2 < C|bηc|2)

≤ C|β|‖ξ‖DG

 ∑
Ωe∈Th

∑
E∈∂ΩiD

e

2

hE
‖η‖0,E

1/2

(using (C.3c))

≤ C|β|‖ξ‖DG
( ∑

Ωe∈Th

h−2
e ‖η‖0,Ωe

+ |η|1,Ωe

)1/2

(using (C.3b))

≤ C|β|‖ξ‖DG
( ∑

Ωe∈Th

h2
e|u|22,Ωe

)1/2

(using (5.19a)).

Finally, the term V II is bounded as follows:

V IIa := k|γ|
∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

bηcM : bξc ds
∣∣∣

≤ k|γ|
( ∑
E∈ΓiD

1

hE
‖bηcM‖20,E

)1/2( ∑
E∈ΓiD

1

hE
‖bξc‖20,E

)1/2

≤ C|γ|‖ξ‖DG
( ∑
E∈ΓiD

1

hE
‖bηc‖20,E

)1/2

(since|bηcM |2 ≤ |bηc|2)

≤ C|γ|‖ξ‖DG
( ∑

Ωe∈Th

h2
e|u|22,Ωe

)1/2

(similar to V I).

Following similar steps, we have

V IIb := k|γ|
∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

Mbηc : bξc ds
∣∣∣ ≤ C|γ|‖ξ‖DG( ∑

Ωe∈Th

h2
e|u|22,Ωe

)1/2

.

We use these results to bound |atih (η, ξ)|, which leads to

|atih (η, ξ)| ≤ C||ξ||DG
( ∑

Ωe∈Th

h2
e

(
(α2 + β2 + γ2)|u|22,Ωe

+ α2|∇ · u|21,Ωe
+ (α2 + β2)|M : ε(u)|21,Ωe

))1/2

.

(5.26)
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Thus, with (5.24) and (5.26), we have

|atih (η, ξ)| ≤ C||ξ||DG

 ∑
Ωe∈Th

h2
e

(
(µ2

t + α2 + β2 + γ2)|u|22,Ωe
+ (λ2 + α2)|∇ · u|21,Ωe

+ (α2 + β2)|M : ε(u)|21,Ωe

)1/2

.

(5.27)

Therefore, using (5.23), we obtain

||ξ||2DG ≤
C

K2

∑
Ωe∈Th

h2
e

(
(µ2

t + α2 + β2 + γ2)|u|22,Ωe
+ (λ2 + α2)|∇ · u|21,Ωe

+ (α2 + β2)|M : ε(u)|21,Ωe

)
, (5.28)

where K is the coercivity constant defined by (5.12) for NIPG case, and by (5.16) for SIPG and IIPG cases.

With (5.22) and (5.28), the full DG error bound is

||e||2DG ≤
C

K2
h2
(

(µ2
t + α2 + β2 + γ2)|u|22,Ω + (λ2 + α2)|∇ · u|21,Ω + (α2 + β2)|M : ε(u)|21,Ω

)
. (5.29)

Remark. For the case of isotropy, the error estimate is (see [19])

||e||2DG ≤
C

K2
h2
(
µ2
t |u|22,Ω + λ2|∇ · u|21,Ω

)
. (5.30)

Brenner & Sung in [8] have derived the following uniform estimate for the case of problems on polygonal

domain Ω ⊂ R2:

‖u‖2,Ω + λ‖∇ · u‖1,Ω ≤ C (‖f‖0,Ω + ‖g‖0,ΓD
) . (5.31)

This allows the right-hand side of (5.30) to be bounded independent of λ, thus confirming the locking-free

behaviour of the DG formulation in the incompressible limit.

A similar estimate for the transversely isotropic problem is not available; however, one would expect that

an analogous estimate would allow the terms of the form

(µ2
t + α2 + γ2)|u|22,Ω + (λ2 + α2)|∇ · u|21,Ω + (α2 + β2)|M : ε(u)|21,Ω (5.32)

to be bounded independent of λ and β.

The presence of β in the first term of (5.29) suggests that locking may occur in the inextensible limit.

Numerical experiments discussed in Chapter 6 will explore these features.

The term that leads to the undesirable β-dependence in the error bound is term V I in (5.25). To circumvent

the β-dependence, one would need to find a way to modify the formulation in such a way that this term is

eliminated. We do so in the following section by making use of selective under-integration.
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5.3 Under-integration

It has been shown in [19] that, for the case of isotropy and using bilinear elements, the undesirable λ-

dependency of the error bound in the incompressible limit may be circumvented by under-integrating the

problematic terms. The same approach is used here in order to overcome locking in the extensible limit: the

β-stabilization term V I will be under-integrated.

We will adopt a form of the formulation in which the bilinear form is given by (5.6) with kµ replaced by

2k + kµ and all other stabilization parameters are equal to k, assuming k, kµ > 0.

