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ABSTRACT 

Gas condensates from the coal conversion plants contains trace amounts of inorganic 

species such as Si, Ca and Al ions, which cause scaling in downstream processes. Silica has 

been identified as the main constituent of the scale materials in geothermal plants. In order 

to prevent scaling, silica ions need to be removed or reduced. Alumina has been shown to 

successfully remove both silica and calcium from waste water streams. However, it also 

causes an increase in the aluminum concentration through dissolution. 

The mechanism of the silica and calcium uptake by alumina is not fully understood. In this 

study, the mechanism of silica uptake by alumina was investigated through an extensive 

literature review and experimental work on the alumina and silica chemistry when in 

solution. The chemistry of the alumina in suspension can be used to explain its reactions 

with other species (both inorganic and organic) in solutions.  

Activated alumina chemistry in suspension under alkaline conditions was investigated. The 

results showed that small amounts of alumina particles can undergo transformation into its 

hydrated phases and consequently aluminate (Al(OH)4
-) species are leached out from the 

pellets and dissolve in solution with subsequent precipitation when in solution. The 

inorganic species uptake can be attributed to the species interacting with the Al in solution 

and the hydrated phases of alumina. The results on the inorganic species uptake by alumina 

showed that a break through point is never attained. This indicates that the inorganic species 

removal by alumina cannot be attributed exclusively to an adsorption process. Hence, the 

mechanism of species removal was suggested to be a combination of adsorption and surface 

precipitation/reaction.  

Since alumina is costly, its application in wastewater treatment is dependent on its ability to 

be regenerated. As a result, the second objective of this study was to investigate the 

regeneration of the alumina by unloading the silica from the loaded alumina using various 

reagents and subsequently testing the effectiveness of the alumina with a second loading. 

The reagents used to unload the loaded alumina were sulphuric acid, sodium hydroxide and 

sodium gluconate at varying concentrations. The three reagents showed an increase in Si 

unloading with an increase in reagent concentrations. Sulphuric acid showed an unloading 
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capacity of up to about 50% and 70% for batch and continuous unloading respectively. On 

the other hand, sodium hydroxide showed Si unloading of up to about 50% and 40% for the 

batch and continuous unloading of loaded alumina respectively under the investigated 

concentrations. The unloading of Si from saturated alumina using sodium gluconate was 

only conducted batch-wise as it only achieved a 6% unloading for the concentrations 

investigated. However, even though the scaling species were eluted from the alumina bed 

this did not improve/restore the loading capacity of alumina but rather kept the 

performance of the alumina at the same level that it was before the regeneration process. 

Also during the unloading of silica from alumina, excessive alumina dissolution was 

observed when using 0.25M and 0.65M NaOH.  
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1 INTRODUCTION 

1.1 Background 

Scaling is a major problem in industrial operations, especially in geothermal plants and power 

stations and hence its outstanding attention in the field of energy utilization (Yokoyama et al. 

2002).  The deposition of scaling compounds on the equipment surfaces reduces plant 

efficiencies as a result of frequent plant shut-downs for the removal of scale from the 

equipment. Chemical, mechanical and physical methods are used to prevent and reduce 

scaling in plants (Sohnel and Garside, 1992). Silica constitutes the greater part of the scaling 

material in geothermal plants (Matson, 1981). Several treatment techniques such as reverse 

osmosis, softening, ion exchange, demineralization and evaporation have been used to 

mitigate silica scaling in geothermal waters (Gallup et al., 2003; Matjie and Engelbrecht, 

2007; Matson, 1981). Most techniques are not effective in removing silica because of the 

complexity of streams, as they are non-selective for example ion exchange (Matson, 1981).  

Chemical methods also result in formation of new compounds thereby creating other waste 

streams which have to be further treated prior to their disposal (Midkiff, 2002).   

Precipitation and adsorption have been also used for the recovery and separation of both 

inorganic and organic species from solution (Frank, 2003; Ghorai and Pant, 2005; Gabelich 

et al., 2005). These have an advantage of being implemented even for species that are 

present in low concentrations in solution. Precipitation involves the formation of sparingly 

soluble solid phases from a liquid solution phase using a precipitating agent (Mullin, 1972). 

Adsorption is the adhesion of substances on a solid surface. Activated carbon is the most 

commonly used adsorbent for the removal of organic or inorganic species from the aqueous 

phase. The constantly increasing knowledge of alumina being gathered through research has 

found wide use of alumina industrially. One of alumina’s uses in industry is as an adsorbent 

in waste-water streams containing fluoride, arsenic, selenium, thallium, beryllium and silica 

(Frank, 2003).  

