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“The man who begins to speculate in stocks with
the intention of making a fortune usually goes
broke, whereas the man who trades with a view
of getting good interest on his money sometimes
gets rich.” Charles Henry Dow

“Stocks are bought on expectations, not facts.”
Gerald Loeb

“One of the funny things about the stock market
is that every time one person buys, another sells,
and both think they are astute”. William A.
Feather
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ABSTRACT

This thesis is a study on stable distributions and some of their applications in un-

derstanding financial markets. Three broad problems are explored: First, we study

a parameter and density estimation problem for stable distributions using commodity

market data. We investigate and compare the accuracy of the quantile, logarithmic,

maximum likelihood (ML) and empirical characteristic function (ECF) methods. It

turns out that the ECF is the most recommendable method, challenging literature that

instead suggests the ML. Secondly, we develop an affine theory for subordinated random

processes and apply the results to pricing commodity futures in markets where the spot

price includes jumps. The jumps are introduced by subordinating Brownian motion in

the spot model by an α-stable process, α ∈ (0, 1] which leads to a new pricing approach

for models with latent variables. The third problem is the pricing of general derivatives

and risk management based on Malliavin calculus. We derive a Bismut-Elworthy-Li

(BEL) representation formula for computing financial Greeks under the framework of

subordinated Brownian motion by an inverse α-stable process with α ∈ (0, 1]. This

subordination by an inverse α-stable process allows zero returns in the model rendering

it fit for illiquid emerging markets. In addition, we demonstrate that the model is best

suited for pricing derivatives with irregular payoff functions compared to the traditional

Euler methods.
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Chapter 1

Introduction

1.1 Scope

The financial market has a tendency of deviating from normality as analyzed from his-

torical data. Distributions of empirical asset price returns from commodities, equity,

forex, etc. are skewed, exhibit fat tails and they either have high or low peaks compared

to normal distribution. Literature suggests ways to capture these features including

models with stochastic volatility and/or jumps. The jumps are introduced by a Poisson

process or a stable L’evy process. This thesis focuses on the latter to fit stable distribu-

tions to market data, model commodity futures, derive derivatives-on-equity prices and

compute the Greeks essential for risk management in finance.

We explore the theory underpinning the rich and robust class of stable distributions and

their application in understanding financial markets. They exhibit features and proper-

ties necessary for capturing market behavior. The thesis tackles three main problems:

First, we study a parameter and density estimation problem for stable distributions us-

ing commodity market data. We investigate and compare the accuracy of the quantile,

logarithmic, maximum likelihood and empirical characteristic function methods. The

second problem aims at developing an affine theory for subordinated random processes

and applying the results to pricing commodity futures in markets where the spot price

includes jumps. The jumps are introduced by subordinating the Brownian motion in the

spot model by an α-stable process where α ∈ (0, 1] to ensure only positive jumps from
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the subordinator. The meaning of α shall become apparent in the subsequent chapters.

Both a one and two factor futures pricing models are developed but we shall put more

emphasis on the one factor model to motivate our approach. The difference from exist-

ing models is that the price is given as a function of the subordinator as opposed to the

underlying spot value. Since the subordinator is not observable, we reduce our model to

a latent regression model and apply the techniques usually employed in latent regression

models for population dynamics to estimate the model parameters. Seasonality is mod-

eled using a sinusoidal function which is fitted to historical commodity spot prices. The

third problem is a risk management problem and employs knowledge from Malliavin

calculus to derive a Bismut-Elworthy-Li (BEL) representation formula for computing

financial Greeks under the framework of subordinated Brownian motion by an inverse

α-stable process. This subordination by an inverse α-stable process allows zero returns

in the model rendering it fit for illiquid emerging markets. We discuss these problems

in more details and point out the contribution of our research to the broad body of

knowledge, in the following section.

1.2 Problems and Contribution

This thesis is aimed at solving three broad problems related to estimation, pricing and

hedging in markets with jumps where Gaussianity is not an assumption.

1.2.1 Estimation

The first problem is handled in Chapters 2 and 3, where we explore the theory behind

the rich and robust family of α-stable distributions for modeling skewed empirical data.

We discuss four parameter estimation techniques for extracting α-stable distribution pa-
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rameters from data namely: quantiles, logarithmic moments, maximum likelihood and

the empirical characteristics function (ECF) method. The contribution of the chapter

is two-fold: first, we discuss the four parameter estimation techniques and investigate

their performance through error analysis. We show that the empirical characteristic

function method is an excellent technique for estimating stable distribution parameters

from skewed empirical data more accurately as opposed to the maximum likelihood tech-

nique commonly employed in literature. It provides the best precision compared to the

other three methods and it can therefore be used to obtain initial input parameters for

future and better estimation techniques. The ECF is then applied to skewed empirical

commodity data to determine the shape parameter of the data. Secondly, we compare

the skewed empirical commodity data to various known distributions including normal

distribution to determine their closest distributions.

1.2.2 Pricing

The second problem is handled in Chapter 4 where we develop the theory governing our

subordinated affine-structure models for the commodity spot price and obtain explicit

price representation for the future price in markets where the spot price includes jumps.

The jumps are introduced by subordinating the Brownian motion in the spot model by

an α-stable process where α ∈ (0, 1]. The range of α is such as to ensure positive jumps

only. Moreover, the stable process is non-decreasing and cádlág. The contribution of

this chapter is an extension of the affine-structure models discussed in [KR08, KRST11],

[RH15] and [DFS03] to include subordinated processes to provide an alternative, robust

and tractable approach of capturing skewness, kurtosis and fat/skinny tails in commod-

ity spot models as opposed to the traditional pure jump Lévy process. The difference

between our model and the existing models is that the price in the former is given as a

function of the subordinator as opposed to the underlying spot value. In other words,

3



the future price is a function of the business time in addition to the calendar time. Sea-

sonality is modeled using a sinusoidal function which is fitted to historical commodity

spot prices.

1.2.3 Sensitivity Analysis

The third problem is handled in Chapter 5. The key objective of the chapter is to

extend the results in [FLL+99, CF07] for continuous processes to jump processes based

on the Bismut-Elworthy-Li (BEL) formula in [EL94]. We construct a jump process

using a subordinated Brownian motion where the subordinator is an inverse α-stable

process (Lt)t≥0 with α ∈ (0, 1]. The results are derived using Malliavin integration by

parts formula. We derive representation formulas for computing financial Greeks and

show that in the event when Lt ≡ t, we retrieve the results in [FLL+99]. The purpose

is to by-pass the derivative of an (irregular) payoff function in a jump-type market

by introducing a weight term in form of an integral with respect to a subordinated

Brownian motion. Using Monte Carlo techniques, we estimate financial Greeks for a

digital option and show that the BEL formula still performs better for a discontinuous

payoff in a jump asset model setting and that the finite difference methods are better for

continuous payoffs in a similar setting. Finally, the contribution of the Chapter will also

include deriving much simpler techniques based on the basic Malliavin integration by

parts formula to arrive at similar results in related existing literature (such as [Zha12]

for instance).
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1.3 Literature

The family of stable distributions first introduced by Paul Lévy in his book Calcul

des Probabilitiés, [Lév25] has been vastly studied and applied in various disciplines in

relation to understanding random physical phenomena that do not necessarily follow the

normal law. Since Paul Lévy’s breakthrough new developments towards the so called

Lévy process have been documented including the popular texts of [ST94], [Ber98],

[Sat99], [App04] and [BNMR12]. Due to their success, stable distributions provided an

active area of research for probability theorists and continue to find applications in the

fields of physics, astronomy, economics, communication theory, engineering, statistics,

finance etc. The main reason why stable distributions gained popularity is because they

generalize the central limit theorem and act as limiting distributions to a wide range

of other distributions. In Chapter 2 we shall explore in much more detail, the theory

behind the rich and robust family of α-stable distributions.

1.3.1 Literature on Parameter Estimation

In this section we discuss the background literature preceeding Chapter 3. The applica-

tion of stable distributions in finance is traced way back in the late 50’s when [Man59,

Man62, Man63] developed a hypothesis that revolutionalized the way economists viewed

and interpreted prices in speculative markets such as grains and securities markets. The

hypothesis suggested that prices were not Gaussian as it had been previously believed

by market participants based on [Bac00]. Mandelbrot’s hypothesis was therefore an

extension of the widely embraced breakthrough of [Bac00].

In the following years [Zol64] developed integral representations of stable laws and the

results have been used to develop their parameter estimation techniques. [Fam63] re-

viewed the vality of Mandelbrot’s hypothesis and came up with statistical tools suitable

5



for dealing with speculative prices. [Dum71] employs this class of distributions in statis-

tical inference for long-tailed data. Graphical representation of their densities and the

estimation of their parameters via interpolation appear in [HC73] and in [Kou80] using

regression. Parameter estimation methods based on quantile methods are presented in

[FR71] for symmetric stable distributions but this approach faces a problem of disconti-

nuity of the traditional location parameter in the asymmetrical cases when the exponent

parameter passes unity. A remedy and generalisation of the quantile approach is later

introduced by [McC86].

A different parameter estimation technique based on fractional lower order moments

(FLOM) appears in [MN95] where the authors develop new methods for estimating pa-

rameters in impulsive signal enviroments. However, their methods only cover symmetric

stable distributions. There was need to extend the method to asymmetric systems. This

came through by [Kur01] where a generalised FLOM method is introduced. Generally,

FLOM methods pose a challenge of having to estimate the Sinc function and this in

turn affects the accuracy of the results. As a consequence, a better estimation approach

referred to as logarithmic moments method (LM) is proposed by [Kur01] to avoid having

to compute the Sinc.

The third estimation method utilizes the maximum likelihood. It is known that the

maximum likelihood (ML) approach is widely favoured in economic and financial appli-

cations due to its generality and asymptotic efficiency (see for instance [Yu04]). How-

ever, there are cases where the ML method is unreliable especially when the likelihood

function is not tractable, or its not bounded over the parameter space or does not have

a closed form representation. For instance in our case, the densities considered do not

have closed form expressions. However, since there is a one to one correspondence be-

tween the density function and its Fourier transform it is worth exploiting the latter

since it always exists and it is bounded. This leads us to next estimation method.
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The fourth estimation approach is the empirical characteristic function (ECF) method

discussed in [Yu04]. Although the likelihood function can be unbounded, its Fourier

transform is always bounded and while the likelihood function might not be tractable or

might not be of a closed form, the Fourier transform could have a closed form expression.

The Fourier transform of the density function is the characteristic function (CF), hence

the name empirical characteristic function (ECF) method. In this chapter we aim to

show that this approach performs better than all the previously mentioned methods.

A useful software package that can be used to estimate stable distributions is provided

in [Nol97]. A more theoretical approach to statistical estimation of the parameters of

stable laws is extensively discussed in [Zol80]. Readers interested in how to simulate

stable process can refer to two excellent literatures of [WW95] and [Zol86].

In Chapter 3 we shall discuss in detail the four parameter estimation methods including

the quantiles, logarithmic moments method, maximum likelihood (ML) and the empiri-

cal characteristics function (ECF) method. The contribution of the chapter is two-fold:

first, we discuss the above parametric approaches and investigate their performance

through error analysis. Moreover, we argue that the ECF performs better than the ML

over a wide range of shape parameter values, α including values closest to 0 and 2 and

that the ECF has a better convergence rate than the ML. Secondly, we compare the t lo-

cation scale distribution to the general stable distribution and show that the former fails

to capture skewness which might exist in the data. This is observed through applying

the ECF to commodity futures log-returns data to obtain the stable parameters.

1.3.2 Literature on Commodity Future Pricing

In addition to parameter estimation described before, stable processes can be incorpo-

rated in stochastic models to capture observed market features such as jumps, busi-
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ness cycles, zero returns, mean-reversion, stochastic volatility. This will be the main

objective of Chapter 4 with a specific focus on developing pricing representations for

commodity futures. Trading in commodity markets gained momentum over the years

after investors developed interest in diversifying their portfolio risk. It is known his-

torically and in modern times that commodities have tremendous economic impact on

nations and people. They play a significant role in the global economy and investors

have benefited from economic events in the history of commodity markets. This in turn

ignited a wave of various academic models for understanding their market.

Electricity and energy commodities can be suitably modelled using stable distributions

due to their erratic price behaviours caused mainly by storage challenges. A similar com-

modity is bandwidth which depends on capacitated physical networks. Research based

on modeling commodity futures and prices of options written on them emerged after the

successful results of [Sch97] including the continuous models of [GS90, ELO14, SS00].

Early models suggested a single factor with constant volatility but after poor data fitting,

improved multi-factor models were introduced that incorporated stochastic volatility

and/or stochastic interest rates, seasonality etc. Jumps were incorporated in [DJX02],

[HR98] through a Poisson jump process. Various energy commodity derivative mod-

els have been discussed in [Den98]. The author’s models can be used to evaluate the

generation and transimission capacity of electricity, determine the value of investment

opportunities and the threshold value above which a firm should invest. A multi-factor

jump-diffusion model which allows prices of long-dated futures contracts to jump by

smaller magnitudes than short-dated futures contracts and includes stochastic interest

rates is presented in [Cro08]. Stable continuous auto-regressive moving average spot

models for Futures pricing in electricity markets are presented in [BKMV12]. The au-

thors present a new model for the electricity spot price dynamics that is able to capture

seasonlaity, extreme spikes in the market, low-frequency using a non-stationary inde-
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pendent increments process and large fluctuations using a non-Gaussian stable CARMA

process. A more recent model based on affine-structure features appears in [KNPP15].

It is evident that commodity models are easily built using this affine-structure property.

The reader is referred to [MS13, KRST11, KR08, DFS03, RH15] for a selected number

of references on affine-structure models. Known existing models that incorporate jumps

use the Poisson jump-type. In Chapter 4, we extend the models discussed in [KNPP15],

introducing jumps using subordinated Brownian motion by a process drawn from a four

parameter α-stable distribution family. We consider both a one- and two-factor mean-

reverting models for obtaining future prices. However, we shall focus on the former to

explain our approach in much more detail including numerical implementation. Our

model is explicit, tractable and robust with the future price given as a function of the

subordinator as opposed to the spot. Interestingly, the one-factor model can be reduced

to a latent regression model usually used in population dynamics whose parameters are

estimated using the expectation maximization approach.

1.3.3 Literature on Sensitivity Analysis

In equity, stable processes can be used through subordination of Brownian motion to

introduce jumps in asset prices in a similar way as in the previous section for commodity

modeling. However, the focus in Chapter 5 is on inverse stable processes. The motivation

for the choice of model stems from the nature of emerging markets where liquidity is

a challenge. In emerging markets trading is slow and zero returns on two or more

consecutive days are a possibility, see for instance [ARSB09] where the author introduces

a mixed-stable model to solve the passivity problem in emerging markets of Baltic

states. Chapter 5 we wish to explore the sensitivity analysis in emerging markets.

We model asset price dynamics by subordinating Brownian motion using an inverse

stable process. The objective is to extend the results in [FLL+99, CF07] for continuous
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processes to jump processes based on the Bismut-Elworthy-Li (BEL) formula in [EL94].

Our approach of capturing jumps is different from the usual method of using a Poisson

process, (see for instance [Mhl15]). We construct the jump process using a subordinated

Brownian motion where the subordinator is an inverse α-stable process (Lt)t≥0 with

0 < α ≤ 1. We derive representation formulas for computing financial Greeks and show

that in the event when Lt ≡ t, we retrieve the results in [FLL+99]. The purpose is

to by-pass the derivative of an (irregular) payoff function in a jump-type market by

introducing a weight term in form of an integral with respect to subordinated Brownian

motion. Using Monte Carlo techniques, we estimate financial Greeks for a digital option

and show that the BEL formula still performs better for a discontinuous payoff in a jump

asset model setting and that the finite difference methods are better for continuous

payoffs in a similar setting.

The problem of computating the Greeks of derivatives with smooth pay-off functions has

been extensively studied. The problem where the pay-off function is not necessarily reg-

ular poses a different level of difficult and requires a different approach [FLL+99, CF07].

Exisiting and successful techniques avoid differentiating the pay-off function by introduc-

ing a weight function. The Bismut-Elworthy-Li (BEL) representation formula [EL94]

is one scenerio of such innovations. In Chapter 5 we show that the known relation-

ship between the Malliavin derivative and the first variation process still holds for an

alpha-stable subordinated Brownian motion and results in an explicit martingale weight

factor. This allows for an extension of the BEL formula to subordinated Brownian mo-

tion and as a result, Greeks can be easily computed in jump-type emerging markets.

The subordinator belongs to the Lévy family of four parameter α-stable distributions.

Price dynamics of almost all instruments in financial markets are observed to deviate

from the Gaussian distribution. Various models in literature have been developed to

closely estimate the dynamics of these markets. The rich and robust family of α-stable

10



distributions has proven successful over most traditional models in capturing skewed

and heavy tailed distributions. An application to estimate the densities of subordinated

SDE under the Malliavin framework is discussed in [Kus10]. A rather different approach

is discussed in [Wy l12] where the authors, in addition to investigating the densities of

subordinated Brownian motion, also discuss some properties related to transforms and

averaged mean squared displacements of the process. They consider and compare both

cases of stable processes and their inverses. In addition they provide some parameter

estimation techniques. An intuitive study related to the work in Chapter 5 is [EL94]

which is limited to the Delta. The authors derive derivatives of solutions of diffusion

equations and demonstrate that they exhibit and allow for the estimation of the diffu-

sion equations’ smoothening properties. In addition, they use their results to study the

logarithmic gradient of heat kernels. Their results can be extended to derive represen-

tation formulas for other Greeks. The work by [Zha12] on the derivative and gradient

estimate for SDEs driven by stable processes is another intuitive literature vital to our

study. Other related recent work include [Tak10, KKH10, Khe12, Mhl15]. A less related

but still interesting work is by [SV03] where properties of a killed subordinated Brow-

nian motion by an α/2-stable are compared with those of the α-stable subordinated

Brownian motion. They show possible comparability in their killing measures and pro-

pose bounds on the Green function and the jumping kernel of the subordinated (α/2)

process. There is more existing literature on stable distributions that we cannot ex-

haustively discuss. Interested readers can refer to [SX14] for a comprehensive literature

on stable distributions.
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Chapter 2

Stable Distributions: Theory

This chapter is devoted to discussing the theory underpinning the rich and robust class

of α-stable distributions which are central in this thesis. We shall adapt some of the

definitions and notations of [KMT17].

