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Abstract 

Since the advent of statistical quality control and process capability analysis, its study and 

application has gained tremendous attention both in academia and industry. This attention is due to 

its ability to describe the capability of a complex process adequately, simply (i.e. using a unitless 

index) and also in some instances to compare different manufacturing processes. However, the 

application of statistical quality control has come under intense criticism, notably in one car 

manufacturing industry where the actual number of non-conforming units considerably exceeded 

expectation, although probabilistic control measures were in place. This failure led to a large recall 

of their vehicles and also left a dent on the image of the company. One of the reasons for this 

unfortunate instance is that in classical quality control measures, human judgement is ignored and 

since in process engineering there is considerable expert intuition in decision making, this element 

cannot be undermined. Hence the research study applies the uncertainty theory proposed by 

Baoding Liu (2007) to enable us to incorporate human judgement into process capability analysis.  

The major findings of the thesis is that the uncertain process capability indices under an 

uncertainty environment are interval-valued and their relevant characteristics. The study further 

developed the "sampling" uncertainty distributions and thus the "sampling" impacts on the newly 

defined uncertain process capability indices under Liu's uncertain normal distribution assumptions. 

In order to reach the main purpose of the thesis, a thoroughgoing literature review on probabilistic 

process capability indices is necessary. Comparison between the newly proposed (uncertainty) 

capability index and its probabilistic counterpart were conducted and the findings were that the 

uncertainty capability index also yields a realistic representation of process performance at a 

higher level of significance (i.e. α=0.5). Although a higher significance level is used this helps 

since expert data usually exaggerates process performance. Secondly, the newly proposed 

uncertainty capability indices also help in describing how the engineers think about their 

manufacturing process relative to the actual performance of the process. Therefore these newly 

proposed uncertainty capability indices complement their classical capability counterparts. 
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Chapter 1. Introduction  

1.1 Roles of The Capability Indices in Quality management 
 
Process Capability analysis is an important tool in maintaining the quality of a process and also 

ensuring its continuous improvement. These processes may vary from manufactured goods such as 

automobile parts, clinical instruments, clothing, plastic products, to services such as health care, 

timing of bus arrivals, mean waiting and service times at banks, measuring student performance etc. 

Thus process capability studies are of importance in almost every industry where quality of output is 

of the main concern. 

The main aim of process capability studies over the years has been to ensure that processes and 

services are continually improved to meet higher levels of customer satisfaction and also to reduce 

the number of non-conforming units produced. These higher levels of customer satisfaction are 

usually met by ensuring that the products are uniform. Uniformity in this sense is obtained by 

reducing variability of the process to the extent that the only cause of variation present in the system 

is random. 

Moreover, process capability studies are usually summarised by numerical measures called 

process capability indices (PCI’s). Generally, the capability of a process usually defines how well 

the process is able to meet specifications set by customers or product designers. Thus process 

capability indices can be expressed as the proportion of the actual process spread measured by the 

specification width to the allowable process spread usually measured by six standard deviations. The 

six-sigma spread in the process is the reference value by which one determines how well the process 

performs to requirements. 

The study of classical capability indices where the quality measurement is precise (crisp) has 

received enormous attention due to authors like Juran (1974), Kane (1986), Chan et al. (1988), 

Boyles (1991), Montgomery (1991), Pearn et al. (1992), Kotz and Johnson (1993a), Spiring (1997), 

Pearn et al.(2001), Lin (2002) etc. Some processes in practice produce quality measurements that are 

imprecise or vague in nature and require human judgement, such as the amount of pollutants in a 

water body, the colour intensity of a garment/textile, the amount of light passing through a touch-

screen, all elements with coarse scales, the lifetime of a bulb etc. Classical capability indices are 

based on probability theory (frequency of events) which does not allow expert judgements. The 



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
 2 

 

development of fuzzy set theory proposed by Zadeh (1965) assigns graded membership to events in 

order to deal with ambiguity and vagueness. The application of fuzzy set theory to process 

capability analysis studies has gained wide attention since the first publication by Yongting (1996). 

This attention is due to its flexibility and the ability to handle imprecision. However, fuzzy set 

theory has come under considerable criticism as a branch of mathematics, due to the fact that it 

relaxes the law of contradiction. 

Due to the shortcomings of fuzzy set theory, Baoding Liu (2007) proposed uncertainty theory to 

incorporate expert judgement into modelling. For instance, under any classical six sigma process, 

there are cases where the actual number of non-conforming units discernibly exceeds the expected 

units, and then the calculation of the capability indices will falsely suggest a capable process. 

Assuming a Gaussian normally distributed process, there is an expected number of non-conforming 

units (i.e. 0.27% of the Yield). In practice this expected number of non-conforming units is 

sometimes significantly less than the actual number of non-conforming units, hence the variation in 

the process will be understated (i.e. smaller standard deviation) and since the process capability is a 

function of the standard deviation, the magnitude of the process capability will be overstated. A 

typical example involves the incidents which occurred in the Japan car manufacturing industry, 

where the observed proportion of faulty brake pads exceeded expectation (i.e. assuming Gaussian 

normality) and later led to a large number of recalls, although there were classical quality control 

measures (i.e. based on probability theory) in place. The question arises whether or not classical 

quality control measures failed in this case? And would this scenario better be addressed by 

incorporating expert advice to make judgements. This research seeks to explore answers to these 

important questions via the theory of uncertainty proposed by Baoding Liu (2007), to incorporate 

expert judgement into decision making in a process capability assessment.   

 

1.2 Aims and Objectives 
 
The overall objective of this thesis is: 

 The application of uncertainty theory to process capability analysis. 

 

The aims of this thesis are to: 
 Provide a comprehensive review of Classical Process Capability Indices  
 Provide a comprehensive review of Uncertainty Theory. 
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Propose interval-valued uncertainty process capability indies. Thus, find estimators comparable 
with the classical capability indices , p pkC C  and pmC when the underlying process is assumed 

to be Liu's uncertain normal distribution. 

1.3 Overview of Thesis 

The thesis focus is on a new quality improvement tool, interval-valued uncertainty capability index. 

The development requires many mathematical tools and statistical methods. Therefore the contents 

cover a wide range of knowledge. The thesis is composed of ten chapters, detailed as follows: 

In chapter 1, process capability analysis is discussed, the aims and objectives of the thesis are 

stated, and a general overview of the thesis is given. 

In chapter 2, three Shewhart charts to monitor process stability are reviewed. These charts are 

X -Chart, R-Chart and the S-Chart respectively. A brief summary of these charts is also tabulated. 

In chapter 3, the classical capability indices were introduced and discussed, specifically, in 

terms of their strengths and weaknesses. A summary of and comparison between the classical 

capability indices were also conducted.   

In chapter 4, the statistical properties of classical capability indices were further reviewed. The 

discussions are focused on four aspects: process departure, process yield, the ability to deal 

with sampling error in estimation and finally, the issue of the capability measurement when the 

process distribution is asymmetric. 

  In chapter 5, The Uncertainty Theory proposed by Baoding Liu (2007) is discussed. The 

Uncertainty Theory comprises three core concepts: Uncertain Measure, Uncertain Variable and 

Uncertain Distribution and this chapter explores these main concepts. Moments of the Uncertainty 

theory are also reviewed. 

In chapter 6, The uncertainty statistical approach is discussed. Uncertainty statistics provides a 

methodology for collecting and also interpreting expert information. In order to determine the 

uncertainty distribution from the expert experimental data, the Least Square method, Delphi method 

and Method of Moments are discussed.  

In chapter 7, the justification for applying uncertainty theory to process capability analysis is 

given. The counterparts of classical capability indices are also investigated under Liu's uncertain 

normal distribution environment. The interval-valued uncertain process capability indices are 
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emphasised, the "sampling" uncertainty distributions are defined and developed and thus the 

"sampling" impacts on the interval-valued uncertain process capability indices are evaluated. 

In chapter 8, the methods for constructing classical and uncertainty capability analysis are 

discussed. 

In chapter 9, the theories proposed in the chapter 8 are applied to data obtained from a local 

manufacturing company. The two datasets are obtained from the same wire manufacturing 

company, being data obtained directly from the process output and qualitative data obtained from 

the industrial engineers (expert advice) about how they think the process is performing. The data 

obtained from the process output is analyzed using the classical capability indices and the expert 

data is analyzed using the uncertainty capability indices. These two capability estimates are then 

compared.  

In chapter 10, a summary of the thesis is given, examining the achievement of objectives stated 

in chapter 1 and stating the contribution of this thesis to process capability analysis. 
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Figure 1: Overview of the Thesis. 
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Chapter 2. Three Shewhart Charts for Inspecting 
Statistical process Control 

 

 

This chapter serves the aim of preparing the statistical environment for a process capability study.    

Hence, three statistical quality control charts proposed by Shewhart in 1924 are discussed. 

In order to undertake a process capability study a fundamental requirement is to establish that 

the process is in statistical control. Mathematically, a process capability study could only play its 

role if the process is in a steady state.   

Practically, it could be carried out in terms of various control charts monitoring a 

manufacturing process in its steady state or not. It is a well-known fact that checking if the process 

is in-control (i.e. the process mean, variance or range should be constant) or not, is equivalent to 

checking a process that is in a steady state or not. 

A process is said to be in-control, when the only cause of variation present in the process is 

random or inherent and this variation can rarely be reduced by making any adjustments to the 

process (Montgomery, 2005). These inherent variations are regarded as an acceptable level of 

variation for the current objectives of the process. Otherwise, a process is said to be out-of-control 

(i.e. process influenced by external causes of variation to an unacceptable degree). An out-of-control 

process is deemed attributable to external causes of variation such as improper machine adjustments, 

operator error and defective raw materials (Montgomery, 2005). 

 Moreover, a process in statistical control is predictable, whereas no useful inferences about the 

future performance of an out-of control process can be made. The primary requirement in 

establishing statistical control is to assess the variability of an in-control process. If this variation is 

accurately established then it will be easier to detect a process that is running out of control by 

contrast. The most commonly used tool to monitor a process is called statistical control chart. The 

control chart is a graph that monitors whether a sequenced of observed data falls within the common 

or accepted range of variation [80]. To depict this usual range of variation a control chart consists of 

three horizontal lines such that the central line represents the process parameter (i.e.   or  ) and 

the two other lines represent the control limits (i.e. LCL and UCL), which may be calculated by the 

true process parameter or the estimated one obtained by individual observations. A data point 

exceeding any of the limits is referred to as an out-of-control event within the process. 
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 The most widely used control chart is the Shewhart X  -control chart in combination with the 

R  chart, and S  chart or/and 2S  chart, which are attributable to Shewhart (1924) who 

introduced these simple but effective graphs to assess and monitor and hence assure quality. The 

primary uses of control charts are two- fold: 

a) To collect sequenced data from a process and analyze the data, in order to establish whether

or not the process is in-control for a capability study.

b) The parameters established for an in-control process in (a) above, will aid in the analysis of

data sequentially into the future. (i.e. exponential weighted moving average or CUSUM

charts)

However, since the main focus of this research is to deal with capability indices, the review of 

control charts will be limited to objective (a). 

2.1 Shewhart X -Chart for Process Average Location 

The X control chart is a time sequence plot of the sample averages i.e. denoted as jX  together with 

three horizontal lines that indicate the process centering and variation. Practically, the true 

parameters   or   of the process are unknown and necessary to be estimated from the observed 

data. To compute sample averages, samples of small size n  (i.e. 4 or 5 ) called rational subgroups 

are to be collected. Suppose the process is normally distributed and m samples are available of size n 

each, let jx  be the average of thj  sample. Then the best estimator of μ, the overall process average is 

1

1 m

j

j

x x
m



  (2.1)

where x  represents the center line of the X  chart. 

In order to construct the control limits, an estimator of the standard deviation (σ) is required. 

The population standard deviation (σ) can be estimated via two approaches, either the standard 

deviation of m samples or the range method.  

Let 1 2,  ,...,  j j njx x x  be a sample of size n, then the range jR of the thj  sample is given as 
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     = max  - min , 1,2, , , 1,2, ,ij ijR X X i n j mj     (2.2)

and the corresponding average range of m data sequences of size n each (i.e. 1 2,  ,...,  mR R R ) is given 

by 

 



 
1

1
.

m

j
j

R R
m

 (2.3)

 

Hence, using the well-known relationship 
2R d   between the standard deviation and the 

average range  R of the m sample established by Patnaik (1950), an estimator of the process 

standard deviation (σ) can be established as: 

 


2

 ,
R

d
   (2.4)

 

where 2d is the expected value of the range and also a function of n. Finally, if x  represents the 

estimator of μ and 2/R d  an estimator of ,  then the three horizontal lines of the X chart are 

 

2

2

Center Line 

LCL x A R

x

UCL x A R

 



 

 (2.5)

 
where the coefficient 2A  in (2.5) is a constant that depends on n. 

 Actually,  

 

2
2

3 .A
d n

  (2.6)
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2.2 Shewhart R-Chart for Process Variation (n < 10) 
 
The Gaussian normally distributed process is characterised by the parameters μ and σ, hence it is 

advisable that the standard deviation of the process should also be monitored (Di-Bucchianico, 

2008). A control chart can also be constructed for the standard deviation of the process. In industry, 

a control chart for the population standard deviation of the process can be set up by either the natural 

choice of the sample standard deviation or the range. Usually the range method is preferred due to 

its ease of calculation. However, the range method is only effective when the sample size of the 

subgroups are small (i.e. 4 or 5), whereas sample sizes exceeding 10 produce very inefficient 

estimates of the control limits for standard deviation (Bissell,1990; Montgomery, 2005). 

The center line in the R control charts is denoted by R . To construct the control limits of an R-

chart, an estimate of R  (i.e. population the standard deviation of the range) is required. The 

estimator of R  is given by: 

 

  3

2

.R
d
R

d
 (2.7)

 

The parameters of the control charts using the 3-sigma control limits are presented as: 

 





3

4

,

Centre Line = ,

,

LCL D R

R

UCL D R

 (2.8)

where the coefficients D3 and D4  are given by:  

 

   3 3
3 4

2 2

1 3 , 1 3
d d

D D
d d

 (2.9)

and the coefficients 
3D and 4D are also functions of n. 
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2.3 Shewhart S-Control chart for Process Variation (n ≥ 10) 
 
As in section 2.2 above, when the sample size for subgroups is large (i.e. n ≥ 10), the range method 

for controlling variability is unacceptable (Bissell,1990; Montgomery, 2005). It is advisable to use 

the standard deviation method which is a natural estimator of variability. Thus from each subgroup 

the sample standard deviation should be obtained. The average sample standard deviation of the m 

subgroups of equal size n is then obtained as follows: 

 



 
1

1
,

m

j
j

S S
m

       (2.10)

 
where  

 

 
 






2

1

-
, 1, 2, , . 

1

n

jij
i

j

x x
j mS

n
 

       (2.11)

It should be noted that the standard deviation jS  is not an unbiased estimator of  . The 

standard deviation jS  is actually an unbiased estimator of 4
,c    4

,E = S c   where  

 

 

   
 



4

/ 22
.

-1/ 2-1

n
c n

nn
  (2.12)

 

In contrast, the statistic 4/S c  is an unbiased estimator of  . The values for the S-control chart 

would be given as: 

 

 3

4

,

Centre Line = ,

 = 

LCL B S

S

UCL B S

 (2.13)
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where  

 

  

  

2
3 4

4

2
4 4

4

3
1 1 ,

3
1 1 .

B c
c

B c
c

 (2.14)

Likewise, the coefficient 4 3,  c B  and 4B are all functions of n.   

 

 

2.4 A Brief Summary of ,X  R and S-Charts 
 
The table below provides a summary of the various control charts discussed and their respective 
parameters: 
 

Table 1: Formulas for Control Charts based on sample data 
Chart Center Line Control Limits 

X     x   
2  x A R  

X  x  
3x A S  

R      R   LCL= 3 ,D R  UCL = 4D R  

S   S   LCL = 3B S , UCL= 4B S  
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Chapter 3. Classical Process Capability Indices  
 

The quantification of any process performance is used as a yardstick for measuring quality in a 

process, thus process capability analysis has become synonymous with continuous improvement of 

quality and productivity (Wu, 2009). The key idea behind process capability analysis is the process 

capability index which tends to measure how well a process meets specification limits preset by the 

product designer or customer. There is no single capability index which addresses all the quality 

characteristic of a production process, hence an examination of all the indices holistically is essential 

(Nyamugure, 2011). Consequently, several Capability indices such as pC , pkC and pmC  have been 

proposed to measure different characteristics of the process, that is process consistency, process 

departure from the mean, process yield and process loss. This chapter presents an introduction to 

these Classical Capability Indices. 

 3.1 pC -Index 
The first and most honored capability index, pC , also known as the potential index was introduced 

by Juran (1974). The pC  index tends to measure the magnitude of the overall process variability 

relative to tolerance (i.e. specification limits) prescribed by the customer or product designer. The 

potential index pC
 
is expressed as a ratio of the actual process spread to the allowable process 

spread (tolerance width), defined concisely as follows: 

 




 -  

6p

USL LSL
C    (3.1)

where USL and LSL are the process upper specification limit and lower specification limit 

respectively, and σ is the process population standard deviation.  

 Alternatively, the quantification of specification used may also measure process potential, Q , 

thus 


   


1 6

100% 100%
p

Q
C USL LSL

  (3.2)
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A small value of Q  implies less specification width was used and hence the capability of the 

process is high, otherwise a high value of Q implies an unacceptable process.  

The index pC was designed to measure the magnitude of the overall process variation. For a 

two-sided specification limit, the yield of the process measured through the number of non-

conforming units produced can also be calculated. Thus if the characteristic of interest, X, is 

governed by Gaussian distribution and if the process is centered, i.e., m = T , T = (USL+LSL)/2 , and 

let d = (USL - LSL) / 2 be the half length of the specification interval, [LSL, USL]. Then the 

expected number of non-conforming units is  2 - /d  , where  denotes the standard Gaussian 

distribution function. The expected number of non-conforming (NC) units,  NC , is Pr{NC} = 1 - 

Pr{X Î[ LSL, USL]}. Recall the symmetry fact of the Gaussian distribution,  

 

 
 

 

 

 
 






   

 

    
 

    
 

  

1 Pr

2 Pr

2 Pr

2 Pr
2

2

NC

LSL X USL

X LSL

X LSL

USL LSL
Z

d

 

 
Consequently, the expected proportion of non-conforming units can also be expressed as: 

 

 
 

  
 







  

   

  

2

2 3 6

2 3 p

NC

d

USL LSL

C

 (3.3)

Alternatively, the index pC
 
can also be expressed as: 




3p
d

C  (3.4)
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Therefore, the index pC  is suitable when the process mean, μ, is symmetric and centered at the 

target (T ) of the process (i.e. the midpoint of the process specification limits). This is displayed in 

Figure 2 below: 
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Figure 2: A Simulated Gaussian Process with μ = 46, σ = 2 and LSL=38, T =46, USL=54,  where 
μ =T. 

 
The drawback of the index pC  is that it does not account for the location of the process mean, 

hence for any departure of the process mean from its midpoint {i.e. when M  }, the index pC  

will give misleading information about the process performance. For instance, it is possible to have 

a high percentage of non-conforming units with a high pC  value by positioning the mean close to 

either of the specification limits (Kane, 1986). Therefore the index pC  is not a suitable measure of 

process performance, but rather measures process potential (i.e. the ability of the process to perform 

consistently or be repeated in the future). This phenomenon is depicted in Figure 3 below:  
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Figure 3: A Simulated Gaussian Process with μ = 49, σ =3 and LSL=38, T =46, USL=54 where    
μ ≠ T.  

 
In Figure 3, a simulated process generated from a normal distribution with μ = 49 and σ = 3, it 

can be seen that the mean of the process is not centered at the desired level, T . However if the index 

pC  is used to measure process capability, it will fail to account for the shift in the process away 

from its tolerance (i.e. “sky blue” shaded region), hence the actual capability of the process will be 

overstated since the sky blue portion which indicates the number of non-conforming units is not 

accounted for by this index ( i.e.
 pC ). 

In case of  is unknown, then an estimated version of Cp is 

 


 -  ˆ
6p

USL LSL
C

s
   (3.5)

 

where 

 


  
 

 
 
 


1/2

2

1 .
1

n

i
i

x x
s

n
 (3.6)



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
 16 

 

3.2 
pkC -Index  

The process capability index pkC  is also used to describe how well a process fits within its 

specification limits (Ramakrishnan et al., 2001). The index pkC  achieves this description by relating 

process variation (i.e. 3σ) to the specification limits (Zhang, 1990). However, the index pkC differs 

from pC  since it accounts for the standardized distance between the mean and the nearest 

specification limit. The capability index pkC  is defined as: 

 

  min , ,pk pu pl
C C C  (3.7)

 
where 

 

 
 

 
 -   -  

, .
3 3pl pu

LSL USL
C C  (3.8)

The index pkC
 
is measured as in equation (3.1) when the process has a two-sided specification 

limit. However, there are some scenarios which occur in the manufacturing industry where only 

one-sided specification limit is necessary. For instance, a product designer may set a lower 

specification limit for the strength of a glass bottle produced, such that any unit that falls below this 

bound is deemed defective.  In such a case the index plC will be preferred to pkC . Likewise, an upper 

limit for the concentration of a particular substance, and hence the index puC
 
may be preferred. 

Alternatively, the index pkC can be expressed as 

 




 
 ,

3pk

d M
C  (3.9)

where  

 



2

USL LSL
d  (3.10)

is the half of the specification length and M is the mid-point of the interval [LSL,USL]. 

However, the drawback of the index pkC
 
is that it is not an adequate measure of process 

centering, although that is the main reason for its existence. The index pkC
 
is inversely dependent 
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on the process standard deviation and the magnitude of the index pkC  will increase as the process 

standard deviation approaches zero (Senvar, 2010). The index pkC  cannot be used as a suitable 

measure of process centering (Wu, 2009). Thus, a large value of pkC does not necessarily indicate 

much about the location of the process mean within the specification limits (Wu, 2009). Therefore 

the indices pC
 
and pkC

 
are merely regarded as measures of progress for continuous quality 

initiatives when variability reduction and process yield are essential (Wu, 2009).  

