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four-dimensional part AdS2 × S2 can be realized as a supercoset, the full superstring has

both coset and non-coset excitations, the latter giving rise to massless worldsheet modes,

a somewhat novel feature in AdS/CFT . The string is nevertheless known to be integrable

at the classical level. In this paper we perform several computations checking aspects of

both classical and quantum string integrability. At the classical level we compute energies

for the near BMN string and successfully match these against Bethe ansatz predictions.

Furthermore, integrability dictates a magnon dispersion relation which we compare with the

poles of loop corrected propagators, at both the one and two-loop level. At one loop, where

only tadpole diagrams contribute, we find that the bosonic and fermionic contributions sum

up to zero. Under the assumption of worldsheet supersymmetry, we then compute the two-

loop sunset diagram in the near flat space limit. As in AdS5 × S5 we find that the result

fits nicely into the sine-square structure of the dispersion relation.
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1 Introduction

AdS/CFT dualities are arguably one of the most fascinating areas in contemporary theo-

retical physics. While the canonical example is AdS5/CFT4, there are by now several other

incarnations [1–5]. In this paper we will study the gravitational side of the AdS2/CFT1
correspondence where the CFT1 is, as of yet, perhaps the most illusive example of a bound-

ary CFT [1]. It might be realized as a large N superconformal quantum-mechanical system

or a chiral two-dimensional CFT and is not very well understood [1, 6–8]. The dual string

theory on the other hand is more accessible and is either a type IIA or IIB theory on

AdS2 × S2 × T 6 preserving eight supersymmetries. This geometry can be supported by

different choices of RR-flux. We will consider a type IIA example with F2 and F4 flux,

while the other type IIA/B examples can be obtained by performing T-dualities in the

toroidal directions. Furthermore, the AdS2 × S2 factor is interesting in its own right since

it appears as the near horizon limit of Reissner-Nordström black holes [1].

The flat toroidal directions are a somewhat novel feature for AdS/CFT and give rise

to complications in the exact formulation based on the Bethe ansatz. The four-dimensional

AdS2×S2 factor can be described by the supercoset PSU(1, 1|2)/SO(1, 1)×SO(2) and one

can try to realize the string as a supercoset sigma model [9], similar to AdS5×S5 [10] and

AdS4×CP3 [11, 12] (for a modified version of this approach see [13]). From the worldsheet

perspective the excitations of the coset part enter as massive modes in the BMN limit

and their spectrum should be completely encoded in sets of quantum Bethe equations [14].

– 1 –
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These equations are the quantum counterpart of a set of classical finite gap equations which

arise naturally from the equations of motion for the coset variables [15–17]. Thus, for the

supercoset part, the machinery of integrability, developed over the last decade in earlier

incarnations of AdS/CFT , is applicable [18]. However, the situation is not as simple as in

other versions of AdS/CFT . First of all the flat directions are not part of the supercoset

construction (although they can be added by hand) and give rise to massless worldsheet

excitations which, naturally, are not captured by the finite gap technique. Second, and even

more severe, is the fact that the supercoset contains only eight fermions, corresponding

to the eight supersymmetries preserved by the background. This means that unlike in

previously studied examples of AdS/CFT [19–21] the Green-Schwarz (GS) superstring

in AdS2 × S2 × T 6 can never be reduced to the supercoset model by gauge-fixing kappa

symmetry, since this process necessarily leaves 16 physical fermions.1 One therefore has to

work with the full GS action. In fact in the full GS string action the coset and non-coset

sectors do not decouple beyond leading order but are mixed through interaction terms

involving the fermions [14]. For the purely bosonic string, the two sectors can be added

as a linear sum (modulo Virasoro constraints), but once the fermionic directions are taken

into account there is non-trivial mixing. Consequently, the physical spectrum involves both

coset and non-coset modes. Nevertheless, even though the two sectors do not decouple,

there are still reasons to believe that the full model is integrable. The first step toward a

proof of this was presented in [14], where the authors demonstrated classical integrability

(up to quadratic order in fermions) of the GS string action (see also [22] where this was

done to quadratic order in the non-coset fermions). Furthermore, in the same paper a set

of asymptotic Bethe equations were also presented. However, as stated above, the massless

non-coset modes remain somewhat mysterious and were not incorporated in the Bethe

equations. While they are believed to enter as intermediate states (internal propagators in

Feynman diagrams), incorporating them as external states remains an open problem. For

a recent discussion see [23].

In this paper we provide further evidence for integrability of the AdS2×S2×T 6 string.

We start out by writing the GS Lagrangian (to quadratic order in fermions) to quartic order

in fields utilizing a BMN-like expansion [24]. Equipped with the quartic Lagrangian we

perform several computations both at tree-level, one-loop and finally two-loop level. For

the classical analysis we compare the near-BMN energy corrections for the bosons with the

predictions of the conjectured Bethe equations, similar to the analysis performed in [25–30].