In this study, the feasibility of using alumina to remove/reduce scaling species and hence to 

mitigate silica scaling in geothermal plants was investigated. Coal being a natural resource 

contains elements such as silicon, iron and calcium.  During coal conversion processes, trace 
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amounts of inorganic species such as Si, Ca, Al and Fe vaporize and are entrained in the 

gaseous phase (Matjie and Engelbrecht, 2007). A gas condensate containing these species is 

formed on cooling the gas phase.  

During transportation of the gas condensate scaling occurs. Hydrofluoric acid and other 

toxic and corrosive chemicals have been employed to remove the scale material from the 

equipment at regular intervals (Matjie and Engelbrecht, 2007). Therefore, there is need for 

the development of affordable and less hazardous methods of reducing scaling.  

Characterisation studies of the liquid samples identified metal ions such as Al3+, Ca2+, Fe3+, 

Mg2+, Si4+and K+ (Matjie and Engelbrecht, 2007). The effective method to prevent the 

formation of scales is dependent on the reduction of the cationic concentrations (Peairs, 

2007). The X-ray fluorescence (XRF) analysis results showed that silicon is the major 

component of the scale material as shown in Figure 1 (Matjie and Engelbrecht, 2007).   

Al

27.01%

Ca

0.50%

Si

70.69%

Others

1.80%

 

Figure 1: The X-ray fluorescence elemental analysis of the scaling material  

As a result, the method to use must be the one which has high silicon removal efficiency. 

The technical feasibility of using alumina, silica gel and anthracite under batch and 

continuous operating conditions for the selective removal of the scaling cationic species 

from the gas condensate have been performed previously (Lewis and Nathoo, 2006). It was 

found that, within the experimental conditions investigated, alumina exhibited the best 

contaminant removal characteristics. However, the mechanism of species removal by the 

activated alumina is not fully understood. An understanding of the mechanism of species 

removal by activated alumina would enable the feasibility of using activated alumina to 
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remove the scaling species to be evaluated.  Activated alumina is expensive and as a result, its 

application depends on the possibility of its regeneration. 

1.2 Scope of the work 

The overall scope of this study was to investigate the feasibility of using activated alumina to 

remove the scaling species, thereby reducing the scaling caused by Si, Al and Ca compounds 

(aluminosilicate species) in geothermal brines. 

1.3 Objectives  

The first objective of this study was to understand the mechanism(s) by which silicon species 

and calcium can be removed from multicomponent waste-waters by activated alumina. The 

study also focused on understanding the possible causes of the increase in the aluminum 

concentration in solution when alumina is being used to remove silicon species.  

The second objective was to investigate the possibility of eluting silicon species and calcium 

from the loaded activated alumina bed using various reagents, thereby regenerating it. The 

performance of the regenerated alumina was then compared to its performance prior to 

regeneration.  

The project was investigated in three sequential stages consisting of:  

• Literature review to develop a better understanding of the most probable 

interactions of silicon species, calcium and alumina in solution. This was used to 

hypothesise likely mechanisms, 

• A laboratory-based study to investigate the proposed mechanism(s), 

• A study into identifying possible reagents and investigating their performance in 

unloading silicon species and calcium ions from the loaded alumina. 
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2 THEORY AND LITERATURE REVIEW 

2.1 Crystallization and precipitation fundamentals 

Crystallization is a separation technique used for the recovery of pure solids from impure 

solutions. The reactive form of crystallisation is referred to as precipitation (Stumm, 1992; 

Mullin, 1972). The difference in chemical potential at the actual (µ) and equilibrium (µ*) state 

gives the thermodynamic driving force for crystallisation (∆µ). Thus, the thermodynamic 

driving force can be expressed as follows: 

*µ−µ=µ∆                                                                                                                         (1) 

For crystallisation to occur, ∆µ must be positive (Sohnel and Garside, 1992). The driving 

force is also referred to as supersaturation (∆C) which is expressed in terms of solute 

concentrations. The three key steps involved in precipitation processes are supersaturation, 

nucleation and crystal growth. 