 

3.3 pmC -Index (TCI) 
Although the index pC  and pkC

 
tend to measure process performance with respect to the 

specification limits, they fail to consider the inability of the process to meet targets preset by the 

customer. Hsiang & Taguchi (1985) proposed the index pmC  also known as the Taguchi capability 

index (TCI) which was also independently proposed by Chan et al. (1988). The main idea behind the 

Taguchi index is the squared error loss function, designed to measure the cost of quality measured 

failing to meet the preset target. The index pmC  measures the ability of a process to cluster around 

its target which tends to reflect the degree of process targeting; hence the index pmC  provides better 

protection for the consumer (Lin, 2005). The pmC  index is defined as follows: 

 

  


  223
pm

d
C

T
 (3.11)

where T denotes the process target. The term in the denominator  
 

    22 T  (3.12)

which represents the expected error loss function for a measured characteristic, X, shown in the next 

paragraphs.   

The degree or measurement that X fails to meet the target T is typically described by a loss 

function, i.e., loss(X).  The loss function is in general very complicated but it can be reasonably 

approximated by the symmetric squared error loss in terms of Taylor's expansion:  
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     2
loss .X X T  (3.13)

To avoid the random uncertainty contained in the loss function in decision-making, the 

expected version of the loss is taken:  

 

    
2

X T  (3.14)

which gives 
 

         22loss .X T  (3.15)

Therefore, Taguchi Capability Index (TCI) is sometimes referred to as a loss based capability 

index (Lin, 2005). Because the population mean, μ and standard deviation of the process, σ are often 

unknown, a TCI needs to be estimated from the observed data. Chan et al (1988) proposed the 

estimator of pmC  : 

 

 
 


 

22

ˆ ,
3

pm

d
C C

S X T
 (3.16)

and Boyles (1991) suggested an estimator of Cpm : 
 

 
 


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ˆ ,
3
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n

d
C B

S X T
 (3.17)

where  
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 (3.18)

Boyles (1991) show that  ˆ
pmC C  and  ˆ

pmC B  are asymptotically equivalent, i.e.,  

 

 
ˆ ˆlim ( ) lim ( ).pm pm

n n
C C C B  (3.19)

It should also be noted that X and 2
nS  are the maximum likelihood estimates (MLE) of   and 

2σ , then  ˆ
pmC B , which is the joint function of  X and 2

nS , is the MLE of pmC . Without any 
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difficulty, it can be shown that  2
2 -nS X T is the maximum variance unbiased estimator (UMVUE) 

of   2
X T    . Hence the index  ˆ

pmC B due to Boyles (1991) is the preferred choice. 

Finally, for examining the link between TCI Cpm and Cp, let us define a term called as the 

average process loss as: 

 




 .
T  (3.20)

 
Then, it is easy to establish an important functional relationship between an error based 

capability index and a yield based capability index: 

 




 2

1
.

1
pm pC C  

which paves a way for further exposure of the properties of those capability indices. 

(3.21)
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 3.4 Summary and Comparison between ,  p pkC C  and pmC indices 

PCI’s  Strength Weakness 

 
 
 

 
Cp

 

The index pC  is a yield based index 

assuming the process is Gaussian 
normally distributed and the mean is 
centered on the target value. 

If the process is not centered, many 
defective units are expected although the 
estimated index pC  may have a high 

value suggesting a capable process.  
 It is simple to estimate, easy to 
understand and interpret. 

A high pC  value does not always 

represent a corresponding capable 
process.   

 The index is sensitive to deviations from 
the Gaussian normal distribution 

 
 
 
 
 
 
 
 
 
 
 
 
     Cpk     

The index pkC  is also a  yield based 

index assuming the process is 
normally distributed 

The index pkC
 
is not always an adequate 

measure of process capability. Thus the 
index pkC fails to deal with the notion 

(i.e. off-centering) it was invented. For 
instance, if the mean is between the 
specification limits, the estimated index 

pkC  depends inversely on the process 

standard deviation. Thus a smaller 
standard deviation will result in a larger 

pkC  value and vice-versa. In summary, 

the pkC index does not adequately take 

into consideration the position of the 
mean.  

Unlike index pC , the index pkC takes 

into account process centering. For 
instance, the index pkC deals with 

situations where the mean is not 
centered on the target value and also 
when the mean is located outside the 
specification limits. 

The index is sensitive to deviations from 
the Gaussian normal distribution 

This index is versatile,  as it can be 
used to assess the process capability 
with a one-sided specification or a 
two-sided specification limit. 

 

 
 
 
 

The index pmC  was designed to ensure 

higher quality of the produce for the 
consumer. The estimation of the index 

pmC  takes into account the variability 

The index pmC  is not a yield based index. 

Therefore, if the intent of the process 
capability study is to estimate the 
proportion of non-conforming units then 
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Cpm

 
due to the process mean and deviation 
from the target value. Consequently, 
the index pmC  is usually smaller than 

both indices pC  and pkC  given that 

.T   

the index  pC  and pkC are more suitable. 

The index pmC  is not sensitive to 

distribution function. Thus the index 

pmC  is not affected by the distribution 

of the process. 
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Chapter 4. Statistical Properties of Capability Indices  
 

Since Juran’s pioneer publication in the early 1970’s there has been extensive research conducted 

into process capability indices. Initially, the study of capability indices concentrated on process yield 

(i.e. the ability to produce a given measured characteristic within specified limits). However in later 

years the ability to ensure that the process clusters around a specified target has also been of priority. 

Hence the first two sections of this chapter, i.e., Section 4.1 and Section 4.2, will concentrate on 

process yield and process departure from a specified target (i.e. usually taken the midpoint of the 

specification limits as the specified target value) respectively. The classical capability indices are all 

functions of process parameters, however those parameters are usually unknown due to the fact that 

only rational groups (i.e. small samples) are selected from the process, hence the estimates of these 

indices are prone to sampling error. Finding bounds for the estimated capability indices is essential 

and Section 4.3 will be based on confidence intervals for classical capability indices and also 

hypothesis testing procedures to ascertain whether a given process is capable. Boyles (1994) has 

also been an advocate of asymmetry in capability studies, thus a process is said to be asymmetric 

when the target value, T, is not equivalent to the midpoint of the specification limits (i.e. T M ). In 

such situations the effect of asymmetry cannot be ignored, hence Section 4.4 will also review the 

work done on estimating capability within an asymmetric process. Finally, in Section 4.5 a 

comparison of the classical capability indices in terms of their own characteristics discussed in the 

previous sections will be presented. 

4.1 Process Yield and Process Capability Indices 
 
Process yield is a critical measure concerned by management. Further, in classical process capability 

study, process yield is quantified by a process capability index. This is the reason for investigating 

process capability index based process yield issues immediately after introducing the classical 

process capability indices. Hence, we will investigate the process yield based capability index at the 

end of the section. 

Assuming a process with a Gaussian normally distributed observed characteristic 

 2 ~ ,  ,X N    with a given lower and upper specification limit (i.e. LSL and USL ), any 
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observation  iX falling outside either specification limits is characterized as non-conforming. 

Hence the process yield is measured as the fraction of process output conforming to specifications 

and is defined as:  

 
USL

LSL

Y dF x   
(4.1)

 
where  F x is the cumulative distribution function of the measured characteristic X .  

Alternatively, assuming a Gaussian normal distribution the fraction non-conforming can be 

expressed as: 

 

 
 

   
 

 

   

    
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1
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LSL USL

 (4.2)

where   represents the cumulative distribution function of the standard normal distribution N(0,1). 

Notice that USL = M + d and LSL = M - d, the last term of (4.2) becomes 
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d d
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 (4.3)

 where  M d   and .d   

Recall that 1-aC  and 1/ 3 ,pC  then (4.3) can be expressed in terms of the indices aC  and 

pC
 
as: 

 

           Pr 3 3 2 .p a p aNC C C C C  (4.4)

 

The index pkC as noted above was proposed to measure process yield, by using the exact 

number of non-conforming units.  
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where F is the cumulative distribution function of the process characteristic X . We conclude that the 

upper bound of the non-conforming proportion is 2-2F(USL). 

Furthermore, assuming that F be a Gaussian normal distribution function, i.e., F  ,  

 

 


                

-
% 2 2 100% 2 - 2 3 100%pk

USL
NC C  (4.6)

 

Process yield, Y, has its lower bound and upper bound, by assuming a Gaussian normal process 

(Boyles, 1991): 

       2 3 1 3pk pkC Y C  (4.7)

which gives an intuitive interpretation of calling the index pkC
 
as the yield based index. 

Similarly, in terms of pkC and aC  : 

 

    2
Pr 3 3 a

pk pk
a

C
NC C C

C

 
     

 
 (4.8)

which offers the bounds of the proportion of non-conforming units. 

However, the actual number of non-conforming units depends on the location of the mean and 

magnitude of process variation.  

 

       3 % 2 3 .pk pkC NC C  (4.9)

Wu et al (2009) expressed that the bounds in yield of (4.7) and the bounds in proportion of non-

conforming units of (4.9) are equivalent for the cases of 0 1aC  and pkC > 0 in (4.8). Moreover, 

Wu (2009) noted that a process with fixed pkC , reached its maximum when the process is perfectly 

centered (Ca = 1), and reduces asymptotically as the mean ( ) departs from the target, M. 
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Similarly for the error based TCI, index pmC , Wu (2009) expressed the  Pr NC as follows: 
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 (4.10)

based on which, it can be inferred that the percentage non-conforming has an upper bound  

(i.e.    Pr 2 -3 pmNC C  ) and this bound is realized if the process is centered ( aC =1). 

Wu et al. (2009) also made comparisons between the capability index Cpk 
and index Cpm,  

concerning the fraction being non-conforming with a Gaussian normally distributed process. He 

established a fact that by assuming Gaussian normality both capability indices provide the same 

lower bound for yield Y: 

 

   2 3 1 2 3 1.pk pmC C      (4.11)

 

Moreover, assuming Gaussian normality, it has also been shown by Wu et al. (2009) that 

if 1pkC  , then  Pr 2700NC   per million (ppm) and 0 1aC  , whereas if 1,pmC  then 

 Pr 2700NC  ppm and 0.67 1.aC  Therefore, a fixed pmC  index (i.e. if  pk pmC C ) provides 

more information on the process centering, which implies better quality for the consumer. This 

advantage applies only if the equivalence condition holds (i.e. pk pmC C ), otherwise the index pkC
 

is a better measure of process yield than that of index pmC . 

Recently, Kenyon and Sale (2010) proposed two process capability indices that are based on 

process yield rather than the traditional process capability indices that are indirectly based on yield 

through measures such as the mean and standard deviation. Thus the new indices are a function of 

process yield and since this population parameter is accessible, hence these new indices are not 

liable to sampling error. These new indices are also effective measures of process yield. Thus given 

that  Pr NC represents the proportion of non-conforming unit and Y the fraction conforming, the 

first new index is defined as: 
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    11
Pr ,

3pkyC Y NC  (4.12)

 
where 
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  
 min , .
LSL Y

Y USL

NC dF x dF x  (4.13)

However, the drawback of the index pkyC
 
is similar to that of pkC because it ignores the non-

conformance in one of the tails. To address the weakness, Kenyon et al. (2010) proposed an 

alternative index pyC which differs by setting  Pr 0NC   in equation (4.10) to yield. The modified 

index pyC defined as: 

 

   11

3pyC Y  (4.14)

 
As noted by Kenyon et al. (2010), the advantages of the new indices over the traditional 

classical capability indices are two-fold: firstly, the index pyC
 
is based on the yield directly, hence it 

can be used to estimate the capability of the process irrespective of the distribution of the process; 

secondly, the index pyC
 
is immune to the process characteristic measured, thus either the measured 

characteristic is continuous or discrete, pyC
 
is flexible enough to measure process capability.  

 

4.2 Process Departure Impacts 
 
Initially, the main purpose of engaging process capability indices was to measure how well a 

measured process characteristic satisfies specification limits. Nevertheless, the departure of process 

mean from the midpoint M = (LSL+USL)/2 does generate impacts in process capability indices as 

mentioned in Chapter 3 as well as in Section 4.1. In the literature, Hsiang and Taguchi (1985) and 

also Chan et al (1988) independently studied process clustering around a given target (i.e. this target 

is usually the midpoint of the specification limit). Therefore, this section will further focus on the 

departure impact issue. 

A departure measurement index is: 
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



 ,

M

d
 (4.15)

which measures the absolute departure of the process mean   from the midpoint M.  

A small value of   indicates a lower degree of off-centering and vice-versa. If 0  , this 

implies that the process is centered at the midpoint (i.e. = M ), while if 1  implies the mean is 

centered at one of the specification limits (i.e. either   LSL  or   USL  ). 

Please note that index Ca measures degree of process centering and thus is known as the 

process accuracy index, which indicates the process performance over time. Cpk index can be 

expressed by 

 

   1 .pk p a pC C C C  (4.16)

this implies the following facts of the process: 
 






  
     
 

1.0,  

0.5 [ , ]

0.0 , or 

0.0 , or >

pk p

a

C C M

LSL USL
C

LSL USL

LSL USL

 (4.17)

In other words, we can say that if aC =1 (i.e., 0  ), then the process is perfectly centered 

(i.e.   M  ) and = pk pC C , thus the upper bound of the index pkC
 
is pC ; if aC  > 0.5, (i.e., 

0 0.5  ), this inequality indicates that the process mean   is within the specification limits (i.e., 

LSL USL  ) and, if aC = 0, (i.e., 1  ), this indicates the value   is located at one of the 

specification limits (i.e. USL  or LSL  ) ; if aC < 0, this signifies a process being out of control 

and requires special attention. And finally, a large value of pkC
 
does not necessarily imply the 

process is centered, because the index pkC
 
is influenced by the magnitude of the process standard 

deviation. It is therefore concluded that the process is perfectly centered and thus Cpk index makes 

sense if and only if the departure index 0  .  

The index pmC  is seen as a better measure of consumer protection, as process variation is 

measured in two ways, process variation within the process and also the deviation of the process 

mean from its target value. Actually, this responsiveness makes the index pmC  more sensitive to 
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process shifts (Wu, 2009).  Similar to the index pkC , the upper bound of the Taguchi capability 

index (TCI) is pC , and this bound is achieved when   T M   or = 0. Thus,  

 

 2 22

-
.

16 -

P
pm

CUSL LSL
C

T  
 


 (4.18)

 

Moreover, Boyles (1991) observed the equivalence relationship = = p pk pmC C C when 

  M  and these indices reduced as the mean ( ) shifts from the target, T. In addition, the index 

pmC  is non-negative and bounded above by the index pC , whereas 0pkC  for LSL  or  > USL . 

Thus the Taguchi capability index (TCI) pmC
 
approaches zero asymptotically as - M  . 

Kotz and Johnson (1999) observed the relationship between the indices ,  p pkC C and pmC  

assuming a fixed value of   and established the following equation: 

 

   
2

2 2-
1- 1 1- 1 9pk

p
pm

C M
C

C

  


     
 

 (4.19)

 

where the value of  pm pkC C
 
for small values of pC and  pm pkC C for large values of .pC  Thus, 

the impacts from the departure can be summarized as:  
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 (4.20)

 
 

4.3 The Impacts of Statistical Estimation  
 
In this section, we will investigate the impacts from statistical estimation in order to engage the 

estimated-parameter process capability indices since usually the true-parameter-supported process 

capability indices are not available.  
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Process Capability indices are defined as a function of process parameters (e.g. mean, standard 

deviation). Usually the  process parameters are not known, however, in order to estimate these 

process capability indices, estimates for the parameters have to be obtained from the observed data. 

The capability indices estimated from sample statistics are subject to statistical variability and this 

variability has an effect on the estimated indices. Thus the estimated process capability indices are 

different from the actual process capability indices (Senvar, 2010). Due to these problems several 

researchers such as Bissell (1990), Kushler (1992), Pearn (1992), Wasserman (1992), Kotz (1993a), 

Lin (2005),  Hsu (2008), etc. proposed confidence intervals for these classical capability indices, and 

these intervals are dependent on the distribution of the parameter estimates invoked in the process 

capability indices. For instance, the index pC  is a function of the standard deviation, hence the 

confidence interval for the index pC will follow a chi-square distribution providing the process is 

Gaussian normally distributed. 

 Kane (1986) was the first researcher who studied and established the distribution of pC , 

assuming the process follows a Gaussian normal distribution. Recall that the random variable 

  2 21 /n S   has 2 distribution with n -1 degree of freedom. Thus we have: 

 

 
   

  

      
  

2
2 2
1 /2, 1 /2, 12

1
Pr 1 ,n n

n S
 (4.21)

 where the sample variance is 
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 (4.22)

Therefore a (1 - α)100% confidence interval for process standard deviation parameter, s:  

 

    

   
  

2 2
/2, 1 1 /2, 1

1 1
, .

n n

n n
S S  (4.23)

 
Then, a precise (1 - α)100% confidence interval for process capability index Cp  proposed by 

Kane (1986) is:  
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(4.24)

The confidence interval for pC
 
in (4.24) has also been reviewed and used by Chou and Owen 

(1989), Chou et al. (1990) and Li et al. (1990). They all have arrived at the same conclusion that the 

confidence interval specified in (4.24) produces reliable results in practice.  

In the cases of the absence of the chi-square distribution table, we can use Gaussian normal 

distribution approximations to Chi-square distribution proposed by Fisher (1922): 

        2Pr 2 2 1 ,v x x v (4.25)

and Wilson-Hilferty (1931): 

 
               

1/3
2 2 9

Pr 1 .
9 2v

x v
x

v v
 

which lead to the approximated (1 - α)100% confidence interval for process capability index Cp  
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 (4.26)

and 

       1 2 1 2
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9 1 9 1 9 1 9 1p pz C z C
n n n n  

    
                  

 (4.27)

respectively. 

Constructing 100(1-α) % confidence intervals for the index pkC  is relatively complicated than 

that of pC , since pkC  is a function of two parameters (i.e. the mean and standard deviation) which 

follow different distribution. Bissell (1990) noted that the index pkC
 
follows a non-central 
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t-distribution, but due to scarce publications of non-central t-tables and also the difficulty of 

interpreting these table’s, the author also proposed simple but effective approximations for the 100(1 

- α)% confidence interval of Cpk.  
The standard error of ˆ

pkC
 
is: 

 

 
2

1 1

23 pk
vn C

 (4.28)

which gives the confidence limits for pkC , assuming Gaussian normality: 
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    

    
 (4.29)

 
                 

where /2z is the Gaussian normal (100 α/2) % point and v denotes the degrees of freedom 

associated with the sample standard deviation S. In order to justify the significance of these 

approximations, Bissell (1990) made a comparison between the non-central t - percentage points and 

the normal approximations and the findings were that the normal approximations converged towards 

the non-central t-percentage points as the sample size increased and since the sample sizes in 

capability studies are usually large enough (i.e. 50n  ), these approximations are efficient. Zhang 

et al. (1990), Kushler and Hurley (1992) have also studied and proposed confidence intervals for the 

index pkC . 

 Boyles (1991) and Chan (1988) provided approximated estimates of the index pmC  as shown in 

Chapter 3. However, these indices are liable to sampling error; hence Boyles (1991) provided 

approximated confidence intervals for the estimated capability index pmC  given that the process is 

Gaussian normally distributed. 

Boyles (1991) and Pearn et al. (1992) noted that 
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where  

 


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The quantiles of the index Cpm can be expressed in the following functional form: 

  2
,

-
.

6 n v

USL LSL n
 (4.32)

Hence, ˆ
pmC  is distributed as: 
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The only drawback of the formula (4.33) is that the quantile value of the non-central chi-

squared distribution is rarely in use and also a bit complicated to read relative to the more user 

friendly chi-squared distribution. However, Zimmer and Hubele (1997) have provided tables of 

exact quantiles for the sampling distribution of the estimator ˆ
pmC .Therefore, the 100(1- α) % 

confidence interval for pmC  can be expressed as follows: 
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Similarly, the distribution for  ˆ
pmC C proposed by Chan et al (1988) is:  
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n v

n
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 (4.35)

which can be used to develop a confidence interval for  pmC C .                                                                               

 

4.4 Process Capability Indices for Asymmetric Processes 
 

A process is said to be symmetric when the midpoint of the specification limits (i.e. M ) is 

equivalent to the set target, T (i.e. M = T). In contrast, a process is said to be asymmetric when the 

equivalence does not hold (i.e. )M T . It is necessary to review those process capability indices for 

asymmetric process. 

The pioneering capability index to deal with asymmetric processes tends to shift one of the 

specification limits such that the target becomes the midpoint of the new specification limits. With 

regards to the generalized capability index proposed by Vannman (1995), the new symmetric 

specification limits are *T d , where  * =min ,u ld D D and -uD USL T and -lD T LSL . Hence 

the classical capability indices are defined differently: 

 

 
 
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 
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
 

*

22
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3
p

d u T
C u v

v T
 (4.36)

 
where u and v are two nonnegative parameters.  It is obvious that if u = v = 1  1,1p pC C  . 

The chart displayed in Figure 4 explains how either one or both the lower or/and upper 

specification limit may be shifted to make the process output symmetric to the specified target or the 

new midpoint of the specification limits. Thus one or both of the specification limits may be shifted 

in order to make the specified target the new midpoint of the new specification limits (LSL*, USL*). 
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Figure 4: A shift of LSL and USL by a distance of d* such that the new specification limits 
(LSL*,USL*) are symmetric about the process Target (T). 

 

The drawback of the index in (4.36) is that it tends to under-estimate process capability by 

limiting the process to a proper subset of the actual specification range. If u lD D , the process is 

symmetric and the formula reverts back to the original generalized capability index proposed by 

Vannman (1995): 
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In order to deal with asymmetric capability indices proposed in equation (4.36) and (4.37), 

Boyles (1994) presented a smooth function defined as: 

         1, / 2 / 2 / 3S x y x y    (4.38)

where Φ represents the cumulative distribution function of the standard normal distribution.  
 