The resulting bilinear form is then,

ah(u,v) := ah(u,v) + µt
∑

E∈ΓiD

kµ
hE

∫
E

buc : bvc ds. (5.33)

Note that this bilinear form is coercive, as is easily established using Theorem 5.2.5.

If we define by Π0 the L2-orthogonal projection onto the space of constants, the new DG formulation with

under-integration is:

aUIh (u,v) = lUIh (v)

where

aUIh (u,v) = ah(u,v) + kβ
∑

E∈ΓiD

1

hE

∫
E

(M : buc)(Π0 − I)(M : bvc) ds, (5.34)

and

lUIh (v) = lh(v) + kβ
∑
E∈ΓD

1

hE

∫
E

(M : g ⊗ n)(Π0 − I)(M : v ⊗ n) ds. (5.35)

Note that under-integration of the edge term
∫
E
b·c : {σ(·)} ds is not necessary since for any u ∈ [P1(Ωe)]

d,

the integrand is linear, so that one-point integration is exact.

The effect of the formulation (5.34) is to replace the term V I in (5.25) with

V IUI := k|β|
∣∣∣∣∣ ∑
E∈ΓiD

1

hE

∫
E

Π0(M : bηc)Π0(M : bξc) ds
∣∣∣∣∣

= k|β|
∣∣∣∣∣ ∑
E∈ΓiD

1

hE
Π0(M : bξc)M :

∫
E

bηc ds
∣∣∣∣∣

= 0.

Thus these terms will also have no contribution to the error bound, as desired.

However, this has involved modification of the DG formulation itself, so that it is necessary to show coercivity
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and consistency of the modified bilinear form.

5.3.1 Consistency

With the continuous exact solution u ∈ [H2(Ω)]d satisfying properties given in Section 5.2.3, we have

aUIh (u,v)− lUIh (v) =
∑

Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx−
∑

E∈ΓiD

∫
E

{σ(u)} : bvc ds−
∑

Ωe∈Th

∫
Ωe

f · v dx

−
∑
E∈ΓN

∫
E

h · v ds.

Since u satisfies the weak form,

∑
Ωe∈Th

∫
Ωe

σ(u) : ε(v) dx =
∑

Ωe∈Th

∫
Ωe

f · v dx+
∑

Ωe∈Th

∫
∂Ωe

σ(u) : v ⊗ n ds

=
∑

Ωe∈Th

∫
Ωe

f · v dx+
∑
E∈Γ

∫
E

{σ(u)} : bvc ds+
∑
E∈Γi

∫
E

bσ(u)c · {v} ds

=
∑

Ωe∈Th

∫
Ωe

f · v dx+
∑

E∈ΓiD

∫
E

{σ(u)} : bvc ds+
∑
E∈ΓN

∫
E

h · v ds.

Therefore,

aUIh (u,v)− lUIh (v) = 0

as desired.

5.3.2 Coercivity

Each IP method will be investigated separately.

NIPG (θ = 1) We have

aUIh (v,v) =
∑

Ωe∈Th

∫
Ωe

Cε(v) : ε(v) dx+
∑

E∈ΓiD

k

hE

∫
E

Cbvc : bvc ds+ µt
∑

E∈ΓiD

kµ
hE

∫
E

|bvc|2 ds

+ β
∑

E∈ΓiD

k

hE

∫
E

(Π0 − I)
(
M : bvc

)(
M : bvc

)
ds

=ah(v,v) + µt
∑

E∈ΓiD

kµ
hE

∫
E

|bvc|2 ds+ β
∑

E∈ΓiD

k

hE

∫
E

(Π0 − I)
(
M : bvc

)(
M : bvc

)
ds, (5.36)

note that ah(v,v) is defined as in (5.9).
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We define

B := µt
∑

E∈ΓiD

kµ
hE

∫
E

|bvc|2 ds+ β
∑

E∈ΓiD

k

hE

∫
E

(Π0 − I)
(
M : bvc

)(
M : bvc

)
ds. (5.37)

For ease, we set m = vi − ve and denote by n the outward unit normal vector, giving

|bvc|2 = |m⊗ n|2 = m ·m,

M : bvc = (a⊗ a) : (m⊗ n) = (a ·m)(a · n).

Then

B = µt
∑

E∈ΓiD

kµ
hE

∫
E

m ·m ds+ β
∑

E∈ΓiD

k

hE

∫
E

(
(Π0 − I)(a ·m)

)2

(a · n)2 ds. (5.38)

We have

m ·m ≥ (a ·m)2

≥ (a ·m)2(a · n)2 (since (a · n)2 ≤ 1)

= (a · n)2

(
1

2
(a ·m)2 +

1

2
(a ·m)2

)
.