2.1 Introduction

Stable also known as alpha-stable (or equivalently α-stable) processes belong to a general

class of Lévy distributions. They are limiting distributions with a definitive exponent

parameter α ∈ (0, 2] that determines their shape.

2.1.1 Definition and Construction

Definition 1 Let X1, X2, · · · , Xn be independent and identically distributed random

variables and suppose a random variable S defined by

1

bn

( n∑
i=1

Xi − an
)
−→ S, (2.1)

where “ −→ ” represents weak convergence in distribution, bn is a positive constant and

an is real. S follows a stable distribution and the constants an and bn need not to be

finite.
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Definition 1 allows the modeling of a number of natural phenomena beyond normality

using stable distributions. The fact that an and bn do not necessarily have to be finite

provides the generalized central limit theorem.

Theorem 1 (Generalised Central Limit Theorem [Rac03]) Suppose X1, X2 · · · de-

notes a sequence of independent and identically distributed random variables and let

sequences an ∈ R and bn ∈ R+. Then we can define a sequence

Zn :=
1

bn

( n∑
i=1

Xi − an
)

(2.2)

of sums Zn such that their distribution functions weakly converge to some limiting dis-

tribution:

P(Zn < x)⇒ H(x), n −→∞, (2.3)

where H(x) is some limiting distribution.

The traditional central limit theorem assumes finite mean a := E[Xi] and finite variance

σ2 := Var[Xi] and defines the sequence of sums

Zn :=
1

σ
√
n

( n∑
i=1

Xi − na
)
, (2.4)

such that the distribution functions of Zn weakly converge to hsG(x):

P(x1 < Zn < x2)⇒
∫ x2

x1

hsG(x) dx, n −→∞, (2.5)

where hsG(x) denotes the standard Gaussian distribution

hsG(x) =
1√
2π

exp(−x2/2). (2.6)
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Suppose the independent and identically distributed random variables Xi equal to a

positive constant c almost surely and the sequences an and bn in (2.2) are defined by

an = (n− 1)c and bn = 1, then Zn is also equal to c for all n > 0 almost surely. In this

case the random variables Xi are mutually independent and as a result, the limiting

distribution for the sums Zn belongs to the stable family of distributions by definition.

This is one reason why they are regarded as stable.

2.1.2 Parametrization

Definition 2 A stable distribution is a four-parameter family denoted by S(α, β, ν, µ),

where α ∈ (0, 2] is responsible for the shape of the distribution, β ∈ [−1, 1] is responsible

for skewness of the distribution, ν > 0 is the scale parameter that narrows or extends

the distribution around µ ∈ R and µ is the location parameter that shifts the distribution

to the left or the right.

Suppose a random variable S follows a stable distribution S(α, β, ν, µ) then the random

variable Z = (S − µ)/ν has the same-shaped distribution as S but with the location

parameter µ = 0 and the scale parameter ν = 1. This is another reason why they are

referred to as stable, the shape is maintained after any re-scaling.

Densities of α-stable distributions do not have closed-form representations except for

the case of a Gaussian (α = 2), Cauchy (α = 1, β = 0) and Inverse Gaussian or Pearson

(α = 0.5, β = ±1) distributions.

1. Gaussian distribution N(µ, σ2): S(2, 0, σ√
2
, µ).

hG(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
; −∞ < x <∞.
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2. Cauchy distribution: S(1, 0, ν, µ).

hC(x) =
1

π

ν

ν2 + (1− x)2
; −∞ < x <∞.

3. Levy distribution (Inverse-Gaussian or Pearson): S(1/2, 1, ν, µ).

hL(x) =

√
ν

2π
(x− µ)−3/2 exp

(
− ν

2(x− µ)

)
; µ < x <∞.

The densities are generally computed using characteristic functions through transfor-

mations such as the Fourier1. One can also refer to the work of [Zol64, Zol80, Zol86]

for straight-forward and easy-to-compute integral representations of stable distribution

and density functions. The distribution functions for the different α values have been

tabulated in [Dum71], [FR68] and [HC73].

2.2 Density and Distribution Properties

2.2.1 Special Case

Let (Xt, t ≥ 0) denote a Lévy process in R. The characterization of Xt is deduced from

the Lévy-Khintchine formula.

Definition 3 (Lévy Measure, [BNMR12]) Let (Xt, t ≥ 0) denote a Lévy process in

R, we define a Lévy measure by

m(dx) = 1(0,∞)(x)e−x dx.

1Note that characteristic functions always exist.
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Definition 4 (Lévy-Khintchine) [App04] Let (Xt, t ≥ 0) denote a Lévy process in

R. There exist b ∈ R, σ ≥ 0 such that the characteristic function of X is given by

Φ(t) := E[eitX ] = exp(itb− 1

2
σ2t2 +

∫
R−{0}

(eitx − 1− itx1|x|<1)m(dx)), (2.7)

where 1{·} is an indicator function and m is a σ-finite measure satisfying the constraint

∫
R−{0}

min(1, |x|2)m(dx) <∞; alternatively

∫
R−{0}

|x|2

1 + |x|2
m(dx) <∞. (2.8)

Definition 5 (The Lévy-Itô Decomposition [App04]) If Xt is a Lévy process, there

exist b ∈ R, a Brownian motion Bσ(t) with variance σ ∈ R+ and an independent Pois-

son random measure N on R+ × (R− {0}) such that, for each t ≥ 0,

Xt = bt+Bσ(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx), (2.9)

where

b = E[X1 −
∫
|x|≥1

xN(1, dx)]. (2.10)

The compensated compound Poisson random measure is defined by Ñ := N − tλ to

preserve the martingale property where the Lévy measure λ satisfies (2.8).

A stable distribution can be constructed by setting σ to zero in (2.7) or the second term

on the right of (2.9) to zero and the Lévy measure in (2.8) to

m(dx) =
C

|x|1+α
dx; C > 0, (2.11)

This gives a pure jump Lévy process which is a simple example of a stable family of

distributions. We discuss a general case in the following.
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2.2.2 General Case

In the following, (St)t≥0 will represent a stable process. The characteristic function

Φ of St is obtained using the domain of attraction of stable random variables (See

[GKP+99]) and the Lévy-Khinchine representation formula (See Definition 4 or [App04]

for a detailed explanation) i.e.

Φ(θ) = E[exp(iθSt)] =


exp(−να|θ|α[1− iβsign(θ) tan(πα

2
)] + iµθ); for α 6= 1.

exp(−ν|θ|[1 + iβsign(θ) 2
π

log |θ|] + iµθ); for α = 1.

(2.12)

Alternative forms of parametrization are discussed in [McC86] for simpler numerical

implementation. We expand more on this in Section 2.3.

The density of St is computed from (2.12) using the Fourier transform. That is

hS(t, u) =
1

π

∫ ∞
0

e−iuθΦ(θ) dθ. (2.13)

Figure 2.1 shows density graphs of St for different exponent parameter values.

The drawback in approximating (2.13) is that elementary techniques such as expressing

the integral in terms of simple functions or using infinite polynomial expressions of the

density function are not sufficient for meaningful numerical analysis. Some authors

propose a standard parameterized integral expression of the density given by (see for

instance [AO16])

hSt(α, β, ν, µ) =
1

σπ

∫ ∞
0

e−t
α · cos

(
t · (s− µ

σ
)− βtα tan(

πα

2
)

)
dt. (2.14)

However, this representation consists of an oscillating integrand. A much better ap-
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Fig. 2.1: α-Stable densities of St for α ∈ (0, 2].

proach is proposed in [Zol86] where the density of St is given by

hSt(α, β, ν, µ) =


α| s−µ

σ
|

1
α−1

2σ|α−1|

∫ 1

−θ Uα(ϕ, θ) exp

(
− | s−µ

σ
|
α
α−1Uα(ϕ, θ)

)
dϕ; if s 6= µ

1
πσ
· Γ(1 + 1

α
) · cos

(
1
α

arctan(β · tan(πα
2

))

)
; if s = µ,

(2.15)

Uα(ϕ, ϑ) =

(
sin(π

2
α(ϕ+ ϑ))

cos(πϕ
2

)

) α
1−α

·
(

cos(π
2
(α− 1)ϕ+ αϑ)

cos(πϕ
2

)

)
, (2.16)

where θ = arctan(β tan πα
2

) 2
απ

sign(s− µ).

Definition 6 [MS13] The inverse Lt of St, t ∈ [0, T ] is defined by

Ls :=


inf {t : St > s} if s ∈ [0, St)

T if s = ST .

(2.17)

Figure 2.2 shows the graphical representations of St and Lt.
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Fig. 2.2: Stable process St and the inverse stable process Lt, α = 0.8.

For l ∈ [0, T ], it is readily seen that the following equivalence relation holds:

Sl < t⇐⇒ Lt ≥ l. (2.18)

The process Lt is also interpreted as the first passage time of S. Moreover

LSt = t and SLt− ≤ t ≤ SLt . (2.19)

Let hL(l; t) denote the density function of Lt. Using relation (2.18) we deduce F (t; l) :=

P(Sl < t) = P(Lt ≥ l) =
∫∞
l
hL(τ ; t) dτ which implies

hL(l; t) = −∂F (t; l)

∂l
= − ∂

∂l

∫ t

−∞
hS(u, l) du. (2.20)
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We can therefore approximate hL(l; t) by estimating the integral in (2.20) using the

density hS(t; l) in (2.13) and its characteristic function (2.12).

According to [MS13], the density h(t, u) can also be given by

hS(t, u) = u−1/αh(tu−1/α), (2.21)

where h(τ) is the density of a standard stable process with a Laplace transform h̃(τ) =

exp(−τα). This follows from the fact that Su has the same distribution as u1/αS1. As a

result, the density of the inverse stable process Lt can be given in terms of the standard

stable process by

hL(u, t) =
t

α
u−1−1/αh(tu−1/α). (2.22)

The cumulative distribution functions of both the symmetric and asymmetric stable

distributions are plotted in Figure 2.3 and for their inverse counterparts in Figure 2.4
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Fig. 2.3: Cumulative distribution functions of symmetric and skewed stable
distributions.
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Fig. 2.4: Cumulative distribution functions of inverse symmetric and inverse
skewed stable distributions.

2.2.3 Some Properties of Stable Distribution Functions

Firstly, recall that for any two admissible sets of parameters of stable distributions we

can find two unique numbers a > 0 and b such that

S(α, β, ν, µ)
d
= aS(α, β, ν ′, µ′), (2.23)

where

a =
ν

ν ′
, b =


µ− µ′ ν

ν′
; α 6= 1

µ− µ′ ν
ν′

+ νβ 2
π

log ν
ν′

; α = 1.

(2.24)

The intuition is that a general stable distribution can be expressed in terms of a standard

stable distribution. That is, we can write S(α, β, ν, µ)
d
= aS(α, β, 1, 0) + b where

a = ν, b =


µ; α 6= 1

µ+ 2
π
βν log ν; α = 1.

(2.25)
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Secondly, suppose h, H and Φ denote the respective probability, cumulative distribution

and characteristic functions of a stable random variable, S, where

h(s, α, β) =
1

2π

∫ ∞
−∞

(cos st− i sin st)Φ(t, α, β) dt,

then it is readily seen that the following properties hold:

1. h(−s, α, β) = h(s, α,−β).

2. H(−s, α, β) = 1−H(s, α,−β).

3. Φ(−s, α, β) = Φ(s, α,−β).

The above three relations can be verified by trigonometric properties.

2.3 Simulating α-Stable Random Variables

The two excellent references for simulating stable processes are [Zol86] and [CMS76].

Definition 7 Suppose St is a stable process with parameters (α, β2, ν2, µ), the charac-

teristic function is given by

ln Φ(θ) =


iµθ − να2 |θ|α exp(−iβ2sign(θ))π

2
K(α)); α 6= 1,

iµθ − ν2|θ|(π2 + iβ2sign(θ)) ln |θ|); α = 1,

(2.26)
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where

K(α) = α− 1 + sign(1− α) =


α; α 6= 1

α− 2; α = 1,

(2.27)

(β2, ν2) =


2

πK(α)
tan−1(β tan πα

2
), ν(1 + β2 tan2 πα

2
)

1
2α ; α 6= 1

(β, 2
π
ν); α = 1.

(2.28)

Lemma 1 Let γ ∈ [−π
2
, π

2
] be a uniformly distributed random variable and let W be an

independent exponential random variable with mean 1. Then

S =


sinα(γ+π

2β2
K(α)
α )

(cos γ)
1
α

(
cos(γ−α(γ+π

2β2
K(α)
α ))

W )
1−α
α ; α 6= 1

(π2 + β2γ) tan γ − β2 log(W cos γ
π
2+β2γ

); α = 1

(2.29)

is a standard α-stable process with parameters (α, β2, 1, 0).

Proof 1 See [Zol86].

A stable random variable can be easily generated using Lemma 1. Programming lan-

guages such as R or MATLAB can be utilised to generate a uniformly distributed random

variable U on the interval (−π
2
, π

2
) and an independent exponential random variable E

with mean 12. Then the stable random variable would be generated by computing

S =


Aα,β

sin(α(U+Bα,β))

(cosU)
1
α

(
cos(U−α(U+Bα,β))

E

) 1−α
α

; α 6= 1

2
π

(
(π

2
+ βU) tanU − β log(

π
2
E cosU
π
2

+βU
)

)
; α = 1

(2.30)

where Aα,β = (1 + β2 tan2 πα
2

)
1
2α and Bα,β =

tan−1(β tan πα
2

)

α
.

2These are easily obtained from in-built functions in MATLAB
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2.4 Moments of Stable Processes

Statistical moments E[| · |k] of stable distributions are finite only when k ≤ α. Moreover,

for α < 2 the variance is infinite, for α ∈ (0, 1] the mean does not exist and the mean

is zero when α ∈ (1, 2). This is not always the case for symmetric stable distributions

where β = 0.

2.4.1 Fractional Lower Order Moments

The FLOM is an alternative for computing moments of alpha-stable random variables

especially in situations where the mean and/or variance are infinite. FLOM representa-

tion formulas are discussed in [MN95] for symmetric stable random data and its general-

ization to asymmetric stable random data in [Kur01]. In the latter, if Si ∼ S(α, β, ν, γ)

and α 6= 1, then

E[S<p>] =
Γ(1− p

α
)

Γ(1− p)

∣∣∣∣ γ

cos θ

∣∣∣∣ pγ sin(pθ
α

)

sin(pπ
2

)
, for p ∈ (−2,−1) ∪ (−1, α).

E[|S|p] =
Γ(1− p

α
)

Γ(1− p)

∣∣∣∣ γ

cos θ

∣∣∣∣ pγ cos(pθ
α

)

cos(pπ
2

)
, for p ∈ (−1, α),

where θ = arctan(β tan απ
2

) and Γ denotes the Gamma function. We also define

x<p> = sign(x)|x|p. (2.31)

From the above representations, moments with negative values of p are attainable. This

results in the logarithmic moments approach that provides an easier way of estimating

stable distribution parameters compared to the FLOM.
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2.4.2 Logarithmic Moments

This approach is as a result of the challenges encountered when using the FLOM method

which requires computing Gamma functions, the inversion of the sinc function and it

only works for some p. The current method suggests computing derivatives with respect

to the moment order p resulting in moments of the logarithms of the stable process. We

illustrate in the following.

Lemma 2 Let S denote a symmetric stable random variable and let p ∈ R. Then

Mn := E[(log |S|)n] = lim
p→0

dn

dpn
E[|S|p], n = 1, 2, · · · . (2.32)

The moments follow readily for n = 1, 2, ·. That is

M1 = E[log |S|] = ϕ0

(
1− 1

α

)
+

1

α
log

∣∣∣∣ ν

cos θ

∣∣∣∣. (2.33)

M2 = E[(log |S| − E[log |S|])2] = ϕ1

(
1

2
+

1

α2

)
− θ2

α2
. (2.34)

M3 = E[(log |S| − E[log |S|])3] = ϕ3

(
1− 1

α3

)
, (2.35)

where θ = arctan(β tanαπ/2) and terms ϕk are given by ϕ0 = −0.57721566, ϕ1 = π2/6,

ϕ = 1.2020569 derived from the polygamma function

ϕk−1 =
dk

dxk
log Γ(x)|x=1. (2.36)

Proof 2 The proof is provided in [Kur01].
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2.5 Laplace Transforms

Definition 8 Let Xu be a subordinator. The Laplace transform of Xu is defined by

E[e−τXu ] = e−uφ(τ), (2.37)

where φ is the Laplace exponent of Xu known as the Bernstein function represented by

φ(τ) = a+ bτ +

∫
(0,∞)

(1− e−τx)Π(dx). (2.38)

where a, b > 0 and Π is the Lévy measure on (0,∞) such that
∫

x
1+x

Π(dx) <∞.

The Laplace tranform of the stable process Su is given by (see [MS13])

h̃S(τ, u) =

∫ ∞
0

e−tτhS(t, u) dt = exp(−uCΓ(1− α)τα) = exp(−u((τ + β)α + βα)),

(2.39)

where 0 ≤ β ≤ 1. For C = Γ(1 − α) (alternatively β = 0), the Laplace transform

simplifies to that of a standard stable process:

h̃S(τ, u) = E[e−τSu ] = exp(−uτα); 0 < α < 1. (2.40)

The Laplace transform h̃L(u; τ) of the inverse stable process Lt is obtained from (2.20):

h̃L(u, τ) = − ∂

∂u
(τ−1 exp(−u((τ + β)α + βα))),

= τ−1((τ + β)α + βα) exp(−u((τ + β)α + βα)), (2.41)

where the Laplace transform of
∫ t

0
f(y) dy is τ−1f̃(τ) and hL(u, τ) := 0 for l < 0 or

τ < 0. Since (2.41) does not have the general form for a Laplace transform of a Lévy
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process, then Lt is not a Lévy process.

2.6 Moment Generating Function

There is a relationship between a moment-generating function of a random variable and

its Laplace transform.

Lemma 3 Let Mu(τ) and h̃(τ, u) denote the respective moment-generating function and

Laplace transform of a random variable then

Mu(τ) = h̃(τ,−u) + h̃(−τ, u), (2.42)

where

h̃(a, b) =

∫ ∞
0

e−tah(t, b) dt.

Proof 3 The relationship is verified in [Mil51].

