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Abstract  
 

Total shoulder arthroplasty (TSA) is the most common surgical solution , that helps in 

restoring the structural and functional integrity of  a diseased glenohumeral (GH) joint with 

intact rotator -cuff . A 300% increase in the usage of TSA has been observed since 2007, along 

with 2.5% increase in revision rate. Aseptic glenoid loosening accounts for 37% of post-

surgical failures in TSA. Eccentric loading of the prosthetic glenoid cup , leading to the ɁÙÖÊÒÐÕÎɯ

ÏÖÙÚÌɂɯeffect, is one of the prevalent  causes of aseptic glenoid loosening. Current anatomical 

total shoulder prosthesis (ATSP) geometry does not consider all the GH morphometric 

features, for example the elliptical shape of the humeral head. Moreover , the morphometr ic 

studi es leading to the initial ATSP design  did not consider the GH morphology of any sub -

Saharan population . Hence, there exists a gap in understanding of the implications of certain 

morphometric features on the functionality of a post -TSA GH joint.  

This thesis had two primary aims to address th is gap in knowledge. Firstly, to study  the 

GH morphometric variations  between cohorts representing native European (Swiss) and 

native sub-Saharan (South African)  populations. Secondly, to develop anatomically inspired 

ATSP design concepts and test them using biomechanical and finite  element (FE) models, in-

silico, under standardised testing protocols .  

The morphometric analysis  suggested that an average Swiss humeral head radius of 

curvature  was larger (P<0.05) than the average South African humeral head. By comparing 

the biological head sizes, across both the populations, with the dimensions of the 

commercially available humeral heads, it can be inferred that suitable humeral prostheses are 

currently not available for individuals  with  head sizes >28mm or <19mm.  Considering both 

the populations, t he inherent shape of an average humeral head was found to be elliptical . 

The thickest region of the head was found to lie in the posterior region and not at the geometric 

center. Hertzian contact theory was applied to calculate the GH stresses produced by 
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symmetric and asymmetric elliptical heads. Higher concentric stresses (P<0.001), within the 

acceptable limit for polyethylene, were observed to be imparted by the asymmetric heads.  

Population -specific musculoskeletal models were developed to study the post-TSA 

kinematic variation. When an identical range of motion (RoM) was performed by these 

models, population -specific variation in muscle moment arms was observed. The novel 

glenoid designs were not found to alter the post -surgical kinematics. FE models of the bi-

radial, compartmental and pear -shaped glenoid implant designs were subjected to 

compressive and shear loading according to the American Society for Testing and Materials 

(ASTM). Using the bi-radial the glenoid cup, with t hickened posterior -superior  surface, 

anatomically relevant force distribution patterns could be replicated. Compartmentalising the 

glenoid prosthesis into concentric and eccentric regions with the gaps, proved to be highly 

beneficial. When compared to a commercially available glenoid prosthesis, the 

compartmental prosthesis was able to contain the GH forces to the concentric region for 

longer, delaying the eccentric loading and therefore potentially re ducing  the ɁÙÖÊÒÐÕÎɯÏÖÙÚÌɂɯ

effect.  

In the light of the above observations, two conclusions can be drawn from this thesis. 

Firstly,  it would be beneficial if  population -specific ATSP were made available for natives of 

certain geographic locations. Secondly, glenoid prosthesis designs could be 

compartmentalised to contain the GH joint  forces within the concentric regions of the cup  

which might aid in the reduction of post -TSA complications.  
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Motivation  
Beautiful things come to you, 

from the most unexpected sources, 

especially when you are not looking for them. 

- unknown 

 

Human beings are moulded by evolution and staying curious is in our nature. For ages, the 

humanity has pursued knowledge to better understand gigantic cosmic and microscopic 

biologic phenomena. The foundation for the modern fields of astronomy and medicine were 

laid during the Greco-Roman, Egyptian and Vedic periods.  

Earliest contributions to these fields by Ptolemy, Copernicus, Aryabhatta, Ibn Yunus, 

Galileo Galilei, Aristotle, Charaka, Peseshet and many other pioneers paved the way for recent 

ground -breaking observations by Newton, Einstein,  Dirac, Darwin, Robert Hooke, Watson 

and Crick, Louis Pasteur and others. The common factor, binding all these great pioneers 

together was their quest for the beautiful world of knowledge.   