Noting that ∫
E

(
Π0(•)

)2

ds ≤
∫
E

•2 ds,

then we have ∫
E

m ·m ds ≥
∫
E

(a · n)2

(
1

2
(a ·m)2 +

1

2

(
Π0(a ·m)

)2
)
ds. (5.39)

Going back to (5.38), using (5.39), we obtain

B ≥
∑

E∈ΓiD

1

hE

∫
E

(a · n)2

[(
kµµt

2
− kβ

)
(a ·m)2 +

(
kµµt

2
+ kβ

)(
Π0(a ·m)

)2
]
ds.

The term on the right-hand-side is non-negative if


kµµ

2
− kβ ≥ 0,

kµµ

2
+ kβ ≥ 0,

⇔ 2k|β|
µt
≤ kµ. (5.40)

Going back to (5.36), by choosing k and kµ as in (5.40), we have

aUIh (v,v) ≥ ah(v,v).
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From (5.11), we have

aUIh (v,v) ≥ K||v||2DG,

with

K = Λmin min
{

1, 2k
}
. (5.41)

Thus, the under-integrated NIPG formulation is coercive.

SIPG (θ = −1) We have

aUIh (v,v) =
∑

Ωe∈Th

∫
Ωe

Cε(v) : ε(v) dx− 2
∑

E∈ΓiD

∫
E

bvc : {Cε(v)} ds+
∑

E∈ΓiD

k

hE

∫
E

Cbvc : bvc ds

+ µt
∑

E∈ΓiD

kµ
hE

∫
E

|bvc|2 ds+ β
∑

E∈ΓiD

k

hE

∫
E

(Π0 − I)
(
M : bvc

)(
M : bvc

)
ds

=ah(v,v) + B,

note that ah(v,v) is defined as in (5.13), and B as in (5.37).

From the NIPG coercivity proof above, for k and kµ that satisfy (5.40), we have

aUIh (v,v) ≥ ah(v,v).

From (5.15), we have:

aUIh (v,v) ≥ K||v||2DG,

with

K = mΛmin, (5.42)

such that 0 < m < 1 and k ≥ m
2 + C

1−m , for a positive constant C to be determined.

IIPG (θ = 0) The proof of coercivity for IIPG with under-integration case is identical to that for the SIPG

with under-integration case up to a constant.

5.3.3 Theorem. The bilinear functional aUIh (·, ·) defined in (5.34) is coercive if, for k, kµ > 0

(a) when θ = 1,
2k|β|
µt
≤ kµ;

(b) when θ ∈ {−1, 0},
2k|β|
µt
≤ kµ, and k ≥ m

2
+

C

1−m,



82 Chapter 5. Discontinuous Galerkin methods

where C is a positive constant to be calculated, and 0 < m < 1.

Error bound The approximation error is now bounded as follows:

||e||2DG ≤
C

K2
h2
(

(µ2
t + γ2)|u|22,Ω + (λ2 + α2)|∇ · u|21,Ω + (α2 + β2)|M : ε(u)|21,Ω

)
, (5.43)

where K is the coercivity constant defined by (5.41) for NIPG case, and by (5.42) for SIPG and IIPG cases.

The first term on the right-hand side is independent of β. The bound (5.43) is now in a form that would

be expected to lead to a uniform estimate, by analogy with the bound (5.31). The behaviour of the under-

integrated DG formulation will be explored further in the next chapter.



Chapter 6

Numerical tests for discontinuous Galerkin

approximations

In this chapter, we present a series of results to illustrate the various features discussed in Chapter 5.

For material parameters that satisfy the pointwise conditions (2.57), we first investigate the behaviour of

compressible and nearly incompressible materials with reference to Table 2.1. Next, we explore the behaviour

of nearly inextensible materials.

We reconsider here the examples described in Chapter 4, that is, the Cook’s membrane problem and the

beam problem.

All examples are under conditions of plane strain and based on three- and six-noded triangular elements

with standard linear and quadratic interpolation of the displacement field.

6.1 Material parameters

The choice for the values of the parameters are the same as those used in Chapter 4: that is, we set νl = νt = ν

and γ = 0. Furthermore, we investigate behaviour for ν = −0.5 and 0.3, and for the range of values of p

that comply with the pointwise stability conditions (2.57). We also study the response for ν = 0.49995 and

p ≥ 1, noting that standard approaches lead to volumetric locking behaviour in the limiting case of isotropy,

with p = 1.

The conditions for coercivity in Chapter 5 assume equal values of the stabilization parameter for all terms

except that involving µt. These are sufficient conditions that do not account, for example, for situations in

which some or all of the other material parameters are positive. In such situations there is greater flexibility

in the choice of the stabilization parameters. We have adopted the following choices, which are found to lead

to stable approximations:

For ν = 0.49995 and ν = 0.3, we choose kµ = kα = kγ = 10, and kλ = kβ = 100.

83
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For ν = −0.5, we choose kµ = kλ = kβ = kγ = 10, and kα = 100.