By applying the smooth function, Boyles (1994) proposed a new capability index pkS which is very 

similar to the index pkC and defined as: 

 
 

(4.39) 

 

Given  ,pkS c  the process yield for the index pkS
 
is calculated as: 
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Hence, pkS
 
represents the actual process yield unlike pkC which measures the approximate 

process yield. 

However, Pearn et al. (1995) noted that with regard to pkS , the process achieves its maximal 

capability when T  but ,T M  where  T M or M T  when .T M This implies that 

process yield is maximized at the expense of process centering.  

Hence, Chen et al.(2001) proposed the new index, thus 
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where     * * *max - / , - /u lF d T D d T D  and ,  0.u v   If  ,T M then * -F F T 
 
and 

generally the index  • ,  pC u v reverts to the classical capability index  ,  pC u v . Hence the new 

index  • ,  pC u v obtains its maximum when  ,T  regardless of whether the tolerance is 

symmetric or not.  

4.5 Comparisons between ,  p pkC C and pmC

Firstly, the index Cpm  is equivalent to Cp , if  μ  = T, and also Cpk = Cpm = Cp, if    .T M    

When these conditions do not hold, then generally the process capability indices satisfy p pkC C

and .p pmC C  The index pC
 
serves as an upper limit or upper bound. The index pC and pmC  are 

always positive, however the index pkC
 
is positive when the mean, , falls within the specification 

limit interval [LSL, USL].  

Secondly, comparisons are carried on in terms of index formed base. The indices pC  and pkC

are yield based indices, thus they are related to measuring the expected proportion of non-
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conforming units  Pr NC produced. However, the index pmC  is not a suitable measure of process 

yield, if the expected number of non-conforming units is of primary concern, then the indices pC  

and pkC will be more adequate than pmC . While the index pmC  is a loss based index, it measures the 

ability of a process to cluster around its target, and hence it is usually seen as the best index to 

measure quality (i.e. customer protection). The primary importance of  pmC  is process targeting and 

pmC   as T  and 0.   Thus the index pmC  is a better quality measure and usually seen as 

better protection for the consumer. 

 Thirdly, comparisons are carried on in terms of index sensitivity to the distribution of the 

characteristic measured. The index pC
 
and pkC

 
are readily sensitive to the distribution of the 

characteristic measured, and usually give unreliable information if the process distribution is not 

considered. However, the index pmC
 
is very flexible and is not distribution sensitive. Kushler and 

Hurley (1992) inferred that if the process is asymmetric (i.e. M T ), then the process mean moves 

towards the target ( T  ), which results in an increase in the magnitude of the indices pC and 

pkC  but also a corresponding increase in the proportion of non-conforming units (i.e. since the 

fraction of the distribution outside the specification limits also increases). 

Fourthly, comparisons are carried out in terms of index popularity in industry. In industrial 

practices, the index pmC  is rarely utilized whereas the index pkC
 
is mostly widely accepted among 

practitioners (Kotz et al., 2002). The index pkC
 
is the preferred choice due to its simplicity in 

calculating and also gives a better representation of the process (i.e. pkC
 
only takes into 

consideration the variation with respect to the mean). Moreover, the selection of a capability index 

usually depends on the state of process performance. Thus if the proportion non-conforming is more 

than 5%, then the indices pC and pkC
 
are preferred. However, if the percentage non-conforming is 

very small (  Pr 5%NC  ), then the index pmC  is used to assess the uniformity of the process around 

the target. 
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Chapter 5. A Review of Uncertainty Theory 
 

Uncertainty theory is a new branch of mathematics for modelling human thinking first proposed by 

Liu in 2007 and refined in 2010, (Liu, 2007, 2010). Uncertainty usually arises in real world 

situations where data on a particular area of interest is insufficient to construct a probability 

distribution, hence the researchers tends to rely on expert judgment on their belief that the particular 

events will occur. Human thinking tends to exaggerate unlikely events (Tversky, 1986), hence the 

belief degree tends to significantly differ from the actual frequency and applying probability theory 

to such a situation may definitely produce misleading results. Such situations may be better dealt 

with by Liu’s uncertainty theory. 

Due to the drawback of probability theory, Zadeh (1965) proposed the concept of fuzzy set 

theory which seeks to model subjective uncertainty via a membership function. However, fuzzy 

measure does not invoke self-duality, and allows the possibility of an event or its complement being 

assigned an equal possibility measure of one each. For instance, under fuzziness, the possibility of 

rain today or no rain can be given an equal possibility measure of one each. This outcome is 

contrary to human thinking and also inconsistent with the law of contradiction. Thus probability 

theory and fuzzy set theory are two extremes of uncertainty measure, in which the former requires 

strictly complete additivity while the latter is characterized by non-additivity. 

Uncertainty theory is perceived as a bridge between randomness and fuzziness. Probability 

theory is a branch of mathematics concerned with modelling randomness such that for a given 

random variable its probability distribution can easily be constructed. In order, to construct a 

probability distribution, historical data is needed and should be large enough (i.e. n ≥ 30). There are 

usually real world situations in which the available data set is small or even no data, hence a 

probability distribution cannot be estimated. Moreover, probability theory is defined on axiomatic 

foundations that include σ-additivity, which may seem to be too restrictive and impractical under 

some real world situations (Liu, 2010). 

Uncertainty theory is defined based on an axiomatic system which includes self-duality, thus 

uncertainty theory satisfies the law of contradiction that appears consistent with human thinking. 

Moreover, uncertainty theory is neither completely additive nor completely non-additive but has a 

sub-additivity property which is perceived consistent with real world applications (Guo, 2010). 
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Uncertainty theory is based on three core concepts namely uncertain measure, uncertain 

variable and uncertain distribution. Uncertain measure is a belief degree assigned to an uncertain 

event. Uncertain variable seeks to represent uncertain quantities arising from a common 

phenomenon. Finally, an uncertain distribution seeks to partially describe an uncertain variable.  

 

5.1 Uncertain Measure 

Let Γ be a non-empty set, and  an σ-algebra on Γ. A collection of subsets Γ is called a σ-algebra 

if (a) Γ    (b) if Ʌ, then Ʌc; and (c) if Ʌ1, Ʌ2,    , then Ʌ1  Ʌ2    . Each 

element Ʌ in  is called an event. For each event Ʌ, a number    between 0 and 1.0 is assigned, 

which indicates the degree of belief that event Ʌ will occur. A set function  Λ has certain 

mathematical properties, which are stated as follows: 

Axiom 1. (Normality Axiom):   1  for the universal set Γ. 

Axiom 2. (Duality Axiom):     1,c     for any event  . 

Axiom 3. (Subadditivity Axiom): For every countable sequence of events Ʌ1, Ʌ2,  , we have 
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Definition 5.1 (Liu, 2013): A set function  : →[0, 1] which satisfies normality, duality, and 

subadditivity axioms is called an uncertain measure. The triplet (Γ,,  ) is called an uncertainty 

space.  

An uncertain measure is interpreted as a degree of personal knowledge on an uncertain event. 

An uncertain measure should not be regarded as some frequency of uncertain event. An uncertain 

measure can be proved further that it satisfies monotonicity property, null-additivity property, 

asymptotic property, and extension property. It is also worthwhile to mention that for an empty set 

 , the uncertain measure of it is zero, i.e.,   0.   
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Axiom 4. (Product Axiom): Let  , ,k k k L be uncertainty spaces for 1,2,k    respectively. The 

product uncertain measure  is an uncertain measure on the product σ-algebra 

1 2  L L L satisfying 

 

 
11

,k k k
kk

 



 
   

 
              (5.2)

where k are arbitrary uncertain event chosen from σ-algebras kL on non-empty sets k , for k = 1,2, 

  , respectively. 

Finally, we must emphasize that a probability measure is not a special case of an uncertain 

measure. A probability measure is typically interpreted as a frequency of repeated events. Although 

today in modern probability theory a subjective probability measure is popular, the nature of an 

uncertain measure and that of a subjective measure are totally different. Therefore, the mathematical 

treatments are different too.  

   

5.2 Uncertain Variable and Uncertain Distributions 

An uncertain variable is a real valued function that is defined on an uncertain measure space. Thus, 

analogous to a random variable in probability theory, an uncertain variable is used to represent 

uncertain quantities within an uncertain environment. The generally accepted definition is stated as 

follows: 

Definition 5.2 (Liu, 2007): An uncertain variable is a measurable function ξ from an uncertainty 

space (Γ,,  ) to the set of real numbers, i.e. for any Borel set B of real numbers, the set 

           B B  

is an event.  

The concept of uncertain variable is distinguished from both probability random variable and 

fuzzy variable because it is defined on the uncertainty space. However, an uncertain variable also 

has some similarities with fuzzy variable since its able to describe quantities defined imprecisely, 

where this imprecision may be due to knowledge imprecision or vagueness (i.e. qualitative concepts 

like “low” , “high”, “hot”, “dry” etc). 



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
 40 

 

An uncertainty distribution is often used to characterize an uncertain variable. Unlike a 

probability distribution, an uncertainty distribution partially describes an uncertain variable only 

because an uncertain variable is supposed to be described completely by an uncertain measure (Guo, 

2012).  

 

Definition 5.3 (Liu, 2007): The uncertainty distribution of an uncertain variable   is defined by: 

 

            , ,x x x   (5.3)

where interval  ,  is often denoted by . 

In order for a function to qualify as an uncertainty distribution it should satisfy the monotone 

axiom. Peng and Iwamura (2010) proved a necessary and sufficient condition for a distribution to 

qualify as uncertain. The following theorem was constructed from their derivations. 

Theorem 5.1 (Guo, Guo, and Thiart, 2009): A non-negative real function   is an uncertainty 

distribution if and only if it is 

(1) a monotone increasing function, i.e.,      1 2 ,x x for any 1 2,  x x , 1 2x x ; 

(2) a left-continuous function, i.e.,  

 

   


   
2 1

1lim 0 ,
x x

x x  (5.4)

where 2 1 ,x x and   1 0x is the left-limit of the function  at point x1; 

(3) a function takes values between zero and one, i.e.,  1 2 ,x x for  1x x , and  2x x ,   

 

      0,  and 1x x  (5.5)

 
where x may be  or .  
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Figure 5 : Uncertainty Distribution 

 

Having defining what is an uncertainty distribution and the necessary and sufficiency 

conditions for a function to qualify as an uncertainty distribution, we seek to review several 

established special uncertain variables and their corresponding uncertainty distributions.  

  

5.2.1 Linear Uncertain Distribution 
An uncertain variable ξ is called linear if it possesses a linear uncertainty distribution given as 

follows: 

 

 

0 if

if

1 if

           

x a

x a
x a x b

b a
x b


    




 (5.6)

 

where a and b  are real numbers with condition < .a b  A linear uncertainty distribution can be 

denoted by  ,a bL . 

An example of a linear uncertainty distribution  1.0,3.0L is  
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 

0 if 1.0

1.0
if 1.0 3.0

2.0
1 if 3.0

           

x

x
x x

x


    




 (5.7)

which can be presented graphically by the following figure: 
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Figure 6: Linear Uncertainty Distribution 

 

 
 

5.2.2 Normal Uncertain Distribution 
An uncertain variable   is called normal if it possesses a normal uncertainty distribution, denoted 

by (m, σ). The normal uncertainty distribution is defined by: 

  

    



  

        


1

1 exp ,   
3

x
x x  (5.8)

where is  a real-valued parameter and 0  is a positive parameter. Figure 7 gives a graphical 

representation of a normal uncertainty distribution (m, σ). 
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Figure 7: Normal Uncertainty Distribution 

 
 

In probability theory or statistics, Gaussian distribution function is often called normal 

distribution function, denoted as  x . In order to distinguish them, the normal uncertainty 

distribution function  x is called as Liu's normal distribution function, while the normal 

probability distribution function  x is called as Gaussian normal distribution function. 

 

5.2.3 Lognormal Uncertain Distribution 

An uncertain variable ξ is called lognormal if lnξ possesses a Liu's normal uncertainty distribution 

(m, σ), denoted by  (m, σ). Thus a lognormal uncertain variable has an uncertainty normal 

distribution defined as follows: 

 

      



  

         

1
ln

1 exp , 0,
3

x
x x  (5.9)

 

This is represented by where m and σ are real numbers with σ > 0.  The lognormal uncertainty 

distribution of  (0, 1) is graphically presented in the Figure 8 below. 
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Figure 8: Lognormal Uncertainty Distribution 

 

Theorem 5.2 (Measure Inversion Theorem (Liu, 2010)): Let   be an uncertain variable with 

continuous uncertainty distribution  . Then for any real number x, we have 

 

              , 1x x x x  (5.10)

where  represents the belief degree that a particular uncertain event will happen. 

 

Proof: The uncertainty distribution of any uncertain variable is defined as:    x x   . By 

employing the Duality Axiom and the continuity of the uncertainty distribution, then 

 

 
  
 
 

1

1

c

x

x

x

x









 

  

 






 (5.11)

which gives the conclusion. 
  

Theorem 5.3 (Liu, 2010) Let ξ be an uncertain variable with continuous uncertainty distribution . 

Then for any interval ,a b , we have 
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          1b a a b b a          (5.12)

where  represents the belief degree that a particular uncertain event will happen. 

Proof:  Notice that  

 

     b a a b        (5.13)

 
which leads to 

 

     b a a b           (5.14)

in terms of subadditivity property of an uncertain measure. By the definition of an uncertainty 
distribution, we have: 
 

     b a a b       (5.15)

 
which gives      b a a b     . Furthermore, notice that 

 

   
   c

a b b

a b a

 

 

   

   
 (5.16)

Then, the monotonicity property of an uncertain measure gives 
 

     
     1 1

a b b b

a b a a

 

 

     

      

 

 
 (5.17)

which imply 
 

           min ,1 1 .a b b a b a          (5.18)

 

Definition 5.4 (Liu, 2010). An uncertainty distribution  is said to be regular if its inverse function 

1  exists and is unique for each  0,1  . 

Actually, for a regular uncertainty distribution, any point  0,1 ,   if and only if 

  1     . Typically, the continuity of an uncertainty distribution would secure the regularity of 

it. 
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Although the term "distribution" is used in a wide sense in mathematical literature, we prefer to 

the narrow sense of the distribution in probability theory. In the uncertainty theory under review, we 

intend to use term "distribution" in a narrow sense. Therefore, we will not use term "inverse 

distribution function", rather, we call it the inverse function of a distribution function. For the same 

reason, we will not use term "inverse uncertain variable" and term "inverse uncertainty distribution 

function" respectively. 

The three special uncertainty distributions possess their inverse functions respectively. The next 

three subsections will give a brief introduction of them.  

 

5.2.4 Inverse Function for a Linear Uncertain Distribution 
The inverse function for a linear uncertain distribution is given as: 

 

     1 1 ,  0,1a b          (5.19)

which has a graphical representation shown in Figure 9.  
 
 

 
Figure 9: Inverse Function for a Linear Uncertainty Distribution 
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5.2.5 Inverse Function for A Normal Uncertainty Distribution 

 

The inverse function for the uncertainty distribution of Liu's normal uncertain variable (m, σ) is 

given as: 

 

   1 3
ln ,  0,1

1

   
 

        
 (5.20)

 
which has a graphical  representation shown in Figure 10. 
 

 

 

 
Figure 10: Inverse Normal Uncertain Distribution 

 

 

 

5.2.6 Inverse Function for A Lognormal Uncertainty Distribution 

The inverse function for the uncertainty distribution of a lognormal uncertain variable (m,σ) 

can be derived. 

 Setting up   

 



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
 48 

 

     
1

ln
1 exp , 0,1

3

x
x

 
 




  

          
 (5.21)

 
Then 

 

3 1
ln lnx

 
 

    
 

 (5.22)

which leads to 
 
 

   
3

1 exp .
1

  


      
 (5.23)

 
 

Let m = 0, s = 1, the inverse function      3 /1 1


     for the lognormal distribution  is 

plotted in Figure 11.  

 
 

 

Figure 11: Inverse Function For Lognormal Uncertainty Distribution 
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5.3 Uncertain Mean and Variance  
When presented with an uncertain variable with its corresponding uncertainty distribution, it is 

usually of interest to determine certain descriptive quantities for this uncertain variable, which are 

known as moments of the uncertain variable. These moments include but are not limited to 

expectation, variance, skewness, kurtosis etc. Among those moments, the expected value and the 

variance are the most important because the expected value describes the central tendency and the 

variance describes the concentration of an uncertain variable. The following sub-sections seek to 

present these concepts under Liu’s uncertainty environment.  

 

5.3.1 Expected Value of an Uncertain Variable 
In analogy to probability theory, an expected value of an uncertain variable is the weighted average 

of an uncertain variable described by its uncertain measure. Technically, an expected value of an 

uncertain variable can also be defined as the integral of the uncertain variable with respect to its 

uncertain measure. In summary, the expected value of an uncertain variable measures the most 

typical value this uncertain variable is to take. 

 

Definition 5.5 (Liu, 2007) Let  be an uncertain variable. Then the expected value of   is defined 

by  

 

       




      
0

0

,r dr r dr  (5.24)

 
provided that at least one of the integrals is finite. 

Theorem 5.4 (Liu, 2007) Let   be an uncertain variable with uncertainty distribution . If the 

expected value exists, then 

  

 

      




     
0

0

1 ,r dr r dr  (5.25)

 
Proof: This result is very straightforward in terms of the definition of the expected value of an 

uncertain variable and the definition of an uncertainty distribution. 
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 

   

    

0

0

0

0

1 .

r dr r dr

r dr r dr



 










   

   

 

 

   
(5.26)

 
  

 

Theorem 5.5 (Liu, 2010) Let   be an uncertain variable with a regular uncertainty distribution . 

If the expected value exists, then 

 

   
1

1

0

.d      (5.27)

 
Proof: According to Theorem 5.4 just stated and proved and the inverse function definition of an 

uncertainty distribution,  

 

 
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   
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 






 



 





 


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


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





   

    

     

 
    
 
 

 
        
 
 

   

 

 

 





 

 



 (5.28)

where the changing variable rule and the integration by part rule are applied. The interval limits are  
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 
 
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,  0;

0,  0 ;

,  1

r

r

r







     

  

     

 (5.29)

 
 
 

Example 5.1 Assuming that ξ is a linear uncertain variable, ξ ~   ,a b . Consequently, its inverse 

function of the uncertainty distribution is    1 1 a b      , and its expected value is derived 

by following steps: 

 

 

 

  

 

 
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a b d

a d b d

a b a d

a b a

b a
a
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

 

  

   

 







 

  

  

  

  


 








 


 (5.30)

Liu and Ha (2009) investigated the independent multivariable situation and proved that the 

expected value of a monotone function of an uncertain variable is just a Lebesgue-Stieltjes integral 

of the function with respect to its uncertainty distribution.  

Theorem 5.6 (Liu and Ha, 2009): Assuming that 1 2, , , n   are independent uncertain variables 

with regular uncertainty distributions, 1 2, , , n    respectively. If  1 2 1 2, , , , , , ,m m m nf x x x x x x   is 

strictly increasing with respect to 1 2, , , mx x x and strictly decreasing with respect to 1 2, , ,m m nx x x   , 

then the  uncertain variable  1 2, , , nf     has an expected value 
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                  
         

1
1 1 1 1

1 1

0

, , , 1 , , 1m m nf d  (5.31)

 
provided that E[ξ] exists. 

Proof: First we notice that the inverse function for the uncertainty distribution of an uncertain 

variable  1 2, , , nf     with the assumptions: (1) 1 2, , , n   are independent uncertain variables 

with regular uncertainty distributions, 1 2, , , n    respectively; (2)  1 2 1 2, , , , , , ,m m m nf x x x x x x   is 

strictly increasing with respect to 1 2, , , mx x x and strictly decreasing with respect to 1 2, , ,m m nx x x    is 

  

            1 1 1 1 1
1 1, , , 1 , , 1 , 0,1m m nf          

            (5.32)

Then, in terms of Theorem 5.5, we have 
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



 

      



  

 
(5.33)

 
As to the derivation of the inverse function  1

  , we just derive it for  1 2,f x x which is 

strictly increasing in 1x and strictly decreasing in 2x . 1 2,  are independent uncertain variables with 

regular uncertainty distributions, 1 2,   respectively. First, we notice that 

 

          1 1 1
1 2 1 2, , 1f f                (5.34)

which leads to 
 

        
        

1 1 1
1 1 2 2

1 1 1
1 1 2 2

1 ;

1





     

     

  

  

       

       




 (5.35)

 
In terms of the independence of 1 2,  , we can obtain 
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  
     

1

1 1
1 1 2 2 1

 

   

 




 

 

      

 




   (5.36)

as we as 
 

 

  
     

1

1 1
1 1 2 2 1

 

   

 




 

 

      

 




   (5.37)

 
By combining the inequality in (5.36) and (inequality in (5.37), the result for n = 2 can 

conclude. Definitely, for cases n > 2, we can prove the inverse function follow the form in (5.32).  

Theorem 5.7 (Liu, 2010): Let ξ and η be independent uncertain variables with finite expected 

values. Then for any real numbers c  and d , we have  

 

     .c d c d          (5.38)

 
Proof: For simplicity, we assume the regular uncertainty distributions  and  for uncertain 

variables  and  respectively.  

First let us show that  

 

   c c     (5.39)

 
Notice that  f x cx , then the f function is strictly increasing in x  if 0c  or strictly decreasing 

in x  if 0c  . Thus the inverse function will be 

 

   
 

1
1

1

if 0

1 if 0c

c c

c c















       
 (5.40)

which gives 
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1
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1
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1
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1 if 0

if 0

if 0

.

cc d

c d c

c d c

c c

c c

c







  

 

 












  


 

 
   
     

 






 (5.41)

Secondly, let us show that  

 

               (5.42)

 
The inverse function for uncertainty distribution   of the sum of two independent uncertain 

variables   is  

 

     1 1 1 .       
     (5.43)

 
which gives the second result needed.  

Finally, by combining result in (5.41) and result in (5.42), we have the result in (5.38).  

We should be fully aware that the linearity of uncertain expectation operator of an uncertain 

variable is not the same as that of a random variable in probability theory. In uncertainty theory, it is 

conditional on the independence of the summand. While in probability theory, the linearity of 

expectation operator holds always i.e. holds unconditionally.  