As a consequence of Lemma 3 and the explicit Laplace transform given by (2.39), we

can deduce the first and second moments of St. That is

Mu(τ) = exp(u((τ + β)α + βα)) + exp(−u((−τ + β)α + βα)).

E[St] = M ′
u(0) = αuβα−1[e2uβα + e−2uβα ]. (2.43)

Var[St] = M ′′
u (0)− (M ′

u(0))2. (2.44)

= α(α− 1)uβα−2[e2uβα − e−2uβα ] + α2uαβ2α[β2e2uβα + e−uβ
α

]. (2.45)
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2.7 Subordination

In this section we investigate moments of subordinated Brownian motion using semi-

group properties. Detailed literature on Markov processes, semigroups and infinitesimal

generators can be found in [App04] and [SV03]. We denote by BSt subordinated Brow-

nian motion, where St is an α-stable process introduced above with α ∈ (0, 1).

Definition 9 (Joint Probability Space) The notation (Ω,F , P) = (ΩX × ΩS,FX ×

FS, µX × µS) shall denote a complete joint probability space endowed with a filtration

(Ft)t≥0 such that Ft = FXt ∨ FSt where FXt and FSt are filtrations generated by Xt and

St respectively. The process {St}t≥0 is a α-stable subordinator.

Definition 9 ensures both Xt and St are adapted to the filtration Ft.

Figure 2.5 shows three graphs of returns of standard Brownian motion, subordinated

Brownian motion by Lt and by St.
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Fig. 2.5: Brownian motion and Subordinated Brownian motion: α = 0.8.
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As seen from the bottom graph, the occasional spikes in the subordinated Brownian

motion by St indicate the process is a good model for capturing jumps. On the other

hand, in addition to capturing jumps, subordination by Lt is suitable for modeling

illiquid markets where trading is limited and as a result zero returns are a possibility.

Now suppose Xt = Bt is standard Brownian motion then we have the following lemma.

Lemma 4 Suppose B = (Bt, P
x) is Brownian motion in R with transition density

p(x, y; t) = p(y − x; t) given by

p(x; t) =
1

2
√
πt

exp(−|x|2/4t), t > 0, x, y ∈ R. (2.46)

The semigroup (Pt : t ≥ 0) of B is given by

Ptf(x; t) = Ex[f(Bt)] =

∫
R

p(x, y; t)f(y; t) dy, (2.47)

where f is a non-negative Borel function on R.

Lemma 4 follows from the fact that Bt is a Markov process whose generator is

Gf(x; t) := lim
t↓0

Ex[f(x; t)]− f(x; t)

t
= lim

t↓0

Ptf(x; t)− f(x; t)

t
.

Lemma 5 Suppose Yt := BSt , t ≥ 0 is a subordinated Brownian motion. Its semigroup

(Qt : t ≥ 0) is defined by

Qtf(y, t) = Ey[f(Yt, t)] = Ey[f(BSt)] =

∫ ∞
0

Puf(y, u)hS(t, u) du. (2.48)
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Then, the semigroup Qt has a transition density q(y, z, t) = q(y − z, t) defined by

q(y, t) =

∫ ∞
0

p(y, u)hS(t, u) du. (2.49)

Since BSt is a Markov process a similar argument for Lemma 4 applies for Lemma 5.

Lemma 6 The mean and variance of BSt are computed as

Ey[BSt ] =

∫ ∞
0

Ey[Bs]hS(t, u) du = 0. (2.50)

Ey[B
2
St ] =

∫ ∞
0

E[B2
s ]hS(t, u) du =

∫ ∞
0

uhS(t, u) du = Ey[St], (2.51)

The last term shows the variance of subordinated Brownian motion is non-existent for

α ∈ (0, 1). However, for α ≥ 1 the variance of subordinated Brownian motion is equal

to the mean of the subordinator.

Proof 4 Suppose f in Lemma 4 and Lemma 5 is such that f(z, t) = z. Using (2.47)

and (2.48) and partitioning the time interval [0, T ] such that 0 ≤ τ1 < · · · < τn ≤ T ,

where τi are the jump times of the process BSt, we observe that (2.50) and (2.51) hold

for every interval [τi, τi+1). Thus, in the limits, their sums converges respectively to 0

and Ex[St] on [0, T ]. �

Note that for α ∈ (0, 1], E[Lt] exists and can be computed. If Lt ≡ t in (2.50) and (2.51)

we recover standard Brownian motion with mean 0 and variance t. In general, the k−th

moment of Lt is given by

〈Lkt 〉 =
Γ(k + 1)tkα

Γ(kα + 1)
, (2.52)

where k ≥ 1, (k ∈ R) and Γ(a) =
∫∞

0
xa−1e−x dx is the Gamma function.
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Lemma 7 The covariance of BLt is given by

Cov[BLt , BLs ] = min(E[Lt], E[Ls]).

Proof 5 Let s ≤ t then Ls ≤ Lt and we have

BLt = BLs + (BLt −BLs).

BLtBLs = B2
Ls +BLs(BLt −BLs).

Since for all t ∈ R+, BLt has independent increments with zero mean, we have

Cov[BLt , BLs ] = E[BLtBLs ]

= E[B2
Ls ] + E[BLs(BLt −BLs)]

= E[B2
Ls ] + E[BLs ]E[(BLt −BLs)]

= E[B2
Ls ]

= E[Ls].

Similarly for Lt ≤ Ls we have the covariance as E[Lt]. Then, we write

Cov[BLt , BLs ] = min(E[Lt], E[Ls]).

�

Lemma 8 [Boc12] Let X be a Lévy process with characteristic exponent Ψ and S an

independent subordinator with Laplace exponent Φ. Then the subordinated process XSt

is a Lévy process with characteristic exponent

m(·) = Φ(Ψ(·)). (2.53)
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Proof 6 The proof is given in [Boc12]. �

It is known that any Lévy process Xs, t < s ≤ T with drift µ is fully determined by its

characteristic function given by (see [FR07])

E[eiλXs ] = eµ∆+Ψ(λ)∆, (2.54)

where ∆ = s − t, µ is the drift parameter and Ψ(λ) is the characteristic exponent. A

typical example is Brownian motion whose characteristic function is given by

E[eiλBs ] = eµ∆− 1
2
σ2λ2∆, where Ψ(λ) = −1

2
σ2λ2. (2.55)

Therefore the characteristic exponent of subordinated Brownian motion BSt can be

deduced from (2.39), (2.53), (2.55):

m(u) = (−1

2
σ2u2 + β)α + βα. (2.56)

Result (2.56) will be very useful in obtaining the results of Chapter 4, see Theorem 4.
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Chapter 3

Parameter Estimation of Stable
Distributions

3.1 Introduction

This chapter explores the theory behind the rich and robust family of α-stable distri-

butions to estimate parameters from financial asset log-returns data. We discuss four

parameter estimation methods including the quantiles, logarithmic moments, maximum

likelihood (ML) and the empirical characteristics function (ECF) method. The contri-

bution of the chapter is two-fold: first, we discuss the above parametric approaches and

investigate their performance through error analysis. Moreover, we argue that the ECF

performs better than the ML over a wide range of shape parameter values, α including

values closest to 0 and 2 and that the ECF has a better convergence rate than the ML.

Secondly, we compare the t-location scale distribution to the general stable distribu-

tion and show that the former fails to capture skewness which might exist in the data.

This is observed through applying the ECF to commodity futures log-returns data to

obtain the skewness parameter. The study provides useful information for portfolio

managers, speculators and hedgers. It is therefore imperative that the most accurate

estimation method is established. It is known that in general, market data deviates from

the Gaussian distribution, its distribution is either skewed, high or low peaked and/or

with fat or skinny tails. The current chapter is geared towards establishing a better

parameter estimation method between the commonly known ECF, ML, quantile and
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logarithm moments methods used in economic and financial analysis for skewed data

assumed to follow stable distributions. The results in this chapter have been published

(see [KMT17]).

The rest of this Chapter is organized as follows: The following Section 3.2 explains how

the four parameter estimation methods discussed in this chapter work and provides an

analysis on their accuracy. In Section 3.3 we study and analyze some commodity data

and show that the data deviates from the normal distribution hypothesis. We use the

ECF to obtain the four stable parameters from the data and in addition fit it to various

distributions to determine its closest shape which turns out to be the t-location scale

distribution. This distribution is suited for data that is highly peaked and heavily tailed

with outliers. However, we propose stable distribution fitting to check for any existing

tails. Section 3.4 summarizes.

3.2 Estimation Methods

The four common methods for estimating parameters of stable processes include: quan-

tiles method (see [FR71] and [McC86], [McC96] ), the logarithmic moments method

(see [Kur01]), the empirical characteristics method (see [Yan12]) and the maximum

likelihood method (see [Nol01]). We investigate their accuracy in the following.

3.2.1 The Quantiles Method

The quantile method was pioneered by [FR71] but was much more appreciated through

[McC86] after its extension to include asymmetric distributions and for cases where

α ∈ [0.6, 2] unlike the former approach that restricts it to α ≥ 1.

Suppose ŝ is a given data sample then the estimates for α and β are given by α̂ =
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Θ1(ϑ̂α, ϑ̂β) and β̂ = Θ2(ϑ̂α, ϑ̂β) where

ϑ̂α =
ŝ0.95 − ŝ0.05

ŝ0.75 − ŝ0.25

, ϑ̂β =
ŝ0.95 + ŝ0.05 − 2ŝ0.05

ŝ0.95 − ŝ0.05

. (3.1)

The notation ŝq represents the qth quantile of sample ŝ and, α̂ and β̂ are obtained

by functions Θ1(ϑ̂α, ϑ̂β) and Θ2(ϑ̂α, ϑ̂β) given in Tables III and IV in [McC86] through

linear interpolation. Consequently, the scale parameter is given by

ν̂ =
ŝ0.75 − ŝ0.25

Θ3(α̂, β̂)
, (3.2)

where Θ3(α̂, β̂) is given by Table V in [McC86]. The consistent estimator ν is then

obtained through interpolation.

Finally the location parameter µ is estimated through a new parameter defined by

ζ =


µ+ βγ tan πα

2
;α 6= 1

µ;α = 1.

(3.3)

Moreover, ζ is estimated by

ζ̂ = ŝ0.5 + ν̂Θ5(α̂, β̂), (3.4)

where Θ5(α̂, β̂) is obtained from Table VII [McC86] by linear interpolation. The location

parameter is estimated consistently by

µ̂ = ζ̂ + β̂ν̂ tan
πα̂

2
. (3.5)
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3.2.2 Empirical Characteristic Function Method

Suppose a set of observable data {s1, s2, · · · , sN} follows a stable distribution. Then

we can approximate the characteristic function of this data by applying a basic Monte

Carlo approach based on the law of large numbers i.e

Φ(u) = E[eiusj ] ≈ Φ̂(u) =
1

N

N∑
j=1

eiusj . (3.6)

We can express the characteristic function (2.12) in terms of the cosine and sine function

from basic trigonometric principles, i.e.

Φ(u) = e−|νu|
α

(cos η + i sin η), (3.7)

where

η = νu− |νu|αβsign(u)ω(u, α)

ω(u, α) =


tan πα

2
, α 6= 1

2 log |u|
π

, α = 1

As a result, we observe that

|Φ(u)| = e−|νu|
α

. (3.8)

The estimated characteristic function relates to the model parameters by

log |Φ̂(uk)| = −να|uk|α; for k = 1, 2, uk > 0, α 6= 1. (3.9)
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Solving this system leads to the estimation representation formulas for the stability and

variance parameters:

α̂ =
log log |Φ̂(u1)|

log |Φ̂(u2)|

log |u1
u2
|

.

log ν̂ =
log |u1| log(− log |Φ̂(u2)|)− log |u2| log(− log |Φ̂(u1)|)

log |u1
u2
|

.

The real and imaginary parts of the characteristic function (3.7) provide estimates for

β̂ and µ̂:

arctan
Im(Φ(u))

Re(Φ(u))
= µu− |νu|αβsign(u)ω(u, α). (3.10)

Suppose Υ(u) := arctan(ImΦ(u)/ReΦ(u)) and choose another set of positive numbers

uk, k = 3, 4 together with α̂ and ν̂ then the estimates of the location and skewness

parameters are given respectively by

µ̂ =
uα̂4 Υ(u3)− uα̂3 Υ(u4)

u3uα̂4 − u3uα̂4
. (3.11)

β̂ =
u4Υ(u3)− u3Υ(u4)

ν̂α̂ tan πα̂
2

(u4uα̂3 − u3uα̂4 )
. (3.12)

Notice, it can be deduced from equation (3.7) that

log(− log(|Φ(u)|2)) = log(2να) + α log(u).

This provides an alternative way to envision the regression estimation method:

yk = m+ αxk + εk; k = 1, 2, · · · ,M ;

where yk = log(− log |Φ̂(uk)|2), m = log(2να), xk = log(uk) and εk is an error term.

The stability parameter α and the scale parameter ν can be estimated by selecting

37



uk = πk
25
, k = 1, 2, · · · ,M ; of real data (see [Kou80], Table I). The estimates α̂ and ν̂

are then used to estimate β and µ using the following relation

zl = ηl + ςl, l = 1, 2, · · · , Q.

where zl = Υn(ul) + πkn(ul), ηl = ν̂lu − |ν̂lu|α̂βsign(u)ω(u, α̂) and ςl is some random

error. The proposed real data set forQ (see [Kou80], Table II) is ul = πl
50
, l = 1, 2, · · · , Q.

3.2.3 Logarithmic Moments Method

This approach follows the theory discussed in Section 2.4.2. The key innovation with this

method is that there is no need of computing Gamma functions and the sinc function

as in the FLOM. Secondly, techniques of parameter estimation for symmetric stable

random variables (i.e. β = 0) can be applied to skewed stable random variables (i.e.

β 6= 0) and, techniques of parameter estimation for centered stable random variables

(i.e. µ = 0) to non-centered ones (i.e. µ 6= 0) through centro-symmetrization. However,

this comes at a cost of losing almost half of the sample data. Therefore to obtain better

estimates one has to use large sample data sets.

Centro-Symmetrization of Stable Random Data Sets

Let Sk be a sequence of n independent stable random variables distributed according to

Sk ∼ S(α, β, ν, µ).
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Then the distribution of a weighted sum of the above sequence with weights ak can be

estimated using their characteristic function:

Z =
n∑
k=1

akSk ∼ S

(
α,

n∑
k=1

a<α>k

n∑
k=1

|ak|α
β,

n∑
k=1

|ak|αν,
n∑
k=1

akµ

)
, (3.13)

where the pth power of a number x is defined by

x<p> = sign(x)|x|p.

As a result, it is easy to obtain sequences of independent stable random variables with

zero µ, zero β as well as both zero µ and zero β for α 6= 1. This yields the centered,

deskewed and symmetrized sequences:

SCk = S3k + S3k−1 − 2S3k−2 ∼ S(α, [
2− 2α

2 + 2α
]β, [2 + 2α]ν, 0), (3.14)

SDk = S3k + S3k−1 − 21/αS3k−2 ∼ S(α, 0, 4ν, [2− 21/α]µ), (3.15)

SSk = S2k − S2k−1 ∼ S(α, 0, 2ν, 0). (3.16)

Parameter Estimation

Suppose Sk is a data set assumed to be drawn from S(α, β, ν, µ). Then the exponent

parameter α is estimated by setting θ = 0 in (2.34), and the log moment M2 is estimated

from the obverted data (3.16). That is

α̂ =

(
M2

ϕ1

− 1

2

)−1/2

. (3.17)
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The estimated α̂ is used to estimate θ using (2.33) where M1 is estimated from the

obverted data (3.15). That is

|θ̂| =
(

(
ϕ1

2
−M2)α̂2 + ϕ1

)1/2

. (3.18)

From the definition of θ, |β0| can be estimated by

β̂0 =
tan θ̂

tan α̂π
2

. (3.19)

Centering (see 3.14) requires |β̂0| to be multiplied by (2 + 2α)/(2− 2α) to obtain |β̂| of

the original data where the sign of β is determined by

K = sign(|Smax − Smd| − |Smin − Smd|), such that β̂ = K|β̂|.

where Smax, Smd, Smin is the maximum, median and minimum of the original data.

Next we estimate the scale parameter ν̂0 using (2.33) where M1 is estimated from the

obverted data (3.14). That is

ν̂0 = | cos θ̂| exp((M1 − ϕ0)α̂ + ϕ0). (3.20)

Again centering (see (3.14)) gives the parameter estimate ν̂ of the original data by

ν̂ = ν̂0(2− 21/α)−1.

Finally, the location parameter µ is estimated by

µ̂ = µ̂0(2− 21/α)−1. (3.21)

where µ0 is the median or mean of the obverted data (3.15).
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3.2.4 Maximum Likelihood Method

The maximum likelihood (ML) method is the most favored parameter estimation method

in economic and financial applications. The method relies on the density function

which in the case of stable distributions poses closed form representation problem.

In this case we propose a numerical estimation of the density function. For a vec-

tor s = (s1, s2, · · · , sn) of iid random variables assumed to follow a stable distribution,

the ML estimate of the parameter vector Θ = (α, β, ν, µ) is obtained by maximizing the

log-likelihood function given by

LΘ(s) =
n∑
i=1

ln h̃(si; Θ), (3.22)

where h̃(s; Θ) denotes a numerically estimated stable probability density function. It

is shown for instance in [MRDC99] that the best algorithms to compute the ML is by

using Fast Fourier Transforms (FFT) or by direct integration method as in [Nol01]. The

ML algorithms require carefully chosen initial input parameters which in our case can

be obtained for example, through the quantiles method described above. The FFT is

faster for large data sets and the direct integral approach is suitable for smaller data

sets since it can be evaluated at any arbitrary point.

In the following section, we analyze commodities and apply the empirical characteristic

functions method to estimate the stable distribution parameters.

It is important to mention the restrictions on the parameters under which the different

estimation methods operate.

41



3.2.5 Error Analysis

In this section we simulate datasets from the stable family of distributions based on the

theory in [CMS76] and [WW95]. Then use the above four methods to retrieve the stable

parameters from the simulated data. Our focus is on the α and β but the arguments

extend to the other two parameters.

First, it is important to mention that all the four methods perform poorly close to the

boundaries i.e. α→ 0, α→ 2 and β → ±1. Moreover, [Inc09] shows that the methods

operate efficiently under the parameter restrictions in Table 3.1.