Evident use of prosthetic joint replacements in modern surgical practice was reported 

by Dr. Themistocles Gluck in  the late 19th century.  Since then, contributions by Dr. Jules Emil 

Pean, Sir John Charnley, Dr. Charles S. Neer and Dr. Paul Grammont have revolutioni zed the 

field of articular joint replacement.  

Deriving inspira tion from the stalwarts and keeping an open mind as the ancient 

philosophers, I undertook research on possibly improving the design of shoulder replacement 

prostheses. This thesis is my earnest effort to contribute to the existing field of knowledge 

regarding the glenohumeral joint  and its anatomically shaped prosthesis.  
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Introduction  
 

1.1 The Shoulder  

The shoulder joint (Fig. 1.1) is formed by the articulation of the scapula, humerus, clavicle and 

thoracic cavity. The complete shoulder range of motion  (ROM) is achieved by the complex 

coordinated interactions among the Acromio -Clavicular (AC), Gleno -Humeral (GH), Scapulo-

Thoracic (ST) and Sterno-Clavicular (SC) joints.  

The GH joint is the most mobile joint in a human body where the humeral head (ball) 

translates and rolls on the glenoid fossa (socket). The structural (bony) conformity of the joint 

is mechanically insufficient to k eep the GH surfaces together. The surrounding soft tissues 

play a major in stabilizing the GH joint. The articulating surfaces are cocooned by 3 layers of 

the joint capsule and further supported by the rotator -cuff muscles, the deltoid and the long 

head of the bicep muscle (Lippitt & Matsen, 1993) . 

The osteokinematics of the GH bones does not allow the joint to achieve its full extent 

of natural RoM . To achieve the entire GH RoM the arthrokinem atics of the whole shoulder 

girdle  plays an important part. T he hinged rolling motion of the SC joint, the upward gliding 

motion of the ST joint and the translating -rolling motion of the GH  joint synergize together to 

derive functional activities . This teamwork of the shoulder joints could be best observed 

during its elevation in the frontal plane . The SC joint and the GH joint shares the elevating 

motion in a ratio of 2.34:1 (Scibek & Carcia, 2012). 

Apart from partially st abiliz ing the GH joint, the muscles in the shoulder girdle allow 

movements such as abduction, forward flexion, elevation, ad duction, internal and external 

rotation. The major muscle groups which perform the motions are the rotator cuff and the 

deltoid  muscles. Even though there are several muscles such as the teres major, levator 

scapulae, rhomboids, triceps and trapezius among others, which support  the shoulder 

function (Rockwood, 2009), the success of the Total Shoulder Arthroplasty (TSA) majorly 
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depends on the post-surgical functionality of the deltoid & rotator cuff  muscles and their 

tendons. Hence, the current thesis will be focused on studying the post-surgical functionality 

of these two sets of muscles, using in-silico musculoskeletal models. 

 

Figure 1.1 Schematic representation of the various articulations of the shoulder girdle  essential for GH RoM. 

1.2 Glenohumeral Arthritis  

GH arthritis is one of the conditions  that is treated using TSA. There are two major types of 

arthritis affecting the human body, Osteoarthritis (OA) and Rheumatoid Arthritis (RA). Both 

of these categories of bone diseases have been reported to affect the synovial joints (National 

Collaborating Centre for Chronic Conditions, 2009; Sinusas, 2012). Age, bone loss, gender, 

past joint injuries and lifestyle could be one of the root causes of OA. OA is characterized by 

the loss of cartilage on the joint surfaces leading to trabecular bone friction giving rise to 

intense joint pain (Creamer, 2000; Sinusas, 2012). RA is an autoimmune disease characterized 

by inflamed synovial joint membranes due to the release of protein-degrading enzymes. 

 Worldwide OA is listed as one of the top 5 disabilities. It has been predicted that 130 

million human beings wo uld  be affected with OA by 2050. Apart from the health-related side 
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effects of OA, like depression, obesity, and heart disease, it also imposes a huge economic 

burden on the individual and national level.  In the year 2012, the United States of America 

has lost $100 billion as OA affected individuals had to terminate their jobs (Arthritis 

Foundation, 2018).  