We should also emphasize that the expected value represents the "centre" of an uncertainty 

distribution in certain sense. 
  
 

5.3.2 Variance 
  

The variance of an uncertain variable presents the concentration surrounding its expected value, 

which helps to judge the central tendency quality of the expected value. Alternatively, the variance 

is a quantity describing the spread or variation around its expected value. The better prediction of 
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the expected value as central position of an uncertain variable is, if the smaller variance is. 

Otherwise, the larger variance is, the poorer quality of the centre is predicted.   

Definition 5.6 (Liu, 2007): Let   be an uncertain variable with finite expected value m. Then the 

variance of ξ is 

 

   2
.V         (5.44)

 
It is critical that different from the scale-valued variance in probability theory the variance of an 

uncertain variable is not necessary taking a scale-value unless the uncertain measure of an uncertain 

variable is given. If only the uncertainty distribution of an uncertain variable is available, the 

variance of an uncertain variable is an interval-valued quantity.  This fact can be realized by the 

following expression: 

 

 
 

     

      
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0
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0

0
2

0
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0
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V

r dr r dr

r dr r dr

r dr

r r dr
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

 

   

 

 

   














    

     

    

  

     

 

 





 





 

 (5.45)

It is obvious that if the uncertain measure  is given then event    r r         can be 

calculated accurately. If the uncertainty distribution   is available, then the event 

   r r        can be partially determined. By noticing that 

 

      2
, 0r r r r                      (5.46)

 

The upper limit of the integral is 
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0 0
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2 1 .

r r dr

r dr r dr

r dr r dr

x x x dx

 (5.47)

Theorem 5.8: If ξ is an uncertain variable with finite expected value, then 

 

   2V a b a V    (5.48)

where a and b are real numbers.   

 

Proof: Notice that 
 

 

  
  

 

 

2

2

22

2 .

V a b

a b a b

a

a

a V



 

 

 





         
   
 
    



 (5.49)

 
 

5.4 Variance of Liu's Normal Uncertainty Distribution  

 
The Gaussian normal random variable with its normal distribution serves a fundamental role in 

probability theory due to the central limit theorem and also its application in statistical modelling 

and inference. Likewise, it is expected that Liu’s uncertain normal variable and its distribution will 

play a similar key role within an uncertainty environment (Guo et al, 2010). This section reviews the 

variance of Liu’s uncertainty normal distribution.  

In subsection 5.2.2, Liu's normal uncertainty distribution is defined in (5.8). Keep in mind, the 

uncertain measure of Liu's normal uncertain variable is not defined. Therefore, the variance of Liu's  

normal uncertainty distribution is an interval. Let us derive the interval limits. Notice that the 

inverse function of Liu's normal uncertainty distribution is  
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    1 3
ln ln 1 ,

   


      (5.50)

Then the expected value of Liu's normal uncertainty distribution is 
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



 (5.51)

by noticing the following integral takes zero value: 
 

  

 

   
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1 1

0 0

1 1

0 0
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ln ln 1

ln ln 1 1

0.

d
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  
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 

  
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



 

 

 (5.52)

Please note that Liu's normal uncertain variable   has uncertainty distribution 

 

 
1

1 exp
3

x x 







  
     

  
 (5.53)

which gives an inverse function as 
 

    1 3
ln ln 1 

  



     (5.54)

We can also notice that for function   2f x x in a strictly monotone-increasing of x on  0, , 

thus the inverse function is 

 



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
 58 

 

        2

21 1 , 0,1 .  
   


      (5.55)

 
Then the job of deriving the variance of an uncertain variable becomes that of deriving the 

expression of the expected value of the uncertain variable  2  in terms of the inverse function: 
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


 (5.56)

In other words, the upper bound of the variance for Liu's normal uncertainty distribution is 

 

  2 2max .u V     (5.57)

 

The lower bound of the variance for Liu's normal uncertainty distribution is  

 

 

    

    

    

    

2

0

0 0

0 0

0 0

2

1

2 1 2

.l

x x dx

x dx dx x dx

x dx x dx

r r dr r r dr

 

 

 

   

   

 

 





 

 

 

   

    

      

     

     





 

 
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 (5.58)

 
Therefore, we have  
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 2 2 2 .l uV       (5.59)

 

It is also an easy task to derive the ratio, denoted by 2 2 ,l u     

 

1
.

2
   (5.60)

 
For Liu's normal uncertainty distribution, its variance take an interval-value, i.e.,  

 
2

2,
2

 
 
 
 

 (5.61)

 
This fact will have huge impacts in theoretical developments or in practical applications.  
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Chapter 6. Uncertain Statistics 
 

 

Uncertain statistics was introduced to estimate the experimental uncertainty distribution of an 

uncertain variable (Chen and Ralescu, 2012). Typically, in order to estimate an uncertainty 

distribution, expert knowledge data are required. The data with their corresponding belief degree 

will be collected from experts who have specialized knowledge and experience on a particular field.                 

Slightly in details, in order to collect this expert information a questionnaire was designed by Liu 

(2007) to match the subject of interest. Let ix  denote experts quantity and i  their corresponding 

belief degree of an uncertain event, i =1,2, . Assuming that we have obtained a set of n 

observational data points from an expert expressed as follows: 

 

       1 1 2 2, , , , ..., , ,n nx x x  (6.1)

 
where 

  

         1 2 1 2...  and 0 ... 1.n nx x x  (6.2)

 
Furthermore, in order to determine which distribution to use in a particular situation depends on 

the kind of information inherent in the uncertain variable. Section 6.1 will review the uncertainty 

empirical distributions and their possible applications.  

6.1 Empirical Uncertainty Distribution 
 
Given an expert’s experimental data as shown in (6.1) and (6.2), Liu (2010) proposed the empirical 

uncertainty distribution based on the linear interpolation method that is structured as follows: 

 

      


 
       


 



1

1 1
1

0 if

ˆ if ,  1, 2, ,

1 if

i
i i i i i

i i

n

x x

x x
x x x x i n

x x

x x

 (6.3)

 
which has a piecewise linear inverse function:  



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
61

 

 

 

 
 

   
 

 


 



  
      


 

0 1 1

1
1 1

1

if

ˆ if

if

i
i i i i i

i i

n n

x x

x x x

x

 (6.4)

Based on the empirical uncertainty distribution in (6.3), then the expected value is calculated as 

 
1

1 1 11 2
ˆ 1

2

1 .
2 2 2

n
i i n n

i n
i

x x x
    




  




        
 

  (6.5)

The result of (6.5) can be derived in terms of the piecewise linear inverse function in (6.4): 

   
1

1
ˆ

0

ˆ d  


    (6.6)

Assuming that the uncertain variable is strictly non-negative then the kth empirical moments are  

       


 
 
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1

-
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1 0

1
E 1 .

1

n k
k k j k j k

i i i i n n
i j

x x x x
k

 (6.7)

6.2 Least-Squares Method 

Liu (2010) proposed the principle of least squares to estimate the uncertainty distribution of a known 

functional form  |x  (i.e. linear, quadratic etc) with an unknown parameter . The least squares 

method provides an estimate for this unknown parameter  by minimizing the distance of the 

experts experimental data to the uncertainty distribution. Assuming that the data are given as in 

(6.1), then the unknown parameter can be found by optimizing the following: 

  
1

min
n

i i
i

x


 


  (6.8)

Hence the optimal solution of (6.7) is known as the least square estimate of  , and  has an 

estimated uncertainty distribution  ˆx  .
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6.3 Method of Moments  
 
Assuming that an uncertain variable of interest is strictly non-negative and is described incompletely 

by an uncertainty distribution  1 2| , , , px     , with unknown parameters 1 2, ,..., p   . Then it is 

critical to obtain an estimate of the uncertainty distribution. 

Wang and Peng (2010) proposed a method of moments for estimating parameters 1 2, ,..., p  
 
, 

by solving the following equation system 
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 (6.9)

where the estimated kth moments  
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1 1 1 1

1 0

1ˆ 1 .
1

n k
k k j k j k

i i i i n n
i j

x x x x
k

    


 
 

           (6.10)

 

6.4 The Delphi Method 
 
A fundamental question arises, what happens when experimental data is collected with their 

corresponding estimated uncertainty distribution from multiple experts? For instance, assuming that 

data have been obtained from m experts and each expert produces an uncertainty distribution, i.e., 

     1 2
ˆ ˆ ˆ, , , .mx x x    Liu (2010) proposed a method for obtaining the overall uncertainty 

distribution by using the weighted average approach given as: 

  

       1 1 2 2
ˆ ˆ ˆ ˆ ,m mx w x w x w x         (6.11)
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where 1 2, , , mw w w  are non-negative convex combinations coefficients and they sum up to 1 (i.e. 

1 2 1mw w w    ). The weights attached to these uncertainty distributions in (6.11) are usually 

represented as equally likely. Thus 

 

  

 

1
, 1, 2, ,iw i m

m
    (6.12)

 

The Delphi method is developed by the RAND corporation in the 1950’s to obtain group expert 

opinion which seeks to build consensus iteratively among these opinions. The Delphi method is a 

systematic process. 

A questionnaire on a subject under investigation, designed by a facilitator, is sent out 

independently to experts to obtain their experience and knowledge about the subject under 

investigation. Upon its return, the facilitator analyzes and summarizes the group information and 

provides the feedback to each respondent, so they can make a revised judgment based on the group 

feedback. The process continues until a consistent state is reached. Thus by consistently feeding 

information into the process the Delphi method seeks to build consensus.  

Wang, Gao and Guo (2010) modified the Delphi method as a process to determine the 

uncertainty distribution. 

Let ξ be an uncertain variable with its corresponding distribution  x of  , hence in order to 

estimate the uncertain distribution, m experts are invited to choose n possible values (i.e. 

1 2, , ,m m mnx x x ), then the uncertain variable ξ is likely to take these values assuming that 

1 2m m mnx x x   . The steps of estimating an uncertainty distribution are given as follows: 

 Step 1: The m domain experts provide their experimental data  ,ij ijx  , where ijx denote the jth  

value provided by the ith expert and ij denotes the ith expert's belief degree that ξ is less than ijx ,  

1, 2, , ij n   and 1,2, ,i m  respectively. 

Step 2: Use the ith expert's experimental data  1 1,i ix  ,  2 2,i ix  ,  ..., ,
i iin inx  to generate an 

uncertainty distribution ˆ
i . 
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Step 3: Calculate the number of possible values of the uncertain variable, ξ, presented by all experts 

denoted by n, where the same values from different experts are considered as one. Then the possible 

values of ξ are 1 2 3 ... nx x x x     and calculate 

  

 

 
1

1 ˆ , 1, 2, ,
m

j i j
i

x j n
m




     (6.13)

and  

  

 

  
2

1

1 ˆ , 1, 2, ,
m

j i j j
i

d x j n
m




      (6.14)

 
Step 4: For a pre-specified level 0  if jd  for all j  then proceed to Step 5. Otherwise, the 

process is iterated again, so that the ith domain expert will receive a summary and then provide a 

revised experts experimental data vector  1 1,i ix  ,  2 2,i ix  ,  ..., ,
i iin inx  for 1,2, , .i m 

  
Go to 

Step 2. 

 

Step 5: Finally use the integrated dataset      1 21 2, , , ,..., , nnx x x    to generate an uncertain 

distribution        1 1 2 2
ˆ ˆ ˆ ,m mx w x w x w x         where iw  are convex weights adding to one.  

 

6.5 Wang-Gao-Guo Hypothesis Testing 
 
Hypothesis testing is a method of verifying whether statements about the characteristic(s) of a given 

population are valid. These statements are called hypothesis and the process of verification is based 

on expert's experimental data. There are two kinds of decisions that can be made under hypothesis 

testing, its either we reject the null hypothesis or fail to reject the null hypothesis. The null 

hypothesis is usually rejected when evidence from the data is not sufficient to justify the hypothesis, 

hence the hypothesis is rejected with some degree of confidence or otherwise, the hypothesis is 

rejected. This section serves to review methods of hypothesis testing under an uncertainty 

environment. 
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Let us first review the method to test the statement that two uncertainty distributions are equal. 

In order to test the equality, this method makes use of expert’s experimental data and the 

corresponding uncertainty distribution (Wang et al, 2012). For instance, under an uncertainty 

environment data may be obtained from two experts based on their knowledge and experience, 

hence how does the facilitator determine whether their opinions coincide or not? 

Assuming that data were collected from two experts based on the same uncertain variable then 

Wang-Gao-Guo (2012) proposed a hypothesis testing scheme. Let the two domain experts data be 

represented by A and B respectively. Hence, the experts’ experimental data are given as follows: 

 

     
     

1 1 2 2

1 1 2 2

: , , , , , ,

: , , , , , ,

m m

n n

x x x

x x x

  

  








 (6.15)

where the two expert’s experimental data A and B meet the following conditions respectively: 

 

1 2 1 2

1 2 1 2

: ,0

: ,0
m m

n n

C x x x

C x x x

  
  





      
      

 
 

 (6.16)

 
The empirical uncertainty distributions are  x  and  x  respectively: 

 

 
 

, 1, 2, ,

, 1, 2, ,

i i

j j

x i m

x j n








  

  




 (6.17)

 
Assuming that  1F x and  2F x are the two theoretical uncertainty distributions from the two 

experts. The hypothesis testing statement is 

 

   
   

0 1 2

1 1 2

:

:

H F x F x

H F x F x




 (6.18)

 
where 0H represents the null hypothesis and 1H represents the alternative hypothesis. In other words, 

0H is equivalent to the statement that the two domain experts have the same views on uncertain 

variable  , while 1H is equivalent to the statement that the two domain experts have different same 

views on uncertain variable  .  
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It should be noted that the experts experimental data in (6.15) with conditions in (6.16) are 

ordinal. This feature will determine the characteristic of the testing scheme of the statement whether 

the two uncertainty distributions  1F x  and  2F y  are equal. The testing scheme is stated as 

following five steps.  

Step 1. Select s arbitrary points      1 1 2 2, , , , , ,s sx x x    from  in (6.15) and t points 

     1 1 2 2, , , , , , ,t tx x x   from   in (6.15) such that s m and t n , i.e., 

 

     
     

1 1 2 2

1 1 2 2

: , , , , , ,

: , , , , , ,

H s s

H t t

x x x

x x x

  

  








 (6.19)

 
Step 2. In ascending order, rank ,  i jx x listed from H and H in (6.19). Also in ascending order, 

rank ,  i j   listed from H and H in (6.19). The two new sequences will be obtained, the first is 

with respect to  i jx x  value, and the second is with respect to  i j  value. The two new ranked 

sequences are 

 
x x x x xn n n n n

n n n n n    

    

    




 (6.20)

where x x x x xn n n n n      and x x x x xn n n n n      represent numbers obtained from the uncertainty distributions  

 x  and  x with respect to x and α respectively. 

Step 3. Compare the two sequences x x x x xn n n n n      and x x x x xn n n n n     obtained in (6.20) and assign 

value 0 or 1 according to the criterion: if the numbers in the same position are equal then a value of 

0 is assigned, otherwise if they are different assign a value of 1. Thus a 0 - 1 sequence of length m+n 

can be generated as follows: 

 

 

1100 0  (6.21)

 
Step 4. Define the test statistic  
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 
1

m n
x

l

T n n


 


   (6.22)

 
where the indicator function is defined by 

  

 

   
 

1 if  is true

0 if  is true

x

x

x

n n
n n

n n








 

 

 

   


 (6.23)

Step 5. For a preset criterion 0 1p   (say, p = 0.2), the null hypothesis 0H is rejected if the testing 
statistic 
 

 T m n p   (6.24)

 
Since if the null hypothesis 0H holds, the testing statistic T, which is the count of 1's in the 

sequence in (6.21), should be too large.  

6.6 Hesamian-Taheri Method 
 
Hesamian and Taheri (2011) also proposed an uncertainty hypothesis testing to determine whether a 

set of experimental data fits a specific uncertainty distribution F(x). This method can be regarded as 

some kind of goodness of fit test. 

Assuming that F0(x) is a known uncertainty distribution related to an expert's view. Hence, in 

order to detect whether a given experimental data, F0(x), follows this specific uncertainty 

distribution  F , the hypothesis testing is given as follows:  

 

   
   

  

  
0 0

1 0

: ,

: ,  

H F x F x x

H F x F x x



�
 (6.25)

 

Let expert's data be  

 

       1 1 2 2, , , , , , ,n nx x x  (6.26)

 
where conditions 
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   
  

    




1 2

1 20 1
n

n

x x x
 (6.27)

 

Note that the empirical uncertainty distribution  x has to be estimated from expert's data. In 

order to enhance the testing power, the points in testing data should be increased as a natural choice. 

The "new" data set is  

 

       * * * *
1 1 2 2 3 3 2 1 2 1, , , , , , , ,n nz z z z      (6.28)

 
where 
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 

 



 
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 
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 





 (6.29)

i.e., data are enhanced by adding  10.5 ,i i iy x x   1,2,..., -1i n  to the original dataset. , then a 

new sequence of size 2 1N n  is obtained and each unit is represented as iz  such that 

1 2 2 1, ,..., nz z z  and since  x and F0(x) are increasing in order then,  

 

     
     





  1 2 2 1

0 1 0 2 0 2 1

, , ,

, , ...,

n

n

z z z

F z F z F z
 (6.30)

 
Let ε 0 be a very small number that measures the difference between the value obtained from 

the uncertainty distribution F0(x) and the empirical distribution function  x . Then a new 0-1 

sequence of size 2 1N n  can be generated based on the following criterion: 

 

    0 , 1, 2, , 2 1l lz F z l n      (6.31)
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where the indicator function  
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      
  

 

 (6.32)

 

If the number of 1’s in the 0-1 sequence is small then we fail to reject the null hypothesis. The 

testing statistic is defined by  

 

    
2 1

0
1

n

l l
l

T z F z




    (6.33)

 
 

The decision rule to reject the null hypothesis is given as follows 

 

  2 1T n p  (6.34)

 
where p is a pre-specified criterion. 
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Chapter 7. Uncertainty Process Capability Indices  

7.1 Justification for Applying Uncertainty Theory and Statistics  
 
As reviewed in proceeding chapters with respect to probability theory based process capability 

studies and Liu's Uncertainty theory, we justify the reason for developing uncertainty theory based 

process capability indices from two aspects: (1) certain exposures in current industries about the 

contradiction from applying classical process capability indices based on probability theory; (2) the 

new features in uncertainty theory, particularly the interval-valued variance will definitely enhance 

the ability of the newly created uncertainty theory based process capability indices. 

In probability theory and statistics, the law of large numbers and central limit theorem play vital 

roles and thus many statistical quantities can be specified by Gaussian Normal distribution, either 

accurately or approximately or asymptotically. As a matter of well-known fact, the probability 

theory based statistics is so powerful so that modern statistics facilitates extremely powerful 

theoretical and practical support in assessing quality, risk management and general quality 

management. 

The uniformity of a production process, i.e., the variability of a process, is the key concern of 

management, typically measured by taking six-sigma spread specified by tolerance limits in the 

distribution of the process characteristic. In other words, the fundamental role played in process 

capability study is the distribution function of process characteristic, whose shape, central position, 

the spread about the centre, etc, are all determined by relevant parameters of the distribution 

function, either true or estimated values. 

On the other side, the capability of a process holding the tolerance, either engineering or 

statistical, is one of the critical components in today's quality improvement. The popular process 

capability indices are certain measures by using the process tolerance over the six-sigma spread, 

either their interval lengths, or the process yield, or the expected loss away from the departure of the 

process. 

We have to emphasize that the statistical analysis of a process capability involves many 

uncertainty aspects, for example, process tolerance level, equipment tuning level, material supply 

quality level, vendor competing level, sampling process level, the management decision making 

level, and the interactive level among those effects. The complexity of process capability study will 
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not be explained simply by the random uncertainty facilitated by probability theory. What we may 

admit is random uncertainty can partially explain certain uncertainty in industrial processing. 

For example, if a process characteristic X follows Gaussian Normal distribution  2,N   , six-

sigma spread about the centre quantifies the probability that a given value of a Gaussian normal 

random variable will fall within 3 standard deviations away from the mean  02 (3) 1 ,   

where 0 represents the standard Gaussian normal distribution function.  

However, probabilistic six-sigma spread has come under some criticism due to problems 

encountered by the Japanese car industry in recent years. It is obvious that the probabilistic process 

capability indices and their applications are facing certain scepticism. Overall, a fundamental 

question arises, is probability theory still a viable option in maintaining quality in today's industrial 

environment? 

The involvement of human thinking behaviour will be inevitable because the decision-making 

level in quality improvements no matter at the individual workman level, field supervisor level, or 

top managing director level is an interaction between human mind and the real manufacturing world. 

Recall that in Liu's (2007, 2010, 2013) uncertainty theory, an uncertain variable is fully 

specified if the corresponding uncertain measure  is given. In practice, there are situations where 

only the uncertainty distributions are available. Even the most popular uncertain variable (i.e. Liu's 

normal uncertain variable) only the normal distribution functions is available. Furthermore, the 

variance of Liu's normal uncertain variable is interval-valued, 2 20.5 , .    This will add more 

uncertainty feature into process capability study, although interval-valued quantities have already 

appeared in probability based process capability studies. This fact may open a new door toward a 

different process capability study. 

7.2 uCp ,uCpk and uCpm Indices 

Under probability theory several classical capability indices such as ,  p pkC C and pmC  have been 

proposed to assess how well a process satisfies customer requirements. However, classical 

capability indices tend to take on a strict definition, and are unable to accommodate imprecision in 

terms of data. Moreover, industrial processes are usually influenced by human judgment and 

classical process capability indices fail to capture this influence. Hence, this section proposes new 

capability indices under an uncertain environment. 



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
72

Under the context of probability theory, the most used process capability indices are: 

6p

USL LSL
C




 (7.1)

and 

 1pk pC C    (7.2)

where 

  / 2

M

USL LSL

 


 (7.3)

the departure from the midpoint of the process. 