Table 3.1: Estimation methods and their parameter restrictions

Estimation Method Parameter Restrictions

Quantile α ≥ 0.1
Logarithm Moments β = µ = 0
Maximum Likelihood α ≥ 0.4

Empirical Characteristic Function α ≥ 0.1

The ML is the most preferred and used estimation method. However, we observe in our

analysis that this method fails for particular parameter ranges and it is not robust. For

instance in estimating 0.1 < α < 1.0 with respect to β, the ML fails to converge and

returns huge unrealistic errors. This is why it’s not included in Figure 3.1(a).

(a) α = 0.4 estimation w.r.t β (b) β = 0.4 estimation w.r.t α

Fig. 3.1: Method comparison for α = 0.4 and β = 0.4 estimation.
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Similarly, for β = 0.4 estimation with respect to α, the logarithm moments method

returns either negative or very large β values which is expected according to the con-

straints in Table 3.1. We omit its graph in Figure 3.1(b). Meanwhile, we notice that

in both cases, the quantile and ECF methods work properly with the latter providing

relatively the best estimates.

Figure 3.2 shows the error associated with estimating 1.0 < α < 2.0 for different β.

(a) α = 1.4 estimation w.r.t β (b) α = 1.7 estimation w.r.t β

Fig. 3.2: Method comparison for α = 1.4 and α = 1.7 estimation.

Note that all the four methods work properly and we still notice the ECF being relatively

the most accurate and robust method. Recall that for α→ 1 and α→ 2 the estimation

methods perform poorly. An example is 3.2(a) (for α = 1.4) which was the closest for

which the ML would converge but for higher α > 1.4 values but far less than 2.0 (see

for instance 3.2(b) for α = 1.7) the methods performed relatively better except for the

logarithm moments methods. The graphs in Figure 3.3 illustrate convergence of the

quantile, ECF and the ML in estimating α = 1.4 and α = 1.7.

We simulated 50000 points and divided it into 100 sets starting with a 500-sized set and

increasing it by 500 to 50000. The logarithm moments method performed extremely

poorly and incomparable to the above three methods. It is not included in Figure 3.3(a)

and Figure 3.3(b). The ECF is seen to be performing better than the quantile and ML
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(a) β = 0.4 estimation for α = 1.4 (b) β = 0.4 estimation for α = 1.8

Fig. 3.3: β estimation for differing data set sizes and α values.

methods with a relatively better convergence rate.

Similarly Figure 3.4 shows the convergence rates for the quantile, ECF and ML methods.

The ECF still provides a better precision in both cases i.e. 3.4(a) and 3.4(b).

(a) α = 1.4 estimation for β = 0.4 (b) α = 1.7 estimation for β = 0.4

Fig. 3.4: α estimation for differing data set sizes for β = 0.4 values.

In summary the empirical characteristic function method outperforms all the three other

methods discussed in this chapter in the following way:

1. It is robust and can consistently estimate a wide range of α and β parameters.

2. It provides a better precision compared to the quantile, logarithm moments and

ML methods for a wide range of α and β parameters.
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3. It has a better convergence rate.

Therefore the quantile, logarithm moments or the maximum likelihood methods can

be used to provide initial parameters for the empirical characteristics function method.

Similarly, the latter can be used to provide initial parameters for future better estima-

tors.

The following section is devoted to extracting stable parameters from log-returns com-

modity futures data using the empirical characteristics function method.

3.3 Commodity Data

The data sets used here are obtained from Quandl Financial and Economic Data website.

The sets differ in sizes and include settled prices of Corn Futures Continuous Contract

C#1 from 1959-07-01 to 2017-02-10; Crude Oil Futures Continuous Contract C#1 from

1983-03-30 to 2017-02-10; Gasoline Futures Continuous Contract C#1 from 2005-10-

03 to 2017-02-10; Gold Futures Continuous Contract C#1 from 1974-12-31 to 2017-

02-10; Natural Gas Futures Continuous Contract C#1 from 1990-04-03 to 2017-02-

10; Platinum Futures Continuous Contract C#1 from 1969-01-02 to 2017-02-10; Silver

Futures Continuous Contract C#1 from 1963-06-13 to 2017-02-10; Soybeans Futures

Continuous Contract C#1 from 1959-07-01 to 2017-02-10; Wheat Futures Continuous

Contract C#1 from 1959-07-01 to 2017-02-10. To avoid multi-distributional effects, we

work with log-returns of the data sets.

3.3.1 The t-location Scale Distribution

The t-location scale distribution is most suited for modeling data distributions with

heavier tails, more prone to outliers than the Gaussian distribution. The distribution
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uses the following parameters

Parameter Description Support

µ Location parameter −∞ < µ <∞

ν Scale parameter ν > 0

α∗ Shape parameter α∗ > 0

The probability density function (pdf) of the t-location scale distribution is given by

h(x) =
Γ(α

∗+1
2

)

ν
√
α∗πΓ(α

∗

2
)

(
α∗ + (x−µ

ν
)2

α∗

)−(α
∗+1
2

)

,

where Γ(·) denotes the gamma function. The mean of the t-location scale distribution

is µ and it is defined for α∗ > 1 and undefined otherwise. The variance is given by

Var = ν2 α∗

α∗ − 2
.

The t-location scale distribution approaches the Gaussian distribution as α∗ approaches

infinity and smaller values of α∗ yield heavier tails. This distribution does not take

skewness into consideration and its three parameters are usually estimated using the

maximum likelihood estimation method. Using algorithms by [She12] on log-returns

commodity futures data we obtain fittings in Figures 3.5-3.7.
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(c) Gasoline

Fig. 3.5: Energy: The data exhibits high peaks and skinny tails.
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Probability Density Function for Corn

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Value

0

20

40

60

80

100

120

P
ro

ba
bi

lit
y 

D
en

si
ty

empirical
tlocationscale
logistic
normal
generalized extreme value

(a) Corn

Probability Density Function for Soy Beans
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Probability Density Function for Wheat
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(c) Wheat

Fig. 3.6: Grains: The data exhibits high peaks and skinny tails.
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Probability Density Function for Gold
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Probability Density Function for Silver
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Probability Density Function for Platinum
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(c) Platinum

Fig. 3.7: Metals: The data exhibits high peaks and skinny tails.
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t-location scale parameters
µ ν α∗

Energy
Gasoline 0.000905848 0.0193048 4.45922

Natural Gas 0.000117668 0.0181944 2.50848
Crude Oil 0.000313708 0.00912801 1.75246

Grains
Corn 5.52294e− 05 0.00439924 3.03782

Soy Beans 0.000400308 0.00535733 2.43218
Wheat 1.63112e− 05 0.0113397 3.41863

Metals
Gold 0.000905944 0.0108491 2.70553

Platinum 0.00044219 0.0110761 3.13631
Silver −1.72459e− 05 0.000682631 0.512196

Table 3.2: t- location scale distribution parameters extracted from the log-returns
data.

Table 3.2 shows the parameter estimates of the t-location distribution after fitting to

log-returns of energy, grains and precious metals commodities.

According to the α∗ values, the log-returns data exhibit some tails. To determine the

nature of the details one would require to run some QQ plots but this can also be

observed directly from the Figures 3.5-3.7.

It is important to mention that QQ plots do not straight away provide conclusive evi-

dence about the nature of the tails. More tests would still need to be made. For instance

under the t-location scale it is not obvious to observe any skewness in the data. We

however, view this effect when we fit the data to stable distribution as discussed in the

following section.
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3.3.2 Stable Distribution Fitting

On the other hand, assuming stable distribution for log-returns commodity futures data,

we employed the ECF method and obtained the stable parameters in Table 3.3.

Stable Distribution Parameters
α β ν µ

Energy
Gasoline 1.7504 −0.3806 0.0152 −0.0005

Natural Gas 1.5329 0.0371 0.015 0.0005
Crude Oil 1.2322 −0.1526 0.0075 −0.0022

Grains
Corn 1.651 0.2117 0.0036 0.0004

Soy Beans 1.4665 −0.0968 0.0043 0.0001
Wheat 1.638 0.0929 0.0091 0.0003

Metals
Gold 1.5007 −0.1324 0.0088 0.0001

Platinum 1.5943 −0.1339 0.0089 −0.0001
Silver 0.4461 0.0176 0.0011 −0.0001

Table 3.3: Stable distribution parameters extracted from the log-returns data.

Table 3.3 shows stable distribution parameters extracted from the log-returns data using

the empirical characteristic function parameter estimation method. We notice that the

data exhibit a bit of skewness which is not reflected in the t-location scale distribution

fitting.

Log-returns of commodity futures are not only high peaked but they also have left and

right skinny tails with extreme outliers as observed from the QQ-plots for energy com-

modities (i.e. Crude oil, Natural gas and Gasoline) in Figure 3.8, the grains commodities

in Figure 3.9 and the precious metals in Figure 3.10. The comparative distribution in

the QQ-plots is the t-location distribution with location parameter µ = 0, scale param-

eter ν = 1 and shape parameter α∗ = 5. Note that other distributions such as Weibull,

Gaussian and Extreme value, etc. can also be compared with the data but the t-location

turns out to be the closest fit.
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(a) Crude Oil vs t-location distribution
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(b) Natural Gas vs t-location distribution
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(c) Gasoline vs t-location distribution

Fig. 3.8: Energy commodities data samples compared with t-location distribution.
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(a) Corn vs t-location distribution
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(b) Soy Beans vs t-location distribution
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(c) Wheat vs t-location distribution

Fig. 3.9: Grain commodities data samples compared with t-location distribution.
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(a) Gold vs t-location distribution
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(b) Silver vs t-location distribution
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(c) Platinum vs t-location distribution

Fig. 3.10: Precious metal commodities data samples compared with t-location
distribution.
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3.4 Summary

First we showed that the ECF provides the best precision in estimating a wide range

of α and β parameters, it is robust and provides better convergence compared to the

quantile, ML and the logarithm moments. Secondly, we have illustrated that in general,

the distribution of the commodity futures log-returns data is closest to a t-location scale

distribution due to its high peaks, skinny tails and extreme outliers. Moreover, by using

the ECF estimation method we realise some minor skewness effects not captured in the

t-location scale fitting. We recommend the ECF as a suitable approach for estimating

parameters of any skewed financial market data and could be used to obtain initial input

parameters for future and better estimation techniques.
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Chapter 4

Subordinated Affine-Structure
Models for Commodity Futures
Prices

4.1 Introduction

Commodities exhibit distinctive features a good model should capture. The features

include mean-reversion, contango, backwardation and seasonality (see [MZ15]). They

also experience extreme volatility and price spikes resulting in heavy-tailed distribution

of the returns. Commodity markets are unique compared to other markets such as

equity, bond, currency or interest rate markets in the sense that most commodities are

real physical assets that are produced, transported, stored and consumed. They are not

assets valued on long-lived companies like in equity markets.

Usually, most companies and organizations are in need of large quantities of a particular

commodity at a particular point in time implying increased mobility, delivery and stor-

age costs across the world. However, in reality, the liquidation of a contract to deliver

a required commodity is not that simple in real time due to a number of factors includ-

ing seasonality. This is the main reason why spot price data for some commodities is

not available and only the futures is. Moreover, futures prices are usually listed on ex-

changes which means their prices are observable. However, it is important to note that

the underlying spot price is crucial for certain market activities such as investment val-
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uation and pricing claims contingent on commodities among other reasons. Usually the

futures price closest to maturity is used as a proxy for the spot price, (see [Ken10, Sch97]

for a detailed rationale for this proxy). The unobserved spot is usually optimally esti-

mated through recursive estimation procedures that rely on the observed futures prices.

One such methods is filtering where it’s a common practice to represent a model in a

state-space form once there are unobservabed factors involved. See [Aok13] for a good

reference on state-space representation. The representation aims at staging the problem

appropriate enough for estimation of the proposal distribution of the unoberseved factor.

Depending on the linearity and Guassianity of the model, different filtering techniques

discussed in [DK12, CK07, DHKS04] can be used as well. For instance particle filtering

is recommended for non-linear and non-Gaussian models. In contrast, the current chap-

ter, employs latent regression models usually applied in population dynamics to obtain

the futures prices where the key tool used is the expectation maximization.

As indicated in [FF88], commodity pricing can be approached from two perspectives, the

theory of storage which explains why high supplies and inventories running at minimum

would result into contango, low futures and spot price volatilities, and in turn futures

premiums being equivalent to full storage costs. On the other hand, why low supplies

and enhanced production inventory levels yield to backwardation, a rise in volatilities

of the spot and the nearby futures prices. Another feature explained by this theory is

the periodically continuously compounded convenience yield (usually denoted by δ) on

inventory which is the benefit of holding a physical commodity as opposed to having a

futures contract of its delivery at some future time and secondly, the cost of storage.

The futures price motivated by the theory of storage is given by

Ft,T = Ste
(r−c−δ)(T−t), (4.1)
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where c accounts for the storage costs, r is the periodically continuously compounded

interest rate, St is the current spot price and T is the maturity date of the future

contract.

The second perspective is the theory of expected risk premium discussed in [Key30]

and [Hic39]. It asserts that the futures prices are given by the discounted (by the risk

premium) expected future spot price:

Ft,T = Et[ST ]e−rγ[T−t],

where γ is the risk premium and Et[·] = E[·|Ft], Ft is the filtration up to time t.

Examples of models based on the latter include Schwartz’s common continuous stochas-

tic factor models [Sch97], [SS00] and the jump models of [KNPP15]. We follow a similar

perspective in this chapter and introduce a new pricing approach.

The motivation and contribution of this chapter is based on the existing erratic features

in electricity and energy markets where jumps are evident resulting in skewed distribu-

tions of the spot prices. We consider a subordinated Brownian motion by an α-stable

process, α ∈ (0, 1), as the source of randomness in the underlying asset to model com-

modity future prices. The stunning feature in our pricing approach is the new simple

technique derived from our novel approach for subordinated affine structure models.

We show that the affine property is attainable and applicable to generalised commodity

spot models and as an illustration we consider a stochastic differential equation with

subordinated Brownian motion as the source of randomness to derive the commodity

futures price. It is argued in some existing literature that the likelihood function exists in

integrated form for models with singular noise meanwhile for cases of partially observed

processes a filtering technique is required (See for instance [DP10], [YLLN14]). However,

the work presented in this chapter provides a new approach of pricing commodity futures
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for models with latent variables using expectation maximization. We show that the

commodity future price under a one factor model with a subordinated random source

driver can be expressed in terms of the subordinator which can then be reduced to the

latent regression models commonly used in population dynamics with their parameters

easily estimated using the expectation maximization method. In our case the underlying

joint probability distribution is a combination of Gaussian and stable densities.

The rest of this chapter is organized as follows. Section 4.2 reviews the concept of affine

models and extend the idea of obtaining Laplace transforms of random processes to

subordinated processes. In Section 4.3 we derive our pricing formulas for commodity

futures using the results derived in Section 4.2. In Section 4.4 we discuss the numerical

implementation of our one factor commodity futures model. Section 4.5 summarizes.

4.2 Affine Models

In this section we provide an overview on affine processes and provide some crucial

results in Theorem 2 and Theorem 3. We retain some definitions and notations used in

[KR08, KRST11] and [DFS03]:

1. D := R
m
≥0 ×Rn.

2. U :=
{
u ∈ Cd : Re uI ≤ 0, Re uJ = 0

}
,

where I := {1, · · · ,m}, J := {m+ 1, · · · ,m+ n} and M := I ∪ J = {1, · · · , d}.

3. 〈x, y〉 :=
d∑
i=1

xiyi = x · y.

4. fu(x) := exp(u · x) where u ∈ Cd and x ∈ D. From point 2., fu(x) is bounded.

5. Ptf(x) = Ex[f(Xt)] for all x ∈ D, t ≥ 0 where Pt is a semigroup operator.
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6. O :=
{

(t, u) ∈ R≥0 × U : Psfu(0) 6= 0 ∀s ∈ [0, t]
}

.

7. X will denote a closed state space.

8. Px will denote the law of a Markov process (Xt)t≥0 started at X0 = x.

We state the following essential definitions from [KR08].

Definition 10 A process is stochastically continuous if for any sequence tn → t in R≥0

the random variables Xtn converge to Xt in probability with respect to (Px)x∈D.

Definition 11 An affine process is a stochastically continuous time-homogeneous Markov

process (Xt, P
x)t≥0,x∈D whose characteristic function is an exponentially affine function

of the state vector such that

Ex[eu·Xt ] = exp(ψ0(t, u) + ψ1(t, u)x),

for all x ∈ D and for all (t, u) ∈ R≥0 × iRd, where iRd is a space of purely imaginary

numbers in Cd.

The space O is introduced to cater for points in U where Psfu(x) is 0 with an undefined

logarithm. Definition 11 can be extended to O satisfying the following properties [Prop.

1.3, [KR08]]:

1. ψ0 maps O to C− where C− := {u ∈ C : Re u ≤ 0}.

2. ψ1 maps O to U .

3. ψ0(0, u) = 0 and ψ1(0, u) = u for all u ∈ U .

4. ψ0 and ψ1 admit the ‘semi-flow property’:
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� ψ0(t+ s, u) = ψ0(t, u) + ψ0(s, ψ1(t, u)),

� ψ1(t+ s, u) = ψ1(s, ψ1(t, u)), for all t, s ≥ 0 with (t+ s, u) ∈ O.

5. ψ0 and ψ1 are jointly continuous on O.

6. With the remaining arguments fixed, uI 7→ ψ0(t, u) and uI 7→ ψ1(t, u) are analytic

functions in
{
uI : Re uI < 0; (t, u) ∈ O

}
.

7. Let (t, u), (t, w) ∈ O with Re u ≤ Re w. Then

� Re ψ0(t, u) ≤ ψ1(t, Re w),

� Re ψ1(t, u) ≤ ψ1(t, Re w).

Definition 11 is also known as the affine property and it implies that the PDE

∂

∂t
Ex[eu·Xt ] = AEx[eu·Xt ], Ex[eu·X0 ] = exp(u · x),

where A denotes the infinitesimal generator of X, can be reduced to a system of non-

linear ODEs known as generalized Riccati differential equations.