As expected we find complete agreement. We then investigate quantum corrections to the

magnon dispersion relation

E =

√
1 + 4h(g)2 sin2 p1

2
, h(g) =

g

2π
+ . . . , (1.1)

which is fixed by integrability up to the unknown function h(g) [14, 31–34]. This dispersion

relation should coincide with the loop corrected pole of propagators for the massive string

1The supercoset model turns out instead to be a consistent truncation (at the classical level) of the full

GS string [14].
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modes making it possible to compare the magnon energies with explicit string theory com-

putations [35–37]. At one loop we find that the correction for the massless modes is trivially

zero while the one-loop correction for the massive modes is zero due to delicate cancella-

tions between boson and fermion loops, as happens also in AdS5×S5 and AdS4×CP3. It

follows then, that there is no subleading one-loop term in h(g) and the first correction to

the dispersion relation enters at two loops.2 A full-blown two-loop computation generally

demands the Lagrangian up to sixth order in fields, something which is not available at

present. However, utilizing the near flat space (NFS) limit, the two-loop contribution is in

fact determined solely by the quartic Lagrangian [35, 46]. Furthermore, under the assump-

tion of worldsheet supersymmetry we can bypass the need for the quartic fermion terms.

Thus, the NFS expanded dispersion relation is completely determined by a four-vertex

sunset diagram. We compute this diagram explicitly and show that the result fits nicely

with the sine-square structure of the dispersion relation. Thus, we are able to demonstrate

two-loop quantum integrability for the AdS2 × S2 × T 6 string (in the NFS limit). We

furthermore observe that the sunset diagram is a sum of diagrams with both massive and

massless internal propagators, showing explicitly that the massless modes contribute to

the amplitude as virtual particles, similarly to what happens for the AdS3 × S3 × S3 × S1

string [37]. In fact the specific interactions of the non-coset fermions present in the GS

action appear to be crucial for getting a result compatible with integrability. This provides

some evidence for the integrability of the full GS string action at the quantum level.

The outline of this article is as follows. Section 2 describes the GS string in AdS2 ×
S2 × T 6 and its near BMN expansion to quartic order in fields (although only quadratic

in fermions). In section 3 we compute string energies for some closed rank-one sectors and

successfully match these against predictions of the Bethe equations proposed in [14]. In

section 4 we then compute one-loop corrections to two-point functions and demonstrate that

these are either identically zero or sum up to zero. And finally the two-loop computation

in the NFS limit is done where, after a rather lengthy computation, we end up with an

expression that fits nicely into the sine-square dispersion relation. We conclude the paper

with a discussion and appendices describing our choice of coordinates.

2 Green-Schwarz superstring in AdS2 × S2 × T 6

The starting point for the analysis of this paper is the Green-Schwarz superstring action

in AdS2 × S2 × T 6. Restricting to quadratic order in fermions, both the type IIA and IIB

GS string action is known in closed form [47, 48]. For simplicity we will consider only the

type IIA case here since in this case we can combine the two Majorana-Weyl spinors of the

type IIA superspace into a single 32-component Majorana spinor, simplifying somewhat

our analysis. The type IIB AdS2 × S2 × T 6 solutions and different type IIA solutions

with RR-flux are related to each other by T-dualities along the toroidal directions (see

for example [14]). We will therefore consider only one of these type IIA AdS2 × S2 × T 6

solutions here.

2The regularization ambiguities present in AdS3 × S3 × S3 × S1 and AdS4 × CP3 do not occur since

there is no notion of composite modes here, see [34, 37–45].
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2.1 GS superstring to quadratic order in fermions in general IIA background

The action for the GS superstring in a type IIA supergravity background (with no NS-

NS flux, and constant dilaton φ0) takes the following form up to quadratic order in

fermions [47, 48]

S =
g

2

∫ (
1

2
∗ eAeA + i ∗ eA ΘΓADΘ− ieA ΘΓAΓ11DΘ

)
, where g ∼ T ∼ R2

α′
. (2.1)

The eA(X) (A = 0, 1, · · · , 9) are worldsheet pullbacks of the vielbein one-forms of the purely

bosonic part of the background, ∗ denotes the worldsheet Hodge-dual, and the generalized

covariant derivative acting on the fermions is given by

DΘ =

(
∇− 1

8
eA /FΓA

)
Θ where ∇Θ =

(
d− 1

4
ωABΓAB

)
Θ , (2.2)

where ωAB is the spin connection of the background space-time. The coupling to the RR

fields comes in through the matrix

/F = eφ0
(
−1

2
ΓABΓ11FAB +

1

4!
ΓABCDFABCD

)
. (2.3)

The 32-component spinor Θ satisfies the Majorana condition

Θ = Θ†Γ0 = ΘtC , (2.4)

where C is the charge conjugation matrix. We now turn to the specific background of

interest here, AdS2 × S2 × T 6.

2.2 GS string in type IIA AdS2 × S2 × T 6 and BMN expansion

There are several different type II AdS2 × S2 × T 6 supergravity solutions supported by

RR-flux and preserving eight supersymmetries. They can be realized as the near horizon

geometry of brane intersections [14, 49] and are related to each other by T-dualities along

the toroidal directions. Here we will focus on one particular type IIA solution with non-zero

F2-flux through AdS2 and non-zero F4-flux through a combination of S2 and T 6,

F2 = −e
−φ0

2
ebeaεab, (2.5)

F4 = −e
−φ0

2
eb̂eâεâb̂J ,

where a, b = 0, 1, â, b̂ = 2, 3, ε01 = 1 = ε23 and J is the Kähler form on T 6 which we take

to be

J = −dx4dx5 − dx6dx7 − dx8dx9 . (2.6)

Note that the fluxes break the local SO(6) invariance of the T 6 space to U(3) via this choice

of Kähler form. Using these expressions in (2.3) we get

/F = −4P8Γ01Γ11 , (2.7)
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where P8 is a projector that projects on the eight supersymmetries preserved by the back-

ground. Explicitly it is given by

P8 =
1

8

(
2− i/Jγ7

)
, /J = Ja′b′Γ

a′b′ = 2
(
Γ4Γ5 + Γ6Γ7 + Γ8Γ9

)
, γ7 = iΓ4 · · ·Γ9 . (2.8)

Note that this projector commutes with the gamma-matrices of the AdS2 × S2 part of the

background, [P8,Γa] = [P8,Γâ] = 0. The metric and spin connection for AdS2 × S2 × T 6

is given in appendix A.