The results in the examples that follow are for the following element choices:

Exact The analytical solution

P1 CG The standard displacement formulation of order 1

P2 CG The standard displacement formulation of order 2

P1 NIPG The non-symmetric interior penalty method of order 1

P1 SIPG The symmetric interior penalty method of order 1

P1 IIPG The incomplete interior penalty method of order 1

P1 NIPG UIβ The non-symmetric interior penalty method of order 1 with under-integration

of the β- stabilization term

P1 SIPG UIβ The symmetric interior penalty method of order 1 with under-integration of

the β- stabilization term

P1 IIPG UIβ The incomplete interior penalty method of order 1 with under-integration of

the β- stabilization term

6.2 Cook’s membrane

The problem is defined as in Section 4.2. A mesh of 32× 32 elements is used.

To investigate locking of the proposed formulations, we compare the results with those obtained using the

standard P2-element.

Figures 6.1 and 6.2 show semilog plots of the tip displacement vs p for various fibre directions for ν = 0.3 and

ν = −0.5 . For small values of p, (0.35 ≤ p ≤ 3) as shown in the left figures, the conforming method P1 CG

is locking-free. For high values of p, (4 ≤ p ≤ 107), as shown in the right figures, the conforming P1 CG and

all three IPDG methods show locking behaviour which is avoided when the extensional stabilization terms

are under-integrated. We note the extensional locking behaviour of the P2-element.

Figure 6.3 shows semilog plots of the tip displacement vs p for a range of fibre angles, for the various element

choices, and for moderate and high values of p. For moderate values of p (1 ≤ p ≤ 5), all three IPDG

methods show no locking. For higher values of p (10 ≤ p ≤ 105), all three IPDG methods show locking

behaviour with an increase in p. On the other hand, locking is avoided for the under-integrated formulations,

for larger values of p. Figure 6.4 shows tip displacements for various fibre orientations, where the degree of

anisotropy is fixed at p = 105 (left) and at p = 107 (right). Some deterioration in accuracy is observed for

the conforming P2-element as in the case of the Q2-element in Section 4.2.
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Figure 6.1: Tip displacement vs p for the Cook’s membrane problem, with ν = 0.3, for moderate (left) and
high (right) values of p
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â = π/2

0.
35

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
2

1.
5

1.
7

2 2.
3

2.
5

2.
8

3

p
3

4

5

6

7

8

9

V
er

ti
ca

l
ti

p
d

is
p

la
ce

m
en

t
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Figure 6.2: Tip displacement vs p for the Cook’s membrane problem, with ν = −0.5, for moderate (left) and
high (right) values of p
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â = 0

P1 CG

P2 CG

P1 NIPG

P1 SIPG

P1 IIPG

P1 NIPG UIβ

P1 SIPG UIβ

P1 IIPG UIβ
1

+
10
−

7

1
+

10
−

6

1
+

10
−

5

1
+

10
−

4

1
+

10
−

3

1
+

10
−

2

1.
1

1.
2

1.
3

1.
5

2 3 5

p
0

2

4

6

8

10

V
er

ti
ca

l
ti

p
d

is
p

la
ce

m
en

t
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Figure 6.3: Tip displacement vs p for the Cook’s membrane problem, with ν = 0.49995. For moderate (left),
and high (right) values of p
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Figure 6.4: Tip displacement for Cook’s membrane problem measured at different fibre orientations, for
p = 105 (left) and for p = 107 (right), with ν = 0.49995
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6.3 Bending of a beam

The problem is defined as in Section 4.3. A mesh of 80 × 16 is used. Locking behaviour is investigated by

comparison with the analytical solution.

Figures 6.1 and 6.2 show semilog plots of the tip displacement vs p for various directions fibre for ν = 0.3

and ν = −0.5 respectively. Similar behaviour as in the case of Cook’s membrane is depicted; that is, uniform

convergence of the conforming method for small values of p, (0.35 ≤ p ≤ 3) as shown in the left figures, and

locking of P1 CG and all three IPDG methods for high values of p, (4 ≤ p ≤ 107), which is overcome by

under-integrating the extensional stabilization terms. For small values of p, (0.35 ≤ p ≤ 3) as shown in the

left figures, the conforming method P1 CG is locking-free.

In Figure 6.7, which shows semilog plots of tip displacement for different values of p, with various fibre

directions. The same behaviour as appears for the Cook’s example is seen, i.e. the expected locking of

P1 CG as p approaches 1 is overcome by using IPDG methods (left figures). For high values of p there

is a purely extensional locking with all IPDG methods, which is overcome by using under-integration of

β-stabilization terms (right figures).

Figure 6.8 shows tip displacements for various fibre orientations where the degree of anisotropy is fixed at

p = 107. We recall the same behaviour as stated in Section 4.3, that is, extensional locking for P1 CG except

for the angles 0, where the material is very stiff, and π/2, where the extensional term is bounded.
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Figure 6.5: Tip displacement vs p for the beam problem, with ν = 0.3, for moderate (left) and high (right)
values of p
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t â = 0

Exact
P1 CG

P1 NIPG
P1 SIPG
P1 IIPG

P1 NIPG UIβ
P1 SIPG UIβ
P1 IIPG UIβ
0.