Lemma 9 An affine process (Xt)t≥0 is regular if the following right derivatives exist

for all u ∈ U and are continuous at u = 0:

F (0)(u) :=
∂ψ0

∂t
(t, u)

∣∣∣∣
t=0+

, F (1)(u) :=
∂ψ1

∂t
(t, u)

∣∣∣∣
t=0+

The regularity condition can be extended to O for which case the following Riccati equa-

tions hold:

∂ψ0

∂t
(t, u) = F (0)(ψ1(t, u)), ψ0(0, u) = 0,

∂ψ1

∂t
(t, u) = F (1)(ψ1(t, u)), ψ1(0, u) = u.
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Proof 7 See [KR08, KRST11, RH15].

We are interested in the affine property of the solution to the SDE:

dXt = b(Xt) dt+ σ(Xt−) dMt, (4.2)

where b : X → R
d is continuous, σ : X → R

d×d is measurable such that the diffusion

matrix σ(x)σT is continuous andMt is a d-dimensional standard Lévy process. We also

require that b and σ are Lipschitz with linear growth and bounded derivatives to ensure

a strong solution Xt.

The following theorem is one of the contributions in this chapter.

Theorem 2 Suppose Xt is a regular affine solution to (4.2). Then b and σ can be

expressed as:

b(x) = K0 +K1x1 + · · ·+Kdxd, Ki ∈ Rd

σ(x)σ(x)T = H0 +H1x1 + · · ·+Hdxd, Hi ∈ Rd ×Rd,

where i = 0, · · · d. Moreover, the characteristic function of Xt has a log-linear form

E[eiu1X
(1)
t +···+iudX

(d)
t ]

= exp

(
ψ0(t, u1, · · · , ud) + ψ1(t, u1, · · · , ud)x(1)

0 + · · ·+ ψd(t, u1, · · · , ud)x(d)
0

)
,

where ui ∈ iR. The coefficients ψi satisfy the system of Riccati equations:

F (i)(t, ψ1, · · · , ψd) =
∂ψi
∂t

= KT
i η +

1

2
ηTHiη, i = {0, · · · , d} ,

where ηT = (ψ1 · · ·ψd), subject to conditions ψi(0, u1, · · · , ud) = iui for i = 1, · · · , d and
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ψ0(0, u1, · · · , ud) = 0.

Proof 8 The proof is a generalisation of the 2-dimensional case in [RH15].

There is extensive literature on affine processes Xt where M := Bt or M := Bt +

σ−1
∫ t

0
ξs ds with ξt, a Poisson jump process. We are interested in the solution to

dYt = b(Yt) dSt + σ(Yt−) dBSt , (4.3)

where {St}t≥0 is a subordinator. Another contribution in this chapter follows in this

following theorem. We show that Yt = XSt is affine in the following theorem with d = 1.

In the following, we shall recall the definition of the joint filtration (Ft)t≥0 introduced

in Section 2.7.

Theorem 3 Let (Ω,F , Px, (Ft)t≥0) denote a joint probability space for (St)t≥0, a non-

decreasing affine process taking values in D and (Xt)t≥0, X0 = x, an independent Lévy

process. Define a process Yt := XSt , Y0 = y with Lévy exponent m(w) and suppose (St)t≥0

is regular with functional characteristics F (0)(u), F (1)(u). Then (Yt)t≥0 is regular affine

with functional characteristics F (0)(m(w)), F
(1)
X (m(w)) and F

(1)
Y (m(w)) = 0, u,w ∈ iR

with the characteristic function given by

Es[eiuYτ ] = exp(ψ0(τ − t,m(w)) + ψ1(τ − t,m(w))St),

for some regular functions ψ0 and ψ1 and 0 ≤ t < τ .
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Proof 9 The Markov property of St and the definition of its Laplace transform yields

Es[ewYτ |Ft] = Es[ewXSτ ] = Es
[
Es[exp(wXSτ )|σ(Ss)0≤s≤t]

]
.

= Es[exp(m(w)St)].

= exp(ψ0(τ − t,m(w)) + ψ1(τ − t,m(w))St).

The last equality follows from the affine property of St (see Definition 11).

4.3 Commodity Future Pricing

4.3.1 Introduction

We develop representation formulas for futures prices using the concepts introduced

before. The source of randomness in the models developed in this section is Brownian

motion subordinated by a non-decreasing α-stable process where α ∈ (0, 1). The aim

is to obtain futures price formulas for commodity spot price models that incorporate

stochastic volatility, jumps, seasonality and mean-reversion effects.

4.3.2 One Factor Commodity Spot Model

We consider a one factor commodity spot price model given by

zt = f(t) + eYt , (4.4)

where Yt satisfies (4.3) and seasonality is defined according to [KNPP15], as

f(t) = δ0t+ δ1 sin(δ2[t+ 2π/264]) + δ3 sin(δ4[t+ 4π/264]), (4.5)
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where δ0, δ1, δ2, δ3, δ4 account for deterministic regularities in the spot price dynamics.

The following theorem presents the first main contribution of this chapter. Specifically,

the futures price is given as an exponential function of the subordinator, the source of

the random jumps in the spot.

Theorem 4 Suppose without seasonality (i.e. f = 0), the commodity spot price z given

by (4.4) satisfies the following stochastic differential equation

dzt = κ(θ − ln zt)zt dSt + σzt dBSt , (4.6)

where St is an independent, non-decreasing stable process with α ∈ (0, 1). Then the

future price is

F (t, τ)

= exp

(
[(−1

2
σ2 + β)α + βα]γ(1− e−κ(τ−t)) +

1

4κ
σ2[(−1

2
σ2 + β)α + βα]2(1− e−2κ(τ−t))

+ [(−1

2
σ2 + β)α + βα]Ste

−κ(τ−t)
)
,

(4.7)

where γ := θ − σ2

2κ
, β ∈ [0, 1] denotes the skewness parameter of the subordinator St.

Proof 10 By applying Itô’s formula to Yt = ln zt, it is readily seen that

dYt = κ(γ − Yt) dSt + σ dBSt , (4.8)

where γ := θ − σ2

2κ
and the future price with maturity date τ is given by (see [Sch97])

F (t, τ) = E[zτ ] = E[eYτ ]. (4.9)
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Theorem 2 suggests an explicit representation of (4.9) is attainable and it can be deduced

by considering first, the continuous case E[eXτ ]. Suppose a continuous mean-reverting

model given by

dXt = κ(γ −Xt) dt+ σ dBt, X0 = x. (4.10)

The corresponding affine forms of the coefficients according to Theorem 2 yield:

K0 = κγ, K1 = −κ, K2 = 0, H0 = H1 = 0, H2 = σ.

Since Xt is regular affine and σ is constant for all t ∈ [0, τ ], then we have

E[eiuXτ ] = exp(ψ0(τ − t, u) + ψ1(τ − t, u)x+ ψ2(τ − t, u)σ), u ∈ iR, (4.11)

where ψ0(τ − t, u), ψ1(τ − t, u) and ψ2(τ − t, u) satisfy the set of Riccati equations:

∂ψ0

∂τ
= KT

0 η +
1

2
ηTH0η = κγψ1; ψ0(0, u) = 0.

∂ψ1

∂τ
= KT

1 η +
1

2
ηTH1η = −κψ1; ψ1(0, u) = iu.

∂ψ2

∂τ
= KT

2 η +
1

2
ηTH2η =

1

2
σψ2

1; ψ2(0, u) = 0,

where ηT = (ψ1 ψ2). The solution set to the system of Riccati equations is given by

ψ1(τ − t, u) = iue−κ(τ−t), (4.12)

ψ0(τ − t, u) = iuγ(1− e−κ(τ−t)). (4.13)

ψ2(τ − t, u) =
σu2

4κ
(1− e−2κ(τ−t)). (4.14)

Using (4.11) where u = −i, one can easily deduce E[eXτ ] leading to the price of a one
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factor commodity futures price under a continuous model framework:

F (t, τ) = E[eXτ ] = exp(γ(1− e−κ(τ−t)) +Xte
−κ(τ−t) +

σ2

4κ
(1− e−2κ(τ−t))).

Capitalizing on the affine nature of Yt and Theorem 3 we have the formula for E[eYτ ] as:

E[eiuYτ ] = exp(ψ0(τ − t,m(u)) + ψ1(τ − t,m(u))St + ψ2(τ − t,m(u))σ),

where the volatility σ is a constant and the system of Riccati equations takes the form

∂ψ0

∂τ
(τ − t,m(u)) = κγψ1; ψ0(0,m(u)) = 0.

∂ψ1

∂τ
(τ − t,m(u)) = −κψ1; ψ1(0,m(u)) = m(iu).

∂ψ2

∂τ
(τ − t,m(u)) =

1

2
σψ2

1; ψ2(0,m(u)) = 0.

Consequently, the solution set is directly deduced from (4.12) - (4.14) to obtain

ψ1(τ − t,m(u)) = m(iu)e−κ(τ−t),

ψ0(τ − t,m(u)) = m(iu)γ(1− e−κ(τ−t)),

ψ2(τ − t,m(u)) =
1

4κ
σm(iu)2(1− e−2κ(τ−t)).

Setting u := −i yields

E[eYτ ] = exp

(
m(1)γ(1− e−κ(τ−t)) +

1

4κ
σ2m(1)2(1− e−2κ(τ−t)) +m(1)Ste

−κ(τ−t)
)
.

The required result follows by substituting the Lévy exponent m(1) from (2.56).
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4.3.3 The Two Factor Commodity Spot Model

In the two factor spot model, the volatility is modeled as a stochastic process while

retaining jumps in the spot model. The futures price model is given by

F (t,Xt, Vt) = f(t) + E[exp(Xτ + Vτ )].

We present the second main contribution of the chapter in the following theorem.

Theorem 5 Suppose without seasonality (i.e f = 0), the commodity spot price X sat-

isfies the set of subordinated stochastic differential equation

dzt = κ(θ − zt) dSt +
√
Vt dB

(1)
St

(4.15)

dVt = λ(ε− Vt) dt+ υ
√
Vt dB

(2)
t , (4.16)

such that d [B
(1)
S·
, B

(2)
· ]t = ρ dAt where At = g(t, St) some random process. The futures

price is:

F = exp(ψ0 + ψ1z0 + ψ2V0),
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where the coefficients ψ0, ψ1 and ψ2 are given as

ψ1(τ − t, u1, u2) = m(iu1)e−κ(τ−t).

ψ2(τ − t, u1, u2) = −2κm(iu1)

υ2
e−κ(τ−t)

∞∑
j=1

djm(iu1)je−jκ(τ−t)

+
If (τ − t, u1)

C(u1, u2)− 1
2
υ2
∫ τ
t
If (s− t, u1) ds

.

ψ0(τ − t, u1, u2) = θm(iu1)(1− e−κ(τ−t))

+
−2κλεm(iu1)

υ2

∞∑
j=1

djm(iu1)j
(

1

κ(1 + j)
(1− e−κ(τ−t)(1+j))

)
.

+

∫ τ

t

If (s− t, u1)

C(u1, u2)− 1
2
υ2
∫ s
t
If (q − t, u1) dq

ds,

where coefficients
{
dj
}∞
j=1

satisfy

dj+1 =

j−1∑
i=1

djdj−11j>1 − ρυ
κ
dj1j>0 + υ2

4κ2
1j=0

(j + 1− κ−λ
κ

)
.

Note that the values of ui ∈ C, i = {1, 2} are chosen carefully to ensure that the futures

price is positive real. In this case ui = −i.

The factor C(u1, u2) is defined as

C(u1, u2) =

exp

(
− ρυm(iu1)

κ
+ 2

∞∑
j=1

di
1+j

m(iu2)j+1

)
m(iu2) + 2κm(iu1)

υ2

∞∑
j=1

djm(iu1)j
.
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Lastly, the integrating factor If is such that

If (τ − t, u1) = exp

(
− λ(τ − t)− ρυm(iu1)

κ
e−κ(τ−t) + 2e−κ(τ−t)

∞∑
j=1

dj
j + 1

m(iu1)j+1

)
.∫ τ

0

If (s− t, u1) ds =
If (τ − t, ui)

(−λ+ ρυm(iu1)e−κ(τ−t) − 2e−κ(τ−t)
∞∑
j=1

dj
j+1

m(iu1)j+1

−
exp

(
−ρυm(iu1)

κ
+ 2

∞∑
j=1

dj
j+1

m(iu1)j+1

)
(−λ+ ρυm(iu1)− 2

∞∑
j=1

dj
j+1

m(iu1)j+1)
.

We provide the proof using the following proposition and subsequent lemmas.

Proposition 1 The mean and variance of the model (4.15) - (4.16) are given by

µ :=

κ(θ −Xt)

λ(ε− Vt)

 , σ :=

 √Vt 0

ρυ
√
Vt υ

√
1− ρ2

√
Vt

 , H := σσT =

 Vt ρυVt

ρυVt υ2Vt

 .

Moreover, their affine forms can be given as linear models of both X and V :

µ = K0 +K1Xt +K2Vt,

H = H0 +H1Xt +H2Vt,

where

K0 =

κθ
λε

 , K1 =

−κ
0

 , K2 =

 0

−λ

 .

H0 =

0 0

0 0

 , H1 =

0 0

0 0

 , H2 =

 1 ρυ

ρυ υ2

 .
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As a consequence, we deduce the following system of Riccati equations:

∂ψ0

∂τ
= KT

0 η +
1

2
ηTH0η = κθψ1 + λεψ2, (4.17)

∂ψ1

∂τ
= KT

1 η +
1

2
ηTH1η = −κψ1 (4.18)

∂ψ2

∂τ
= KT

2 η +
1

2
ηTH2η = −λψ2 +

1

2
ψ2

1 + ρυψ1ψ2 +
1

2
υ2ψ2

2, (4.19)

where ηT = (ψ1 ψ2) with conditions ψ0(0,m(u1),m(u2)) = 0, ψ1(0,m(u1),m(u2)) =

m(iu1), ψ2(0,m(u1),m(u2)) = m(iu2). The solutions take the form:

ψ1(τ − t, u1, u2) = m(iu1)e−κ(τ−t). (4.20)

ψ0(τ − t, u1, u2) = θm(iu1)(1− e−κ(τ−t)) + λε

∫ τ

t

ψ2(s, u1, u2) ds. (4.21)

Proof 11 This follows from the applications of Theorems 2 and 3 and similar steps as

in solving the system of Riccati equations in the case of the one factor model.

To obtain the solution ψ2 to the Riccati equation (4.19) is not trivial. However, a similar

problem has been handled in [KNPP15].

Lemma 10 Consider Proposition 1 and let ζ(y), y ∈ C− {0} be such that it satisfies

dζ(y)

dy
= ζ(y)2 +

(
κ− λ
κy

− ρυ

κ

)
ζ(y) +

υ2

4κ2
, (4.22)

then the solution to (4.19) can be expressed by

χ(τ − t, u1) = −2κm(iu1)

υ2
e−κ(τ−t)ζ(m(iu1)e−κ(τ−t)). (4.23)

Moreover, the general solution to (4.19) takes the form

ψ2 = χ+
1

ω
, (4.24)
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where ω satisfies

∂ω

∂τ
+ (−λ+ ρυm(iu1)e−κ(τ−t) + υ2χ)ω = −1

2
υ2, (4.25)

with the general solution given by

ω(τ − t) =
C − 1

2
υ2
∫ τ
t
If (s− t) ds

If (τ − t)
, (4.26)

where If is an integrating factor and C is the constant of integration.

Proof 12 Claim (4.23) is verified by differentiating with respect to t and relating it to

(4.22) and (4.20):

∂χ

∂τ
= −λχ+

1

2
υ2χ2 + ρυχψ1 +

1

2
ψ2

1. (4.27)

Similarly, (4.24) is verified by substitution into (4.19) and relating it to (4.27) resulting

into

− 1

ω2

∂ω

∂τ
= −λ

ω
+

1

2
υ2

(
2χ

ω
+

1

ω2

)
+
ρυψ1

ω
, (4.28)

from which (4.25) follows. The general solution to (4.25) is obtained using the integrat-

ing factor

If (τ − t, u1)

:= exp

(
− λ(τ − t)− ρυm(iu1)

κ
e−κ(τ−t) − 2κm(iu1)

∫
e−κ(s−t)ζ(m(iu1)e−κ(s−t)) ds

)
= exp

(
− λ(τ − t)− ρυm(iu1)

κ
e−κ(τ−t) + 2

∫ m(iu1)e−κ(τ−t)

0

ζ(y) dy

)
. (4.29)
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Lemma 11 A representation of the solution ψ2 to (4.19) is given by

ψ2(τ − t, u1, u2) = −2κm(iu1)

υ2
e−κ(τ−t)ζ(m(iu1)e−κ(τ−t))

+
If (τ − t, u1)

C(u1, u2)− 1
2
υ2
∫ τ
t
If (s− t, u1) ds

,

(4.30)

where the constant of integration C is determined by applying ψ2(0, u1, u2) = m(iu2):

C(u1, u2) =
exp(−ρυm(iu1)

κ
+ 2

∫ m(iu1)

0
ζ(y) dy)

m(iu2) + 2κm(iu1)
υ2

ζ(m(iu1))
. (4.31)

Proof 13 The function ζ can be expressed in the form (see [KNPP15]):

ζ(y) =
∞∑
j=1

djy
j,

Functions ψ2(t, u1, u2) and ψ0(t, u1, u2) in (4.30) and (4.21) respectively can be re-

written as

ψ2(τ − t, u1, u2) = −2κm(iu1)

υ2
e−κ(τ−t)

∞∑
j=1

djm(iu1)je−jκ(τ−t)

+
If ((τ − t), u1)

C(u1, u2)− 1
2
υ2
∫ τ
t
If (s− t, u1) ds

.

ψ0(τ − t, u1, u2) = θm(iu1)(1− e−κ(τ−t))

+
−2κλεm(iu1)

υ2

∞∑
j=1

djm(iu1)j
(

1

κ(1 + j)
(1− e−κ(τ−t)(1+j))

)
.

+

∫ τ

t

If (s− t, u1)

C(u1, u2)− 1
2
υ2
∫ s
t
If (q − t, u1) dq

ds,
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where the integrating factor introduced in (4.29) and its integral are given by

If (τ − t, u1) = exp

(
− λ(τ − t)− ρυm(iu1)

κ
e−κ(τ−t) + 2e−κ(τ−t)

∞∑
j=1

dj
j + 1

m(iu1)j+1

)
.∫ τ

t

If (q − t, u1) dq =
If (τ − t, ui)

(−λ+ ρυm(iu1)e−κ(τ−t) − 2e−κ(τ−t)
∞∑
j=1

dj
j+1

m(iu1)j+1

−
exp

(
−ρυm(iu1)

κ
+ 2

∞∑
j=1

dj
j+1

m(iu1)j+1

)
(−λ+ ρυm(iu1)− 2

∞∑
j=1

dj
j+1

m(iu1)j+1)
.