We are interested in the near BMN expansion for a string moving along the ϕ-direction

of S2 close to the speed of light (see appendix A for our choice of coordinates). In order

to remove the unphysical fermionic degrees of freedom we will use a standard light-cone

kappa symmetry gauge-fixing adapted to the BMN limit

Γ+Θ = 0, Γ± =
1

2
(Γ0 ± Γ3) . (2.9)

Furthermore, introducing light-cone coordinates as x± = 1
2(t±ϕ) the action (2.1) becomes,

to leading order in the BMN expansion

2

g
L2 =

1

2
γij∂ix

m∂jxm −
1

2
γij∂ix

+∂jx
+(x21 + x22

)
−2iΘ

(
γij + εijΓ11

)
∂ix

+Γ−∂jΘ− 2iγij∂ix
+∂jx

+ ΘΓ−Γ1Γ11P8Θ , (2.10)

where γij =
√
−hhij is the conformal worldsheet metric, the index m runs over all eight

transverse directions and all coordinates are dimensionless. It is clear from this expression

that only the eight supercoset fermions (four after kappa symmetry gauge-fixing), which

satisfy Θ = P8Θ, get a non-zero mass while the other fermions remain massless.

The above is actually the BMN string prior to light-cone gauge fixing. In detail the

limit is specified by scaling the transverse degrees of freedom as

xm →
√

2

g
xm, Θ→

√
2

g
Θ, g →∞ .

The bosonic worldsheet parameterization invariance is fixed by [25, 50]

x+ = τ, p− =
δL
δẋ−

= 1 . (2.11)

which correspond to the standard a = 1
2 light-cone gauge, see [51] for details.

To lowest order this gives γij = ηij and the quadratic Lagrangian becomes (the world-

sheet metric has signature (+−) in our conventions)

L2 =
1

2

(
∂+x

m∂−xm−x21−x22
)
−2iΘ+Γ−∂−Θ+−2iΘ−Γ−∂+Θ−+4iΘ+Γ−Γ1P8Θ− , (2.12)

where ∂± = ∂0 ± ∂1 and Θ± = 1
2(1 ± Γ11)Θ are left/right-moving spinors. One can

diagonalize the fermionic terms by a suitable choice of basis, see (B.1) for the explicit form

of Θ. The quadratic Lagrangian above then becomes

L2 =
1

2

(
∂+x

m∂−xm − x21 − x22
)

+
i

2
χc+∂−χ

c
+ +

i

2
χc−∂+χ

c
− − i χ1

−χ
1
+ − i χ2

−χ
2
+ , (2.13)

– 5 –
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where c = 1, . . . , 8. Thus we find the following BMN spectrum [14]

m = 1 : Bosons: x1, x2 Fermions: χ1
±, χ

2
±

m = 0 : Bosons: xk Fermions: χk± k = 3, . . . , 8

so we have two real massive bosonic and fermionic coordinates and six transverse bosonic

and fermionic massless coordinates. The appearance of massless coordinates is a rather

novel feature in examples of AdS/CFT, see [14, 20].

Beyond the quadratic approximation the BMN expansion gives a series in inverse

powers of the coupling

L = L2 +
1

g
L4 +O(g−2) . (2.14)

Consistency of the gauge-fixing (2.11) at higher order in perturbation theory demands that

we add sub-leading corrections to the worldsheet metric. The precise form of the corrections

is found by looking at the equations of motion for x− and a quick calculation gives3

γij = ηij +
2

g
γ̂ij , γ̂00 = γ̂11 = −1

2

(
x21 − x22

)
, γ̂01 = 0 . (2.15)

Expanding the Lagrangian in (2.1) to the next order we get

L4 =
1

2

(
∂+x1∂−x1 x

2
1 − ∂+x2∂−x2 x22

)
− 1

4

(
(∂+xm)2 + (∂−xm)2

)
(x21 − x22)

+i(x21 − x22) Θ+Γ−∂+Θ+ + i(x21 − x22) Θ−Γ−∂−Θ−

−2i∂−x
m∂+x

n Θ−ΓmΓ−Γ1P8ΓnΘ+ + i∂+x
m Θ+Γ−Γm(x1Γ

1 − x2Γ2)Θ+

+i∂−x
m Θ−Γ−Γm(x1Γ

1 − x2Γ2)Θ− +O(Θ4) , (2.16)

where the indices m,n run over the 8 transverse directions. The last two terms come from

the spin connection (see appendix A). We have chosen not to decompose Θ in terms of χ

to keep down the number of terms. The above Lagrangian is our starting point for the

computations described in the following sections.