35

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
2

1.
5

1.
7

2 2.
3

2.
5

2.
8

3

p
10

30

50

70

90

110

V
er

ti
ca

l
ti

p
d

is
p

la
ce

m
en

t
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t â = π/4

0.
35

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1 1.
2

1.
5

1.
7

2 2.
3

2.
5

2.
8

3

p
10

30

50

70

90

110

V
er

ti
ca

l
ti

p
d

is
p

la
ce

m
en

t
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Figure 6.6: Tip displacement vs p for the beam problem, with ν = −0.5, for moderate (left) and high (right)
values of p
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Figure 6.7: Tip displacement vs p for the beam problem, with ν = 0.49995. Moderate (left), and high (right)
values of p
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Figure 6.8: Tip displacement for the beam problem measured at different fibre orientations, for p = 107 and
ν = 0.49995

The following set of results, Figure 6.9-6.10, show behaviour for various fibre orientations, and for values of

p. The H1-relative error as defined by (4.1) is mesured.

The left figures show the H1 relative error convergence plots for all three IPDG formulations and P1 CG,

for p = 1.0001. Here all three IPDG formulations show slightly better than optimal (linear) convergence for

any fibre direction. P1 CG shows poor convergence, indicative of volumetric locking.

The middle figures show the H1 relative error convergence plots for all three IPDG formulations and P1 CG,

for p = 3. Here, all formulations at any fibre direction are linearly convergent.

The right figures show the H1 relative error convergence plots for all three IPDG formulations and P1 CG,

for p = 104. P1 CG and the full IPDG methods show poor convergence, indicative of extensional locking.

All three IPDG methods with under-integration show convergence at rate 1.6.
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â = π/4

p = 1 + 10−4

P1 CG P1 NIPG

P1 SIPG

P1 IIPG

P1 NIPG UIβ

P1 SIPG UIβ

P1 IIPG UIβ

100

h

10−2

10−1

100

e r
el

at
iv

e

1
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Figure 6.9: Comparison of H1 errors for conforming and under-integrated elements, for fibre angle 0 (left)
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â = π/2

p = 104

100

h

10−2

10−1

100

e r
el

at
iv

e

1
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Figure 6.10: Comparison of H1 errors for conforming and under-integrated elements, for fibre angle π/2
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Chapter 7

Conclusions

This work has been concerned with the development, analysis and implementation of finite element ap-

proximations of the boundary value problem for transversely isotropic elastic bodies. Of particular interest

have been the conditions under which volumetric and/or extensional locking occur with the use of low-order

elements, and the construction of approximations that circumvent locking.

It has first been necessary to undertake a study of the constitutive relations: these have been formulated in

terms of five material parameters, beginning with a basic set, and then, a corresponding set of parameters

that are largely interpretable physically. Conditions on these parameters for pointwise stability have been

established. These conditions have been essential in showing well-posedness of the weak formulation, and of

the various discrete formulations considered.

Conforming finite element approximations have been formulated and implemented with the use of low-order

(bilinear) quadrilaterals. For moderate values of the parameter that quantifies the degree of anisotropy (that

is, the ratio of Young’s modulus in the fibre direction to that in the plane of isotropy), behaviour is locking

free, as suggested also by an a priori error estimate. As the isotropic limit is approached, the well-known

locking behaviour is evident. Locking occurs int the near-inextensible limit. Under-integration of the terms

corresponding to volumetric and extensional behaviour leads to locking-free behaviour. The under-integrated

formulation is shown to be equivalent to perturbed Lagrangian and mixed formulations. A range of results,

for various anisotropy parameters and fibre angles, have been presented to illustrate the behaviour.

The second discrete formulation studied is that of discontinuous Galerkin (DG) approximations. Three

interior penalty (IP) approaches: symmetric, nonsymmetric, and incomplete, have been considered. It is

well known that, for isotropic materials, behaviour is uniformly convergent in the incompressible limit,

with the use of linear triangles. The objective here has been to determine conditions under which locking-

free behaviour is achieved for the transversely isotropic case. The volumetric locking-free behaviour of the

isotropic case is also evident for the transversely isotropic model. A complete analysis is carried out: the

dependence of an error bound on the parameter characterizing high anisotropy suggests locking behaviour,

which is indeed observed numerically with the use of standard IP approaches. Under-integration of the edge
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terms removes this dependence, and computational results for a range of measures of anisotropy and of fibre

directions illustrate the locking-free behaviour.

The work presented here has advanced understanding of the mathematical models of transversely isotropic

bodies. The extension to the use of a variable fibre direction would bring various challenges, theoretically

and numerically. Furthermore, application to other forms of anisotropy, for example to two families of fibres

or to orthotropic materials, and extension to the three-dimensional case would also be of high interest,

particularly from the computational perspective.