If the uncertainty environment is switching from classical probability theory into Liu's 

uncertainty environment, the process capability indices will be defined in the form similar to those 

in probability environment. Nevertheless, in most practical circumstances, the uncertain process 

capability indices will appear in interval-valued form, i.e., in the form of an interval. For further 

processing the interval-valued uncertain process capability indices, it is necessary to review interval 

arithmetic as a preparation.  

Interval Arithmetic: Let two intervals [a,b] and [c,d] be subsets of real-line (-¥,+¥). 

Rule 1.  (Addition) The addition of the two intervals is [a, b] + [c, d] = [a + c, b + d]; 

Rule 2. (Subtraction) The subtraction of the two intervals is [a, b] - [c, d] = [a - d, b - c]; 

Rule 3. (Multiplication) The multiplication of the two intervals is [a, b]   [c, d] = 

[  min , , ,a c a d b c a d    ,  max , , ,a c a d b c a d    ]; 

Rule 4. (Division) The division of the two intervals is [a, b]   [c, d] = [  min , , ,a c a d b c a d    , 

 max , , ,a c a d b c a d    ], in which  0 ,c d . 



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
73

Interval arithmetic rules were first stated by R.E. Moore. In interval division operation, if 

 0 ,c d  , the division is not defined. For convenience, we state the rule for square root operation of 

a positive interval as a definition.  

Definition 7.1: (Square Root Rule) Let interval the [a,b] be a subset of (0, +¥), the square root of 

the interval is defined as  , , .a b a b   

Now, we are in a good position to define the uncertain process capability indices precisely. 

Assuming that an uncertain process is under investigation, in which the characteristic of the process, 

denoted as X, is specified by an uncertainty distribution function, denoted as  . Therefore, the 

uncertain variable X has its expectation m and interval-valued variance   2 2,L UV X      available. 

Definition 7.2: The uncertain process capability index uCp is defined by:   

, ,
6 6u p

U L

USL LSL USL LSL
C

 
  

  
 

(7.4)

where L and U are the lower limit and upper limit of the square root of variance interval 

   , .L UV X    

Parallel to the definition of Cp in probability context, 
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(7.5)
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From Eq. (7.5), it is easy to see that the uncertain process capability index uCp is defined similar 

to that in probability context. As to the interval form of the uncertain process capability index, it is 

just a reflection of interval-valued variance of the uncertain process characteristic conditioning on. 

As to definition of uCpk, it is noticed from Eq. (7.3) that the departure coefficient  is merely 

related to the half length of specification interval, the parameter  and the midpoint M, and hence a 

scalar quantity because of the availability of the true parameterm. 

 

Definition 7.3: The uncertain process capability index uCpk is defined by:   

 

       2 2
, ,

6 6u pk
U L

USL LSL M USL LSL M
C

 
 

      
  
 

 (7.6)

where parameter  is the expectation, M is the midpoint, L and U are the lower limit and upper 

limit of the square root of variance interval    , .L UV X    

Definition 7.4: The uncertain process capability index uCpm  is defined by:   
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 (7.7)

Where the parameter  is the expectation, M is the midpoint, L and U are the lower limit and upper 

limit of the square root of variance interval    , .L UV X    

As to an error based process capability index, it is necessary to define the interval-valued 

average process loss u  and the interval function ug : 
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and 
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The expression of ug  in Eq. (7.9) is obtained in the following way: 



 
 

 
 

 
 





     

     
    


              
 
 
 

  
     

     
     

2

2 2

2 2

2 2

1

1

1

1 ,

1

1 , 1

1 1
, .

1 1

u

u

U L

U L

L U

g

M M

M M

M M

(7.10)

It should be fully aware that the interval-valued uncertain process capability indices are still 

mutually related in the way similar to those in probabilistic context. 

7.3 Uncertain Normal Process Capability Indices 
In probabilistic quality control several classical capability indices such as ,  p pkC C and pmC  were 

investigated under Gaussian normal distribution. Parallel to probabilistic process 

index development, it is a necessary to investigate the basic feature of those uncertain process 

capability indices (i.e. uCp, uCpk , and uCpm) under Liu's uncertainty normal distribution. As a 

preparation, let us examine the variance interval of Liu's uncertainty normal distribution. 

Theorem 7.1 (Guo, 2012): Given Liu's uncertainty normal distribution, then the standard deviation 

interval can be expressed as 



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
 76 

 

    1
, ,

2
U UV X   

  
 

 (7.11)

where U is the stipulated standard deviation parameter  in Liu's uncertainty normal distribution 
function. 
Proof. In general, the variance of an uncertainty distribution is 
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Notice that the uncertain measure is not given here. What is given is the uncertainty 

distribution. Therefore, the variance is an interval, denoted as   2 2,L UV X      .  

From Eq. (7.12), it is ready to obtain the upper limit 2
U :  
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From Eq. (7.12), the lower limit 2
L : 
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 Given Liu's uncertainty normal distribution function with parameters m and s:  
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Then, the upper limit of the variance interval is: 
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Similarly, the lower limit of the variance interval is: 
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Now, we need to show that  
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Hence,  
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which leads to the ratio of the two limits is 
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Accordingly, we obtain the ratio of the standard deviation interval limits:  
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Theorem 7.2 (Guo, 2014): Given the process characteristic with Liu's uncertain normal 

distribution, then the uncertain process capability index uCp can be expressed by:  
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Proof: Under Liu's uncertain normal distribution, 1 2L U  , thus 
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Theorem 7.3 (Guo, 2014): Given the process characteristic with Liu's uncertain normal 

distribution, then the uncertain process capability index uCpk can be expressed by:  
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Proof: Under Liu's uncertain normal distribution, 1 2L U  , thus 
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Theorem 7.4 (Guo, 2014): Given the process characteristic with Liu's uncertain normal 

distribution, then the uncertain process capability index uCpm can be expressed by:  
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Proof: Under Liu's uncertain normal distribution, 1 2L U  , thus 
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It should be fully aware that the interval-valued uncertain process capability indices are still 

mutually related in the way similar to those in probabilistic context. 

7.4  Uncertainty Distribution For Mean and Variance 
In probability theory, sampling statistic plays critical roles in confidence interval construction and 

hypothesis testing. From the review on classical process capability study literature, we can realize 

the roles of two important sampling statistics: sampling mean, x , and sampling variance, 2S . 

Similarly, once we define the three uncertain process capability indices, ,  u p u pkC C and u pmC  under 

Liu's normal uncertainty distribution with true parameters m and s, then we have to address the 

situations where the true parameters m and s are not available but their "sampling" mean and 

variance are available. 

It is necessary to stress here, in uncertainty statistics, term "sample" is referred to as a group of 

representative observation taken from a given population or uncertainty distribution. Different from 

probabilistic statistics, where sample is strictly defined, up to now in uncertainty statistics, term 

"sample"  is not defined. The usage of "sample" is just for convenience. Whenever the term 

"sample" is used, it just tells us that a group of representative observations from a given population 

or an uncertainty distribution. 

Uncertain "Sample" Postulate: In uncertainty statistics, it is assumed that a "sample" 

1 2, , , nx x x have the properties: (1) every member of the "sample" follows the same uncertainty 
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distribution , i.e., the population uncertainty distribution; (2) every member is independent of other 

members within the group. The identically, independently distributed "sampling" properties can be 

abbreviated as "i.i.d.".  

Let us explore the uncertainty distribution for "sampling" mean, x , first. Given a "sample" 

from an uncertain normal population,  , 1 2, , , nx x x , 

 

1

1 n

i
i

x x
n 

   (7.29)

 
Theorem 7.5: (Guo et al, 2012) Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal 

distribution with parameters m and s. Then the "sampling" mean follows an uncertain normal 

distribution with parameters m and s. 

Proof: Let W denote the "sample" sum 
1

n

i
i

x

 . Notice that W is strictly monotone increasing in xi, 

then in terms of Uncertain "Sample" Postulate,  and the condition  1 2, , , ,nx x x     , then  

 

         
1 2

1 1 1 1 1 3
ln

1nW x x x

n
n n

      
 

                  
  (7.30)

 

Further notice that the ratio between "sample" mean x and "" sum W is a constant 1/n, given the 

sampling size n. Thus 

 

   1 11 3
ln

1x Wn

   
 

          
 (7.31)

i.e., the "sample" mean  ,x    . 

 
Definition 7.6: (Guo,  2014) Assuming that the square of Liu's standard uncertain normal variable, 

which is called as uncertain chi-square variable with one degree of freedom, denoted by  
2
1 , follows 

uncertainty distribution: 

  

 
   2

1
1 exp .z z


     (7.32)
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It is noticed that 
 
 2

1
0 0,


  and 

 
 2

1
1.


   Technically, given the standard uncertain normal 

distribution function, the distribution function for the square of an uncertain normal variable is not 

derivable, because only the square of a positive uncertain variable has an uncertainty distribution 

function. Therefore, defining an uncertain distribution function for the square of an uncertain normal 

variable is a feasible way to process the next distributional developments. 

Theorem 7.7: (Guo, 2014) Assuming that a "sample"      
2 2 2
1 ,1 1 ,2 1 ,, , , d   , from a chi-square variable 

with one degree of freedom,  
2
1 , then the sum, denoted by  

2
d , which is called as uncertain chi-

square variable with one d degree of freedom. Then the sampling sum follows an uncertain 

distribution: 

 

 

 
 2 1 exp .

d

z
z

d

 
     

 
 (7.33)

Proof: First we derive the inverse function for the chi-square variable with one degree of freedom, 

 
2
1 : 

  

 
 2

1

11 exp


      
 

 (7.34)

which gives 
  

 
 2

1

1 2 1
ln

1



 


 (7.35)

 
 
By definition,  

  

   
2 2

1 ,
1

d

d i
i

 


   (7.36)

Then, the inverse function for the uncertain chi-square variable with one d degree of freedom 
 

 
 

 
 2 2

1 ,

2
1 1

1

1
ln

1d i

d

i

d
 

 


 



       
  (7.37)
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which leads to the uncertain chi-square distribution with d degree of freedom. 

For further uncertainty distribution developments, let us show a simple lemma.  

Lemma 7.1: Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal distribution with 

parameters m and s. Then  

 

 

     2 2 2

1 1

n n

i i
i i

x x x n x 
 

       (7.38 )

 

Proof: It is a really algebra operation, 

 

 

 

      
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2
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i
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n

i
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n n n
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n n n
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n

i
i

x

x x x

x x x x x x

x x x x x x

x x n x





 

 







  

  





   

      

      

   





  

  



 (7.39)

Lemma 7.2: (Standardization) . Let x follow Liu's uncertain normal distribution with parameters m 

and s. Then the standardized variable 

  

 

 0,1 .
x 

    (7.40)

Proof: The inverse function of Liu's uncertain normal distribution with parameters m and s is  

 

 

 1 3
ln

1

  
 

       
 (7.41)

 

Then, for constant parameters m and s 
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 1 1 3 3
ln ln

1 1x 


    
    




                  
 (7.42)

 
which indicates  

 

 

 0,1 .
x 

    (7.43)

 
Lemma 7.3: Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal distribution with 

parameters m and s. Then the sum of standardized "sample", follows uncertain chi-square 

distribution with n degree of freedom: 

  

 

 

2

2

1

n
i

n
i

x 




   
 

  (7.44)

 
Proof: According to the Uncertain "Sample" Postulate, each "standardized" term 

 

 

 0,1ix 

    

and therefore 
  

 

 

2

2
1 ,

i
i

x 



   

 
 

 
which leads to an uncertain chi-square variable with n degree of freedom 
 

 

2

2

1

n
i

n
i

x 




   
 

  (7.45)
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Lemma 7.4: Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal distribution with 

parameters m and s. Then the square of a standardized "sample" mean, follows uncertain chi-square 

distribution with one degree of freedom: 

  

 

 

2
2
1

x  

   

 
 (7.46)

 
Proof: According to the Theorem 7.5, the "sampling" mean follows an uncertain normal distribution 

with parameters m and s. Thus, the standardized "sampling" mean 

 

 0,1
x 

    (7.47)

and therefore the square of standardized "sampling" mean follows an uncertain chi-square 

distribution with one degree of freedom. 

It is noticed that different from the circumstance in probability theory, we have no way to show 

the independence between  2
x  and  2

ix x . Therefore, we have no way to show that 

 2

ix x  is linked to the uncertain chi-square distribution with n - 1 degree of freedom. That 

means that the accurate uncertainty distribution for  2

ix x is not available. However, we may 

think of an upper bound for the uncertainty distribution of  2

ix x . 

Theorem 7.8: (Guo, 2014) Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal 

distribution with parameters m and s. Then the standardized sum of squared deviation from 

"sampling" mean follows an uncertainty distribution,  , which is upper bounded by an uncertainty 

distribution of an uncertain chi-square variable  with n degree of freedom, i.e., 

 

   
 
 2 2 2

1 1

.
n n

ni i

i i

x x x
z z z


  

    
   
   

    
 

 
(7.48)

 

Proof: Based on the facts stated in Lemma 7.1 to Lemma 7.4, it is easy to obtain the following 

equality: 
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2 22

1 1

n n
i i

i i

x x xx
n

 
   

              
   (7.49)

 

Thus an important relationship is obtained: 

 
2 2

1 1

n n
i i

i i

x x x 
  

       
   

   (7.50)

since term 
2

x
n



 

 
 

is always positive.  

 
Converting the inequality in Eq. (7.50) into an equivalent event expression, we have 

  

 
2 2

1 1

n n
i i

i i

x x x
z z


  

                  
         

   (7.51)

 
which leads to distribution function inequality: 
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 
 2 2 2
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2 2

1 1
n n

ni i

i i
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x x x
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z z z z z


 


 

 

    
    

   

                        
          

    (7.52)

 
which concludes the proof. 

Theorem 7.9: (Guo, 2014) Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal 

distribution with parameters m and s. Further, denote the standardized sum of squared deviation 

from "sampling" mean follows an uncertainty distribution,  , and the uncertainty distribution of an 

uncertain chi-square variable  with n degree of freedom, i.e.,
 
2
n

 . Then 

 

 
   2

1 1 .
n
      (7.53)

 

Proof: Based on the fact proved in Theorem 7.8:  
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     
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n n
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i i
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
  

    
   
   

      
 

 
(7.54)

 

Recall that the inverse function for the uncertainty distribution of an uncertain chi-square 

variable with n degree of freedom is: 

 

 
 2

2

1 1
ln .

1n
n





         

 (7.55)

 
 

Thus, for a given  , 0,1   , we have 

  

 

 
     2

2

1 11
ln , , 0,1

1n
n


   


            

 (7.56)

 
which provides a lower bound for the inverse function of  z .  

Theorem 7.9 can facilitate the lower bound of confidence interval of the uncertain variable  

 2

ix x  .  

 

7.5 Sampling Impacts on Uncertain Process Capability Indices 
 
In probabilistic quality control several classical capability indices such as ,  p pkC C and pmC  were 

investigated under Gaussian normal distribution when the true process parameters are not available. 

Then the confidence interval for process mean or process variance would be involved in the process 

capability study. Similarly, within an uncertainty environment, confidence intervals can be 

constructed for uncertain capability indices (i.e. ,  u p u pkC C and u pmC ). Let us investigate the impacts 

when the true process mean m or process variance s2 are not available. 
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 Theorem 7.10: (Guo, 2014) Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal 

distribution with parameters m and s. Further, it is assumed that the true parameter s is given. Then, 

for any pre-determined level α, αÎ(0,1), the 1- α level confidence interval for m is 

 3 2 3 2
ln ,  ln ,  0,1 .x x

    
   

           
    

 (7.57)

Proof: Recall that according to Theorem 7.5 the inverse function for the sample mean from Liu's 

uncertain normal is   

 1 3
ln

1x

  
 

       
 (7.58)

Hence, the lower limit of the 1 - α confidence interval is 

1 3
ln ,

2 2x

  
 

            
(7.59)

and the upper limit of the 1 - α confidence interval is 

1
13 3 221 ln ln

2
1 1

2

x 



 

  



 
                      

(7.60)

which leads to the inequality:  

3 2 3 2
ln ln

x  
    

          
   

 (7.61)

which gives the 1 - α confidence interval for m: 
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3 2 3 2
ln ,  ln .x x

   
   

          
    

 (7.62)

Please note that when the process variance parameter is also unknown, then we have to find out 

a confidence interval for s. The next theorem will give an approximate confidence interval for 

parameter s.  

Theorem 7.11: (Guo, 2014) Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal 

distribution with parameters m and s. Then, for any pre-determined level α, αÎ(0.5,1), the 1 - α level 

confidence interval for s is 

   , ,  0,1 .
ln 2 ln ln 2 ln 1

S S 
 

 
 
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(7.63)

where 

 2

1

1
.

n

i
i

S x x
n 

   (7.64)

Proof: Recall that according to Theorem 7.9 the inverse function for the sample mean from Liu's 

uncertain normal is   

 1 3
ln

1x

  
 

       
 (7.65)

Hence, the lower limit of the 1 - α confidence interval can be obtained from 

 
     2

2

1 11
ln , , 0,1

1n
n


   


            

 (7.66)

Thus,  
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(7.67)

which leads to 
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2

2 2
ln ln , 0,1

1S

 
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 
                     

(7.68)

Then, the lower limit of the 1- α level confidence interval for s2 is 

2 2

2 22 2
ln , ln ,0 1

1
S S 

 

                         
 (7.69)

Example 7.1: Let S2 = 2.0, α =0.025, then 95% confidence interval for s2 is [0.146974, 3120.167]. 

Theorem 7.12: (Guo, 2014) Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal 

distribution with unknown parameters m and s. Then, for any pre-determined level α, αÎ(0,1), the 

1- α level confidence interval for m is 
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(7.70)

where 
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Proof: Recall that according to Theorem 7.10, if the variance is given, the  1 - α confidence interval 

is  

 3 2 3 2
ln ,  ln , , 0,1 ,x x

     
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    

 (7.72)

If the variance is unknown, in terms of Theorem 7.11, the  1 - α confidence interval for s2 is 
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    
(7.73)

which gives the conclusion: 

 
 

 
   

ln 2 ln ln 2 ln3 3
,  , , 0,1 .

ln 2 ln 1 ln 2 ln 1

S S
x x

   
 

   
    

    
     

 (7.74)

Theorem 7.13 (Guo, 2014): Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal 

distribution with parameters m and s. Then, for any pre-determined level α, αÎ(0,1), the 1- α level 

confidence interval for the uncertain process capability index uCp can be expressed by:  

 1 1
, ,  0,1 ,

3 3 2
6 ln 3 2 ln

2

u p

USL LSL USL LSL
C

S S


 

   

 

 
 
  

  
       
              

(7.75)

where 
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 2

1

1
.

n

i
i

S x x
n 

   (7.76)

Proof: Recall Theorem 7.2, 

, .
6 3 2

u p
U U

USL LSL USL LSL
C

 

  
  
  

 (7.77)

Further, we apply Theorem 7.11, the 1- α level confidence interval for s is 

    ˆ ln 2 ln 1 , ln 2 ln
6 3 2

u p

USL LSL USL LSL
C

S S
   

    
 

(7.78)

Then in terms of interval arithmetic, the conclusion is obtained. 

Theorem 7.14 (Guo, 2014): Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal 

distribution with parameters m and s. Then, for any pre-determined level α, αÎ(0,1), the 1- α level 

confidence interval for the uncertain process capability index uCpk can be expressed by:  

   ˆ , ,  0,1 ,u pkC LL UU    (7.79)

where 

 
    

ln 2 ln3
2( )

ln 2 ln 1
ln 2 ln 1 ,

6

S
USL LSL x M

LL
S

 
 



 
   

 
  

(7.80)

and 

 
   

ln 2 ln3
2( )

ln 2 ln 1
ln 2 ln

3 2

S
USL LSL x M

UU
S

 
 



 
   

 
 

(7.81)
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Proof: Under Liu's uncertain normal distribution, 1 2L U  ,  

       2 2
, .

6 3 2
u pk

U U

USL LSL M USL LSL M
C

 
 

      
  
  

 (7.82)

Thus, it is necessary to do a two-step replacement of  parameters m and s. 

The first step is to replace s by S:  

    2( ) 2( )
ln 2 ln 1 , ln 2 ln

6 3 2
u pk

USL LSL M USL LSL M
C

S S

        
    
 

  (7.83)

The second step is to replace m by x :  

 ˆ ,u pkC LL UU  (7.84)

where  

 
    

ln 2 ln3
2( )

ln 2 ln 1
ln 2 ln 1

6

S
USL LSL x M

LL
S

 
 



 
   

 
    

(7.85)

and  

 
   

ln 2 ln3
2( )

ln 2 ln 1
ln 2 ln

3 2

S
USL LSL x M

UU
S

 
 



 
   

 
 

(7.86)
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Chapter 8. Methods for Constructing Classical and 
Uncertain Capability Analysis 

The main idea behind this research is to compare the estimates of classical capability analysis to 

their corresponding equivalents under uncertainty theory. This chapter will then present: 

1) The methodology of estimating the process capability using the classical approach when

autocorrelation permeates the data

2) Determine a test of hypothesis to ascertain the classical capability of the process

3) The methodology for collecting expert data and also estimating process capability under

uncertainty theory (i.e. when expert opinion about the process has been incorporated into

capability assessment).

In order to conduct any process capability study, the underlying assumptions governing process 

capability analysis should be verified to ensure that the analysis of the process is reliable. These 

assumptions are stated as follows: 

Assumption 1: (Process Stability) The process is in a state of statistical control, thus no special 

cause of variation is present and the process does not wander away from its process characteristic 

(i.e. such as the mean or standard deviation). 

Assumption 2: (Representative samples) The obtained sample should be representative of the 

population. 

Assumption 3: (Normality) The underlying process distribution should be Gaussian normal. 

However, some process distributions are non-normal and some authors such as Kotz and 

Johnson (1993a) and also Bai et al. (1995) have developed procedures to deal with non-normal 

processes. 

Assumption 4: (Independence) The observations should be independent and identically distributed. 

The validity of the independence assumption has come under intense criticism in recent years. 

The advent and continuous development of new technologies has been accompanied by the ability to 

observe process outputs that are not far apart in time and thus these observations usually tend to co-

vary (Shore, 1997).  Ignoring autocorrelation in process capability analysis tends to bias upward the 

process capability, thus the capability of the process will be inflated (Shore, 1997). As noted when 
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autocorrelation permeates the process data, it might cause some undesirable effects, hence the need 

to assess whether autocorrelation exists and how to deal with it. 