3 Bosonic energy shifts and Bethe equations

In [14] a set of quantum Bethe equations for the massive excitations were derived. In this

section we will investigate whether we can match the tree-level energy corrections for the

bosonic fields in the near BMN limit to the predictions of the Bethe equations, for similar

analysis in other contexts see [21, 25–30, 33, 52–56]. In order to do this we need the bosonic

terms in the string Hamiltonian. From the definition of the conjugate momenta we find,

dropping the fermions,

ẋ1 = p1 −
1

2
p1x

2
2, ẋ2 = p2 +

1

2
p2x

2
1, ẋk = pk +

1

2
pk
(
x21 − x22

)
, k = 3, . . . , 8 .

3Note that these corrections become significantly more complicated in a light-cone gauge with a 6= 1
2
.
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Using this in the Legendre transformation of the string Lagrangian we get the (bosonic)

Hamiltonian

Hlc = −P+ (3.1)

=
1

2

(
(x′m)2 + (pm)2 + x21 + x22

)
+

1

2g

[(
(x′m)2 + (pm)2

)
(x21 − x22) +

(
(x′1)

2 + p21
)
x21 −

(
(x′2)

2 + p22
)
x22

]
,

where the index m runs over all eight transverse directions. Following the analysis in

AdS5 × S5 we will assume that the quartic Hamiltonian is normal ordered [52, 53]. In

principle this is an assumption and it would be interesting to perform a more rigorous

analysis utilizing the full supersymmetric Hamiltonian. We might return to this question

in a future publication.4

The oscillator expansion of the fields that diagonalizes the massive part of the quadratic

Hamiltonian is given by

xc =
1√
2π

∫
dp

1√
2ωp

(
ac(p)e

−ip·σ + ac(p)
†eip·σ

)
, (3.2)

with c = 1, 2 and ωp =
√

1 + p2.

In order to obtain the energy corrections from the quartic Hamiltonian we will consider

in-states of the form

|1, pA〉 =

A∏
i=1

a1(pi)
†|0〉, |2, pA〉 =

A∏
i=1

a2(pi)
†|0〉 . (3.3)

Using the notation Hlc = H2 + 1
gH4, the energies of the states (3.3) are computed from

−P+ = 〈c, pA|
(
H2 +

1

g
H4

)
|c, pA〉, c = 1, 2

which after some algebra gives

− P+ =
A∑
i=1

ωpi − (−1)c
1

2g

A∑
i 6=j

p2i + p2j
ωpiωpj

. (3.4)

This result is similar, but not identical, to the corresponding energies of the rank one sectors

of the AdS5×S5 and AdS3×S3×T 4 strings. There the quartic piece came with a (pi+pj)
2

numerator instead of the separate squares as above. This is a simple consequence of the

fact that there is no conserved U(1) charge for the transverse AdS2 and S2 directions.

Let’s see if we can reproduce this result from the Bethe equations. In [14] the first

hints of integrability for the AdS2×S2×T 6 string were presented. As for the AdS3×S3×
S3 × S1 string, the critical spectrum mixes the coset and non-coset part in a non-trivial

4For example, the quartic Hamiltonian of the AdS3×S3×S3×S1 and AdS4×CP3 string is not normal

ordered [21, 29, 30].
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way. Nevertheless one can use the algebraic properties of the coset part to write down a

set of Bethe equations. These techniques fall under the finite gap method which in turn

can be seen as a classical limit of a set of conjectured quantum Bethe equations. In [14]

the full Bethe equations for the coset PSU(1,1|2)
SO(1,1)×SO(2) were presented. Here, however, we only

need the part describing rank one excitations,

(x+k
x−k

)L
=

A∏
j 6=k

x+k − x
−
j

x−k − x
+
j

1− 1
x+k x

−
j

1− 1
x−k x

+
j

σ4BES(k, j) . (3.5)

The Zhukovsky variables are given by

x±(pk) =
e±i

pk
2 csc pk

2

2h(g)

√
1 + 4h(g)2 sin

pk
2

(3.6)

and σBES is the BES / BHL phase [57, 58]. It should however be pointed out that this

is a conjecture and the true form of the phase could very well differ at higher loop order.

Luckily we only need its leading order strong coupling expansion which is the standard

AFS phase, see [59].

Finally, the function h(g) is not determined by integrability but in order for it to match

the relativistic magnon dispersion relation we have

h(g) =
g

2π
. (3.7)

The length parameter in (3.5) relates to the coupling and excitation number as5

L = g +A− E (3.8)

where

E = ih(g)
A∑
k

(
1

x+k
− 1

x−k

)
= −A+

A∑
k

√
1 + p2k + . . . (3.9)

Assuming that the rapidity momenta pk have a BMN scaling as

pk =
p0k
2g

+
p1k

(2g)2
+ . . . (3.10)

together with the constraint

A∑
k

pk = 0 (3.11)

one can with a bit of work indeed reproduce the string energies as computed in (3.4). That

the Hamiltonian analysis and Bethe equations give the same energy corrections is com-

pletely expected. The computation only involves the massive part of the spectrum, meaning

that only the coset excitations contribute. This stands in contrast to the AdS3×S3×S3×S1

case, where even the classical energies involved massless excitations as internal lines.