Osteoarthritis (OA) of the GH joint, though not as prevalent as hip and knee, affects 

32.8% of individuals whose age is 60 years and above (Chillemi & Franceschini, 2013). This 

decreases the available ROM of the joint and induces pain. Degradation of the GH joint has 

been observed in 15% of the Rheumatoid Arthritis (RA) patients in sub -Sahara Africa (Mue et 

al., 2013). Akinpelu et al., 2010, had reported that 7.3% of the Nigerian population, suffering 

from degenerative diseases, were detected with GHOA. Above the age of 65 years, 55.1% of 

the city dwellers and up to 82.7% of the rural population of South Africa are at risk of OA 

(Usenbo et al., 2015). Parker & Jelsma, 2010, found the prevalence of GHOA and GHRA in 7% 

of the underprivileged population of Cape Town, South Africa. An aging population is always 

more susceptible to arthritis (Arthritis Foundation, 2018) . In South Africa, 4.6 million people 

fall under the category of being elderly,  with an age of >60 years (STATS SA, 2017). This puts 

these individuals  at greater risk of OA. Along with this, the South African medical device 

industry has been reporting an average annual loss of $770 million, since 2015, (Fig. 1.2) as 

most of its medical devices including shoulder implants are being imported (The International 

Trade Administration, 2017) .   

 

Figure 1.2 Large ×ÙÖ×ÖÙÛÐÖÕɯÖÍɯ2ÖÜÛÏɯ ÍÙÐÊÈɀÚɯÔÌËÐÊÈÓɯËÌÝÐÊÌÚɯÈÙÌɯÐÔ×ÖÙÛÌËɯÍÙÖÔɯÔÖÙÌɯËÌÝÌÓÖ×ÌËɯÕÈÛÐÖÕÚȭ 
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1.3 Introduction to Total Shoulder Arthroplasty  

Proximal humeral fractures (PHF) are the third most common fractures in the world (Mauro, 

2011) and the most common fracture of the humerus (Kim et al., 2012). PHF directly affects 

the functionality of the GH joint and if not detected in the initial stages , could lead to GHOA. 

Though the actual statistics are unknown, PHF is common in South Africa due to  the 

prevalence of contact sports like rugby and high rate of trauma caused due to violence. PHF 

and GH arthritis are the main indications for  TSA. 

In the early 1970s, TSA was introduced as a surgical technique to replace dysfunctional 

GH joint surfaces. The prosthetic humeral head was metallic, and the glenoid cup implant  

was made from polyethylene.  Initially, the prosthetic GH joint surfaces were highly 

conformed and constrained. This design approach mimicked a perfect ball and socket joint 

but led to severe glenoid cup  damage leading to polyethylene  fractures and implant fail ures 

(Wirth & Rockwood, 1996) . Current prosthesis designs are a modification of the initial 

unconstrained, Neer Mark II prosthesis, introduced by  Dr  Charles S. Neer (Deore et al., 2018; 

Frich et al., 1988; Neer II et al., 1982). The loading surface of the prosthetic humeral head is 

manufactured of cobalt-chromium ( Co-Cr) alloy and the load bearing surface of the glenoid 

implant is manufactured using ultra high molecular weight polyethylene (UHMWPE). A brief 

historical timeline of the Anatomical Total Shoulder Prosthesis (ATSP) is presented in Figure 

1.3. A surgical technique called the deltopectoral approach, used to implant the prosthetic 

components have remained almost identical  since its initiation (Neer II, 1955).  

Current TSA prosthesis designs could be, broadly, categorized as the third generation 

GH pro stheses. While the first and the second generation ATSPs were focused on functional 

restoration of the GH joints, the current prostheses designs were the first of its kinds to cater 

for the best representation of the proximal humeral geometry along with restoring GH 

functionality (Boileau & Walch, 1997; Robertson et al., 2000). This has increased (Day et al., 

2010) their  usage (Fig. 1.4), along with RTSA, even in the younger patients (Padegimas et al., 

2015). Recent follow-up studies have reported higher  post-operative patient satisfaction 

(Styron et al., 2015) and reduction in  many of the post-surgical complications.  
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Figure 1.3 Important e volution ary landmarks  of the Anatomical Total Shoulder Prosthesis since its inception.  

sourced from (Deore et al., 2018; Lazarus et al., 2002; Neer II, 1955, 1974; Neer II et al., 1982). 