Finally, the constant of integration (4.31) can be re-written as

C(u1, u2) =

exp

(
− ρηm(iu1)

κ
+ 2

∞∑
j=1

di
1+j

m(iu2)j+1

)
m(iu2) + 2κm(iu1)

η2

∞∑
j=1

djm(iu1)j
.

This completes the proof.

4.4 Numerical Implementation

We focus on the one factor model to explain our approach for estimating the model

parameters. The data used in this section is obtained from the US Energy Information

Administration and includes future prices of Crude Oil (Light-Sweet, Cushing, Okla-

homa) from Mar 30, 1983 to Dec 06, 2016 (8452 observations), Reformulated Regular

Gasoline (New York Harbor) from Dec 03, 1984 to Oct 31, 2006 (5492 observations),

Heating Oil (New York Harbor) from Jan 02, 1980 to Dec 06, 2016 (9262 observations)

and Propane (Mont Belvieu, Texas) from Dec 17, 1993 to Sep 18, 2009 (3941 observa-

tions).

The parameters in the seasonality function (4.5) are estimated by fitting the function
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to the historical spot prices. The spot prices used include Crude Oil from Jan 02, 1986

to Dec 12, 2016 (7807 observations), RBOB Regular Gasoline from Mar 11, 2003 to Dec

12, 2016 (3460 observations), No. 2 Heating Oil from Jun 02, 1986 to Dec 12, 2016

(7683 observations) and Propane from Jul 09, 1992 to Dec 12, 2016 (6133 observations).

(a) Crude Oil (b) Gasoline

(c) No. 2 Heating Oil (d) Propane

Fig. 4.1: Seasonality estimation from commodity spot prices.

The parameters of the seasonality are estimated from historical data using the optim()

function in R software. The accuracy of the fitting in Figure 4.1 depends on the choice

of the initial values of parameters δ0, δ1, δ2, δ3 and δ4.
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Table 4.1: Estimation of parameters in the seasonality function

Commodity δ0 δ1 δ2 δ3 δ4

Crude Oil 0.01097129 -0.04210297 13.29908652 18.43819425 6.28446063
Gasoline 0.001018775 -0.515953818 6.27995144 1.252457783 6.28435941
Heating Oil 0.000287309 0.159154792 12.57029401 -0.49422029 6.28182486
Propane 0.000243901 -0.252880065 12.56438012 0.071328671 6.286055367

f(t) = δ0t+ δ1 sin(δ2[t+ 2π/264]) + δ3 sin(δ4[t+ 4π/264]).

4.4.1 Equivalent Latent Regression Model

The deseasonalised one factor future price given by (4.7) can be written as

y = a+ bx+ ε, (4.32)

where y = lnF , x = St and a and b are given by

a = [(−1

2
σ2 + β)α + βα]γ(1− e−κ(τ−t)) +

1

4κ
σ2[(−1

2
σ2 + β)α + βα]2(1− e−2κ(τ−t))

(4.33)

b = [(−1

2
σ2 + β)α + βα]e−κ(τ−t), (4.34)

and ε is an independent random error distributed as N(0,Θ) with zero mean and co-

variance matrix Θ.

Clearly, (4.32) belongs to the class of latent regression models since x = St is not

observable.

This kind of problem can be handled using expectation-maximization (EM) algorithms

(see [DLR77]) to estimate the model parameters. The latent variable x can be considered

binary where in this case the EM algorithm would give estimates for a 2-component

normal mixture model. On the other hand, x can be allowed to be continuous between 0

and 1 with a beta distribution as in [TP10]. The EM algorithm for estimating the model
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parameters in this case is more involved than for the 2-component mixture model and

more computationally challenging, but can be done nonetheless. Basically, the latent or

unobserved x variables are imputed by their conditional expectation given the outcomes

y. We adapt the latter approach through the Dynkin-Lamperti Theorem (see [GN04])

where the unobserved variable follows a stable distribution defined on (−∞,∞) with

α ∈ (0, 2] and the observable variable y represents the log-returns of the futures prices.

The algorithm is applied to the joint likelihood of the response y. We assume the error

ε is independent of the latent predictor x. The joint density for x and y is given by

h(x, y) = h(y|x; a, b,Θ)S(x;α, β, ν, µ).

= N(y; a+ bx,Θ)S(x;α, β, ν, µ), (4.35)

where S(x;α, β, ν, µ) is the α stable distribution, N(y;A,B) denotes the normal distri-

bution of a random variable y with mean A and variance B; thus, Θ is the variance of

the outcome sample data. The marginal density of the response y is

f(y) =

∫
1√
2π

Θ−1/2 exp(−Θ−1(−y − β0 − β1x)′(y − β0 − β1x)/2)

× S(x;α, β, ν, µ) dx. (4.36)

Density (4.36) is an example of infinite mixture models used in ecological statistics

([FNYS15]).
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4.4.2 The EM Algorithm

For a data set (x1, y1), · · · , (xn, yn) in (4.32), the log-likelihood is derived from (4.35) as

L(α, β, ν, µ,Θ, a, b) = −n
2

log(2π)− n

2
log |Θ|

−
n∑
i=1

(yi − β0 − β1xi)
′(yi − β0 − β1xi)/2

+
n∑
i=1

log(S(xi;α, β, ν, µ)). (4.37)

Since x is not observable, the EM algorithm requires maximizing the conditional expec-

tation of the log-likelihood given the response vector y. That is

E[L(α, β, ν, µ,Θ, a, b)|y],

where at each iteration of the EM algorithm, the above conditional expectation is com-

puted using the current parameter estimates. This current expectation-maximization

problem is similar to the problem handled in [TP10] which implies a similar EM algo-

rithm can be applied here. That is, suppose ρ =

a
b

 is a 2 × p dimension coefficient

matrix where each of the p columns of ρ provides the intercept and slope regression

coefficients for each of the ρ response variables. Then denote by X the design matrix

whose first column consists of ones for the intercept and the second column consists of

the latent predictors xi, i = 1, · · · , n. The multivariate regression model follows:

Y = Xρ+ ε.
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Moreover, and as indicated in [TP10], the likelihood for the multivariate normal regres-

sion model can be given as

L(ρ,Θ) = (2π)−np/2|Θ|−1/2 exp(−tr[Θ−1(Y −Xρ)′(Y −Xρ)]/2). (4.38)

The EM approach requires that we maximize the expectation of the logarithm of (4.38)

conditional on Y with respect to ρ and Θ. This leads to the following optimal factors:

ρ̂ = (X̃′X)−1X̃′Y.

Θ̂ = Y′Y − ρ̂′(X̃′X)ρ̂,

where X̃ = E[X|Y] and (X̃′X) = E[X′X|Y].

To implement the EM method in the R programming language, we first highlight that

there are minor differences to bear in mind before implementing the algorithm as we

explain in the following.

First, the density of the predictor in our case is from a stable distribution. Recall, in

general the densities of stable processes cannot be expressed analytically which makes

it difficult to compute the log likelihood. However, with the help of inbuilt packages

in R including stabledist and StableEstim, the log likelihood can be satisfactorily

estimated using Estim() to obtain the stable parameters of St, and dstable() for its

corresponding stable density.

Secondly, from the log-likelihood expression, we notice that we only require estimates

of the conditional expectations of x, x2 and log x with respect to the joint probability

density given the response vector y.

On the other hand, we retain some of the steps in [TP10]. The initial values for the

regression parameters a and b can be obtained from fitting a two-component finite
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Table 4.2: Parameters obtained from maximum likelihood method

Parameter Estimation

Parameter 1st Iteration 2nd Iteration

loglike 30687 31133.2
a 7.74707e− 05 1.17456e− 05
b 0.00218499 0.00166723
α 1.6605 1.6605
β −0.0651915 −0.0651915
ν 0.00576286 0.00576286
µ 0.000415904 0.000415904
Θ 0.0106344 0.0110766
T 5000 days 5000 days

mixture model or by a preliminary search over the parameter space. Initial values for

Θ can be obtained using the sample covariance matrix from the raw data.

4.4.3 Data for the EM Algorithm

The data used is stored in a data frame with three columns containing futures log-

returns, spot price log-returns and binary data of 1’s and 0’s representing whether or

not a jump has occurred within a given window size (see Table 4.3). Table 4.2 shows

the estimated parameters as a result. The parameters were obtained from 5000 data

points of crude oil log-returns arranged as in Table 4.3. We have displayed results from

only two iterations because for large data sets the code tends to be slow in addition

to suffering convergence issues. However, this can be improved and by using faster

machines.

The jump occurrence due to St is determined by the method discussed in [LM08] (also

see [MRD13]). That is: The realized return at any given time is compared to a contin-

uously estimated instantaneous volatility σti to measure local variation arising from the

continuous part of the process. The volatility σti is estimated using a modified version
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Table 4.3: A snapshot of the structure of the data used

Futures log-returns Spot log-returns Jump detection

. . .

. . .

. . .
-0.015646306 -0.020072054 0

0.0322302 0.047966668 0
0 -0.016401471 0

-0.001778683 0.001489862 0
-0.017271048 -0.019778648 1
-0.02611648 -0.022030684 1
-0.043103026 -0.033698961 0

0 -0.010387745 0
0.001808809 0.003969483 0
0.037999099 0.036829588 1
-0.030483308 -0.030057522 0
0.024152859 0.019704761 0
0.009625568 0.008368168 0

. . .

. . .

. . .

of realized bipower variation calculated as the sum of products of consecutive absolute

returns in the local window (see [BNS04]). Then, the jump detection statistic Li ∈

testing for jumps in returns occurring at a time ti within a window size K is calculated

as the ratio of realized returns to estimated instantaneous volatility:

Li ≡
log Yti/Yti−1

σ̂ti
,

where Yt at t ≥ 0 represents the commodity spot price and σ̂ti is estimated by

σ̂2
ti
≡ 1

K − 2

i−1∑
j=i−K+2

| log(Ytj/Ytj−1
)|| log(Ytj−1

/Ytj−2
)|.

Care must be taken in choosing K, it must be large enough to accurately estimate

integrated volatility but small enough for the variance to be approximately constant. In

other words, K should be large enough but smaller than N , the number of observations
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so that the effect of jumps on estimating instantaneous volatility disappears. Some

authors recommend K to be computed as K =
√

252 · n, where n is the daily number

of observations, whereas 252 is the number of days in the (financial) year. Moreover the

window size should be such that K = O(4tλ) with −1 < λ < −0.5. For high frequency

data, [LM08] recommend, for returns sampled at frequencies of 60, 30, 15 and 5 minutes,

the corresponding values of K to be 78, 110, 156 and 270. For our case we shall choose

K = 4 for crude oil futures prices with returns sampled daily.

Detection of Jumps in the Data

The test statistic L follows approximately a normal distribution when the data set has

no jumps and its value becomes large otherwise. According to [LM08], the region for L

is chosen based on the distribution of its maximum. For instance, suppose a particular

interval (ti−1, ti] has no jumps and the distance between two consecutive observations in

this interval is small (i.e. 4→ 0). Then the maximum should converge to the Gumbel

variable:

maxi∈ĀN |Li| − cN
sN

→ ξ, (4.39)

where ξ has a cumulative distribution function P(ξ ≤ x) = exp(−e−x), ĀN is the set of

i ∈ {1, 2, · · · , N} such that there is no jump in (ti−1, ti] and cN , sN are defined as

cN =
(2 logN)1/2

0.8
− log π + log(logN)

1.6(2 logN)1/2
.

sN =
1

0.8(2 logN)1/2
.

The test is conducted by comparing the standardized maximum of Li in (4.39) to the

critical values from the Gumbel distribution where the null hypothesis of no jump is
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rejected when the jump statistic

Li > G−1(1− λ)sN + cN ,

where G−1(1− λ) is the (1− λ) quantile function of the standard Gumbel distribution.

Suppose λ = 0.1, then we reject the null hypothesis of no jump when Li > sNη
∗ + cN

where η∗ is such that exp(−e−η∗) = 1−η∗ = 0.9. That is, η∗ = − log(− log(0.9)) = 2.25.

Figure 4.3 shows a graph of jumps detected in crude oil futures prices where we have

used 1’s to record a jump occurrence and 0 for no jump.

Fig. 4.2: Detection of jumps in crude oil futures prices.
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Fig. 4.3: Detection of jumps in crude oil futures prices.

4.5 Summary

We have shown that the affine property is attainable and applicable to generalized spot

models. We considered a stochastic differential equation with the source of randomness

as subordinated Brownian motion as a specific example to derive the futures price.

Moreover, it has been argued in some existing literature that the likelihood function

exists in integrated form for models with singular noise meanwhile for cases of partially

observed processes a filtering technique is required. However, the work presented in this

chapter provided a new approach of pricing commodity futures for models with latent

variables using the maximum expectation maximization, without using any filtering.

Our approach is easy to implement once the joint probability density is established.

The numerical implementation of the two factor model is left for future work.
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Chapter 5

Bismut-Elworthy-Li Formula for
Subordinated Brownian motion
with Application to Hedging

5.1 Introduction

This chapter follows from Section 1.3.3 and utilizes tools from Chapter 2. The contri-

bution of the Chapter will also include deriving much simpler techniques based on the

basic Malliavin integration by parts formula to arrive at similar results in related exist-

ing literature (such as [Zha12] for instance). It is organized as follows. In Section 5.2

we review common methods in literature for computing the Greeks. Section 5.3 utilizes

results from Chapter 1.3.3 and investigates the differential calculus for subordinated

Brownian motion. We show the integration by parts formula exists for a subordinated

Brownian motion process. By employing results from the preceding sections, Section

5.4 derives the Bismut-Elworthy-Li formula for subordinated Brownian motion which

leads to the main results of the chapter. In Section 5.5 we discuss the applications of

the BEL formula in computing financial Greeks. Section 5.6 summarizes.
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5.2 Sensitivity Analysis

The theory of risk-neutral valuation asserts that given a complete filtered probability

space (Ω,F , (Ft)t≥0, P) with a subjective probability measure P and a filtration (Ft)t≥0

satisfying the usual conditions, we can construct a payoff function Φ of an option under

an equivalent martingale measure whose price is given by

Vt = E[Φ̃(XT )|Ft], (5.1)

where Φ̃ = e−rTΦ is the discounted payoff function by a risk free interest rate r and

XT is the value of the underlying at maturity time T . A Greek is a derivative of (5.1)

with respect to a certain model parameter p which could be the initial value X0 of the

underlying, the volatility parameter σ, time to maturity τ = T − t, the option strike, E

or the interest rate, r, i.e.

Greek = ∂pVt :=
∂Vt
∂p

. (5.2)

Clearly, (5.2) poses a problem if Φ̃(XT ) is not differentiable. Various methods in lit-

erature explore this challenge as we discuss in the following. The Likelihood method

[FLL+99] is suitable for known distribution of the underlying. It takes the form

∂Vt
∂p

= E[Φ̃(p)∂p ln(ρ(p))|Ft], (5.3)

where ρ denotes the density of the underlying. Malliavin calculus provides another

approach (see [BM06, BN13, DNØP08, Nua95, Ber00, Mhl15]). It eliminates differen-

tiation of the payoff function by introducing a weight factor in terms of the Malliavin

derivative or the Ornstein-Uhlenbeck operator, i.e.

∂Vt
∂p

= E[Φ̃(X(p))E(X(p), G(p))|Ft], (5.4)
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where the weight factor E consists of Malliavin derivatives of random variables X and

G belonging to some space with nice properties e.g. L2. This approach is more flexible

than the previous ones in the sense that the distribution of the underlying is irrelevant to

computing the Greeks. However, it is computationally expensive. Finally, is the Bismut-

Elworthy-Li representation formula [EL94, Tak10, KKH10, Khe12, CF07, BnDMBP15],

∂Vt
∂x

= E

[
Φ(XT )

∫ T

0

as
∂Xs

∂x
dBs

∣∣∣∣Ft], (5.5)

where x = X0 and at is some bounded function satisfying

∫ T

0

as ds = 1. (5.6)

The Bismut-Elworthy-Li Formula (5.5) applies to continuous diffusion processes but

can be adapted to finite (see [CF07]) and infinite (see [CSZ15]) jump processes. The

usefulness of this formula is its allowance for an explicit representation of the Delta of

a financial derivative.

For instance by employing the theory of Malliavin calculus, the weight E can be ob-

tained explicitly for different Brownian motion functionals. Malliavin calculus for both

continuous and jump diffusion processes has been extensively discussed in literature and

there exist enormous applications on the subject (see [Kus10], [BnDMBP15], [EL94],

[DNØP08], [BM06], [BN13], [CF07] and [Mhl15]). The focus of this chapter is to com-

pute the Greeks for a wide range of payoffs irrespective of their structure by employing

the BEL formula in the framework of subordinated Brownian motion. The subordinator

is an α/2-stable process where α ∈ (0, 2) to ensure only positive jumps.
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5.3 Malliavin derivative in the direction of jump

processes

This section explores the differential calculus of BLt and to the best of our knowledge,

little has been done in this direction, some references include [Kus10, Zha12].

We now replace X by B and S by L in Definition 9 to introduce a new joint probability

space corresponding to Brownian motion Bt and the inverse process Lt and define Ω :=

C([0, LT ]) endowed with the natural filtrations:

Ft := σ {BLτ : τ ≤ Lt} , FBt := σ {Bτ : τ ≤ Lt} . (5.7)

and introduce a separable Hilbert space

H :=
{
h ∈ C(Ω;R), h is absolutely continuous and ḣ ∈ L2(Ω;R)

}
, (5.8)

to obtain a complete abstract probability space (H,Ω, P, (Ft)t≥0).

Lemma 12 Let f be an (Ft)-adapted right-continuous process from (5.7) with left limits

satisfying

E

[ ∫ T

0

|f(τ−)|2 dLτ

]
<∞. (5.9)

where the notation f(τ−) represents value of the function at the left limit. Then its

(Ft)-martingale stochastic integral exists, it is well defined and can be expressed as an

(FBt )-martingale stochastic integral i.e.