5To leading order L = 1
2
P− since 2g = p−, where p− is the conjugate worldsheet momentum density of

x−. In the light-cone gauge we employ, p− = 1.
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4 Quantum corrected dispersion relation

So far we have considered essentially the classical string where everything should fit nicely

into the Bethe ansatz of [14]. However, since the Bethe ansatz is derived from the coset part

only, it’s not clear at all whether it could describe the full critical string with massless modes

included. In this section we aim to investigate this issue by computing loop corrections to

the dispersion relation of the bosonic modes. The dispersion relation coincides with the

pole of the two-point function, so the computation basically boils down to determining the

loop corrected propagator. We will start out by calculating the leading loop correction for

bosonic excitations utilizing the full BMN string. We then turn to an explicit two-loop

computation. In principle this should not be possible since we lack both the six-vertex

interactions and the quartic fermion terms. However, utilizing a certain limit, the so-called

near flat space limit (NFS) [46], one can actually obtain the two-loop corrections without

knowing these terms [35]. Intriguingly, the loop corrections of the massive coordinates fits

nicely into the sine expression (1.1), similar to AdS5/CFT4.
6

It follows from our one and two loop computation that the unknown interpolating

function h(g) does not receive any corrections (at least to this order in perturbation theory).

4.1 One loop

The function h(g) in (1.1) is not determined by integrability and it could very well receive

corrections at loop level. In this section and the next we intend to investigate this issue.

However, before that, let’s recall what happened in other string backgrounds. In both

AdS4 ×CP3 and AdS3 × S3 × S3 × S1 it has been found that h(g) receives corrections, at

least in certain regularization schemes [34, 37–41, 44, 60]. In both cases this can be traced

back to the presence of heavy modes, which in the Bethe ansatz are treated as composite

states of two lighter ones. Furthermore, the string Lagrangian has a cubic interaction

term that can mediate these heavy to light-light decay processes [21, 44]. However, for

the AdS2 × S2 × T 6 string, there are only modes of one mass and the Bethe ansatz does

not indicate that they are of a composite nature. Furthermore, the next-to-leading order

Lagrangian is quartic in fields and does not mediate any decay processes. For this reason we

expect that there will be no non-trivial one-loop correction to the propagators. However,

this needs to be checked by actual computations. If there are non zero corrections, then

they could be described as a one-loop term c with

h(g) =
g

2π
+ c .

This implies that at large g, the dispersion relation (1.1) expands as

E =

√
1 + 4

(
g

2π
+ c

)2

sin2 p1
2

=
√

1 + p2 +
2πc p2

g
√

1 + p2
+O(g−2) . (4.1)

6For some interesting new research utilizing the NFS string in AdS5 × S5 see [61].
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If c is non-zero, then the one-loop correction to the two-point functions is also non-zero.

Conversely, by explicitly computing the diagrams

AiB =

for each bosonic coordinate, we can probe the subleading terms in h(g).

Starting out with the two massive coordinates, labeled by a = 1, 2, we find using (2.16)

iAa(p2 = 1) = −i(−1)a
{[

2I[1]01
]
F
−
[
I[1]01 + I11 [1]

]
B

}
, (4.2)

where the extra subscript denotes whether a boson or a fermion propagates in the loop.

We’ve introduced the following short hand notation

Isn[∆] =

∫
d2k

(2π)2
(k2)s

(k2 −∆)n

for the loop integrals. Evaluating the integrals in dimensional regularization immedi-

ately gives

iAa(p2 = 1) =
(−1)a

2π

{[
γ − 2

ε
+ log π

]
F

−
[
γ − 2

ε
+ log π

]
B

}
= 0 . (4.3)

Thus, as expected, we see that the massive modes have a vanishing one-loop correction to

their two-point functions. Furthermore, since there is no notion of heavy composite modes,

as for AdS4×CP3 and AdS3×S3×S3×S1, there should be no regularization ambiguity.

For the massless modes a quick calculation gives

iAk(p2 = 0) = 0, k = 3, . . . , 8 (4.4)

thus the one-loop correction is zero also for the massless bosonic excitations. Here each

integral is separately zero and there are no cancellations between boson and fermion loops.

We conclude that, as in AdS5×S5, the magnon dispersion relation (1.1) does not receive

a one-loop correction. For two loops, however, we expect the situation to be different due

to the sine structure. In the next section we analyze this in detail.

4.2 Two-loop dispersion relation in the NFS limit

In [46] an interesting limit of the worldsheet sigma model was proposed. This limit, dubbed

the near-flat space limit (NFS) or Maldacena-Swanson (MS) limit, is basically a BMN

expansion augmented with a Lorentz boost of the right-moving sector of the worldsheet

theory. The NFS string is considerably simpler than the near BMN string, but nevertheless

maintains some non-trivial features. Technically the limit is defined by

∂± → g∓1/2∂±, Θ± → g∓1/4Θ± , (4.5)

where Θ± = 1
2(1 ± Γ11)Θ are the left and right-moving components of the 32 component

spinor in (2.1). This is essentially a worldsheet dilation and boost and thus only affects the

– 10 –
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part of the Lagrangian which is not (worldsheet) Lorentz invariant. After light-cone and

kappa symmetry gauge-fixing, the quadratic Lagrangian is completely Lorentz invariant and

only a few terms in the quartic Lagrangian (2.16) are non-invariant. Thus the limit (4.5)

will bring some terms of order 1/g in L4 to zeroth order, implying that already at leading

order we have non-trivial interaction terms. Keeping only the leading order terms, the NFS

Lagrangian becomes

Lnfs = L2 + γ

{
i∂−x

m Θ−Γ−Γm(x1Γ
1 − x2Γ2)Θ− (4.6)

−(x21 − x22)
(

1

4
(∂−xm)2 − iΘ−Γ−∂−Θ−

)}

which is considerably simpler than (2.16). Here we also performed a simple scaling of

the worldsheet and fermionic coordinates resulting in an overall factor γ in front of the

quartic terms. This parameter essentially undoes the boost and is introduced for later

convenience [35, 36].