The first step to dealing with autocorrelation is to establish whether there is a relationship 

between observations not far apart in time and to what extent (i.e. AR(1), AR(2),…, AR(∞), 

MA(1),…, MA(∞), ARMA, ARIMA etc).  The autocorrelation between observations separated by k 

time units can be approximated as follows: 

 

 

  

    
  

1/2 2
2 2

E - - E - -
   

E - E -

t t k t t k

k

t t k

x x x x

x x

   


 

 



       
   
   

         (8.1)

 
where k  represents the autocorrelation function between observations separated by k time units, 

 E  denotes the expected value operator and 2  the process variance which is independent of k, 

assuming the process is stable. 

Autocorrelation between observations separated by k time units can be simultaneously tested by 

plotting a correlogram (i.e. plot of the autocorrelation estimates as a function of k, such that vertical 

lines above the zero line signify estimates that are non-zero) or by using a  sample test that uses an 

approximate standard error of k  as a test statistic, that is:  

 

  1

ˆ1 2
ˆSE

q

v
v

k n


 





 

          (8.2) 

 
  

where n denotes the number of observations used to estimate k and by assumption k = 0 for all 

 k > q. 

 

 

 

A two sided test can be constructed as H0: k = 0  against H1: k ≠ 0 to determine whether the 

lag k autocorrelation is significantly non-zero at α significance level. The test criterion is: 
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 
1/2

1

  1 2
q

k v
v

n 


  
   

  
  (8.3)

 
 

As noted by Box et al. (1994) only estimates found to be significantly non-zero are included in 

the estimation of the standard error. Under the assumption that beyond a certain lag q, all 

autocorrelation may be non-existent, hence the above test is conducted in such a way that if for a 

certain k, k = 0 then the test may stop. 

So far we have established a way to test autocorrelation, now we would have to ascertain how 

to correct for autocorrelation when it exists. As prescribed by Shore (1997) a process may always be 

reconstructed if we skipped enough observations so that those remaining may be shown to be non-

autocorrelated. These observations if numerous enough will faithfully reconstruct the underlying 

distributions and allow for the estimation of the process capability. This strategy is only suitable in a 

data rich environment; fortunately in process control environment large datasets are readily 

available. Some authors such as Zhang (1998), Wallgren (2007), and  Noorossana (2002) have dealt 

with autocorrelation when estimating PCI’s by finding the underlying pattern which describes the 

process (i.e. establishing whether the process follows an AR, ARMA, ARIMA etc.). When the 

underlying process distribution is established the residuals of the model is used to assess capability 

such that the residuals are assumed to follow a white noise and as known, a white noise process is 

uncorrelated and approximately follow a normal distribution with mean zero and constant variance 

σ2 (i.e.  2~ 0,t WN  . 

This modelling dependent approach appears to be complicated and less known how to interpret 

your results after the white noise transformation. Shore (1997) and Vanmman et al. (2008)  prefer 

the model free approach were the underlying distribution of the process is ignored but subsamples 

are formed from skipping enough observations in the original dataset such that the subsamples 

achieved are independent. There model free approach is achieved by using the iterative skipping 

strategy proposed by Vannman et al. (2008). This approach will be pursued in detail in the next 

section. 
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8.1 Iterative Skipping Strategy  
 
Under this skipping method proposed by Vannman (2008), the autocorrelated original dataset is 

partitioned into subsamples such that the iterative skipping strategy is used to achieve subsamples 

that are approximately independent. The capability of each subsample will then be estimated and 

combined in such a way that it can be compared to the critical values to ascertain whether the 

process meets the prescribed quality (i.e. Cp = 1.0 or 1.33). 

Assuming that an autocorrelated dataset of size N is obtained from a specified manufacturing 

process. The total set of observations (N) is then divided into subsamples each of size  = /m N r , 

where r defines the number of independent subsamples required and m the size of each subsample. 

The first subsample will consist of observation numbers 1, 1+r,  1+2r,….., 1+(m-1)r, likewise the 

second subsample will consist of observation number 2, 2+r, 2+2r, ….., 2+(m-1)r and so forth. Each 

subsample will be made-up of size m, where r is chosen so that the subsamples are independent. 

To find the capability of the process, several decision rules may be derived from the 

subsamples obtained from the skipping strategy. Let C denote the required capability of the process 

such that the distribution of the estimates can be derived under the assumption of independent 

observations. Let  iC  represent the estimated index from the independent subsample i, 1,  2,...,  .i r  

The decision rule is then derived based on the following hypothesis: H0: 0  C k    against  

H1: 0  C k   at significance level α. 

Let 0k  and  0 mc  
denote the required capability of the process and the critical value of the 

hypothesis respectively, stated such that if  iC >  0
,mc  the decision rule declares the process is 

capable and if  iC <  0
,mc the process is judged otherwise. 

There are several decision rules that can be applied and are detailed as follows: 

Rule A: 

Reject H0  if  iC >  0 mc  for one randomly chosen subsample i. 

       The weakness with Rule A is the power of the test is small unless m is large. 

Rule B: 

Reject H0 if  max iC >  0
,  1, 2,...,mc i r  with 0 r    
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
  

0 0P 1 or more of , 1,  2,...  | H  is true i mC c i r     

Rule C: 

Reject H0  if  2 or more  iC >  0
,  1, 2,...mc i r   with  1/2

0 = 2 r  . 


  

0 0P 2 or more of  ,  1,  2,...  | H  is true i mC c i r     

Rule D: 

Reject H0 if the third largest value of or more  iC >  0
, 1, 2,...mc i r   where  1/3

0 = 6 / .r    


  

0 0P 3 or more of ,  1,  2,...  | H  is true αi mC c i r    

Each of the Rules A-D will have a significance level of at most α under the assumption that 

observation in each subsample are independent. The Rules A-D does not require the subsamples to 

be independent (Vannman et al., 2008), hence as long as the within subsample is independent and 

the between subsamples are dependent the Rules are still applicable. 

8.2 Test for Independence 
 
Choosing an appropriate r-value such that the subsample generated using the iterative skipping 

strategy is independent requires assessing the level of autocorrelation existent in the data, the total 

sample size (N) and also the power of the test (Vannman et al., 2008). In view of this, Vannman et 

al. (2008) demonstrated using an AR (1) process the necessary r value which will be able to 

partition the original dataset into independent subsamples. The table below demonstrates the number 

of times the hypothesis is not rejected with possible autocorrelation =0.3, 0.5, 0.7, 0.9 , total 

sample size (i.e. N=100, 200, 500, 1000) and m = [N/r]. The number in brackets indicate the size of 

the subsample. 

 N 

r            100             200            500            1000 

ρ =0.3         

5  0.99(20)     0.99(40)  0.98(100)  0.98(200) 

10    0.99(20)  0.98(50)  0.98(100)

20      0.99(25)  0.99(50)

25      0.99(20)  0.99(40)
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ρ = 0.5         

5  0.99(20)     0.98(40)  0.96(100)  0.95(200) 

10    0.99(20)  0.99(50)  0.98(100)

20      0.99(25)  0.99(50)

25      0.99(20)  0.99(40)

ρ = 0.7         

5  0.95(20)     0.88(40)  0.68(100)  0.38(200) 

10    0.99(20)  0.98(50)  0.97(100)

20      0.99(25)  0.99(50)

25      0.99(20)  0.99(40)

ρ = 0.9         

5  0.49(20)     0.08(40)  0.00(100)  0.00(200) 

10    0.83(20)  0.41(50)  0.09(100)

20      0.96(25)  0.91(50)

25      0.98(20)  0.96(40)

Table 2: The proportion of times for which the null hypothesis of independence is not 
rejected in the subsamples, when N = 100, 200, 500, 1000, r = 5, 10, 20, 25 and  

m = N / r ≥ 20. This table was adopted from Vannman et al. (2008).  

 

From Table 2, it can be inferred that when autocorrelation is low (i.e. ρ = 0.3, 0.5), then r = 5 is 

a suitable choice to deal with this autocorrelation. However, as the autocorrelation in the dataset 

increases the choice of r becomes crucial. When ρ = 0.9 and r = 5, autocorrelation will still exist as 5 

subsamples are not enough to correct for high autocorrelation but as r is increased to 20, this is 

efficient enough to correct for autocorrelation. Thus as autocorrelation increases, there should be a 

corresponding increase in the size of r. Finally, it can also be seen in Table 2 that when N is large 

enough and also r is large the subsample size m reduces but it is effective with dealing with higher 

levels of autocorrelation. Hence this table serves as guidance when choosing an r value for auto-

correlated data.  

8.3 Statistical Test to Evaluate Process Capability 
 
In industry, some practitioners usually use the estimated capability index derived from the sample 

data to judge whether the process is capable. Such a procedure is unreliable because sampling error 
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has been ignored (Pearn et al., 1999). Hence a test of hypothesis has been developed by Pearn et al. 

(1999) to judge the capability of the process based on the critical value usually computed via the 

significance level, α and the sample size, n. 

In this section, the hypothesis constructed for the classical capability indices will be reviewed 

and applied in the analysis section where necessary. These hypothesis tests are applied given that the 

distribution of the data values is independent. The test of hypothesis for the indices ,  pl puC C
 
and  

 pkC will be reviewed and that of pC will be ignored, as in industry process characteristic such as the 

mean μ are rarely centred on the process target T. 

 

8.3.1 Hypothesis Test for 
pk

C  

To determine whether a process meets the capability requirement, Pearn et al. (1999) proposed the 

following hypothesis H0: pkC C  against H1: pkC C at significance level α, where the process is 

deemed capable if pkC C and otherwise, if the process fails to meet the required capability, 

pkC C . 

In order to estimate the capability using the index pkC , three estimators are available namely; 

the natural estimator  pkC , Bissell’s estimator 
/

pkC  and the Bayesian estimator 
"

pkC  proposed by the 

Bissell (1990), Kotz et al. (1993) and Pearn et al. (1996b) respectively. 

The estimator  pkC  has been shown by Kotz et al. (1993b) to have a smaller variance than 

Bissell’s estimator, but the Bayesian like estimator 
/ /

pkC  is a UMVUE of pkC  when the correction 

factor is added. Since the index 
/ /

pkC  is a UMVUE by adding the correction factor  fb  to the 

estimated 
/ /

pkC , hence sole attention will be placed on this estimator. 

In order to calculate the Bayesian like estimator 
/ /

pkC  the location of the mean is vital. Thus the 

following should be known either  P m p    or    1P m p     where 0 1,p   which can 

be obtained from historical information. The Bayesian like estimator is defined as: 

 

     
//

- - 3 ,pk AC d x M I S  (8.4)
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where   1,AI    if  , andA    1AI     if  ,A   where  A M   . 

Pearn and Chen (1996a) showed that under the assumption of normality the distribution of the 

estimator  / /
3 pknC  is  -1 ,nt  a non-central t with n-1 degrees of freedom and non-centrality 

parameter 3 pknC  . The probability density function can be expressed as:  
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  

 
 



               


2-0.50.51/2
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0.5/2 0

9 -1 -  3
exp -
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pkn

n

y n xy n Cn
f x y dy

n
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 (8.5)

 
 

Pearn and Chen (1996a) also showed that by adding the well-known correction factor fb to the 

estimator 
/ /

pkC , with                   
10.5

2/ -1 -1 / 2 - 2 / 2 ,fb n n n an unbiased estimator  

  / /
  pk pkfC b C  can be obtained and then  pkC  is a UMVUE of .pkC The possible values of the 

correction factor fb factor based on the sample size of the sample are stated in the Appendix. 

 Furthermore, the critical value 0C  is determined by:  

  

 

    0 -1,3f n cC b n t  (8.6)

 
 

where  -1,n ct   is the upper α quantile of  -1n ct  and 1 23n C  . Hence if  pkC 0C , then the null 

hypothesis (H0) is rejected and conversely.  

Similarly, the hypothesis test for the one-sided capability indices (i.e. plC and puC ) can be 

constructed. The indices plC and puC  can be estimated using the natural estimators due to Kotz et al. 

(1993b) as: 
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,
3 3pl pu

USL x x LSL
C C

S S

 
  (8.7)

where x  and S are conventional estimates of μ and σ. They may be obtained assuming the process is 

in statistical control. Chou and Owen (1989) showed that the estimators plC and puC  are distributed 

as  -1
,

n cct   with  -1

3c n and  -1nt   being a non-central t-distribution with n -1 degrees of 

freedom and non-centrality parameter 3 pknC   and 3 plnC   respectively. 

Although both estimators are biased but by adding the correction factor fb  to plC  and ,
puC we

obtain unbiased estimators and also UMVUE of  plC and puC  (Pearn et al, 2002). 

Identical to the hypothesis test for ,pkC the hypothesis test for plC and puC  may also be 

constructed as follows: 

H0: IC C

H1: IC C at significance level   

and  the critical value 0C  is determined by    1/2
0 -1,3f n cC b n t   , where  -1,n ct   is the upper α  

quantile of  -1n ct  and 1 23n C  . Hence if 0IC C ,where I = l or u depending on the capability 

required, (either plC  or puC ), then the null hypothesis H0 is rejected and vice versa..  

8.3.2 Estimating Process Capability for Skewed Population 

Distributions 
In order to conduct any process capability assessment, the normality assumption is one of the 

conditions that have to be tested. Moreover, many processes in industry such as the chemical 

process industry output tend to deviate from Gaussian normality and ignoring the process 

distribution may give misleading information about the process performance. Usually, for skewed 

populations the number of non-conforming units tend to increase depending on the degree of 

skewness and the traditional PCI’s are insensitive to the skewness of the underlying distribution 

(Chang et al., 2002). Therefore the process capability estimate will exaggerate the process 
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performance. A method to adjust the traditional capability indices to account for skewness which 

causes an increase in the number of defective units is required. In this light, several methods have 

been proposed in the past to address the issue of non-normality when estimating PCI’s with 

reference to authors such as Clements(1989), Pearn and Kotz (1994), Franklin and Wasserman 

(1991; 1998), Shore (1998), Polansky (1998), Sommerville and Montgomery (1996) etc. However 

these methods have their own shortcomings either in terms of the fact that they are too complicated 

and unattractive to practitioners or the use of data transformation techniques which usually cause 

difficulty in interpretation of results in terms of the original data (Chang et al., 2002). 

 Therefore Chang et al. (2002) proposed the weighted standard deviation (WSD) method which 

is relatively easier in computation and also accounts for the skewness in the underlying distribution. 

The weighted standard deviation method divides the process standard deviation into two parts, that 

is the lower and upper standard deviations (i.e. WSD
L and WSD

U ), which measure the extent of 

deviation of the lower and upper distribution from the overall process mean (μ). Then the standard 

process capability indices are adjusted for skewness, such that the estimated PCI’s for non-normal 

process distributions are less than their standard PCI’s but these non-normal PCI’s revert back to the 

standard PCI’s when the process is symmetric. 

Although the distribution of the underlying population distribution may be asymmetric, this can 

be decomposed into two normal pdf’s (Chang et al., 2002) such that; 

 

 

  
 

 
  

 

1

2 2u WSD WSD
u u

x
f x  (8.8)

 
and  

 

  
 

 
  

 

1

2 2L WSD WSD
L L

x
f x  (8.9)

 
 

From the equations (8.8) and (8.9) the mean is constant but the standard deviations differ and 

 .  represent the standard normal density function. The two weighted standard deviations, that is 
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WSD
L and WSD

U are expressed as WSD
u P  and  1WSD

L
P   where  P P X   . In this 

instance the deviations used are 2 WSD
L and 2 WSD

U , but these deviations usually depend on the extent 

of skewness, for instance the deviation may take a form of 3 WSD
L and 3 WSD

U etc. In summary the 

WSD method is able to account for skewness when estimating process capability in a simple and 

robust way. 

 

8.3.2(a) 
pC based on the WSD Method 

The pC based on the WSD method, WSD
pC is estimated as follows: 

  

 

 

 
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6.2 6.2 1

1 1,min
6 2 2 1
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U L

p

x
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USL LSL USL LSL

USL LSL USL LSL

P P

USL LSL

P P

C

D

 

 



  
  

 
       

       



 
(8.10)

 
where 1 1 2 .xD P    It should be noted that 2 WSD

L and 2 WSD
U are used in place of  to reflect the 

degree of skewness. Assuming the process is symmetric, that is 0.5P  , then the non-normal PCI 

reverts back to its standard PCI (i.e. WSD
p pC C ). However, assuming that the population is skewed, 

then 1xD  and WSD
p pC C .  

8.3.2(b) pk
C  based on the WSD Method 

The index is usually used when the process has a one-sided specification limit. In terms of the WSD 

method, the standard PCI’s are defined as: 
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3.2 6
WSD
pku WSD

u

USL USL
C

P

 
 
 

   (8.11)

 
and  

  

 

 3.2 6 1
WSD
pkl WSD

l

LSL LSL
C

P

 
 
 

 


 (8.12)

 
 

Similarly, the WSD pkC  can be estimated as: 

 

 

   
, ,min min

6 6 1
WSD WSD WSD
pk pku pkl

USL x x LSL
C C C

Ps P s

        
 (8.13)

 
  

 

8.3.2(c) Estimating the Parameters invoked in the Non-normal PCI’s 
In order to calculate the WSD PCI’s, the parameters invoked in the non-normal PCI are unknown 

and have to be estimated. Assuming a random sample of 1 2, ,..., nX X X , then the population mean μ 

and standard deviation , may be estimated using the sample mean, x  and sample standard 

deviation, .s Since  P P X   , it can be estimated by using the number of observations less than 

or equal to X such that: 

 
1

1ˆ
n

i
i

P I x x
n 

  , where   1I x   for 0x  and   1I x  for .0x   

8.4 The Uncertainty Theory Approach  
 
The previous section dealt with the classical approach to estimating process capability which entails 

the collection and analysis of data usually with a correlative structure (Chen et al, 2012). The 

classical approach depends on a large historical data in which a probability distribution is required to 
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describe the underlying structure of the data. However, uncertainty theory was proposed to obtain 

intuitive opinion from several experts to broaden knowledge about a process or system. Hence, little 

or no historical data is required as the main objective is to model expert intuition about a system.  

   In uncertainty theory, an uncertain variable is used to obtain uncertain information and an 

uncertain distribution is then constructed to describe the range of the uncertain variable. The 

approach of uncertain statistics proposed by Liu (2010) was designed to collect and interpret 

subjective information from experts about a particular system and this expert information is obtained 

via a structured survey. 

 

8.4.1 Experts Data and Uncertainty distribution 
 
As noted in the previous section, information obtained under uncertainty theory is based on expert 

opinion rather than historical data. In applying uncertainty theory to process engineering, a 

questionnaire was designed to obtain information from experts. An example of the questionnaire 

method is described as follows: 

Given a manufacturing process designed to produce a wire of mass: 73.1g and using the machine  

21503, an engineer was asked about  the likely process output. Below is an example of how an 

industrial engineer, with a considerable level of experience in working on the manufacturing 

process, might regard the process output is: 

 

Q1. What do you think is the minimum mass measurement of the process output? 

A1:  70g (an expert experimental datum (70, 0) is obtained) 

Q2. What do you think is the maximum mass measurement of the process output ? 

A2:  75g (an expert experimental datum (75, 1) is obtained) 

Q3.  From your experience with working on the process, what is the likely mean mass of  the 

process output?  

A3: 72g 

Q4. What percentage of values are likely to be less than the mean mass you specified ? 

A4: 50% (an expert experimental datum (72, 0.5) is obtained) 

Q5. How likely is the process to yield mass measurements between ( M – 3.0g) and ( M + 3.0g)? 

where M stands for the mean you have chosen in Q2. 

A5: 90%  
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Q6. What percentages of the mass measurements will be below M-3.0g ? 

A6: 0% 

Q7.a  What percentages of the mass measurements will be above M+3.0g ? 

A7: 5% (an expert experimental datum (75, 0.95) is obtained) 

Q8. Is there any other possible values you regard the process output is likely to take?  

A8: None. 

Q9. Please select the belief degree (percentage)  that  this process output selected in Q8 is likely to 

take? 

A9: N/A. 

 

 

Moreover, to ensure the validity of information obtained under uncertainty theory, multiple 

expert opinion may be obtained via the Delphi method. The Delphi method is a structural survey 

technique used to obtain information about a process from several experts and then a group 

judgement is inferred from the expert opinion and the feedback presented to the experts and then 

asked whether they would like to revise their initial judgement about the process based on the group 

judgement. This process is continued until a terminal condition is met or consensus is reached.  The 

advantages of the Delphi method as noted by Wang et al. (2010) are the collection of experts advise, 

independent judgement by each expert to avoid any domination of a group by an individual, 

iterations to help reach a consensus etc. Hence the Delphi method would also be applied in this 

research and is adequately described as follows: 

Step 1: For the first interview, set the iteration number k equal to 1. 

Step 2: A group of m experts are invited to provide their experimental data in the form 
    ,  k k
ij ijx  , 

where ijx denotes the  jth value provided by the ith expert and ij  represents the ith experts belief 

degree that   is less than ijx , 1, 2,.....,i m and 1,2,....., ij n  respectively. This represents the 

uncertainty measure of the uncertain event 
  k

ijx  . 

Step 3: Calculate the uncertainty distribution for the ith expert based on the experimental data 

    ,  k k
ij ijx  , various interpolation methods such as the linear interpolation, cubic-spline method, 

quadratic-spline, sin x-spline etc., may be used to generate a continuous distribution 

Φ ,  1,  2,...,  .k
i i m  Calculate the number of possible values of the uncertain variable, ξ, presented by 
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all experts denoted by N, where the same values from different experts are considered as one. Thus 

the possible values of ξ are 1 2 3 ... .Nx x x x    Then compute the aggregated distribution for the 

group using the weighted mean as: 

 

       
1

1 n
k k

i
i

x x
n 

    (8.14)

 

 In estimating the aggregate distribution a weight may be assigned to each expert and in this 

case we will assume that each experts has an equal weight of 1 n . 