∫ T

0

f(t−) dBLt =

∫ LT

0

f(Sτ−) dBτ , (5.10)
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where St is the inverse stable process of Lt. See [Kus10].

Proof 14 This follows from the standard change of time. �

Following Definition 9, we denote by D the Malliavin derivative operator defined on H

such that ḣ represents differentiation of h with respect to Lt. In addition, we denote by

Dh the Malliavin differentiation in direction h.

Lemma 13 Let BLt be subordinated Brownian motion associated with (H,Ω, (Ft)t≥0, P).

Then DhBLt = h(Lt), for all h ∈ H and t ∈ [0, T ]. For a càdlàg process f we have

Dh

∫ T

0

f(t−) dBLt =

∫ LT

0

f(St−) dh(t), (5.11)

where St is the inverse stable process of Lt.

Proof 15 Let f = BLt. It is easy to see that DhBLt = h(Lt) since by definition

(Dh f)(Lt) = lim
ε→0

f(Lt + εh(Lt))− f(Lt)

ε
, h ∈ H,

= lim
ε→0

BLt + εh(Lt)−BLt

ε

= h(Lt), (5.12)

for f ∈ (H,Ω,F , (Ft)t≥0, P), provided the limit exists in L2(Ω).

For the second part of the lemma we notice that since Lt is of bounded variation, the

contribution of its small jumps is almost negligible and the number of jumps is finite.

We partition [0, T ] as 0 = τ0 < τ1 < · · · < τn−1 < τn = T where τi, i = 1, · · ·n − 1

are the jump times of BLt and let
{
ti,j; j = 0, 1, 2, · · · , Ni

}
be a partition of [τi−1, τi).
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Suppose ∆ := maxi,j(ti,j − ti,j−1), we have

Dh

∫ T

0

f(t−) dBLt =

∫ T

0

f(t−) dh(Lt).

= lim
∆→0

n∑
i=1

[ n−1∑
j=1

f(ti,j−1−)[h(Lti,j)− h(Lti,j−1
)]

+f(ti,ni−1−)[h(Lti,ni−)− h(Lti,ni−1
)]

+f(ti,ni−)[h(Lti,ni )− h(Lti,ni−)]

]
. (5.13)

Now if we let ui,j := Lti,j then Sui,j = ti,j for j = 0, 1, 2, · · · , Ni−1 and as a consequence

we write

Dh

∫ T

0

f(t) dBLt =

∫ T

0

f(t) dh(Lt).

= lim
∆→0

n∑
i=1

[ n−1∑
j=1

f(Sui,j−1
−)[h(ui,j)− h(ui,j−1)]

+f(Sui,ni−1
−)[h(ui,ni−)− h(ui,ni−1)]

+f(Sui,ni−)[h(ui,ni)− h(ui,ni−)]

]
.

=
n∑
i=1

∫ Lτi−

Lτi−1

f(Su−)dh(u) +
n∑
i=1

f(Sui,ni−)[h(τi)− h(τi−)].

Note that Su is constant on u ∈ [Lτi−, Lτi ]. Therefore

f(Sui,ni−)[h(Lτi)− h(Lτ−)] =

∫ Lτi−

Lτi−1

f(Su−)dh(u), i = 1, 2, · · · , n.

The result follows immediately, i.e.

Dh

∫ T

0

f(t−) dBLt =

∫ LT

0

f(St−) dh(t), (5.14)
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Lemma 14 Suppose f is a right continuous function with left limits, then

∫ T

0

f(τ−) dLτ =

∫ LT

0

f(Sτ−) dτ, (5.15)

where St is the inverse stable process of Lt.

Proof 16 This follows from standard change of time computations. Also see [Kus10].

5.3.1 Discrete Multiple Stochastic Integral

In this section we derive the integration by parts formula associated with the random

process BLt . We denote by ζk the time between the k-th and (k + 1)-th jumps of BLt .

We start with the triplet (H,Ω, P), a joint probability space introduced in Definition

9 with a real seperable Hilbert space H and a scalar product 〈·, ·〉H. The norm for

g ∈ H is denoted by ‖g‖H. Finally, P the extension to the Borel σ−algebra of Ω of a

cylindrical measure. We define independent stable random variables ζk := BLk − BLk−

which are canonical projections from Ω to R. We assume Lk is a form of subordinator

introduced in ([JW93], P. 33) which is an α/2-stable totally skewed Lévy motion with

increasing sample paths (α ∈ (0, 2), β = 1). This is a symmetric alpha-stable process

(SαS) with positive Poisson jumps. Therefore, BLk belongs to a class of SαS Lévy

motion processes with its jumps only at the jump times of Lk. As a consequence, we

use Charlier polynomials to define the multiple stochastic integrals with respect to our

process.

Definition 12 The Charlier polynomials are defined as

C(λ)
n (x) = (−1)nλ−xeλ

dn

dλn
(e−λλx). (5.16)
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Alternatively, this can be expressed explicitly as

C(λ)
n (x) =

n∑
k=0

n
k

 (−1)n−k(λ)−k(x)k, x ∈ Ω,

where (x)k := x(x− 1) · · · (x− k + 1).

The Charlier polynomials form an orthogonal basis of L2(Ω,F , P) with respect to the

Poisson measure µ(dx) = λx

x!
eλ dx. Moreover, we have:

∞∑
x=0

λx

x!
C(λ)
n (x)C(λ)

m (x) = n!λ−neλδnm, λ > 0,

where δnm = 0 when n 6= m and δnm = 1 for n = m. Therefore any function F ∈

L2(Ω,F , P) can be uniquely represented as

F (x) =
∑
n≥0

fnC
(λ)
n (x), fn ∈ R+.

with the corresponding norm given by ‖f‖2 =
∑
n≥0

|fn|2λnn!.

Next, we construct the discrete multiple stochastic integral using the Wick product

following similar arguments in [Pri94].

Suppose P∗ is a set of all functionals of the form Q(ζ0, · · · , ζn−1) where Q is a real

polynomial and n ∈ N, we regard P∗ as an algebra generated by
{
C

(λ)
n (ζk) : k, n ∈ N

}
and define the Wick product in the following manner.

Definition 13 The Wick product of two elements F,G ∈ P∗ denoted by F �G is defined
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(relaxing λ for simplicity) as:

(Cn1(ζk1) · · ·Cnd(ζkd)) � (Cm1(ζk1) · · ·Cmd(ζkd))

=
(n+m)!

n!m!
Cn1+m1(ζk1) · · ·Cnd+md(ζkd),

where for a ∈ Nd, a! = a1! · · · ad! and n = (n1, · · · , nd), m = (m1, · · · ,md) and k1 6=

· · · 6= kd.

Let H = l2(N) be a space of square-summable sequences. There exists a discrete

chaotic decomposition of L2(Ω, P) whose elements F can each be represented as a sum

of multiple stochastic integrals of kernels of H◦n = l2(N)◦n, that is,

F =
∞∑
n=0

In(fn), (5.17)

where fn ∈ H◦n, n ∈ N and In(fn) is the discrete multiple stochastic integral of

symmetric functions of discrete variable. The stochastic integral of f ∈ l2(N) is an

isometry from H = l2(N) to L2(Ω,F , P). This is shown in the following proposition.

Proposition 2 Let f ∈ l2(N) and define I1(f) :=
∫ +∞

0
f(BLt) dBLt. Then

E[I1(f)2] =
∑
k,l∈N

fkflE[ζkζl] =
∞∑
0

f 2
k = ‖f 2‖L2([0,LT ],Ω). (5.18)

Proof 17 Consider a partition τ1 < · · · < τm−1 where τi, i = 1, · · ·m− 1 are the jump

times of BLt and let
{
ti,j; j = 0, 1, 2, · · · , ni

}
be a partition for each [τi−1, τi). Suppose

∆ := maxi,j(ti,j − ti,j−1), we have

I1(f) = lim
∆→0

i=m−1∑
i=1

0≤j≤ni

f(BLti,j
)(BLti,j+1

−BLti,j
) + f(BLtni

)(BL1 −BLtni
),
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where ni = max
{
j : tj ≤ 1

}
. Consequently

E[I1(f)2] = lim
∆→0

M∑
i=1

0≤j1,j2≤ni

E[f(BLti,j1
)f(BLti,j2

)

× (BLti,j1+1
−BLti,j1

)(BLti,j2+1
−BLti,j2

)].

We notice that for j1 < j2 on each [τi, τi+1), we have

E[f(BLti,j1
)f(BLti,j2

)(BLti,j1+1
−BLti,j1

)(BLti,j2+1
−BLti,j2

)] = 0,

which is arrived at by conditioning with respect to Fti,j2 and applying the tower property.

Meanwhile for j1 = j2 = j we have

E[f 2(BLti,j
)(BLti,j+1

−BLti,j
)2].

= E[f(B2
Lti,j

)E[(BLti,j+1
−BLti,j

)2|Fti,j ]].

= E[f 2(BLti,j
)E[(Lti,j+1

− Lti,j)|Fti,j ].

= E[f 2(BLti,j
)(Lti,j+1

− Lti,j)].

The last equation follows from the law of total expectation. The result follows immedi-

ately by combining both cases.

The discrete multiple stochastic integral In(fn), fn symmetric in l2(Nn) with finite

support can be defined directly using the Wick product.

Definition 14 The symmetric tensor product f1 ◦ · · · ◦ fn is defined as

f1 ◦ · · · ◦ fn =
1

n!

∑
σ∈Σn

fσ(1) ⊗ · · · ⊗ fσ(n) (5.19)
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where f1, · · · , fn ∈ H and Σn is the set of all permutations of {1, · · · , n}. Moreover,

suppose g1, · · · , gn ∈ l2(N) with finite supports, we have

In(gn ◦ · · · ◦ gn) = I1(g1) � · · · � I1(gn),

where I1(gi) =
∞∑
k=0

gi(k)C1(k), 1 ≤ i ≤ n.

The definitions above suggest the results [Prop.2 & Prop.3, [Pri94]] for the Poisson

process, also hold for our choice of process BLt with similar proofs.

Lemma 15 1. Suppose (en)n∈N is a canonical basis in l2(N)◦n. Then

(a) For k1 6= · · · 6= kd and n1 + · · ·+ nd = n, we have

In(e◦n1
k1
◦ · · · ◦ e◦ndkd

) = n1! · · ·nd!Cn1(ζk1) · · ·Cnd(ζkd).

(b) Suppose f =
∞∑
k=0

fkek ∈ l2(N) has finite support, then

In(f ◦n) = n!
∑

k1 6=···6=kd
n1+···+nd=n
n1,··· ,nd>0

fn1
k1
· · · fndkd Cn1(ζ1) · · ·Cnd(ζd).

(c) If fn ∈ l2(Nn), gm ∈ l2(Nm) are symmetric with finite supports, then

In(fn) � Im(gm) = In+m(fn ◦ gm).

2. Let Dn =
{

(k1, · · · , kn) ∈ N
n : ∃ i 6= j such that ki = kj

}
which represents the

diagonals in Nn and let Xn = N
n \Dn. Suppose fn ∈ l2(Nn) and gm ∈ l2(Nm) are
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symmetric with finite supports, then

〈In(fn), Im(gm)〉L2(Ω) =


n!〈fn, gm〉l2(Xn) + (n!)2〈fn, gm〉l2(Dn) if n = m

〈In(fn), Im(gm)〉L2(Ω) = 0 if n 6= m.

Proof 18 See [Pri94].

Lemma 16 Let Cn =
{
In(fn) : fn ∈ l2(N◦n)

}
define chaos of order n ∈ N in L2(Ω).

Then L2(Ω) has a chaotic decomposition:

L(Ω,F , P) =
∞⊕
n=0

Cn.

Moreover, if Kn is the tensor product H◦n, endowed with the norm

|‖fn‖|2n = n!〈fn, fn〉l2(Xn) + (n!)2〈fn, fn〉l2(Dn),

equivalent to ‖·‖l2(N) then the Fock space F(H) :=
⊕∞

n=0Kn is isometrically isomorphic

to L2(Ω).

Proof 19 The Cn’s are orthogonal according to Lemma 15. Secondly, Q is dense in

L2(Ω) since the polynomials of P∗ are dense in L2(R+,
λx

x!
eλ dx): Suppose F ∈ L2(Ω)

and E[FQn(ζ0) · · ·Qn(ζn)] = 0,, for any Q0, · · · , Qn, n ∈ N, then E[F |ζ0, · · · , ζn] =

0, n ∈ N. This implies

lim
n→∞

E[F |ζ0, · · · , ζn] = F P− a.s.,

since E[F |ζ0, · · · , ζn] is a discrete-time martingale. Therefore F = 0, P− a.s. and P∗ is

dense in L2(Ω).
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The annihilation operator defined in (5.12) has an equivalent in the discrete chaotic

decomposition of L2(Ω,F , P) given by

Dk(In(fn)) =
n−1∑
p=0

n!

p!
Ip

(
fn(∗, k, · · · , k︸ ︷︷ ︸

n−p times

)

)
; k ∈ N. (5.20)

Moreover, the following lemma holds.

Lemma 17 Suppose U denotes a dense set of elements of u ∈ L2(Ω)⊗ l2(N) such that

uk = ζkhk, k ∈ N where h : N → Q has finite support in N and define an operator

δ : U → L2(Ω) by

δ(u) = −
∞∑
k=0

(uk + Dk uk),

Then for any F ∈ Dom(D) and u ∈ Dom(δ), we have

E[(DF, u)l2(N)] = E[Fδ(u)], (5.21)

where Dom represents domain and the operators D and δ are also closable and adjoint

to each other.

Proof 20 See [Pri94].

The above results can be extended from L2(Ω)⊗ l2(N) to L2(Ω)⊗ L2(R+) yielding:

∫ LT

0

Fu(Bτ ) dBτ = F

∫ LT

0

u(τ) dBτ −
∫ LT

0

(Dt F )u(τ) dτ, t ≤ τ. (5.22)

This observation is explained in [Pri94]. This in turn leads to the following duality

relation:

E

[∫ LT

0

(Dt F )u(τ) dτ

]
= E

[
F

∫ LT

0

u(τ) dBτ

]
, t ≤ τ. (5.23)
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The duality formula is an important tool for finding alternative representations of deriva-

tives of expectations of irregular functions. We discuss this later.

5.3.2 Malliavin Derivative of Solutions to Subordinated SDEs

In the following, K is defined as a Hilbert space, D1,2(K) as a Sobolev space of K-valued

functions associated with the H-derivative, L2(H;K) as a total set of a K-valued linear

operator of Hilbert-Schmidt class on H, L1,2(dBLt ;K) as the total set of (Ft)-predictable

(R×K)-valued functions σ such that for σ(t,X) ∈ D1,2(R×K), t ∈ [0, T ] with

‖σ‖L(dBLt ;K) := E

[∣∣Dh σ(t−, X)
∣∣2
L2(H;R×K)

dLt

]1/2

<∞, (5.24)

where h is given in (5.8). We denote L(dt;K) as the total set of (Ft)-predictable

(R×K)-valued functions b satisfying b(t,X) ∈ D1,2(R×K), t ∈ [0, T ] with

‖b‖L(dt;K) :=

∫ T

0

∣∣Dh b(t−, X)
∣∣2
L2(H;K)

dt <∞. (5.25)

Let (Ω,F , P) represent a joint probability space introduced in the previous sections and

consider the following SDE:

dXt = b(t,Xt) dt+ σ(t,Xt) dBLt ; X0 = x, (5.26)

A scenario of (5.26) with Lipschitz coefficients and standard Brownian motion has

been discussed in [FLL+99] and [BN13] to compute financial Greeks. The case of non-

Lipschitz coefficients with subordinated Brownian motion is handled in [BM06], [SX14]

and much less related in [CF07] and [DNØP08]. For non-Lipschitz with standard Brow-

nian motion, (see for instance [BnDMBP15]). Throughout the current chapter, we shall

consider an SDE with coefficients that are continuously differentiable with bounded Lip-
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schitz derivatives and subordinated Brownian motion will be the source of randomness.

Proposition 3 Suppose in (5.26) the SDE has Lipschitz coefficients with linear growth

and assume σ(t,X) ∈ D1,2(R ×K) and b(t,X) ∈ D1,2(R ×K). Then the solution Xt

to (5.26) exists, is unique and belongs to D1,2 for all t ∈ [0, T ].

Proof 21 The proof is based on Picard’s succesive approximation and it follows similar

steps of [Thm 3.1 and Prop 2.1, [Kus10]] .

Let [·, ·] denote the dot product endowed onH in (5.8). A representation of the derivative

of Xt follows in the following proposition.

Proposition 4 Denote the directional derivative of Xt by DrXt[h], r ≤ t where Dr is

the Malliavin derivative operator. Then from (5.26) we have

DrXt[h] =

∫ t

r

Dr b(s, x)[h] ds+

∫ t

r

Dr σ(s−, x)[h] dBLs +

∫ t

r

σ(s−, x) dh(Ls). (5.27)

If we assume {h} is a complete orthonormal basis in H, then

DrXt =

∫ t

r

Dr b(s) ds+

∫ t

r

Dr σ(s−) dBLs

+
∞∑
i=1

hi(s)⊗
∫ Lt

Lr

σ(Ss−)ḣi(s) ds. (5.28)

Moreover, if σ ≡ 1, then

DrXt =

∫ t

r

b′(Xs) DrXs ds+
∞∑
i=1

hi(t)⊗
∫ Lt

Lr

ḣi(s) ds. (5.29)

Proof 22 First, represent (5.26) in its integral form:

Xt = x+

∫ t

0

b(τ,Xτ )dτ +

∫ t

0

σ(τ,Xτ )dBLτ . (5.30)

99



Then apply the product rule and (5.12) to the second term on the RHS of (5.30) to

obtain (5.27). If {h} is an orthogonal basis, we can express σ as

σ =
∞∑
i=1

[σ, hi]

‖hi‖
hi, (5.31)

where h = ‖h‖ĥ and ĥ is a unit vector of h. For h orthonormal gives (5.28).