If we expand out the interaction terms involving fermions in terms of the eight coset

fermions ϑ = P8Θ and the 24 non-coset fermions υ = (1 − P8)Θ, making use of the fact

that [Γ1,P8] = [Γ2,P8] = 0 and P8Γa′P8 = 0 where a′ = 4, . . . , 9 refers to the T 6-directions,

we get

i(x21 − x22)ϑ−Γ−∂−ϑ− − i(x1∂−x2 + x2∂−x
1)ϑ−Γ−Γ12ϑ−

+ i(x21 − x22) υ−Γ−∂−υ− − i(x1∂−x2 + x2∂−x
1) υ−Γ−Γ12υ−

+ 2i∂−x
a′ υ−Γ−Γa′(x1Γ

1 − x2Γ2)ϑ− + i∂−x
a′ υ−Γ−Γa′(x1Γ

1 − x2Γ2)υ− . (4.7)

If instead of working with the full Green-Schwarz action for the string we would have started

with the AdS2 × S2 supercoset sigma-model and added free massless bosons and fermions

for the T 6 part we would only obtain the terms in the first line above. We will find that the

other interaction terms, which involve also the non-coset fermions, are necessary in order

to get the form of the dispersion relation that we expect from integrability. Therefore it

appears that (despite its classical integrability) the supercoset model plus free fields does

not seem to give the correct quantum corrections and the specific interaction terms present

in the full GS string are crucial for quantum integrability.

Using (4.6) we will calculate the two-loop correction to the dispersion relation. The

relevant diagrams are depicted in figure 1 and generally one also needs the sixth order

Lagrangian, but in the NFS limit these terms are subleading in the 1/g expansion and can

be neglected to lowest order. The contributing four-vertex diagrams are a double tadpole

and the sunset diagrams (also denoted sunrise or London transport diagram). For the

first diagram we need the quartic fermion terms regardless of whether the external legs are

bosonic or not. For the sunset diagram on the other hand, we only need the piece of the

Lagrangian that is at most quadratic in fermions for external bosonic legs. Furthermore,

the two-loop tadpole diagrams should vanish due to supersymmetry [35] which means that

the only two-loop diagram we have to evaluate is the sunset diagram, as depicted in figure 2.

– 11 –
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Figure 1. The three two-loop topologies.

~p ~p

m1

m2

m3

Friday 24 August 12

Figure 2. The sunset / sunrise diagram with different internal masses.

Thus, assuming supersymmetry we can calculate the two-loop correction to the propagator

without having to know the O(Θ4) terms in the action.

The way to evaluate the diagram follows standard QFT technology with the special

simplification of only having right-moving momenta in the loop integrals — a direct con-

sequence of the NFS limit. Doing all the combinatorics using (4.6) results after some work

in the following amplitude

iAsun =
1

2

(
A040 + 4A112 + 4A121 + 5A130 + 4A211 + 6A220 + 5A310 +A400

)
(4.8)

+
3

2

(
B1

022 +B1
112 +B2

112 +B2
202 +B3

130 +B3
310

)
+ 3
(
C112

)
,

where we have defined

Arst=Irst[1, 1, 1], B1
rst=Irst[1, 0, 0], B2

rst=Irst[0, 1, 0], B3
rst=Irst[0, 0, 1], Crst=Irst[0, 0, 0]

in terms of the standard sunset integral

Irst[m1,m2,m3] =

∫
d2kd2l

(2π)4
(k−)r(l−)s(p− − k− − l−)t

(k2 −m2
1)(l

2 −m2
2)((p− k− l)2 −m2

3)
, (4.9)

where k and l denotes the loop momenta. Introducing Feynman parameters to write

1

ABC
= 2

∫ 1

0
dx1dx2dx3

δ(x1 + x2 + x3 − 1)(
x1A+ x2B + x3C

)3
and completing the squares in the denominators

lµ → lµ +
x3

x2 + x3
(pµ − kµ), kµ → kµ +

x2x3
x1x2 + x1x3 + x2x3

pµ (4.10)
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together with subsequent integration over l and k we end up with

I000[m1,m2,m3] =

∫
dx1dx2dx3

16π2
δ(x1 + x2 + x3 − 1)

(x1x2 + x1x3 + x2x3)
(
m2

1x1+m2
2x2 +m2

3x3
)
− x1x2x3p2

=

∫
dx1dx2dx3

16π2
ρ[m1,m2,m3] . (4.11)

This is the only integral we need, since any integral with powers of l− or k− in the numerator

in (4.9) vanishes due to the fact that∫
d2k

kr−
(k2 −∆)m

= 0, r,m > 0 .