It would be useful to extend the analyses using various formulations. Analyses of the mixed Q1 − P0

(displacement-tension) formulation would complete the numerical approach proposed in Chapter 3. Further

investigation on the transversely isotropic problems with other type of mixed formulations, and extension

of the DG analyses using lower-order quadrilateral elements would be welcome extension. This work is also

intended to be used in exploring theoretically and computationally the large-strain deformation. It is seen

in the numerical chapters that the use of P2- and Q2- elements might suggest existence of locking in the

inextensible limit. Further analytical investigations are required to confirm this.

An a priori estimate analogous to that of Brenner & Sung [8] for the isotropic case was assumed with the

DG formulations. The extension to the transversely isotropic case is an open problem.

Finally, when there has been much work on the large-displacement problem, the results in this work present

questions that should be posed for large-displacement problems for example, conditions for locking-free

behaviour in both displacement-based and mixed formulations.



Appendix A. Closed-form solution for the

beam problem

For the beam problem described in Section 4.3, let the exact solution be of the following form

u(x, y) = A+Bx+ Cy +Dxy + Ex2 + Fy2,

v(x, y) = G+Hx+ Iy + Jxy +Kx2 + Ly2.

Recall that the boundary conditions are u(0, y) = g(y),

v(0,−h2 ) = 0,

where

g(y) = −f
h
S31

(
y2 − h2

4

)
,

and the linearly varying load f̂ with maximum value f is

f̂(y) = −2f

h
y.

Let us first give the expression of each component of the compliance tensor in terms of the components of

the elasticity tensor. In Voigt notation, when the fibre direction is aligned with one the axes, we have

C =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


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Therefore, since S = C−1

S11 =
1

|C| (C22C33 − C2
23), S22 =

1

|C| (C11C33 − C2
13), S44 =

1

C44
,

S12 =
1

|C| (C13C23 − C12C33), S23 =
1

|C| (C13C12 − C11C23), S55 =
1

C55
,

S13 =
1

|C| (C12C23 − C13C22), S33 =
1

|C| (C11C22 − C2
12), S66 =

1

C66
.

(A.1)

with

|C| = C11(C22C33 − C2
23)− C12(C12C33 − C13C23) + C13(C12C23 − C13C22).

From the boundary conditions, we have

u(0, y) = A+ Cy + Fy2 = −f
h
S31

(
y2 − h2

4

)
.

By identification, we obtain

A =
fh

4
S31, (A.2a)

C = 0, (A.2b)

F = −f
h
S31. (A.2c)

We also have

v(0,−h2 ) = G− I h
2

+ L
h2

4
= 0. (A.3)

The strains and stresses are obtained from

ε11(x, y) =
∂u

∂x
= B +Dy + 2Ex,

ε22(x, y) =
∂v

∂y
= I + Jx+ 2Ly,

ε12(x, y) =
1

2

(
∂u

∂y
+
∂v

∂x

)
=

1

2

[
H + (D + 2K)x+ (J + 2F )y

]
,

and

σij(x, y) = Cij11ε11 + 2Cij12ε12 + Cij22ε22

= Cij11(B +Dy + 2Ex) + Cij22(I + Jx+ 2Ly) + Cij12

[
H + (D + 2K)x+ (J + 2F )y

]
.
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From the traction boundary conditions, we have

σ11(l, y) = C11(B +Dy + 2El) + C12(I + Jl + 2Ly) + C13

[
H + (D + 2K)l + (J + 2F )y

]
= f̂(y) (A.4)

σ12(0, y) = C31(B +Dy) + C32(I + 2Ly) + C33[H + (J + 2F )y] = 0 (A.5)

σ12(l, y) = C31(B +Dy + 2El) + C32(I + Jl + 2Ly) + C33

[
H + (D + 2K)l + (J + 2F )y

]
= 0 (A.6)

σ12(x, -h2 ) = C31(2B −Dh+ 4Ex) + 2C32(I + Jx− Lh) + C33

[
2H + 2(D + 2K)x− (J + 2F )h

]
= 0 (A.7)

σ12(x, h2 ) = C31(2B +Dh+ 4Ex) + 2C32(I + Jx+ Lh) + C33

[
2H + 2(D + 2K)x+ (J + 2F )h

]
= 0 (A.8)

σ22(x, -h2 ) = C21(2B −Dh+ 4Ex) + 2C22(I + Jx− Lh) + C23

[
2H + 2(D + 2K)x− (J + 2F )h

]
= 0 (A.9)

σ22(x, h2 ) = C21(2B +Dh+ 4Ex) + 2C22(I + Jx+ Lh) + C23

[
2H + 2(D + 2K)x+ (J + 2F )h

]
= 0

(A.10)

The equilibrium equations are:

div σ =


∂σ11

∂x
+
∂σ12

∂y
∂σ12

∂x
+
∂σ22

∂y

 = 0.