2.1.1 Supersaturation 

Supersaturation (∆C) is the difference between the actual solute concentration (C) and 

equilibrium solute concentration (C*) and it is dependent on system temperature and 

pressure. Thus, for a system at constant temperature and pressure, the supersaturation can 

be expressed as follows:  

∗−=∆ CCC                                                                                                                         (2) 

At times relative supersaturation σ is used and it is expressed as follows: 

1−=∆=σ S
*C

C
                                                                                                                    (3) 

, where 
∗

=
C

C
S

 

Supersaturation plays a key role in precipitation processes as depicted in Figure 2.   
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Figure 2: The role of supersaturation in precipitation processes (Sohnel and Garside, 1992) 

The degree of supersaturation in the precipitating solution governs the rates of the different 

processes involved in precipitation (Nielsen, 1979). Figure 3 shows the different zones where 

the different particle formation mechanisms occur when species A and B are mixed as a 

result of the differences in supersaturation level. When the precipitation processes are not 

desirable, Zone 1 (the undersaturated region) is the ideal zone for operation since it is 

located below the solubility limit of AB. Zone 2 and 3 are the most preferred zones of 

operation for precipitation processes to occur. However, zone 4 and 5 are the least desirable 

operation regions as the solids formed under these regions present problems in downstream 

separation processes like filtration.   

Purity  

Supersaturation 

Nucleation kinetics Ageing kinetics Growth kinetics 

Size distribution 

Scaling on surfaces 

Phase equilibria 
Form 
(polymorph/hydrate
/solvate) 

Transformation 
kinetics 
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Figure 3: Effect of supersaturation on nucleation (Nielsen, 1979) 

2.1.2 Nucleation  

As solution supersaturation increases, a point is reached where ions or molecules interact to 

form thermodynamically stable solid particles (nuclei) (Stumm, 1992). This process is termed 

nucleation and it determines the size and distribution of particles in precipitation processes 

(Stumm, 1992; Myerson, 2002). There are chiefly two different types of nucleation namely 

primary and secondary nucleation. The former occurs in the absence of crystals and can be 

further broken down into homogeneous and heterogeneous nucleation. Homogeneous 

nucleation is supersaturation driven and not dependent upon the presence of solid particles. 

However, when foreign solids are present in solution nuclei are formed through 

heterogeneous nucleation (Mersmann, 2001; Stumm, 1992). The compatibility between the 

surfaces of foreign particle and the solution crystals reduces the energy barrier thereby 

catalysing the nucleation process as shown in Figure 4 (Stumm, 1992). On the other hand, 

secondary nucleation occurs even at low supersaturation if the solution contains parent 

crystals (Mersmann, 2001; Stumm, 1992; Mullin, 1972). Once a thermodynamically stable 

nucleus is formed, the nuclei and ions or molecules join together to form bigger particles 

(crystals).  

AB  
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Figure 4: Effect of solid substrate to catalyse nucleation (Stumm, 1992) 

2.1.3 Crystal growth 

This is a process whereby the critical nucleus increases in size due to the deposition of 

growth units (ions or molecules) (Stumm, 1992). This process determines the final product 

size distribution of a process (Mullin, 1972).  

2.1.4 Population balance  

Particle size and distribution information is of great importance in precipitation processes. 

This information is given by a population balance equation and for a batch system the 

equation is as follows (Randolph and Larson, 1988):  
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                                                                                                                                           (4) 

  

Where ∂n/∂t is the change in number density, G∂n/∂L is the difference between the crystals 

in the interval L to L + dL, B is the birth rate and D the death rate of particles in the system 

as a result of nucleation, aggregation and breakage.  Assuming that the particles formed are 

spherical in shape, a volume based histogram for the different size sub-intervals (% volume) 

and the particle concentration (% volume) can be used to calculate the particle number 

density as follows:  

3Lvk

1
x

i 100

ionConcentratx
i

)(%Volume
n(L)dL ∑=

                                                          (5)
 

Where kv is the shape factor and its equal to π/6 

2.1.5 Scaling 

When suspended/or precipitated particles from solution are deposited on equipment 

surfaces, they form a solid deposit referred to as scale (Sohnel and Garside, 1992). The 

continuous deposition of the scale on equipment surfaces can result in reduced equipment 

capacity and heat transfer rates (Sohnel and Garside, 1992). Hence, there is need for 

constant scale removal from surfaces either partially or totally in industrial set ups. This 

results in frequent plant shutdowns, increased maintenance costs and need for 

environmentally friendly waste disposal techniques. The mechanisms of scale formation can 

either be chemical or mechanical (Sohnel and Garside, 1992). The chemical form is 

supersaturation driven and occurs through either homogeneous or heterogeneous 

precipitation/nucleation. However, in mechanical scaling the precipitate or suspended 

particles are deposited on the equipment surface through weak forces of attraction (Sohnel 

and Garside, 1992). 