 

 

Figure 1.4 Increase in the use of TSA occurred around the same time as the unreliability  of hemiarthroplasty  (HA)  

was recognized. The reduction in the use of the HA occurred as the arthritis was observed to spread into the 

glenoid surface from the humerus. This led to future revision surgeries. sourced from (Deore et al., 2018). 
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1.4 Post-Surgical Complications  

Although the complication rates were reduced, with the third -generation ATSP designs, they 

have not been eradicated. Initial glenoid failure mechanism was observed due to ɁÚÛÙÌÚÚɯ

ÚÏÐÌÓËÐÕÎɂ in metal -backed prostheses (Bohsali et al., 2006; Boileau et al., 2015; Bonnevialle et 

al., 2013; Papadonikolakis & Matsen, 2014). In an all-polyethylene glenoid cup  implant 

instability leading to  its aseptic loosening is the major cause for failure (Eichinger & Galvin, 

2015). This kind of failure has been attributed to the ɁÙÖÊÒÐÕÎɯÏÖÙÚÌɂ effect (Fig. 1.5 a-b). The 

complication rates due to glenoid loosening are varied and has been reported to depend on 

the ease and efficiency of the cementing technique (Lazarus et al., 2002; Matsen III et al., 2008), 

rotator cuff deficiency (Franklin et al., 1988) and the amount of GH prosthetic mismatch 

(Walch et al., 2002).  

 

Figure 1.5 The eccentric loading of the glenoid component shown in (a) is the main cause of the glenoid loosening 

at the bone cement interface. sourced from (Matsen III et al., 2008). (b) The grades of loosening for the pegged glenoid 

component were introduced by Lazarus et al., 2002, based on the amount of radiolucency observed in post-TSA 

radiographs.  Grade 0 signifying no loosening and Grade 5 signifying com plete loosening of the glenoid cup.  

 

A t five-year follow -up of 1673 TSA surgeries Somerson et al., 2018, reported 20.4% 

(highest) failure due to glenoid component. The glenoid loosening re lated failure rates 

increase with time, post-TSA. Bonnevialle et al., 2013, investigated the cause of 42 TSA 

revision surgeries, between 1991 and 2006, and reported 46% of them were due to glenoid 

component loosening. On the other hand, a two-year follow -up of 77 TSA observed 13.3% 

(a) (b) 
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glenoids with radiographic proof of loosening (Kiet et al., 2015). The progressive loosening of 

the glenoid cup, reduces the longevity of TSA (Matsen III et al., 2008). Even though there has 

been an advancement in the ATSP design, TSA techniques, and post-operative rehabilitation, 

there is an acute need for the development of a stable GH prosthesis for TSA to reduce the 

eccentric loading of the glenoid.  

1.5 Thesis Scope, Goals and Organization  

ATSP design modifications could be one of the strategies that could be implemented to reduce 

the post-TSA glenoid fail ures. The scope of this thesis was, firstly,  to study GH morphometry 

of the native South African population . Secondly, the scope also included conceptualising and 

testing novel ATSP designs. Adequate care was taken to develop prostheses which did not 

alter the current surgical approach and the tests were performed within the current standards.  

The thesis is divided into three sets of goals which the chapters help to achieve. A schematic 

representation of the thesis organization is provided in Fig. 1.6, this would make it easier for 

the reader to understand the flow of the document . Brief explanation s of the goals are 

provided ahead. 

 

Figure 1.6 Thesis organization and layout of the chapters according to the pre-determined goals. 
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1.5.1 Goal I 

The morphometric studies which led to the initial development of ATSP were conducted on  

GH joints obtained from American (Robertson et al., 2000) and European (Boileau & Walch, 

1997) Caucasian populations. There is no existing study which suggests that the commercially 

available ATSPs cater for the native population of South Africa. 

Therefore, the first goal of this thesis is to study and compare the GH articulating 

surfaces of a South African cohort and compare them with a European GH data set. This study 

is spread over Chapter 2 and 3. Chapter 2 is focused on explaining the m ethod imple mented 

in studying the morphometry and describes the inter -population differences. Chapter 3 

studies the theoretical effect of the altering the humeral head shape from a perfect sphere to 

an eccentric ellipse. 