We have

∂σ11

∂x
= 2C11E + C12J + C13(D + 2K),

∂σ12

∂y
= C31D + 2C32L+ C33(J + 2F ),

∂σ12

∂x
= 2C31E + C32J + C33(D + 2K),

∂σ22

∂y
= C21D + 2C22L+ C23(J + 2F ),

so that

2C11E + (C12 + C33)J + 2C13D + 2C13K + 2C32L+ 2C33F = 0, (A.11)

2C31E + 2C23J + (C33 + C21)D + 2C33K + 2C22L+ 2C23F = 0. (A.12)
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By identification and combination of equations (A.3)-(A.12), we obtain the following system of 10 equations

with 9 unknowns: 

4G− 2Ih+ Lh2 = 0, (A.13a)

C11B + C13Dl + 2C11El + C13H + C12I + C12Jl + 2C13Kl = 0, (A.13b)

C11D + C13J + 2C12L = −2f

h
− 2C13F, (A.13c)

C13B + C33H + C23I = 0, (A.13d)

C13D + C33J + 2C23L = −2C13F, (A.13e)

C33D + 2C13E + C23J + 2C33K = 0, (A.13f)

C12D + C23J + 2C22L = −2C23F, (A.13g)

C12B + C23H + C22I = 0, (A.13h)

C23D + 2C12E + C22J + 2C23K = 0, (A.13i)

C13D + 2C11E + C12J + 2C13K = 0. (A.13j)

We start with equations (A.13c), (A.13e), and (A.13g) to determine the value of D,J and L.


C11D + C13J + 2C12L = −2f

h
− 2C13F,

C13D + C33J + 2C23L = −2C13F,

C12D + C23J + 2C22L = −2C23F.

The last equation gives

J =
1

C23
(−2C23F − C12D − 2C22L) .

The system is then reduced to


(
C11 −

C12C13

C23

)
D + 2

(
C12 −

C13C22

C23

)
L = −2f

h
,(

C13 −
C12C33

C23

)
D + 2

(
C23 −

C33C22

C23

)
L = 0.

We then obtain

D = −2f

h
S11, L = −f

h
S12 and J = 0.

Next, we use equations (A.13f), (A.13i), and (A.13j) to determine the value of E and K. The system is

reduced to 
2C13E + 2C33K = −C33D,

2C12E + 2C23K = C23D,

2C11E + 2C13K = C13D,
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which gives

E = 0, and K =
f

h
S11.

Equations (A.13b), (A.13d), and (A.13h) are reduced to
C11B + C13H + C12I = 0,

C13B + C33H + C23I = 0,

C12B + C23H + C22I = 0.

Using the positive definiteness of C, the determinant of the system is strictly positive; thus

B = H = I = 0.

Finally, with equation (A.13a), we obtain

G =
fh

4
S12.

We conclude that the exact solution of the beam problem stated in Section 4.3 is


u(x, y) = −2f

h

(
S11xy +

1

2
S31

(
y2 − h2

4

))
,

v(x, y) = −f
h

(
S21

(
y2 − h2

4

)
− S11x

2

)
.

(A.14)

The coefficients Sij in (A.14) are given below. For plane strain, the strain-stress relationship for a transversely