 Scale prevention 

Chemical, mechanical and physical methods can be applied to remove scale either totally or 

partially (Sohnel and Garside, 1992). The chemical methods are aimed at preventing both 

homogeneous and heterogeneous nucleation in the system and can be achieved through 
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lowering the solution supersaturation level. The physical and mechanical methods involve 

the promotion of homogeneous nucleation and the prevention of heterogeneous nucleation 

respectively (Sohnel and Garside, 1992). 

2.2 Adsorption 

The accumulation of solutes on a surface (adsorbent), forming a film (the adsorbate) is 

termed adsorption (Frank, 2003). Depending on the nature of attractive forces existing 

between the adsorbate and the adsorbent, adsorption can be classified as either 

physisorption or chemisorption (Kirk Othmer, 2008). The former entails weak forces of 

attraction whereas the latter involves strong forces of attraction between the molecules of 

the adsorbate and the adsorbent. Thus, physisorption is easily reversible compared to 

chemisorption since less energy is required to detach the adsorbate from the adsorbent. 

Also, chemisorption only assumes monolayer coverage whereas in physisorption more than 

one layer can be adsorbed on the solid surface (Kirk Othmer, 2008).  

However, applications of adsorption depend on the difference in adsorbent affinity for 

different components and the ability to regenerate the adsorbent (Lounici et al., 2001). 

Sorption is used as a general term due to the difficulties in the distinction amongst the 

adsorption, absorption and surface precipitation (Li and Stanforth, 2000). In order to assign 

the loss of solute to one of the three sorption processes, knowledge on solute and surface 

interaction is necessary and this can be deduced from the solute and surface properties when 

in solution (Stumm, 1992).  

2.2.1 Adsorption isotherms 

Adsorption equilibrium is often described in terms of adsorption isotherms and the 

commonly used isotherms being the Langmuir and Freundlich isotherm equations 

(Kasprzyk-Hordern, 2004). However, the fit of any data to any isotherm during surface 

kinetics and thermodynamics does not ascertain adsorption as the actual mechanism 

responsible for species removal from solution (Stumm, 1992). This is so because adsorption 

is mostly followed by additional interactions at the surface.   
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Langmuir isotherm 

This isotherm was derived by Langmuir and it is based on the following assumptions 

(Stumm, 1992): 

• Once a monolayer is formed, there is no continued deposition of the adsorbate on the 

adsorbent surface,  

• Equal activity of adsorption sites and thus a similar mechanism of adsorbate 

accumulation on all adsorption sites, 

• Non-interaction between adsorbed molecules.  

The Langmuir equation can be expressed mathematically as follows (Ubaldini et al., 2006; 

Stumm, 1992): 

RT
L

memLeeL

eLm
e

G

eKand

qCqKq
or

CK

CKq
q

∆−

=

+=
+

= 111

1

                                                                       (6)

 

Where qm  - monolayer adsorption capacity (mgg-1) constant 

  KL - Langmuir constant (lg-1) 

 Ce - equilibrium concentration (mgl-1) 

 qe - adsorbate adsorbed at equilibrium (mgg-1). 

Freundlich isotherm 

This isotherm assumes an exponential decrease in the heat of adsorption as solute uptake 

proceeds. The Freundlich isotherm can be expressed mathematically as follows (Ubaldini et 

al., 2006; Stumm, 1992):  
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n
1
ekCeq =                                                                                                                    (7)  

Where k and n are constants 

The two mentioned isotherms assume monolayer coverage and as result are mostly 

appropriate for interpreting data for chemisorption and not physisorption. 

2.2.2 Adsorbents 

Adsorbents must have high abrasion resistance, thermal stability and exposed surface area 

(Kasprzyk-Hordern, 2004). These can be classified as either polar or non-polar adsorbents. 

Amongst the polar adsorbents are aluminas, silica gel, and zeolites.  

2.3 Alumina/aluminum oxide adsorbent   

The industrial importance of aluminas (α, δ, θ, η, γ, and χ) is constantly increasing as more 

knowledge about them is being gathered through research (Lippens and Steggerda, 1970; 

Ingram Jones et al., 1996). The applications of aluminas require extensive knowledge of their 

properties ( Kasprzyk-Hordern, 2004). According to Lippens and Steggerda (1970) aluminas 

can be classified as either low temperature or high temperature aluminas depending on the 

temperature of aluminum hydroxide dehydration. The low temperature aluminas are those 

obtained at dehydrating temperatures <600°C whereas the high temperature aluminas are 

obtained at temperatures >900°C. However, the low temperature aluminas exhibit excellent 

catalytic and adsorptive properties due to their high surface area and porosity (Kasprzyk-

Hordern, 2004). Figure 5 below gives the sequential transformation of the hydroxides of 

aluminum to give the different aluminas as proposed by Lippens and Steggerda, 1970 and 

Ingram Jones et al., 1996. 
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Figure 5: The thermal transitional sequence of aluminum hydroxides to aluminas (Lippens and 

Steggerda, 1970; Ingram-Jones et al., 1996) 

2.3.1 Alumina surface properties 

Mineral phases of inorganic species depending on their molecular structure and surface 

reactivity are susceptible to processes such as dissolution, precipitation and ion exchange 

when in suspension (Stumm, 1992). These processes make the mineral phases suitable for 

use in water treatment technology.   