 

Step 4: Generate the feedback information for the next iteration by presenting the ith domain expert 

a revised group feedback as well as the original information given. By examining the group 

judgement each participant may voluntarily adjust their judgement or leave it unchanged.   

 

Step 5: The data is then passed through a stability test to determine whether the experts data is 

consistent. This test is conducted by using the sum squared differences between individual and 

group uncertainty distributions. 

 

      
2

1

1
-  ,

m
k k

j ij j
i

d x
m 

    (8.15)

 
  

 

Step 6: Test the stability of the Delphi process. If jd  is less than a predetermined level, say 0  then 

terminate the iteration. Finally use the integrated dataset         1 1 2 2, , , ,..., ,k k k
N Nx x x    to 

generate an uncertain distribution.  

 

8.5 Uncertainty Capability Indices 
 
Under probability theory several classical indices such as ,  p pkC C and pmC

 
have been proposed to 

assess how well a process satisfies customer requirements. The classical capability indices also have 
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their counterparts in uncertainty theory. This section will apply the new capability indices in an 

uncertain environment to the group expert’s information obtained via the Delphi method in order to 

estimate the capability of the process.  

Most importantly, it should be aware that uncertain process capability indices are interval 

valued, which are different from their real-valued scalar probabilistic counterpart. As investigated in 

Chapter 7, we defined those uncertain capability indices uCp, uCpk, and uCpm respectively. 

Furthermore, we developed the expressions for those uncertain capability indices uCp, uCpk, and uCpm 

without process parameters available. 

So far the uncertainty capability indices derived in Chapter 7, are based on a process that has 

both lower and upper specification limits. However, the industrial data obtained from the wire 

manufacturing company (which will be described in detail in Chapter 9) possess only an upper 

specification limit. Hence, proposing an uncertainty capability index that can handle a single 

specification limit is necessary.  

Given the process characteristic with Liu's uncertain normal distribution, then the uncertain 

process capability index uCpu can be expressed as:  

, .
3 3 2

u pu
U U

USL USL
C

 
 

  
  
  

(8.16)

As discussed in Chapter 7, usually the process statistics which are functions of the capability indices 

are known, so it is always necessary to accommodate this sampling error. Likewise, confidence 

intervals will also be constructed for this one-sided specification uncertainty capability index. 

Assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal distribution with parameters m 

and s. Then, for any pre-determined level α, αÎ(0,1), the 1- α level confidence interval for the 

uncertain process capability index uCpu can be expressed as:  

   ˆ , ,  0,1 ,u puC LL UU    (8.17)

where 
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1 3
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 
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 (8.18)

and 
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(8.19)
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USL x

C
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Proof: Under Liu's uncertain normal distribution, 1 2L U  ,  


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pk USLu
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USL USL
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 (8.20)

Thus, it is necessary to do a two-step replacement of  parameters m and s. 

The first step is to replace s by S:  

    ln 2 ln 1 , ln 2 ln
3 3 / 2

u pk

USL USL
C

S S

    
    
 

  (8.21)

The second step is to replace m by x :  

   ˆ ,u pk USLC LL UU  (8.22)

where  
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 (8.23)



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
112

hence 
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and using the same analogy, then; 

(8.25)
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hence 
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Chapter 9. Empirical Results for a Local Manufacturing 
Process Capability 
 

 

This chapter describes the analysis and interpretation of data obtained from a confidential and hence 

anonymous wire manufacturing company in South Africa. The methodology established in Chapter 

7 and 8 will be applied to assess the classical capability in terms of the process ability to meet set 

quality requirements. Similarly, the experimental data obtained from experts will be analyzed using 

the Delphi approach to establish group judgement (consensus) as well as expert process capability 

(using the proposed uncertain capability index). These two approaches will be compared to 

determine whether the uncertainty approach will be able to provide valuable information as its 

probabilistic counterpart. 

The dataset used in the thesis was collected from a South African wire manufacturing company 

who prefers to remain anonymous. The wire data collected was based on three core parameters 

measured, namely; conductor resistance, mass and core diameter. The conductor resistance is the 

most essential parameter of the three parameters measured, because the core diameter and mass of 

the wire depend on the specified tolerance of the wire’s conductor resistance. Hence, a wire with a 

failed conductor resistance implies a defective wire since the most essential feature of any 

manufactured wire is its ability to resist current. Quality of the manufacturing output will 

concentrate on the wire conductor resistance. 

The conductor resistance of the copper wires have a one-sided tolerance limit expressed as 

4.61Ω, such that any wire measurement fallen below this limit passes the capability test while any 

value exceeding the limit represents a failed wire. In summary, the following conditions apply: 

if  . 4.61CR Measurement   then  Quality Pass else  Quality Fail . 

where CR.Measurement represents the conductor resistance measurement of a wire. 

 In order to conduct any process capability study, the underlying assumption governing process 

capability analysis should be verified to ensure the validity of the analysis (Pignatiello and Ramberg, 

1993). These assumptions are stated in the Chapter 8 as follows:  The observed sample should be 

Representative, Normally distributed, Stable and Independent. Hence the following section will 

test whether all these assumptions hold. 
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9.1 Sample Representation issue 
 
The conductor resistance data of the wire obtained from the manufacturing process has a total 

sample size of 424 observations which had been collected over a 5-month manufacturing period 

(08/01/2013-28/05/2013), expert opinion holds this sample is representative of the entire production 

process. The next section will test for normality, stability and independence. 

9.2 Test Process Distributional Normality  
 
In order to assess process capability, histogram and boxplots are reliable quality control tools to 

visualise and assess process performance and also determine the shape, center and spread of the 

distribution (Senvar, 2010). If the distribution of the quality characteristic measured is fairly skewed 

and this is not accounted for, then the capability estimates from the process may be misleading. 
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Figure 12: Boxplot, Histogram and Normal quantile-quantile plot of the Conductor Resistance of a 
wire with specified tolerance limit of 4.61Ω. 

 

Fig. 12 (a) represents a boxplot of the measured wire conductor resistance with a specified 

tolerance limit of 4.61Ω. A box plot is usually used to determine whether there are outliers in the 

observed data and also the distribution of the dataset. If the mean and median are approximately 

equal, then the distribution of the data follows a Gaussian Normal distribution. It can be clearly seen 
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that the dataset contains three outliers which were removed or else this may have skewed the 

distribution of the data and consequently, bias the analysis.  

Fig.12(b) represents the distribution (shape) of the wire conductor resistance data with a 

specified tolerance limit of 4.61Ω, the distribution of the data appears deviated from the Gaussian 

normal although the outlier which was present in the boxplot (Fig. 12 (a)) has been removed. Fig.12 

(b) shows that the process distribution is skewed to the right and also an interesting observation is 

that a proportion of observed conductor resistance measurements exceed the specified tolerance 

limit of 4.61Ω, which count as failed (i.e. defective) wires. Due to the one-sided specification limit, 

the natural choice of the classical process capability index pkC is suitable and hence will be used to 

estimate process capability.  

The probability plots in Fig. 12 (c) are also useful in determining the distribution and spread of 

the quality characteristic measured (i.e. conductor resistance). These plots are also used to test for 

the Gaussian normality assumption. The main idea of the probability plots is to assess the data 

plotted against the theoretical Gaussian normal distribution (i.e. plotted as a straight diagonal line in 

Fig. 12 (c)) and if the plotted data seriously deviates from the straight line then the normality 

assumption is in doubts. In this case both tails of the data tend to depart from the straight line. 

Hence one can assume that the process distribution follows a non-normal distribution. The 

Shapiro-Wilk test will be applied to justify if there evidence of non-normality is valid. 

Table 3: Shapiro-Wilk normality test 

W (Wilks statistic) p-value 

0.9364 2.08x10-12

 

 

The Shapiro Wilk test (Table 3) indicates that the wire conductor resistance data significantly 

deviates from normality at 5% level of significance. The validity of a non-normal distributed dataset 

is verified and will be adopted in this case. 
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9.3 Test of Process Stability 
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Figure 13: The Quality Control chart of the wire conductor resistance data with specified upper 
limit of 4.61Ω. 

 
The quality control chart is used to assess whether the process is in a stable condition (i.e. the 

process does not deviate from its mean). The red broken lines represent the control limits while the 

black solid lines demonstrate the performance of the process. When the process exceeds the control 

limits (red broken lines) this is deemed as a point that is out of control. Thus, as depicted in Fig. 13, 

the process does not seem to be definitely in a stable condition (i.e. subject only to be random 

influences). The process takes long excursions from the mean, and sometimes does not fluctuate 

around the mean as expected from a stable process. The several out of control events indicate that 

process targeting has not been effectively pursued in this case. 
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9.4 Results for Testing Independence 
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Figure 14: The Correlogram describing the Autocorrelation permeating the dataset 
 

 

Fig. 14 represents the correlogram in which the vertical lines above the blue broken horizontal 

lines represent the type of autocorrelation that permeates the data. The blue broken lines represent 

the standard error in which if the vertical lines are above the blue broken line it signifies a sign of 

autocorrelation as a function of lag k. In Fig. 14, there conductor resistance data follows an 

autoregressive model of order 6 (i.e. AR(6)). The process is described by the following AR(6) 

model: 

 

1 2 3 4 5 60.3396 0.2066 0.0621 0.0563 0.1195 0.0779t t t t t t t tZ Z Z Z Z Z Z                        (9.1) 

 
where tZ  is the observed value at time t, and t  is a series of uncorrelated errors that are white 

noise distributed with zero mean and constant variance. This model implies that there is a certain 

inertia which drives the process. Thus every observation is influenced by the previous six 

observations. To reiterate, every current observation is a function of the past six observations and 

t , that is a random shock usually called a white noise which has a random influence on the process. 

Due to this, the assumption of independent observations does not hold in this case. 

 As described in the Methodology section, since autocorrelation permeates the data the iterative 

skipping strategy will be used to obtain independent within subsamples and the process capability 



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
 118 

 

will be estimated from each subsample and combined in such a way that the Type I error will be 

controlled. We note that this test does not require independence relationships between the 

subsamples. Thus one can have a situation where values within each subsample is independent but 

amongst themselves there is some dependence and the test statistic will still be plausible (Vannman 

et al., 2008). 

Only a one-sided specification limit for the wire conductor resistance measured was given as 

4.61Ω. Any product with conductor resistance greater than this specified limit is deemed defective. 

However, any product  with a value less than or equal to 4.61Ω has passed the capability test. Hence 

the one-sided index Cpu  will be used to ascertain the capability of the process. Using the formula of 

   3puC USL x s 
 
the capability of the process ignoring autocorrelation and non-normality, 

although both conditions exist, the capability was given as  0.61puC  . A process is said to be 

capable if 1puC  . As noted by Shore (1997) when autocorrelation permeates the data, the process 

capability estimates tend to be inflated, hence we are expecting the actual performance yield of the 

process to be even less than 0.61. 

9.5 Skipping Rules Results 
 
The total sample size of the wire conductor resistance data is 420 observations (i.e. after removing 

four outliers) in which the underlying distribution of the data follows an autoregressive model of 

order 6. The iterative skipping strategy is then employed to partition the total sample size N into r 

subsamples of size m each (i.e.    /m N r  ). In this instance, the autocorrelation in the dataset is 

high (i.e. AR(6)) hence referring to Table 6 (see below), when autocorrelation is high, a large value 

of r will be required to deal with autocorrelation. The total dataset was partitioned into 8 subsamples 

(r = 8) such that observations within each subsample are independent and at least of approximately 

size 52 each     i.e.   / 420 8 52.5 .m N r     

In order to remove autocorrelation, the iterative skipping strategy was used to partition the 

original dataset into 8 subsamples, it can be seen from the correlogram in Fig 15. (a)-(h) that the 

assumption of independence holds for most of the subsamples and autocorrelation is at most of order 

2 compared to the original dataset which had an autocorrelation of order 6. After using the skipping 

strategy, only a few correlograms of the sub samples have vertical lines that exceed the blue broken 

lines, this implies that autocorrelation has been removed in most instances and severely tamed  
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down in the remaining. This justifies the use of Vannman et al.(2008) approach in tackling 

autocorrelation when it permeates the dataset. Since autocorrelation has been removed from the 

dataset then the capability of the process can now be estimated as the assumption of identically and 

independently distributed process holds. 
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Figure 15: Assessing the level of autocorrelation in the 8 subsamples after applying the iterative 
skipping strategy. 
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9.6 Test of Process Capability 

A process is described as incapable if 1.0puC   and in such a case either process targeting should be 

aggressively pursued or process variance should be reduced (Pearn et al., 1999). A process is 

deemed capable if the 1.0  1.33puC  in this case some process control is necessary. Moreover if, 

1.33  1.50,puC  the process is regarded as satisfactory and so forth. The table below depicts the 

possible capability index values and their corresponding interpretation in terms of quality 

requirements. 

Table 4: The puC  value and the corresponding Quality conditions. 

puC  value Quality condition 

1.0puC   Inadequate 

1.0  1.33puC   Capable 

1.33  1.50puC   Satisfactory 

1.50  2.00puC   Excellent 

2.00puC  Super 

To determine whether the process meets the capability, the specifications of the process should 

be defined. In this case the required capability 1C  , is chosen and the α risk is set at 5% 

significance (i.e. the probability of committing a Type I error).  The hypothesis is stated as: 

H0: puC 1  

H1: puC 1  at significance level 5%. 

Calculate the value of the estimator C
WSD

pu from the 8 subsamples. In order to estimate the 

process capability, the C
WSD

pu

 
formula in Section 8.3.2(b) is employed to account for skewed 

distributions.

It should be noted that when the data is normally distributed then   .
WSD

pupu CC   The capability of the 

process was also estimated using the index  puC to determine the effect of the skewed population 

distribution.  The estimates of the process capability are given in Table 5: 
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Table 5: Estimates of Process capability from the 8 independent subsamples.  

r (subsample no.) WSD
puC  puC  

1 0.6168902 0.6983662 

2 0.4941277 0.5780361 

3 0.559204 0.6330612 

4 0.4580344 0.5185295 

5 0.4772929 0.5507226 

6 0.5379412 0.6207014 

7 0.5906069 0.6587538 

8 0.5889459 0.6115976 

 

The critical value 0C  is determined by using a proxy proposed by Pearn et al. (1999),  

   0 -1,3f n cC b n t   , where  -1,n ct   is the upper α  quantile of  -1n ct  and 1 23n C  .  

From the table provided by Pearn et al. (1999) the critical value is 0C =1.201 assuming that 

α=0.05 and n=52.  

 

Table 6: Recommendations for the skipping strategy (adapted from Vannman et al., 2008). 

 Recommendation 

r Rule

Uρ 0.5  5 C or D 

U0.5 ρ 0.7 
 

10 C or D 

U0.7 ρ  20 or 25 B, C or D 

 

Since r = 8 in this case and is closer to 10 than 5, from Table 6 Rule C will apply. The Rule C is 

stated as follows: 

Reject H0  if 2 or more   pl iC > 0 ,  1,2,...C i r . 

   0P 2 or more of ,  1, 2,...r|H  is true pl i oC C i     
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From Table 5, none of the estimated capability indices of the independent sample meet the 

basic capability requirement of C=1 (i.e.    0 ,   pu iC C i  ).  

The conclusion is that we fail to reject the null hypothesis (i.e. the process is inadequate). Thus the 

process fails to meet the set capability requirement; hence process targeting efforts may be used to 

reduce process variance.  

The hypothesis test and the descriptive statistics (i.e. QC chart, histogram, boxplot etc.) 

demonstrate that the process is sporadic with no uniformity, i.e. there is a large variation in the 

conductor resistance data. Although, almost all the observations are within the 4.61Ω tolerance limit 

(i.e. refer to Fig. 12), which signifies a process that has less defective units, the variability within the 

system is still very high and results in a low capability index.  Therefore a change in the thinking of 

the way process capability analysis is conducted is required from the engineers in order to improve 

quality. For example, a process producing wire mass measured may be given specifications as: 48 

±0.5grams. The engineer should concentrate on producing the most likely value, that is 48grams 

rather than monitoring the process to produce mass measurement within the accepted range [47.5g, 

48.5g]. 
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9.7 Estimating Process Capability under Uncertainty Theory  
In order to estimate process capability under uncertainty theory, the process conductor resistance 

measurements were defined as an uncertain variable. To obtain an uncertainty distribution for the 

uncertain variable, experts who have worked on the process were given a questionnaire about the 

possible values the uncertain variable may take and the belief degree depending on their experience 

in producing these wires. Experts were instructed to answer the questionnaire independent of one 

another, to make sure that we capture each experts opinion and also reduce bias. However, only two 

experts (n=2) had the convenience to answer my questionnaire due to their hectic work schedule at 

that particular time. The expert experimental data is given as follows: 

 1 : 4.1,0 , (4.2,0.02), (4.3,0.41), (4.4,0.78), (4.5,0.95), (4.6,0.99), (4.61,1)E

 2 : 4.1,0 , (4.2,0.10), (4.3,0.5), (4.4,0.65), (4.5,0.8), (4.6,0.98), (4.61,1)E

where iE represents the experimental data of expert i , 1,2.i   

The total possible values provided by both experts is given as: 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.61. These 

values and their corresponding uncertainty distributions for each expert are summarized in the Table 

7 below: 

Table 7: Experimental data collected from two experts based on their experience. 
x  1 x  2 x  

4.1 0 0

4.2 0.02 0.1

4.3 0.41 0.5

4.4 0.78 0.65

4.5 0.95 0.8

4.6 0.99 0.98

4.61 1 1

From equations (8.14) and (8.15), let: 

 
2

1

1
,  1, 2,  1, 2,3, 4,5,6,7.

2j i j
i

x i j


    .  

and 
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    
22

1

1
-  ,  1,2,  1,2,...,7.

2
jj i j

i

d x i j


       

In estimating the aggregate distribution a weight may be assigned to each expert and in this 

case we will assume that each experts has an equal weight of 1 2, since n = 2.  Hence the 

corresponding statistics j and jd are calculated as displayed in Table 8: 

 

Table 8: The Integrated Uncertainty distribution and test to judge expert opinion has reached 
consensus. 

x j  jd  

4.1 0 0 

4.2 0.06 0.0016 

4.3 0.455 0.002 

4.4 0.715 0.004 

4.5 0.875 0.006 

4.6 0.985 0.000025 

4.61 1 0 

 

Since 0.05,  1, 2,3,..., 7jd j  therefore there is no need to keep on iterating the process as the 

views of the two engineers are aligned. From Table 8 we get the experts integrated observational 

data as follows: 

 : 4.1,0 , (4.2,0.06), (4.3,0.455), (4.4,0.715), (4.5,0.875), (4.6,0.985), (4.61,1)E  (9.2)

The uncertainty distribution for the expert data can be derived as follows: 

 

            0       ,    4.2

3.95 16.53,    4.2 4.3

2.6 10.725,    4.3 4.4

1.6 6.325 ,    4.4 4.5

1.1 4.075 ,    4.5 4.6

1.5 5.915 ,    4.6 4.61

            1      ,    4.61

if x

x if x

x if x

x x if x

x if x

x if x

if x


   

  
    

  
  













 (9.3)
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Figure 16 below depicts a graphical representation of the expert data provided. This figure 

resembles an uncertain normal distribution, hence we assumed that the expert data follows Liu’s 

uncertain normal distribution. 

Figure 16: A graphical representation of integrated Expert data 

9.8 Uncertainty Process Capability Index Computations 
Since only a one-sided tolerance limit of 4.61Ω was given, the index u puC will be used in an 

uncertain environment to estimate expert process capability.  

Definition 9.1: The uncertain process capability index uCpu is defined by:   

, ,
3 3u pu

U L

USL USL
C

 
 

  
  
 

(9.4)

where L and U are the lower limit and upper limit of the square root of variance interval 

   , .L UV X    

Given the uncertain process is governed by Liu's uncertain normal distribution, 

  2 , .U UV X      Then, the uncertain process capability index uCpk(USL) is expressed by: 

 
, , ,

3 3 3 3 2
u pu

U L U U

USLUSL USL USL
C

  
   

    
    

    
(9.5)
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where parameter  is the expectation, L and U are the lower limit and upper limit of the square 

root of variance interval   2 , .U UV X       

From the uncertain capability index in (9.5), the sample mean and standard deviation need to be 

estimated from the expert experimental data. To estimate these unknown parameters, the sample 

mean and sample standard deviation were defined as: 

 2

1 1

1 1
,  

n n

i i
i i

x x s x x
n n 

     (9.6)

Hence, replacing the parameters in in (9.5) with the sample statistics results in the following: 

  

  

    
, ,

3 3 2
puu

USL x USL x
C

s s

  
 
 
 

 (9.7)

 

Similarly, confidence intervals will also be estimated for the one-sided capability index (i.e. 

uCpu). Thus, assuming that a "sample" 1 2, , , nx x x , from Liu's uncertain normal distribution with 

parameters m and s. Then, for any pre-determined level α, αÎ(0,1), the 1- α level confidence interval 

for the uncertain process capability index uCpu can be expressed as:  

  

 

   ˆ , ,  0,1 ,u puC LL UU    (9.8)

 
where 
 

 2 1 2
ln ln ,

1 3
puLL C


 

          
 (9.9)

and 

 


2

ln
1 2

2ln
23 ln

1

puUU C







    
                       

 (9.10)
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where 
3

pu
USL x

C
s

 
   
 

 

 

 

Using the formula in (9.7), that is after the parameters are replaced with the sample mean and 

standard deviation statistic, the uncertain process capability of the process was estimated over an 

interval as   0.407,0.580u puC  .  

As noted by Moore (1996) any number between the intervals of u puC  qualifies as the capability 

of the process (i.e. under an uncertain environment). In comparison, to the estimated classical 

capability index of  ( )
1 8
max 0.62,pu i

i
C

 
 the uncertain capability index tends to give an adequate 

representation of the process performance at a significance level of α=0.5 (i.e. at a 50% confidence 

interval). The low confidence interval of 50% is justified this is due to the fact that the expert data is 

based on intuition, hence we cannot assign a confidence interval similar to when we are dealing with 

empirical data (i.e. classical approach), hence to adjust for that element of uncertainty a higher 

significance level was used. Using the confidence limits in (9.9) and (9.10), the confidence interval 

for the one-sided uncertain capability index was estimated as  ˆ 0.363,0.770u puC  . The confidence 

interval of the index u puC  reflects a process that is not capable which aligns with the classical 

capability analysis.  