1.5.2 Goal II 

The second goal of the thesis was to investigate the post-TSA kinematics of the novel 

conceptual designs of TSA prosthesis. These designs were developed by incorporating the 

morphometric observations from Chapter 1 & 2 in order to combat the current modes of 

failure . Chapter 4 describes the design process involved in the creation of these prostheses 

and Chapter 5 details the development of a post-TSA musculoskeletal model and the 

kinematic changes introduced by the new prosthesis designs. 

1.5.3 Goal III 

The final goal of this  dissertation is to analyze the performance of the prostheses designs 

under loading conditions standardiz ed by ASTM. Chapter 6 describes in detail the Finite 

Element (FE) model and the observations from the subluxation tests performed on the glenoid 

models. Even though, novel humeral and glenoid components designs were created in 

Chapter 4, to adhere to the strict timeline of the research only new glenoid designs were tested 

using the FE model. 

The final chapter synthesizes the conclusions from the previous chapters and provides 

recommendations and possible directions for future work.  



 

 

 

 

 

 

CHAPTER 2 
Part of this chapter has been peer-reviewed and  published as: 

Dey, R., Roche, S., Rosch, T., Mutsvangwa, T., Charilaou, J., & Sivarasu, S. (March 2018). 

Anatomic variations in glenohumeral joint: an interpopulation study. Journal of Shoulder and 

Elbow Surgery OA, 2(1), 1-7. https://doi.org/10.1016/j.jses.2017.11.007. 

 

Part of this chapter has been presented (podium)  as: 

 

Dey, R., Roche, S., Mutsvangwa, T., and Sivarasu, S. An inter-population study between African 

and European glenohumeral articulating surfaces. 8th World Congress of Biomechanics (WCB), 

Dublin, Ireland. (July 2018) 

Dey, R., Roche, S., Rosch, T., Mutsvangwa, T, Charilaou, J. and Sivarasu, S. Are South African 

shoulders different? An unique inter -population morphometric investigation. 63 rd Congress 

of the South African Orthopaedic Association (SAOA), Port Elizabeth, South Africa. (Sept 

2017) 

https://doi.org/10.1016/j.jses.2017.11.007
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Morphometry of the GH  Joint and its 

Population Specific Variations  
 

2.1 Introduction  

Total Shoulder Arthroplasty (TSA)  surgically replaces the arthritic articulating surfaces of the 

GH joint  (Mue et al., 2013), in the presence of intact rotator cuffs, with an ATSP (Bishop & 

Flatow, 2005; Green & Norris, 2001; Kaback et al., 2012; Lehmann et al., 2010; Sanchez-Sotelo, 

2011). Although, the current design of the ATSP has been successful is alleviating shoulder 

joint pain and restoring the functionality of th e joint, underlying complications such as 

glenoid component loosening and humeral head subluxation reduces the success of this 

surgical intervention  (Bohsali et al., 2006; Gregory et al., 2009; Hasan et al., 2002; Hill & Norris, 

2001; Kaback et al., 2012; Matsen et al., 2008; Nagels et al., 2002; Postacchini et al., 2012; 

Raphael et al., 2010; Wirth & Rockwood, 1996).  

The initial design of the ATSP, as proposed by Neer, was aimed towards mimicking the 

GH joint  function  (Brand, 2011). Since then, modifications have been made to accommodate 

for the head inclination angle, retroversion angle and implants have a lso become more 

modular to accommodate for reverse shoulder prosthesis (Boileau et al., 2006; Hertel & 

Ballmer, 2003; Mackay et al., 2001; Parker & Jelsma, 2010).  

The current trend follo wed by various ATSP manufacturers (e.g. DePuy Global 

Shoulder System, and Tornier Aequalis prosthesis) is to provide surgeons with  options of a 

particular humeral head size with  different  heights and version angles (Wang et al., 2005). 

Keeping in mind , the evolution of the shoulder prosthesis design (Chapter 1.3), it could be 

predicted that the future prosthesis designs would most likely be patient specific as seen in 

hips and knees (Coigny et al., 2016). This would be an advantageous strategy to pursue 

considering the subject-specific variations. Studying towards developing populati on-specific 
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ATSP design could be argued to be an intermediate step forward and this would  partly be the 

focus of this chapter. 