Activated alumina is one such mineral phase that has found wide application in industry as 

an adsorbent and a catalyst (Kasprzyk-Hordern, 2004; Bouguerra et al., 2007). The 

application of activated alumina in wastewater treatment is said to be dependent upon its 

oxide/aqueous interface reactions, selectivity, crystal structure, kinetics of adsorption, 

surface area, thermal stability and mechanical strength (Kasprzyk-Hordern, 2004). As an 

adsorbent activated alumina has been successfully applied in defloridation, arsenate removal, 

phosphate removal and desilication of wastewaters (Ghorai and Subhashini, 2005; Bouguerra 

et al., 2007; Lounici et al., 2001; Goldberg et al., 2002).  
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The reaction mechanistic, thermodynamic and kinetic properties of metal oxides in solution 

are influenced by the nature of their surface functional groups and the capacity of these to 

bind protons and adsorption ions at given pH of the solution (Goldberg et al., 2002; Stumm, 

1992). Active alumina matrix can contain up to about 5% of water depending on process 

conditions (Kasprzyk-Hordern, 2004). Peri (1965) observed water loss even at high 

temperatures during alumina dehydration under a vacuum. Thus, aluminas have some water 

still adsorbed on their surfaces even under high temperatures. 

Figure 6 shows an idealized structure of a dry and hydrated oxide surface, for example of Fe, 

Si and Al oxides. The idealized structure of the dry oxide illustrates the top layer to contain 

oxide ions over the aluminum ions. The coordinative unsaturation of the dry oxide is the 

driving force for the water adsorption on the surface (Stumm, 1992). Depending on 

temperature, water gives rise to either weak or strong binding forces of an undissociated 

water molecule or the dissociated form (hydroxyl group) of water molecule as shown by 

Figure 6 (b) and (c) respectively (Lippens and Steggerda, 1970).  

                                                                        

(a)       (b) 

  

        

   

(c) 

Figure 6: Idealized illustration of the cross section of the surface layer of a metal oxide (Goldberg et 

al., 1996; Stumm, 1992; Lippens and Steggerda, 1970). 
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The surface hydroxyl groups are the active sites of the activated aluminas (Goldberg, et al., 

1996). Four models are being used to explain the origins of the surface hydroxyl groups 

namely: Peri’s model, Tsyganenko’s model, Knozinger’s model and the Busca’s model as 

shown in Figure 7 (a), (b), (c) and (d) (Peri, 1965; Kasprzyk-Horden, 2004). Peri’s model 

assumes an outer layer of alumina to be only covered by Alvi ions and these ions form the 

basis for the hydrated surface. According to Peri (1965) the good catalytic properties of γ-

alumina, a low temperature alumina are due to the acid sites created during the dehydration 

process. 

Tsyganenko’s model suggests that the number of Al atoms attached to the OH group is the 

determining factor on the frequency of hydroxyl groups. On the other hand, Knozinger’s 

model states that the net electrical charge on the OH group is the one which determines the 

frequency of the hydroxyl groups. Busca’s model suggests the presence of cation vacancies 

as the determining factor on the frequency of the hydroxyl groups on aluminas ( Kasprzyk-

Horden, 2004).  Morterra and Magnacca (1996) reported a difference in the OH spectrum of 

transition aluminas and the aluminum hydrated phases. The spectra for the activated 

aluminas are almost the same though minor differences on intensities can be observed at 

times.  
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(a) 

 

(b) 

 

  (c) 

 

  (d) 

Figure 7: Possible surface hydroxyl groups on aluminas (Peri, 1965;  Kasprzyk-Horden, 2004) 
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The surface hydroxyl groups can therefore be idealized as those coordinated with one 

aluminum ion, two aluminum ions and those coordinated by three aluminum ions. The 

reactivity of alumina surfaces is as a result of these hydroxyl groups which render them 

amphoteric (possessing the acid–base properties) (Goldberg et al., 1996; Riemsdijk et al., 

1986).  