Since the parameters of most production processes are unknown, the uncertain capability index 

tends to give an idea of process performance and also the general thinking about the process 

amongst the process engineers, i.e. how well a process is assumed to perform in relation to the 

actual performance or classical process capability. Hence the uncertain capability indices are not 

proposed to necessarily replace the existing classical capability indices but to complement.  
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Chapter 10. Conclusion 

The objective of the thesis were to comprehensively review the classical capability analysis to gain 

an in-depth knowledge, review uncertainty theory in order to apply it to process capability analysis, 

propose the counterparts of the classical capability indices (i.e. ,p pkC C and pmC ) and finally 

compare the selected uncertainty capability to the estimates of its classical counterpart.  

Thus the thesis set out to achieve these objectives listed and fortunately all these objectives were 

achieved. 

The essential part of the thesis was to extend process capability analysis to an uncertain 

environment and the findings were that under an uncertain environment the uncertainty capability 

indices are expressed as an interval, such that any number within the interval gives a representation 

of the process. This was the major highlight of the thesis. It was identified that the uncertain 

capability index tends to give a realistic representation of the process performance especially at a 

lower level of confidence, i.e. higher significance level α=0.5. The index is also informative and can 

be used as a yardstick for measuring the general thinking of the process performance (i.e. by the 

engineers who operate on it) compared to the actual performance of the process and this index 

serves as a guide to correct for discrepancies between what is expected and the actual. The most 

commonly used sampling statistics (i.e. mean μ and standard deviation, s) were also proposed under 

uncertain environment, leading to the constructing of confidence intervals within an uncertain 

environment for the newly defined uncertainty capability indices.   

This research has had its own limitations in execution and this is stated as follows: 

1) In terms of expert data, we only received feedback from the manager and one of the

engineers working on the process due to a busy schedule at that point in time, hence a

sample of two was used to represent views of about ten engineers who work on the same

process. This generalisation might be bias.

For future research, a hypothesis test needs to be developed to address the situation of how to 

determine whether a process is capable from expert experimental data.  

Finally, to the best of my knowledge there has not been any publication on the application of 

uncertainty theory to process capability analysis, hence this serves as a pioneer research in which 

others can build upon.  
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Appendix  
 
Chart for Averages Chart for Std. Dev. Chart for Ranges 

Factors For Control Limits 
n A2 A3 c4 B3       B4 d2 d3 D3       D4

2 1.880 2.659 0.7979 0 3.267 1.128 0.853 0 3.267 
3 1.023 1.954 0.8862 0 2.568 1.693 0.888 0 2.574 
4 0.729 1.628 0.9213 0 2.266 2.059 0.880 0 2.282 
5 0.577 1.427 0.9400 0 2.089 2.326 0.864 0 2.114 
6 0.483 1.287 0.9515 0.030 1.970 2.534 0.848 0 2.004 
7 0.419 1.182 0.9594 0.118 1.882 2.704 0.833 0.076 1.924 
8 0.373 1.099 0.9650 0.185 1.815 2.847 0.820 0.136 1.864 
9 0.337 1.032 0.9693 0.239 1.761 2.970 0.808 0.184 1.816 
10 0.308 0.975 0.9727 0.284 1.716 3.078 0.797 0.223 1.777 
11 0.285 0.927 0.9754 0.321 1.679 3.173 0.787 0.256 1.744 
12 0.266 0.886 0.9776 0.354 1.646 3.258 0.778 0.283 1.717 
13 0.249 0.850 0.9794 0.382 1.618 3.336 0.770 0.307 1.693 
14 0.235 0.817 0.9810 0.406 1.594 3.407 0.763 0.328 1.672 
15 0.223 0.789 0.9823 0.428 1.572 3.472 0.756 0.347 1.653 
16 0.212 0.763 0.9835 0.448 1.552 3.532 0.750 0.363 1.637 
17 0.203 0.739 0.9845 0.466 1.534 3.588 0.744 0.378 1.622 
18 0.707 0.718 0.9854 0.482 1.518 3.640 0.739 0.391 1.608 
19 0.187 0.698 0.9862 0.497 1.503 3.689 0.734 0.403 1.597 
20 0.180 0.680 0.9869 0.510 1.490 3.735 0.729 0.415 1.585 
21 0.173 0.663 0.9876 0.523 1.477 3.778 0.724 0.425 1.575 
22 0.167 0.647 0.9882 0.534 1.466 3.819 0.720 0.434 1.566 
23 0.162 0.633 0.9887 0.545 1.455 3.858 0.716 0.443 1.557 
24 0.157 0.619 0.9892 0.555 1.445 3.895 0.712 0.451 1.548 
25 0.153 0.606 0.9896 0.565 1.435 3.931 0.708 0.459 1.541 
Table I: Factors For Constructing Variable Control Charts. This table was adopted from 
Montgomery(1985). 
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n bf n bf n bf n bf n bf n bf 

10 0.914 45 0.983 80 0.99 115 0.993 150 0.995 185 0.996 

15 0.945 50 0.985 85 0.991 120 0.994 155 0.995 190 0.996 

20 0.96 55 0.986 90 0.992 125 0.994 160 0.995 195 0.996 

25 0.968 60 0.987 95 0.992 130 0.994 165 0.995 200 0.996 

30 0.974 65 0.988 100 0.992 135 0.994 170 0.996 205 0.996 

35 0.978 70 0.989 105 0.993 140 0.995 175 0.996 210 0.996 

40 0.981 75 0.99 110 0.993 145 0.995 180 0.996 215 0.996 

Table II: Values of the correction factor fb  for various sample sizes.  

This table was adopted from Pearn et al. (1999). 
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R Syntax 

a) Syntax for Gaussian process that is centered (i.e. µ=T) found on pg. 14

set.seed(1) 

x<-rnorm(10000,46,2) 

plot(density(x),main="",ylab="NormalDensity",xlab="Process 

Output(X)",col="blue",lwd=2,cex.lab=0.9) 

abline(v=c(38,46,54),col="red",lwd=2) 

text(c(38,47,54),rep(0.2,3),labels=c("LSL","µ=T","USL"),font=3) 

abline(h=0, col="blue") 

b) Syntax for Gaussian process that is centered (i.e. µ=T) found on pg. 15

mean=49;sd=3;LSL=38;T=46;USL=54 

x<-seq(-3,3.67,length=100)*sd+mean 

hx<-dnorm(x,mean,sd) 

plot(x,hx,type="n",xlab="ProcessOutput(X)",ylab="Normal 

Density",main="",xlim=c(37,60),yaxt="n",cex.lab=0.9) 

i<-x>=USL 

lines(x,hx,lwd=2) 

polygon(c(USL,x[i]),c(0,hx[i]),col="skyblue") 

abline(h=0) 

abline(v=c(38,46,49,54),col="red",lwd=2) 

text(c(38,46,49,54),rep(0.12,4),labels=c("LSL","T","µ","USL"),font=3)

c) Syntax for descriptive stats, QC chart, correlogram, iterative skipping strategy found page 

114,116, 117 and 119

#reading in the CBI dataset 

mydata<-

read.csv("C:\\Users\\Gyekkw01\\Desktop\\RESEARCH\\CBI_Data\\Data4.61.csv",header=TRUE) 

#view the dataset variables 

fix(mydata) 
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#replacing zeros in CR.Measurement with 4.61V 

mydata$CR.Measurement[mydata$CR.Measurement==0]<-4.61 

fix(mydata) 

head(mydata) 

attach(mydata) 

#creating a 1x3 window 

par(mfrow=c(1,3)) 

#drawing a box plot 

boxplot(CR.Measurement,main="Boxplot of Conductor Resistance",cex.main=0.8,xlab="Conductor 

Resistance(measured in Ohms)",cex.lab=0.8,sub="(a)",cex.sub=1.1) 

#calculating 5 summary statistics 

f=fivenum(CR.Measurement) 

#adding 5 summary statistics to the boxplot 

text(rep(1.3,5),f,labels=c("min","lower hinge","median","upper hinge","max"))#label the boxplot 

#Removing the outliers 

mydata<-subset(mydata,mydata$CR.Measurement<4.75) 

attach(mydata) 

#drawing a histogram 

hist(mydata$CR.Measurement,main="HistogramofConductor 

Resistance",cex.main=0.8,xlab="Conductor 

Resistance(Ohms)",cex.lab=0.8,sub="(b)",cex.sub=1.1,col="cadetblue1") 

#plotting a density curve over the histogram 

xv<-seq(4.16,4.78,0.005) 

yv<-dnorm(xv,mean=mean(CR.Measurement),sd=sd(CR.Measurement))*28 

lines(xv,yv,col="red") 

#adding the upper limit of CR to the histogram 

abline(v=4.61,lwd=1.8,col="red",lty=2) 

#label the limits 

text(4.61,87,labels="USL") 

# Constructing a Normal Quantile plot 

qqnorm(mydata$CR.Measurement,main="Normal Q-Q",cex.main=0.8,sub="(c)",cex.sub=1.1) 

qqline(mydata$CR.Measurement) 
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#Testing for Autocorrelation 

par(mfrow=c(1,1)) 

acf(mydata$CR.Measurement,main="Correlogram:Conductor 

Resistance",cex.main=0.8,cex.lab=0.8) 

ar(mydata$CR.Measurement,aic=TRUE,order.max=NULL) 

#Defining a Filter variable 

Filter<-function(x){ 

x<-vector(mode="numeric",length=420) 

for (i in 1:8){ 

x[seq(i,420,8)]<-i 

} 

mydata<-data.frame(mydata,x) 

} 

mydata1<-Filter(y) 

names(mydata1)[17]<-"Filter" 

#Plotting the correlelogram after applying iterative skipping strategy 

par(mfrow=c(3,3)) 

acf(mydata1$CR.Measurement[mydata1$Filter==1],main="CR of Subsample 1",sub="(a)") 

acf(mydata1$CR.Measurement[mydata1$Filter==2],main="CR of Subsample 2",sub="(b)") 

acf(mydata1$CR.Measurement[mydata1$Filter==3],main="CR of Subsample 3",sub="(c)") 

acf(mydata1$CR.Measurement[mydata1$Filter==4],main="CR of Subsample 4",sub="(d)") 

acf(mydata1$CR.Measurement[mydata1$Filter==5],main="CR of Subsample 5",sub="(e)") 

acf(mydata1$CR.Measurement[mydata1$Filter==6],main="CR of Subsample 6",sub="(f)") 

acf(mydata1$CR.Measurement[mydata1$Filter==7],main="CR of Subsample 7",sub="(g)") 

acf(mydata1$CR.Measurement[mydata1$Filter==8],main="CR of Subsample 8",sub="(h)") 

#Estimating capability for each subsample using the index Cpk_WSD found on pg. 121 

Cpk_W<-c() 

xbar<-c() 

s<-c() 

p<-c() 
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for (i in 1:7){ 

SS<-subset(mydata1,mydata1$Filter==i) 

CR<-SS[,7] 

n=length(CR) 

USL=4.61 

xbar[i]=mean(CR) 

s[i]=sd(CR) 

p[i]=length(CR[CR<=xbar[i]])/n 

Cpk_W[i]=(USL-xbar[i])/(6*p[i]*s[i]) 

 } 

warnings() 

#Estimating capability using the index Cpk found on pg. 121 

Cpu<-c() 

xbar<-c() 

s<-c() 

for (i in 1:7){ 

SS<-subset(mydata1,mydata1$Filter==i) 

USL=4.61 

xbar[i]=mean(SS[,7]) 

s[i]=sd(SS[,7]) 

Cpu[i]=(USL-xbar[i])/(3*s[i]) 

 } 

##Plotting a control chart 

#plot an Xbar Chart 

z<-c(by(mydata1[,7],Date,mean)) 

#convert into to a time series object 

z<-ts(z) 

y<-table(mydata1$Date) 

seriesdata<-data.frame(y,z) 

#change the name of column [,1] to "Date" & column [,3] to avg (i.e. group average) 

names(seriesdata)[1]<-"Date" 
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names(seriesdata)[3]<-"avg" 

#resetting the plotting window 

par(mfrow=c(1,1)) 

#constructing the control chart 

seriesdata<-seriesdata[complete.cases(seriesdata),] 

#subsetting where seriesdata$Freq>1 

seriesdata<-subset(seriesdata,!(seriesdata$Freq==1)) 

plot(seriesdata$Date,seriesdata$avg,main="XbarChartforparameter:CR",cex.main=0.8,ylab="Condu

ctorResistance(Ohms)",xlab="Date",pch=23,ylim=c(4.2,4.65)) 

lines(seriesdata$Date,seriesdata$avg) 

UCL=c() 

LCL=c() 

n=length(seriesdata$avg) 

xbar=mean(seriesdata$avg) 

s=sd(seriesdata$avg) 

c4=c(1.2533,1.1284,1.0854,1.0638,1.0510,1.0423,1.0363,1.0317,1.0281,1.0252,1.0229,1.0210,1.01

94,1.0180) 

for (i in 1:n) { 

UCL[i]=xbar+(3*s*c4[seriesdata$Freq[i]-1])/(seriesdata$Freq[i]*sqrt(seriesdata$Freq[i])) 

LCL[i]=xbar-(3*s*c4[seriesdata$Freq[i]-1])/(seriesdata$Freq[i]*sqrt(seriesdata$Freq[i])) 

}  

#adding the LCL and UCL to seriesdata 

seriesdata<-data.frame(seriesdata,LCL,UCL) 

#adding the mean to the QC chart 

abline(h=mean(seriesdata$avg),col="red") 

# adding the LCL to the QC chart 

lines(seriesdata$Date,seriesdata$LCL,lty=2,lwd=1.5,col="red") 

lines(seriesdata$Date,seriesdata$UCL,lty=2,lwd=1.5,col="red") 

text(rep(1.1,2),c(4.35,4.45),labels=c("LCL","UCL")) 

d) Estimating uncertainty capability index start from pg. 123-127

# Load in the XLConnect package to enable import and export of 
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# files from excel 

require(XLConnect) 

excelFile <- "C:\\Users\\Gyekkw01\\Desktop\\RESEARCH\\CBI Data\\exp_data.xls" 

wb <- loadWorkbook(excelFile) 

exampleData <- readWorksheet(wb, sheet = "Expert",header=TRUE) 

attach(exampleData) 

#computation for the mean 

L1=X[1]*M[1] 

n=length(X) 

LN=(1-M[n])*X[n] 

L=c() 

L[1]=L1 

for (i in 1:(n-1)){ 

L[i+1]=(M[i+1]-M[i])*(X[i+1]+X[i]) 

} 

#computing the first moment(mean)of the expert data 

mu=L1+0.5*sum(L[2:n])+LN 

mu 

#computation for standard deviation of expert data 

S1=(X[1]^2*M[1]) 

SN=(X[n]^2*(1-M[n])) 

S=c() 

S[1]=S1 

for (i in 2:n){ 

S[i]=(M[i]-M[i-1])*(X[i]^2+X[i]*X[i-1]+X[i-1]^2) 

} 

S 

mu_2=S1+(1/3)*sum(S[2:n])+SN 

mu_2 

s=sqrt(mu_2-(mu)^2) 

s 

##computing the uncertainty capability index 
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USL=4.61 

#computing the lower capability of the uncertainty capability index 

Cpu_l=(USL-mu)/(3*s) 

Cpu_l 

#computing the upper capability of the uncertainty capability index 

Cpu_u=(USL-mu)/((3/sqrt(2))*s) 

Cpu_u 

 

e) Syntax for Questionnaire 

x<-c(4.1,4.3,4.4,4.5,4.61,4.65,4.7,4.8) 

y<-c(0,13,30,40,65,77,88,100) 

plot(x,y,pch=20,main="Conductor Resistance of a Wire with Upper Limit of 4.61Ω",ylab="Belief 

Degree(%)",xlab="Conductor Resistance(Ohms)",col="red",cex=2,cex.main=0.8) 

lines(x,y,col="blue",lwd=2) 

plot(x,y,type="n",main="Conductor Resistance of a Wire with Upper Limit of 4.61Ω",ylab="Belief 

Degree(%)",xlab="Conductor Resistance(measured in Ohms)") 

axis(side=2,at=c(10,30,50,70,90),labels=c("10","30","50","70","90")) 

abline(h=c(0,10,20,30,40,50,60,70,80,90,100)) 
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Questionnaire 

 
 

 

 

 

 

 

 

INSTRUCTIONS TO ANSWER THE QUESTIONNAIRE 

 This questionnaire should be answered independently of other engineers, the whole idea is to 

obtain your personal view about the performance of the process 

 

 Please place the values you regard the process output is likely to take, on the graph.  

 

 Each point you place on the graph should be in an increasing order from left to right, thus 

from your experience if the likely wire conductor Resistance (CR) are 4.2Ω and 4.3Ω 

respectively, then the percentage attained at (or below) 4.2Ω should be less than the 

percentage attained at or below 4.3Ω.  

 

 The points chosen may be as close together or as far apart as your experience allows you to 

expect. 

Example: 

Below is an example of how a CBI industrial engineer with experience in working on the 

manufacturing process might regard the process output is likely to perform. Given a manufacturing 

process designed to produce a wire conductor resistance of 4.61Ω and using the machine 21252, an 

engineer might report that the process is likely to output the following values: 

 4.3Ω, 4.4Ω, 4.5Ω, 4.61Ω, 4.65Ω, 4.7Ω and the engineer may attach the corresponding cumulative 

percentages likely to fall below these values as follows: 13%, 30%, 40%, 65%, 77%, and 88%. The 

engineers experience is summarized as: (4.3Ω, 13%), (4.4Ω, 30%), (4.5Ω, 40%), (4.61Ω, 65%), 

GENERAL THEME OF THE QUESTIONNAIRE 
The main idea of the study is to determine the general performance of the production 
process. Please note that there are no precise answers but we seek explicit opinions based 
on your experience with working on the production process.  
 To make this study as anonymous as possible no personal information about any 
participant will be required. As discussed, what we seek to achieve is to capture the general 
thinking about the performance of the process and also to be able to assess how to 
enhance the production process performance. 
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(4.65Ω, 77%), (4.7Ω, 88%). The engineer also stated that the minimum and maximum of the 

process output as 4.1Ω and 4.8Ω respectively.  

These values presented by the engineer imply that 13% of the values observed fall below 4.3Ω, 30% 

of the values fall below 4.5Ω and so forth. 

 

These points selected by the CBI industrial engineer are plotted in the chart below: 
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From the chart above, the engineer’s view demonstrates that approximately 20% of the values are 

off target.  

 

 

******************************************************************************** 

Please follow the rational in which the engineer used but also in your own experience with the 

plant to answer the questions below 

******************************************************************************** 
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******************************************************************************** 

Please place all the points and their corresponding cumulative percentages on the graph. 

******************************************************************************** 

 

The blank chart above requires you to describe a manufacturing process designed to produce a wire 

conductor resistance of 4.61Ω (i.e. the specified upper limit), using the machine 21252.  

Q1. What do you think is the minimum Conductor Resistance of the process output? __________ Ω 

 

Q2. What do you think is the maximum Conductor Resistance of the process output? __________ Ω 

 

Q3. From your experience with working on the process, what is the mean Conductor Resistance of 

the process output with a specified Upper Limit of 4.61Ω? ____________ 

Q4. What percentages of values are likely to be less than the mean conductor resistance you 

specified? ___________% 



Interval-valued Uncertainty Capability Indices with South African Industrial Applications  
 147 

 

Q5. How likely is the process to take Conductor Resistance measurements between (M-0.3 Ω) and 

(M + 0.3Ω)? _________%  

Where M stands for the mean you have chosen in Q4, 

Q6. What percentages of the Conductor Resistance measurements will be below M-0.3Ω? 

_____________% 

Q7. What percentages of the Conductor Resistance measurements will be above M+0.3 Ω? 

_____________% 

Q8. Is there any other possible values you regard the process output is likely to take? ___________ 

 

Q9. Please give the percentage (%) of values likely to fall below the value selected in Q8.? 

___________% 

 

 

***************************************************** 

THANK YOU FOR YOUR CO-OPERATION 

***************************************************** 
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Completed Questionnaire 

 Completed by Manager 

Ohms % 

< 4.1 0% 

>= 4.1 < 4.2 2% 

>= 4.2 < 4.3 39% 

>= 4.3 < 4.4 37% 

>= 4.4 < 4.5 17% 

>= 4.5 < 4.6 3% 

>= 4.6 < 4.7 1% 

>= 4.7 < 4.8 0% 

 

 

 

******************************************************************************** 

Please place all the points and their corresponding cumulative percentages on the graph. 

******************************************************************************** 
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The blank chart above requires you to describe a manufacturing process designed to produce a wire 

conductor resistance of 4.61Ω (i.e. the specified upper limit), using the machine 21252.  

Q1. What do you think is the minimum Conductor Resistance of the process output? 

____4.18______ Ω 

 

Q2. What do you think is the maximum Conductor Resistance of the process output? 

_____4.61_____ Ω 

 

Q3. From your experience with working on the process, what is the mean Conductor Resistance of 

the process output with a specified Upper Limit of 4.61Ω? _____4.34_______ 

Q4. What percentages of values are likely to be less than the mean conductor resistance you 

specified? ____55.57_______% 

Q5. How likely is the process to take Conductor Resistance measurements between (M-0.3 Ω) and 

(M + 0.3Ω)? _____99.98____%  

Where M stands for the mean you have chosen in Q4, 

Q6. What percentages of the Conductor Resistance measurements will be below M-0.3Ω? 

___0.0001136__________% 

Q7. What percentages of the Conductor Resistance measurements will be above M+0.3 Ω? 

____0.0001147_________% 

Q8. Is there any other possible values you regard the process output is likely to take? _Sample size 

too small to give definite answer __ 

 

Q9. Please give the percentage (%) of values likely to fall below the value selected in Q8.? 

____N/A_______% 

 

 

***************************************************** 

THANK YOU FOR YOUR CO-OPERATION 

***************************************************** 
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