Performing the shifts and integrations in (4.8) we find

iAsun =
1

16π2

∫
dx1dx2dx3

(
γ[1, 1, 1] + γ[1, 0, 0] + γ[0, 1, 0] + γ[0, 0, 1] + γ[0, 0, 0]

)
p4− ,

where the notation indicates the diagrams with three, one and zero massive fields prop-

agating in the loops. The γ’s are fairly complicated expressions involving the Feynman

parameters explicitly given by

γ[1, 1, 1]=
x23(4x

3
1x

3
2 + 4x21x

2
2(x1 + x2)x3 + (x21 + x1x2 + x22)(x

2
1 + 4x1x2 + x22)x

2
3)

2
(
x1x2 + x1x3 + x2x3

)4 ρ[1, 1, 1]

γ[1, 0, 0]=
3x31x

2
2(x1 + x2)x

2
3

2
(
x1x2 + x1x3 + x2x3

)4 ρ[1, 0, 0], γ[0, 1, 0]=
3x21x

3
2(x1 + x2)x

2
3

2
(
x1x2 + x1x3 + x2x3

)4 ρ[0, 1, 0]

γ[0, 0, 1]=
3x1x2(x

2
1 + x22)x

4
3

2
(
x1x2 + x1x3 + x2x3

)4 ρ[0, 0, 1], γ[0, 0, 0]=
3x31x

3
2x

2
3(

x1x2 + x1x3 + x2x3
)4 ρ[0, 0, 0] .

Luckily Mathematica knows how to evaluate these integrals and in a hopefully obvious

notation we get

iAsun =
(
111
)

+
(
100
)

+
(
010
)

+
(
001
)

+
(
000
)

(4.12)

=
1

192π2
(
− 3 + π2)p4− +

5p4−
384π2

+
5p4−

384π2
+

p4−
48π2

−
p4−

32π2
=

γ2

192
p4− ,

where we’ve reinstated the NFS power counting parameter γ in the last line, see (4.6).

We see that we have a rather non-trivial cancellation between the odd looking 1/π2 terms

coming from diagrams with different masses of internal fields. It is clear from this expression

that if we had instead used only the supercoset AdS2 × S2 sigma model plus free massless

fields, so that the only fermion interaction terms are those in the first line of (4.7), we

would only get the first term above which involves only the massive fields. The 1/π2 terms

would then not cancel and we would obtain a result which is difficult to reconcile with the

one expected from integrability.

The computed two-loop correction shifts the bare pole of the propagator to

i

p2 − 1
→ i

p20 − 1− p21 + γ2

192p
4
−

+ . . . (4.13)

– 13 –



J
H
E
P
0
1
(
2
0
1
3
)
0
4
7

The next question we want to answer is, how does the above two-loop result fit into the

exact dispersion relation? Expanding the dispersion relation from (1.1) in h(g) we find

E =

√
1 + 4h2 sin2 p1

2
=

√
1 + p21 −

1

192h2
p4− + . . .

where we used that p1 = 1
2(p+ − p−) in the last line and kept only the leading p4− piece.

Intriguingly the above is exactly what we find in (4.13) if we identify

γ =
1

h
. (4.14)

Thus we see that the sine structure of the dispersion relation holds also in the AdS2×S2×T 6

background. Furthermore, we have seen that this result depends on the massless modes and

specifically on the precise structure of their interactions in the GS Lagrangian. Removing

these interaction terms would give a result inconsistent with the sine square expression

expected from integrability. We regard this a rather strong evidence for the quantum

integrability of the AdS2 × S2 × T 6 GS string.

5 Conclusion

We have investigated both classical and quantum aspects of the type IIA AdS2 × S2 × T 6

string in a BMN expansion. String theory on this background is interesting for many

reasons. For example, it has a four-dimensional sector which arises in many black hole

physics applications. Furthermore, and perhaps more closely related to the analysis of this

paper, the curved part can be realized as a supercoset model and in fact the full GS action

is classically integrable [14, 22]. This makes the powerful tools developed in the context of

AdS / CFT integrability accessible. It seems clear, however, that these tools will need to

be generalized somewhat in order to deal with the massless modes which play an important

role in the integrability.

In this paper we have investigated classical energies and loop corrected propagators.

Our findings fit nicely into the general framework of integrability. Our analysis began with

a computation of simple energy corrections to bosonic string states in the transverse part of

AdS2×S2. These we then compared to the predictions of a set of quantum Bethe equations

conjectured in [14]. The Bethe equations are defined through a set of integral equations

which arise in the classical / thermodynamic limit. These integral equations, in turn, are

expressed in terms of the components of a flat current that arises in the coset formulation.

We found that the prediction of the Bethe equations agreed precisely with the computed

string energies.