2.3.2 Chemistry of alumina in aqueous systems 

The chemistry of activated aluminas in solution is of importance when studying its 

applications industrially (Goldberg et al., 1996). The origins of alumina reactive surface 

groups are believed to be as a result of its reactions with water. These groups arise as a result 

of alumina dissolution, precipitation and superficial hydration (Carrier et al., 2007; 

Vogelsberger et al., 2008).  For pH greater than 4, Carrier et al., (2007) found out that when 

γ-alumina is in solution it undergoes dissolution which leads to supersaturation of the system 

with respect to aluminum hydroxides which results in subsequent precipitation of the 

hydroxide/hydrated phases. They also accredited the difficulty in the reproducibility of 

alumina chemistry findings to the strong dependence of the nature and heterogeneity of the 

hydroxides formed on experimental conditions such as pH, time, and temperature. Another 

very important finding was that of the particle size having an effect on the kinetics of 

alumina dissolution (Roelofs and Vogelsberger, 2006; Vogelsberger et al., 2008). The 

dissolution for the nanoparticles of alumina gave a maximum at the beginning of the 

experiment which decreases and equilibrates with time. The analysis of the precipitated 

solids using X-ray diffraction analysis showed that bayerite was formed when the alumina is 

in solution for pH greater than 4.5. They also suggested that the alumina hydration is most 

likely not limited to the oxide/water interface. 

The dissolution kinetics of alumina is controlled by the concentration of charged surface 

groups (Stumm, 1992). For a system consisting of pure water and alumina particles, these 

charged surface groups can be attributed to the ionisation reactions happening on the 

hydrated alumina surface as shown by equations 8 and 9 (Goldberg et al., 1996):  

++ ↔+ 2AlOHHAlOH                                                                                                                             (8) 

+− +↔ HAlOAlOH
       

                                                                                     (9) 
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Equations 8 and 9 depict the amphoteric nature of the surface hydroxyl groups, which 

constitute the reactive sites of the alumina surfaces. In addition, Equation 8 and 9 show how 

an alumina surface develops an electrical charge as a result of the ionisation of the surface 

groups. Thus, the surface charge is due to the loss of ions and the adsorption of charged 

species (anions and cations) (Kasprzyk-Horden, 2004; Stumm and Morgan, 1981). 

Oxoanions are said to form either bimolecular or multimolecular surface complexes with 

oxides (Kasprzyk-Horden, 2004). This charge/potential as a result of gaining or releasing an 

ion is called the zeta potential and is dependent on the pH of the solution 

(www.malvern.co.uk). The point of zero charge (pzc), which is the point of colloidal least 

stability, is of importance for practical applications of oxides. Many researchers report the 

point of zero charge for alumina to be typically between a pH of 7 and 10 depending on the 

type of alumina (Kasprzyk-Hordern, 2004; Goldberg et al., 1996; Yopps and Fuerstenau, 

1964). Depending on the alumina charge, an equal amount of opposite ion charge must be 

adsorbed on to the alumina surface in order to maintain electrical neutrality (Goldberg, et al., 

1996).  Low zeta potential values of particles results in dispersion instability as there is no 

force to prevent particle-particle interaction (www.malvern.co.uk). In contrast to other 

studies, Kosmulski et al., (2009) reported the alumina zeta potential being not sensitive to 

pH, the nature and concentration of the salt. However, he found out that activated alumina 

preferentially adsorbs sulphate to magnesium. Figure 8 below shows the dependence of 

surface charge of alumina on pH. 

 

 

 

 

Figure 8: Surface charge of alumina as a function of medium pH (Kasprzyk-Hordern, 2004) 

From Figure 8, the ionisation of the surface renders it susceptible to surface reactions in 

order to preserve electrical neutrality.  Activated alumina is reported to be a good adsorbent 

for silicon species at alkaline conditions (Matson, 1981) despite silica being negatively 

charged for pH greater than 4 (Kosmulski, 2006). Studies by Bouguerra et al., (2007) on the 
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kinetics of silica adsorption onto activated alumina showed high silica removals at pH 8.0 to 

8.5. This high silica removal at basic pH, despite the surfaces of both alumina and silica 

negatively charged must be as a result of the chemistry of the two species when in solution.  

2.4 Silicon and aluminum  

Both silicon and aluminum normally exist as compounds bonded with other species 

especially oxides (Stumm and Morgan, 1996). Silica is silicon bound to oxygen and this is the 

most abundant compound of silicon. When in solution aluminum and silicon in the form of 

silica both undergo hydration (Iler, 1979; Stumm and Morgan, 1996).  