If σ ≡ 1 the last term of (5.29) is zero and by the Grönwall’s inequality, we have:

DrXt = exp

(∫ t

r

b′(Xs) ds

)
. (5.32)

Also note from (5.30) that the first variation process can be deduced as:

∂Xt

∂x
= exp

(∫ t

0

b′(Xs) ds

)
. (5.33)

Combining (5.32) and (5.33) results into the following useful relation

DrXt =
∂Xt

∂x
exp

(
−
∫ r

0

b′(Xs) ds

)
. (5.34)

Alternatively,

∂Xt

∂x
= DrXt

∂Xr

∂x
, r ≤ t. (5.35)

5.4 BEL Formula for Subordinated Stochastic Dif-

ferential equations

Bismut-Elworthy-Li formula for general Lévy processes is studied in [CF07]. We derive

representations for subordinated Brownian motion based on [EL94].
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Proposition 5 Let Xt be the solution to (5.26) on the horizon [0, T ] where Lt ≡ t (see

for instance [CF07, BnDMBP15]) and let Φ : R → R denote some bounded function.

Suppose we can define a functional Vt(XT ) of XT by

Vt(XT ) = E[Φ(XT ]; X0 = x. (5.36)

Then the derivative of V with respect to x is given by (5.5).

Proof 23 Apply the classical chain rule on E[∂xΦ(XT )] and use the relation (5.35)

followed by the chain rule in the Malliavin sense. Finally apply the duality relation

(5.23), in that order. A similar proof is provided in [Stu04] by using the identity DtXT =

JTJ
−1
t σ(t,Xt−)1{t≤T}, where Jt := ∂Xt

∂X0
, X0 = x.

Equation (5.5) is Bismut-Elworthy-Li formula for Geometric Brownian motion.

Proposition 6 Suppose (5.30) has Lipschitz coefficients. Let R(t,Xt) denote the right

inverse of σ(t,Xt) where σ(t,Xt) is elliptic. For any function Φ ∈ C1
b (R) and h ∈ R,

we have (the x argument is relaxed for simplicity)

Dh E[Φ(Xt)] =
1

Lt
E

[
Φ(Xt)

∫ t

0

R(τ) ·DhXτ dBLτ

]
, (5.37)

where

DhXt = h(t) +

∫ t

0

b′(s,Xs) ·DhXs ds. (5.38)

Proof 24 Working backwards and using the results obtained above we have

Dh E[Φ(XT )] = E[Dr Φ(Xt)[h]] = E[Φ′(Xt) DrXt[h]].

Next we apply the duality relation (5.23), equation (5.34), Grönwall’s inequality and
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(5.29) for some arbitrary h not necessarily an orthonormal basis and σ ≥ 1 in that

order, where we have chosen at = T for all t ∈ [0, T ]..

We provide a detailed analysis on the above result in the following section.

5.4.1 Main Results

This section presents the main results of the chapter. The idea is to extend the results

by [FLL+99] to a subordinated stochastic differential equation model by deriving the

first and second order derivative representation for the expectation of a function that is

not necessarily regular. Specifically, the idea is to by-pass the derivative of the expected

(irregular) function by introducing a weight term in the form of an integral with respect

to subordinated Brownian motion. The results in this section are employed in the

following section to estimate the Greeks using Monte Carlo simulations.

In this section, operators δ and Dwill be used interchangeably to represent weak deriva-

tives, and Jt shall denote the first variation process given by

Jt =
∂Xt

∂x
, and J0 =

∂Xt

∂x

∣∣∣∣
t=0

. (5.39)

L shall denote a space of bounded integrable functions, (Qt : t ≥ 0) shall denote the

semigroup of the solution Xt to (5.30). Lastly, {St}t≥0 shall denote a non-decreasing

cádlág α-stable process and {Lt}t≥0 its inverse with α ∈ (0, 1]. We require Xt to be

complete to enforce some integrability conditions on DXt. Let L(R) denote the space

of integrable functions on R. Then we have the following corollary.

Corollary 1 Let U : R→ L(R) with bounded first derivative such that δQt(U) : R→

L(R) and define UX := (df)X = Df(Xt). Then the weak derivative of Qt with respect
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to the initial state x is given by

δQt(U)x[J0] = E[UX [Jt]] = E[Df(Xt)[Jt]], (5.40)

provided the last term exists. Moreover

(δQt(df))x[J0] = d(Qtf)x[J0]. (5.41)

Since Xt is non-explosive, the weak derivative δQt is well defined.

Proof 25 This follows directly from semigroup arguments and the application of a weak

chain rule.

Corollary 2 Suppose Xt ∈ R is non-degenerate and elliptic, there exist an inverse

R(t,Xt) of σ(t,Xt) smooth in Xt such that
∣∣R(X)[Y ]

∣∣ ≤ ε|Y |2 for all X, Y ∈ R for

some ε > 0. Moreover, if ∫ Lt

0

E[ |JSτ |
2] dτ <∞. (5.42)

then, ∫ Lt

0

E[
∣∣R(Sτ , XSτ )JSτ

∣∣ ] dτ <∞. (5.43)

Proof 26 Recall that the result holds for the case of continuous processes [CF07, EL94].

We can therefore employ similar arguments of partitioning as in the second part of the

Proof of Lemma 13 and apply similar steps as in the continuous case but piece-wise, to

arrive at the required result.

Theorem 6 Let Φ : R→ R with its first derivative bounded and continuous:

δQt(dΦ) = d(QtΦ) a.s. t ≥ 0, (5.44)
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Moreover, for x ∈ R, T > 0, the derivative with respect to x is given by

∂xE[Φ(XT )] =
1

LT
E

[
Φ(XT )

∫ LT

0

R(Sτ , XSτ )JSτ dBτ

]
, (5.45)

where
∫ LT

0
R(Sτ , XSτ )JSτ dBτ , T ≥ 0 is a martingale.

Proof 27 From Corollary 2, let T > 0, applying Itô’s formula to

(t,Xt) 7→ QT−tΦ(Xt), 0 ≤ t < T, (5.46)

yields

QT−tΦ(Xt) = QTΦ(x) +

∫ t

0

d(QT−τΦ)Xτσ(τ,Xτ ) dBLτ , for t ∈ [0, T ]. (5.47)

As t→ T , and applying the knowledge from Lemmas 14 and 5.10 yields

Φ(XT ) = QTΦ(x) +

∫ LT

0

d(QST−SτΦ)XSτ (σ(Sτ , XSτ ) dBτ . (5.48)

Multiplying (5.48) by a martingale
∫ LT

0
R(Sτ , XSτ )(JSτ ) dBτ yields

E

[
Φ(XT )

∫ LT

0

R(Sτ , XSτ )(JSτ ) dBτ

]
= E

[ ∫ LT

0

d(QST−SτΦ)XSτ JSτ dτ

]
.

= E

[ ∫ LT

0

((δQST−Sτ )(dΦ))XSτ (JSτ ) dτ

]
.

=

∫ LT

0

((δQSτ )((δQST−Sτ )(dΦ)))x(J0) dτ.

=

∫ LT

0

(δQST (dΦ))x(J0) dτ.

= LT δQT (dΦ)x(J0). (5.49)

Since J0 = 1 and δQT (dΦ)x = E[(dΦ)x] = ∂xE[Φ]. The required result follows.
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Corollary 3 Suppose Xt ∈ R2, t ≥ 0 and indexes 0 ≤ j, k ≤ m, then

∫ LT

0

E[ |DXSτ ,x(J
j
0)|2] dτ ≤ ε|J j0 |2, ε > 0. (5.50)

and

sup
0≤Sτ≤t

sup
x∈R2

E[|D2XSτ ,x(J
j
0 , J

k
0 )|] ≤ ε|J j0 ||Jk0 |, (5.51)

and

sup
0≤Sτ≤t

sup
x∈R2

E[|DXSτ ,x|] ≤ ε. (5.52)

where | · | denotes the Euclidean norm.

Proof 28 The proof follows directly by applying (5.38) where h ≡ J0.

Theorem 7 Let Φ : R2 → R be such that its first and second derivatives are bounded

and continuous and,

d(QtΦ) = δQt(dΦ) a.s. t ≥ 0 (5.53)

such that for almost all xj, xk ∈ x for 0 ≤ j, k ≤ 2,

D2QtΦ(x)(J j0)(Jk0 ) = E

[
D2 Φ(Xt)(DXSt,xJ

j
0 ,DXSt,xJ

k
0 )

]
+ E

[
DΦ(Xt)σ(St, XSt)(J

j
0 , J

k
0 )

]
, (5.54)

where

X0 = x, J j0 =
∂XSt

∂xj

∣∣∣∣∣
t=0

and Jk0 =
∂XSt

∂xk

∣∣∣∣∣
t=0

. (5.55)
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Then

∂2

∂xjxk
E[Φ(XT )] =

4

L2
T

E

[
Φ(XT )

∫ LT

LT /2

(
R(St, XSt−)

∂XSt−

∂xj

)
dBt

×
∫ LT /2

0

(
R(St, XSt−)

∂XSt−

∂xk

)
dBt

]
+

2

LT
E

[
Φ(XT )

∫ LT /2

0

(
DR(St, XSt−)

∂XSt−

∂xj

∂XSt−

∂xk

)
dBt

]
+

2

LT
E

[
Φ(XT )

∫ LT /2

0

(
R(St, XSt−)

∂2XSt−

∂xjxk

∣∣∣∣
t=0

)
dBt

]
.

Proof 29 From equation (5.54) we deduce

LT

(
D2QTΦ(x)(J j0 , J

k
0 )

)
= E

[
DΦ(XT )(JT )

∫ LT

0

R(Sτ , XSτ−)(JSτ ) dBτ

]
− E

[ ∫ LT

0

D(QST−SτΦ)(XSτ−)

× (Dσ(Sτ , XSτ−)(JkSτ )R(Sτ , XSτ−)(J jSτ ) dτ

]
+ E

[ ∫ LT

0

(QST−SτΦ)(XSt−)(D2XSt−,x)(J
j
0 , J

k
0 ) dτ

]
.

Suppose LT = 1
2
Lt and consider 0 ≤ τ ≤ t/2 then

D2Qt/2Φ(x)(J j0 , J
k
0 ) =

4

L2
t

E

[
Φ(Xt)

∫ Lt

Lt/2

R(Sτ , XSτ )J
j
Sτ

dBτ

×
∫ Lt/2

0

R(Sτ , XSτ−)JkSτ dBτ

]
− 2

Lt
E

[ ∫ Lt/2

0

D(QSt/2−SτΦ)(XSτ−)

× (Dσ(Sτ , XSτ−)(J jSτ )(R(Sτ , XSτ−)(JkSτ ) dτ

]
+

2

Lt
E

[ ∫ Lt/2

0

D(QSt/2−SτΦ)(XSτ )(D
2XSτ ,τ )(J

j
0 , J

k
0 ) dτ

]
.
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Applying Itô formula to
{
Qt−τΦ(Xτ ) : 0 ≤ Lτ < Lt

}
at Lτ = Lt/2, yields

Qt/2Φ(Xt) = QtΦ(x) +

∫ Lt/2

0

D(QSt/2−SτΦ)(XSτ )(σ(Sτ , XSτ−) dBτ . (5.56)

Multiply (5.56) by
∫ Lt/2

0
DR(Sτ , XSτ )J

j
Sτ
JkSτ dBτ and

∫ Lt/2
0

R(Sτ , x)(J j0 , J
k
0 ) dBτ . Next,

taking expectations and applying the identity (see [EL94])

DσJ jRJk + σDRJ jJk = 0, (5.57)

yields the required result.

5.5 Applications

This section is dedicated to estimating the Delta, Gamma and Vega from two stochas-

tic models of the asset price namely; the subordinated stochastic differential equation

(SSDE) and the Geometric Brownian motion (GBm).

5.5.1 Hedging Discontinuous-Payoff type Options in Black-Scholes

Framework

We focus only on the digital option but the analysis could be extended to other discontinuous-

payoff type or irregular payoff options (see [FLL+99] for instance). The Delta and

Gamma follow directly from Theorem 6 and Theorem 7 respectively.

Let Xt satisfy the stochastic differential equation

dXt = rXtdLt + σXt dBLt ; X0 = x, (5.58)
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with the solution given by

Xt = x exp(rLt + σBLt). (5.59)

Figure 5.1 shows the dynamics of solutions to SSDE and GBm. The Greeks are com-
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Fig. 5.1: Price evolution from SSDE and GBm models

puted by conditioning on LT = τ , as follows :

Delta

According to Theorem 6

∂xE[Φ(XT )] =
1

τ
E

[
Φ(XT )

∫ T

0

1

σXt

∂Xt

∂x
dBLt

]
. (5.60)
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Assume a discounted payoff of a digital option i.e. Φ(XT ) = e−rT1E<XT where E is the

strike price, then we can express the Delta by

∂xE[Φ(XT )] = E

[
e−rT1{E<XT }

BLT

xστ

]
. (5.61)

Figure 5.2 shows the digital option delta from both the SSDE and GBm models.
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Fig. 5.2: Digital option delta: α = 0.8, r = 0.1, σ = 0.2, S0 = 110, E =
100, T = 1..

Observe that the delta from SSDE is slightly higher due to existence of jumps and its

convergence is slightly slower.

Gamma

Consider n = 2 and let X1
t = X2

t in Theorem 7 then we deduce

∂2

∂x2
E[Φ(XT ] =

4e−rT

x2σ2τ 2
E[Φ(XT )BLT /2(BLT −BLT /2)]

− 2e−rT

x2στ
E[Φ(XT )BLT /2] (5.62)

+
2e−rT

x2στ
E[Φ(XT )BLT /2]. (5.63)
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Suppose LT/2 ≡ LT . We obtain a similar expression of the Gamma as in the case

of continuious Brownian motion by applying the identity E[B2LTBLT ] = E[BLT (B2LT −

BLT ) +B2
LT

] and simplying. That is

∂2

∂x2
E[Φ(XT ] = e−rTE

[
Φ(XT )

1

x2στ

(
B2
LT

στ
−BLT −

1

σ

)]
. (5.64)

Figure 5.3 shows digital option gamma from the SSDE and GBm models. Again we
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Fig. 5.3: Digital option gamma: α = 0.8, r = 0.1, σ = 0.2, S0 = 110, E =
100, T = 1.

observe that the gamma from SSDE is slightly higher than that from GBm.

5.5.2 Vega

The Vega can be deduced similarly by using integration by parts. That is

∂

∂σ
E[Φ(XT ] = e−rTE

[
Φ(XT )

(
B2
LT

στ
−BLT −

1

σ

)]
. (5.65)

Figure 5.4 shows the vega from the SSDE and GBm models. Note that the Vega from
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Fig. 5.4: BEL formula with α = 0.8, r = 0.1, σ = 0.2, S0 = 110, E = 100.

SSDE is slightly higher. Observe that despite fact the SSDE model has jumps, the

convergence rate for the estimation of the Greeks from the model is as good as in the

GBm model.

As a matter of interest, we apply the finite difference method on the subordinated

Brownian motion model to estimate the Greeks for a call option from the SSDE model.

Recall from [FLL+99] that the finite difference method is recommended for computing

the Greeks from European options compared to the BEL formula, it performs better in

this case. Figure 5.5 shows the estimation of the Greeks of a European call option using

the SSDE model.

∂xE[Φ(XT )] = E

[
e−rT max(XT − E, 0)

BLT

xσLT

]
. (5.66)
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Fig. 5.5: Finite difference method for Call Greeks from SSDE with α = 0.7, r =
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5.6 Summary

We extended the integration by parts formula approach to computing the Greeks of

options with discontinuous payoffs presented in [FLL+99] to markets with jumps. As

an application, we estimated Greeks from the SSDE model and observed that BEL

formula still performs well for SSDE as in the continuous diffusion models. As a concrete

practical application, our model can be applied by investors in emerging/illiquid markets

to construct hedge portfolios.
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Chapter 6

Conclusion

The class of alpha-stable distributions can be used to capture various phenomena in-

cluding the financial markets. We have managed to show some scenarios in the financial

market where this family of distributions plays an important role as summarized below.

In Chapter 3 we showed that the ECF as a parameter estimation method provides

the best precision in estimating a wide range of α and β parameters, it is robust and

provides better convergence compared to the maximum likelihood method which has

been the mostly used in applications according to literature. Secondly, we illustrated

that in general, the distribution of the commodity futures log-returns data is closest to

a t-location scale distribution due to its high peaks, skinny tails and extreme outliers

but the ECF estimation method could be used in addition to capture skewness effects

that are not captured in the t-location scale fitting. We recommend the ECF method

as the suitable approach for estimating parameters of any skewed financial market data

and can be used to obtain initial input parameters for future and better estimation

techniques.

In Chapter 4, we showed that the affine property is attainable and applicable to gen-

eralized spot models. We considered a stochastic differential equation with the source

of randomness as subordinated Brownian motion as a specific example to derive the fu-

tures price. Moreover, it has been argued in some existing literature that the likelihood

function exists in integrated form for models with singular noise meanwhile for cases of

partially observed processes a filtering technique is required. However, the work pre-
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sented in this chapter provided a new approach of pricing commodity futures for models

with latent variables using the maximum expectation maximization, without using tra-

ditional filtering methods. Our approach is easy to implement and is robust in the sense

that it can accommodate any predictor density but at the expense of computational

speed. The numerical routines can be improved for faster computations. This and the

numerical implementation of the two factor model are left for future work.

In Chapter 5 we extended the integration by parts formula approach to computing the

Greeks of options with discontinuous payoffs presented in [FLL+99] to markets with

jumps. In addition, we applied the Bismut-Elworthy-Li (BEL) formula usually used

in investigating density regularities for solutions to stochastic differential equations to

derive our main results. This in turn enabled the estimation of the Greeks with the

subordinated stochastic differential equation (SSDE) as the underlying spot model. We

observed that BEL formula performs well for SSDE as in the continuous diffusion models

in literature. As a concrete practical application, our model can be applied by investors

in emerging/illiquid markets to construct hedge portfolios.

Our work is not exhaustive, there are other interesting applications in finance that

were left out but could be interesting to investigate such as modeling foreign exchange

markets, investment annuities, zero coupon bonds among others.
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[Kur01] E. E. Kuruoğlu. Density parameter estimation of skewed alpha-stable

distributions. IEEE Transactions on signal processing, 49(10):2192–2201,

2001. 6, 24, 25, 34

[Kus10] S. Kusuoka. Malliavin calculus for stochastic differential equations driven

by subordinated Brownian motions. Kyoto Journal of Mathematics,

50(3):469–644, 2010. 11, 87, 88, 89, 91, 99
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