We also computed one and two-loop contributions to two-point functions. These are

constructed from the string coordinates which can be thought of as fields in a (1+1)-

dimensional (worldsheet) QFT. Integrability dictates that the loop corrections to the prop-

agators should fit into a (non-relativistic) dispersion relation. Based on prior work in

AdS5 × S5 and AdS3 × S3 × T 4 it is expected that the one-loop correction should be zero

and this was indeed what we found. While the one-loop correction to the massless modes
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is trivially zero, the loop corrections for the massive excitations are zero due to a delicate

cancellation between boson and fermion loops. Thus the first non-trivial correction to the

dispersion relation enters at the two-loop level. While a two-loop computation generally

demands the full quartic and sixth-order Lagrangian, which is not at present available, it

is nevertheless possible to compute the two-loop correction in the so-called near flat space

(NFS) limit. In this limit the right-moving worldsheet sector is boosted which results in

a vastly simplified theory. What is more, the NFS Lagrangian has no explicit coupling

dependence, thus the two-loop contribution to the NFS expanded dispersion relation arises

solely from a two-loop four-vertex sunset diagram. By explicit computation we found that

the two-loop contribution fits nicely into the sine-squared dispersion relation, analogous to

the NFS AdS5 × S5 string [35]. This fact was seen to depend strongly on using the com-

plete GS string action, if the action is truncated to the supercoset sector (together with

free massless fields) one obtains the wrong result. This gives a strong indication that the

GS string action is integrable at the quantum level. Unlike in other examples of AdS/CFT

there is no kappa symmetry gauge-fixing of the AdS2 × S2 × T 6 GS string which gives the

supercoset model (the supercoset modes has only 8 of the required 16 fermions).

The AdS2/CFT1 duality remains largely unexplored and there are several possible

continuations of this work. For example, it would be interesting to investigate how the

massless and massive modes interact in more detail. The natural aim for this investigation

is to learn how to incorporate the massless modes as excitations in the Bethe ansatz solution.

A stepping stone for this analysis would be to compute the 2→ 2 S-matrix [62, 63]. This

is currently under investigation. Understanding what the dual CFT1 is would also be of

great interest.

Furthermore, it would also be interesting to investigate various spinning and folded

string configurations, basically continuing the research initiated in [14]. This would yield

more information on the fairly unknown quantum sector of the theory. We leave this for

future work.
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A Bosonic parameterization

We write the metric of AdS2×S2×T 6 in terms of global coordinates following closely [21]

ds2 = −
(

1 + 1
4x

2
1

1− 1
4x

2
1

)2

dt2 +
dx21(

1− 1
4x

2
1

)2 +

(
1− 1

4x
2
2

1 + 1
4x

2
2

)2

dϕ2 +
dx22(

1 + 1
4x

2
2

)2 + dx2a′ , (A.1)
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where a′ = 3, . . . , 8 denotes the T 6 directions. The spin connection of the background is

readily calculated from the vanishing of the torsion,

deA + eBωB
A = 0

which gives

ω01 = − x1dt

1− 1
4x

2
1

, ω23 = − x2dϕ

1 + 1
4x

2
2

. (A.2)

B Θ in terms of real variables

When needed we use the representation of Γ-matrices and the charge conjugation matrix

C given in [20]. We can pick a real representation χc± for the worldsheet fermions which

diagonalizes the quadratic BMN action. In terms of the original 32-component Majorana

spinor Θ we have

Θ =
1

4
√

2
Θ1 ⊕Θ2 ⊕Θ3 ⊕Θ4 ,

where the 8-component spinors Θi are given by

Θ1 =



iχ5
+ + χ6

+ − iχ7
+ − χ8

+

−χ5
+ − iχ6

+ − χ7
+ − iχ8

+

iχ5
+ + χ6

+ + iχ7
+ + χ8

+

χ5
+ + iχ6

+ − χ7
+ − iχ8

+

χ5
+ + iχ6

+ − χ7
+ − iχ8

+

−iχ5
+ + χ6

+ + iχ7
+ − χ8

+

χ5
+ − iχ6

+ − χ7
+ + iχ8

+

iχ5
+ − χ6

+ + iχ7
+ − χ8

+


, Θ2 =



−iχ1
+ − χ2

+ + iχ3
+ + χ4

+

χ1
+ + iχ2

+ + χ3
+ + iχ4

+

−iχ1
+ − χ2

+ − iχ3
+ − χ4

+

−χ1
+ − iχ2

+ + χ3
+ + iχ4

+

χ1
+ − iχ2

+ + χ3
+ − iχ4

+

−iχ1
+ + χ2

+ + iχ3
+ − χ4

+

χ1
+ − iχ2

+ − χ3
+ + iχ4

+

iχ1
+ − χ2

+ + iχ3
+ − χ4

+


(B.1)

Θ3 =



iχ1
− + χ2

− − iχ3
− + χ4

−
χ1
− + iχ2

− + χ3
− − iχ4

−
iχ1

− + χ2
− + iχ3

− − χ4
−

−χ1
− − iχ2

− + χ3
− − iχ4

−
χ1
− − iχ2

− + χ3
− + iχ4

−
iχ1

− − χ2
− − iχ3

− − χ4
−

χ1
− − iχ2

− − χ3
− − iχ4

−
−iχ1

− + χ2
− − iχ3

− − χ4
−


, Θ4 =



−iχ5
− + χ6

− − iχ7
− + χ8

−
−χ5

− + iχ6
− + χ7

− − iχ8
−

−iχ5
− + χ6

− + iχ7
− − χ8

−
χ5
− − iχ6

− + χ7
− − iχ8

−
χ5
− + iχ6

− − χ7
− − iχ8

−
iχ5

− + χ6
− + iχ7

− + χ8
−

χ5
− + iχ6

− + χ7
− + iχ8

−
−iχ5

− − χ6
− + iχ7

− + χ8
−


.
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