2.4.1 Dissolution of silica in solution 

Silica exists in three different forms: reactive (dissolved silica), colloidal (polymeric form) and 

suspended particles (Peairs, 2007; Sheikholeslami and Tan, 1999, Iler, 1979). In the solid 

phase, silicon exists as either crystalline or amorphous silica. Crystalline silica has low 

solubility compared to amorphous silica in water at 25°C (Iler, 1979).  

Silica solubility is reported to be a function of pH, the presence of other species, temperature 

and pressure (Fournier and Rowe, 1977; Sheikholeslami et al., 2001; Chen et al., 1982; Iler, 

1979; Owen, 1972;). The removal of silicon species from waste-waters is fundamentally 

dependent on its form (Iler, 1979). The reactive form being the silicon dioxide (SiO2) 

dissolved in water to form the monomeric form (H4SiO4) (Iler, 1979). At a temperature of 

25°C and concentrations less than 2 x 10-3 M, silica remains in the monomeric form over 

long periods. However, when the concentration is increased it polymerises to form colloids 

(Iler, 1979). The reactive form of silica ionises under alkaline conditions and the degree of 

ionisation increases with an increase in pH (Peairs, 2007). The dissolution of amorphous 

SiO2 to give the different silicon species in solution and the solubility constants is given by 

the following equilibrium equations extracted from Stumm and Morgan, 1996:  



Univ
ers

ity
 of

 C
ap

e T
ow

n

 
 

19

2SiO  + O22H  ↔ 4SiO2H
                    

                                                log K = -2.7          (10)    

4Si(OH)   ↔   ++ H-
4SiO3H            

                    
                                 log K = -9.46         (11)  

-
4SiO3H   ↔

 
+− + HSiOH 2

42                            
                            log K = -12.56       (12)  

44Si(OH)  ↔
 

OHHOSiH 2
2
1246 42 ++ +−

       
                             log K = -12.57     (13)  

The total concentration of dissolved silica in solution at any given pH is given by the sum of 

the concentration of the solubilised silica species as follows: 

]OSiH[]SiOH[]SiOH[])OH(Si[]Si[ T
−−− +++= 2

1246
2
42434                                   

  (14) 

The relative concentrations of silica species at equilibrium with amorphous silica during 

dissolution at 25°C for the entire pH can be computed using the equilibrium data from the 

above equations 10-13. Thus the relative concentration of silica in solution at equilibrium 

with amorphous silica at any given pH is given by the following equations (Stumm and 

Morgan, 1996):  

724 .])OH(Si[log −=                                                                                                       (15)  

pHlog .]SiOH[ +−=− 161243                                                         
                              (16)       

pHlog .]SiOH[ 272242
42 +−=−                                                                                  (17)  

pHlog .]OSiH[ 237232
1246 +−=−

                                                                                (18)                                      

The amount of silica species at equilibrium with amorphous silica as a function of pH is 

given by Figure 9. 
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Figure 9: Solubility-pH diagram for amorphous silica dissolution at 25°C and Ionic strength = 0.5.  

2.4.2 Hydrolysis of Al (III) in solution  

Aluminium undergoes hydrolysis to the different hydroxyl complexes as a function of 

solution pH (Stumm and Morgan, 1986). Depending on solution pH, aluminum can exist as 

either the monomeric or polymeric form. The monomers are dominant at pH values around 

pH 7 whereas the polymers are dominant at higher pH values (Berkowitz et al., 2005).  

Aluminum speciation is very important for its removal from wastewaters.  The equilibria 

constants governing the formation of these aluminum complexes from gibbsite (Al(OH)3) at 

25°C are given by equations 19-24  as in Stumm and Morgan, 1996.  
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O2H3Al ++   ↔   +++ H2Al(OH)                                               log K = 3.53                          (19)  

O2H3Al 2++   ↔  +++ H2Al(OH) 2                                              log K = -0.8                        (20)  

O2H3Al 3++   ↔  ++ H3Al(OH) 3                                               log K = -6.5                        (21)    

O2H3Al 4++   ↔ ++ H-
4Al(OH) 4                                               log K = -14.5                      (22)    

 O2H33Al 4++   ↔ +++ H5
4(OH)3Al 4                                         log K = 11.6                      (23)   

  O2H3Al13 28++   ↔ +++ H7
24(OH)4O13Al 32                               log K = 11.8                         (24)      

 The total concentration of Al3+ in solution at any given pH is given by the sum of the 

concentration of the different Al hydroxyl complexes as follows:    

+

+−+++

+

+++++=
7
2443

5
4432

23

)OH(OAl[

)OH(Al[)OH(Al[])OH(Al[])OH(Al[])OH(Al[]Al[]Al[ T
 

                                                                                                                                                      (25)                                        

The combination of the solubility product of gibbsite and the complex formation constants 

can be used to compute the concentrations of the different Al species in solution at 25°C 

and at any pH. Equations 26-32 give the relationship between the concentrations of Al3+ 

species and pH as obtained from Stumm and Morgan, 1996. The plot of these equations is 

given by Figure 10. 