isotropic material, with fibre direction a = ( a1
a2

), is


ε11

ε22

2ε12

 =


S11 S12 S13

S12 S22 S23

S13 S23 S33



σ11

σ22

σ12

 ,

where, from (A.1),

S11 =
1

detC

[(
λ+ 2µt + 2(γ + α)a2

2 + βa4
2

)(
µt +

γ

2
+ βa2

1a
2
2

)
−
(
(α+ γ)a1a2 + βa1a

3
2

)2]
S12 =

1

detC

[(
(α+ γ)a1a2 + βa3

1a2

)(
(α+ γ)a1a2 + βa1a

3
2

)
−
(
λ+ α+ βa2

1a
2
2

)(
µt +

γ

2
+ βa2

1a
2
2

)]
S13 =

1

detC

[(
λ+ α+ βa2

1a
2
2

)(
(α+ γ)a1a2 + βa1a

3
2

)
−
(
(α+ γ)a1a2 + βa3

1a2

)(
λ+ 2µt + 2(γ + α)a2

2 + βa4
2

)]
S22 =

1

detC

[(
λ+ 2µt + 2(γ + α)a2

1 + βa4
1

)(
µt +

γ

2
+ βa2

1a
2
2

)
−
(
(α+ γ)a1a2 + βa3

1a2

)2]
S23 =

1

detC

[(
λ+ α+ βa2

1a
2
2

)(
(α+ γ)a1a2 + βa3

1a2

)
−
(
λ+ 2µt + 2(γ + α)a2

1 + βa4
1

)(
(α+ γ)a1a2 + βa1a

3
2

)]
S33 =

1

detC

[(
λ+ 2µt + 2(γ + α)a2

1 + βa4
1

)(
λ+ 2µt + 2(γ + α)a2

2 + βa4
2

)
−
(
λ+ α+ βa2

1a
2
2

)2]
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with

1

detC
=
(
λ+ 2µt + 2(γ + α)a2

1 + βa4
1

)[(
λ+ 2µt + 2(γ + α)a2

2 + βa4
2

)(
µt +

γ

2
+ βa2

1a
2
2

)
−
(
(α+ γ)a1a2 + βa1a

3
2

)2]
−
(
λ+ α+ βa2

1a
2
2

)[(
λ+ α+ βa2

1a
2
2

)(
µt +

γ

2
+ βa2

1a
2
2

)
−
(
(α+ γ)a1a2 + βa3

1a2

)(
(α+ γ)a1a2 + βa1a

3
2

)]
+
(
(α+ γ)a1a2 + βa3

1a2

)[(
λ+ α+ βa2

1a
2
2

)(
(α+ γ)a1a2 + βa1a

3
2

)
−
(
(α+ γ)a1a2 + βa3

1a2

)(
λ+ 2µt + 2(γ + α)a2

2 + βa4
2

)]
.



Appendix B. Properties of the structural

tensor M

Let a ∈ Rd be a unit vector and set M = a ⊗ a. For any second order tensor A, and any scalar C, the

following statements hold:

(i) MT = M2 = M ,

(ii) trM = 1,

(iii) M : I = 1,

(iv) M : M = 1,

(v) tr (AM) = tr (MA) = M : A,

(vi) M : MA = M : AM = M : A,

(vii) MAM = (M : A)M ,

(viii) |CM |2 ≤ |C|2|M |2 = |C|2,

(ix) |M : A|2 ≤ d2|A|2,

(x) |AM |2 ≤ d|A|2
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Proof. To prove (ix), we have

|M : A|2 = (aiajAij) (akalAkl)

≤
(

1

2
Aij(a

2
i + a2

j )

)(
1

2
Akl(a

2
k + a2

l )

)
≤
∑
i,j,k,l

AijAkl (a2
k ≤ 1, ∀k)

≤ 1

2

∑
i,j,k,l

(A2
ij +A2

kl)

=
d2

2

∑
i,j

A2
ij +

∑
k,l

A2
kl


= d2

∑
i,j

A2
ij

= d2|A|2

To prove (x),

|AM |2 = (AM)ij(AM)ij

= (Aikakaj)(Ailalaj)

= AikAilakal (since
∑
j

a2
j = 1)

≤ 1

2
AikAil(a

2
k + a2

l )

≤
∑
k,l

AikAil (a2
k ≤ 1, ∀k)

≤ 1

2

∑
k,l

(A2
ik +A2

il)

=
d

2

(∑
k

A2
ik +

∑
l

A2
il

)

= d
∑
i,k

A2
ik

= d|A|2



Appendix C. Useful bounds for the DG

formulation and analysis

Refer to Chapter 5 for relevant notation.

We have ∑
Ωe∈Th

∑
E∈∂Ωi

e

∫
E

· ds = 2
∑
E∈Γi

∫
E

· ds. (C.1)

By definition of standard interpolant error estimate, we have:

‖u−Πku‖m,Ω ≤ Chk+1−m|u|k+1,Ω. (C.2)

For v ∈ [H1(Ωe)]
d and φ ∈ [L2(Ωe)]

d, we have

‖v‖0,E ≤ Ch−1/2
e ‖v‖0,Ωe

, (C.3a)

‖v‖0,∂Ωe ≤ C
(
h−1/2
e ‖v‖0,Ωe + h1/2

e |v|1,Ωe

)
, (C.3b)∑

E∈ΓiD

1

hE
‖bvc‖20,E ≤

∑
Ωe∈Th

∑
E∈∂ΩiD

e

2

hE
‖v‖20,E , (C.3c)

∑
E∈ΓiD

hE‖{φ}‖20,E ≤ C
∑

Ωe∈Th

he‖φ‖20,∂ΩiD
e
, (C.3d)

∑
E∈ΓiD

1

hE
‖{φ}‖20,E ≤

∑
Ωe∈Th

∑
E∈∂ΩiD

e

1

hE
‖φ‖20,E . (C.3e)
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3–26. Springer, Dordrecht, 1982.

[42] T.C. Ting. Anisotropic Elasticity: Theory and Applications. Oxford University Press, 1996.

[43] M. Vogelius. An analysis of the p-version of the finite element method for nearly incompressible materials.

Numerische Mathematik, 41(1):39–53, 1983.



112 BIBLIOGRAPHY

[44] J.A. Weiss, B.N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely

isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 135(1-2):107–128,

1996.

[45] T. P. Wihler. Locking-free DGFEM for elasticity problems in polygons. IMA Journal of Numerical

Analysis, 24(1):45–75, 2004.
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