In sub-Saharan Africa, shoulder arthritis is a common joint disease (Akinpelu et al., 

2010; Owaydhah et al., 2017). Orthopedic related disorders feature in the top  ten Burden-of-

diseases in South Africa  (De Beer & Bhatia, 2009; Health Metrics and Evaluation, 2010). 

Approximately  1000 ATSPs are annually implanted in South Africa, and most of the 

prostheses used are imported creating a financial burden on the country (Samed, 2014). The 

glenohumeral  morphometry  of the native South Africa n population has been rarely studied. 

Along with this, considering the financial burden  ÈÕËɯÛÏÌɯÊÖÜÕÛÙàɀÚɯÎÌÖÎÙÈ×ÏÐÊɯÓÖÊÈÛÐÖÕ, there 

is a need to carve a niche for medical implant industry in the co untry . The aim of this chapter 

is to describe the process implemented to retrieve and compare the GH joint morphometry of 

two cohorts belonging to two geographically independent regions. One of the subsets, 

representing sub-Saharan Africa, was sourced from  the South Africa and the other subset, 

representing Europe was sourced from Switzerland.  

Worldwide, 21% to 32% of the TSAs have to be revised due to post-surgical 

complications like glenoid loosening (Bohsali et al., 2006; Bonnevialle et al., 2013; Hill & 

Norris, 2001; Junaid et al., 2010). As explained in Chapter 1.4, the ɁÙÖÊÒÐÕÎɯÏÖÙÚÌɂ effect has 

been identified as one of the main causes for glenoid loosening (Matsen III et al., 2008; Wirth 

et al., 2012). Improper understanding of the shoulder anatomy, which varies with  the 

geographical location of the population (Cabezas et al., 2016; Matsumura et al., 2016; Zhang 

et al., 2016), might  result in ATSP designs which do not replicate the optimum GH 

morphometry. This could reduce the efficacy of the surgery and its long -term success 

(Bonnevialle et al., 2013; Hertel & Ballmer, 2003; Merolla et al., 2013). The morphometric 

studies referred to, for the earliest designs of unconstrained ATSP did not consider the GH 

morphometry of African population. In the light of the above reasons, it could be considered 

essential to study the native population of this country and incorporate any distinguishing  

features to create an ATSP design.  
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2.2 Anatomy of the G lenohumeral  Joint  

The GH joint articulation (Fig . 2.1) could be geometrically represented as a ball and socket 

joint made up of the humeral head and the glenoid fossa. Unlike the hip  joint  where the 

acetabulum almost engulfs the femoral head, the glenoid fossa on the lateral edge of the 

scapula is an open structure and provides  limited conformance to the head of the humerus. 

The high range of motion is partly due to the fact that the glenoid fossa, does not resist the 

translation and rolling of the humeral head (Halder et al., 2000).  

 

Figure 2.1  The Glenohumeral (GH) joint formed by the glenoid fossa and the humeral head articular surfaces. 

Sourced from (Drake et al., 2015). 

 

The stability of the joint is by the virtue of the surrounding soft tissues like the rotator 

cuff muscles, the glenoid labrum, the joint capsule and the reinforcing ligaments. These 

structures support the glenoid and the humeral head articulation and prevent subluxation 

under loading (Fig . 2.2 a-b). As explained earlier, the complete RoM of the shoulder is due to 

the complex coordinated interactions of the GH, the SC, the AC and the ST joints (Brand, 2011; 

Skirven, 2011). In a healthy shoulder, the initiation of the loading or move ment is from the 
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GH joint and it contributes to around 65% of the total RoM (Brand, 2011). Therefore, it 

becomes the most important load-bearing articulation in the entire shoulder girdle.  

The glenoid cavity (Fig . 2.3 a-b) is concave in shape and has a 7.4° of retroversion and is 

tilted by 10° in the superior direction (Halder et al., 2000). The superior tilt is altered by GH 

arthritis (Daggett et al., 2015). The glenoid fossa has a deeper concavity in the superior -inferior 

(SI) axis and has a shallower surface when viewed from the anterior -posterior (AP) axis. The 

horizontal distances between the AP margins increase as one comes down from the supra-

glenoid tubercle towards the infra -glenoid tubercle. Therefore, anatomically, the glenoid is 

thicker and broader inferiorly (Iannotti et al., 1992; Mamatha et al., 2011). This makes the 

glenoid a pear-shaped structure. Various other glenoid shapes, like the oval and the inverted 

comma, have been reported in the literature but the pear-shaped glenoid are more common 

(Mamatha et al., 2011).  

 

 

Figure 2.2 The soft tissues around the glenohumeral articulation stabilizing the joint. (a) Joint capsule and 

ligaments; (b) Surrounding muscles. Sourced from (Drake et al., 2015). 
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Figure 2.3 Schematic representation of various bony landmarks of the scapula and the (a) superior and (b) medial 

tilt of the glenoid fossa with respect to the straigh t line passing through the center of the glenoid. Modified from 

(Halder et al., 2000). 

 

The surface area of the glenoid fossa is 30% to 40% less than that of the humeral head. 

The glenoid labrum around it increases its depth, adding stability to the joint  (Halder et al., 

2000; Skirven, 2011). A study (Zumstein et al., 2014) showed that the cartilage around the 

glenoid was the thickest in the superior region and very thin in the inferior region. On an 

average, the RoC of the glenoid cavity was found to be 60% larger than the humeral head RoC.  

The humeral head (Fig. 2.4) projects, medially and superiorly, out of the humeral shaft 

and translates on the surface of the glenoid. It is ovoid in shape, has 30° to 40° of retroversion 

with a superior tilt o f 45° (Fig. 2.5 a-b). The anterior -posterior concavity of the humeral head 

is greater than the superior -inferior concavity (McPherson et al., 1997). It  has more than half 

of its surface area covered with articular cartilage. The articular cartilage is the thickest in the 

central region and thinnest in the periphery (Zumstein et al., 2014). This opposite cartilage 

thickness properties of the GH articular surfaces allow for a greater conformity between them 

and reduces the probabilities of dislocations. The neck joining the shaft and the head is very 

small, therefore the lack of bony conformity around the head is advantageous for the GH  joint  
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and allows it to help extend the arm in multiple planes (Halder et al., 2000; Peltz et al., 2015). 

The center of the proximal humeral head sphere has a medial and posterior offset of an 

average of 6.9mm and 2.6mm respectively (Fig. 2.6), with respect to the humeral shaft axis 

(Boileau & Walch, 1997). The rotational  movement of the humeral head on glenoid is 

permit ted by conform ance of the structures in the SI aspect. 

 

 

 

 

 

 

 

 

Figure 2.4 The anatomy of the proximal humeral head.  Sourced from (Drake et al., 2015). 
 

 

 

Figure 2.5 The morphometric features of (a) humeral head retroversion and (b) humeral head inclination . Sourced 

from (Halder et al., 2000). 
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Figure 2.6 The humeral head offset. The medial and the posterior offsets are calculated as the distance between the 

humeral head center ȿOɀɯÈÕËɯÛÏÌɯÏÜÔÌÙÈÓɯÚÏÈÍÛɯcenter ȿ.ɀɯÐÕɯÛÏÌÐÙɯÙÌÚ×ÌÊÛÐÝÌɯÈßÌÚȭ Sourced from (Boileau et al., 2006). 

 

2.3 Need for Understanding Inter -Population  Morphometric Variations  

Every individual human being is different. Some of these differences are easily identified by 

their appearance, their habits and their way of living. Based on these differences it could be 

safe to group  many individuals into populations arising from a geographical location. Some 

studies have gone deeper into investigating these populationsɀɯÚÒÌÓÌÛÈÓɯÔÖÙ×ÏÖÔÌÛÙà and 

have concluded that there is more inter -population variation than it meet s the eye (Ousley et 

al., 2009; Ubelaker & DeGaglia, 2017).  

Inter -population variance  has been established in several skeletal structures, such as, in 

facial structur e (Vioarsdottie et al., 2002), shape of the cranium (Donlon, 2000), humerus ȹdıÊÈÕɯ

et al., 1998), pelvis (Kurki, 2013), femoral head diameter (Ubelaker & DeGaglia, 2017), 

mandible  (Loth & Henneberg, 1996), etc. Hence, it could be expected that the humeral head 

and glenoid cavity might also have inter -population differences.  Only two studies were found 

to investigate the humerus ȹ2ÛÌàÕɯȫɯ(ıÊÈÕȮɯƕƝƝƝȺ and the scapula (Churchill et al., 2001) of 




















































































































































































































































































































































