3pH8.5]3[Allog −=+
                                                                                            (26) 

pHlog .])OH(Al[ 2532 −=+                                                                                         (27)  

pHlog .])OH(Al[ 2802 −−=+                                                                                        (28) 

563 .])OH(Al[log −=                                                                                                       (29)  

pHlog .])OH(Al[ +−=− 5144                                                                                          (30) 
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pHlog .])OH(Al[ 56115
4 −=+                                                                                         (31) 

pHlog .])OH(OAl[ 78117
2443 −=+                                                                                (32) 

 

  

 

Figure 10: Solubility-pH diagram of amorphous aluminium hydroxide hydrolysis at 25°C (Stumm 

and Morgan, 1996) 

2.5 Possible removal mechanisms of silicon species by alumina in solution 

Numerous methods of treatment and removal of silicon species from wastewaters have been 

an area of great interest to many researchers (Bremere et al. 2000; Matjie and Engelbrecht, 

2007; Sheikholeslami et al., 2001). Most of these methods employed are generally specific to 

brine composition and process conditions. Activated alumina application in silicon species 

removal in waste-waters is an area of great interest to many researchers though the 

mechanism of silica removal is still a non unified concept (Midkiff, 2002; Bouguerra et al. 

2007; Matjie and Engelbrecht, 2007).  

Many researchers have reported the unique affinity between silica and aluminum oxides 

(Birchall, 1994: Houston et al. 2008). Mostly, they accredit the affinity to the similar 

configuration of both silica and aluminum oxides when in solution (Birchall, 1994; Doucet et 
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al., 2001; Hanzlicek and Steinerova-Vondrakova, 2002). In the presence of silica and 

aluminum in solution, hydroxyaluminosilicates (HAS) are reported to form though the 

mechanism of formation is not fully understood (Doucet et al., 2001). Doucet and co-

workers (2001), concluded that the formation of HAS was as a result of competitive 

condensation of silicic acid on the hydroxylated alumina surface. Also, they noted that 

silicon species continued to be deposited on the surface when silica is in excess. 

Exley and Birchall (1992) in their studies of HAS formation, concluded that the mechanism 

of formation proceed through the inhibition of the nucleation of aluminum hydroxide.  They 

also concluded that the silicic acid substituted hydroxylated aluminum at growth sites on 

aluminum hydroxide matrix and this was dependent upon solution pH and the silicic acid 

concentration. 

Under alkaline conditions silica co-exists as both the colloidal and soluble form (Iler, 1979). 

Considering that under alkaline conditions, alumina undergoes transformation, dissolution 

and subsequent precipitation when in solution resulting in the formation of the surface 

hydroxyl groups, the removal mechanism(s) of silicon species by alumina can be as a result 

of the following:   

i. Adsorption onto the hydrated alumina/newly precipitated hydroxides which is then 

followed by surface precipitation (Iler, 1979; Li and Stanforth, 2000; Doucet et al., 

2001).  

ii. Precipitation with the insoluble metal hydroxides and solubilised Al ions 

2.5.1 Adsorption and surface precipitation 

Surface precipitation is the continued deposition of species on the already deposited one on 

the mineral surfaces (Li and Stanforth, 2000). Li and Stanforth (2000) studied the removal of 

phosphate by goethite. They concluded that the removal of phosphate by goethite was by 

adsorption which was then followed by surface precipitation. Once a film of phosphate was 

deposited on the goethite surface, the adsorption sites were obscured and the continued 

removal of phosphate was due to a different reaction mechanism from adsorption (surface 

precipitation). However, the complication is in determining the point of transition from 

adsorption to surface precipitation. Li and Stanforth (2000) and Tejedor-Tejedor and 
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Anderson (1990) suggested the use of change in zeta potential to distinguish the transition 

from adsorption to surface precipitation. The size of the charge on the surface varies linearly 

with surface coverage for adsorption. 

Many researchers report the removal of dissolved silica by alumina in solution to be a result 

of the dissolved silica (Si(OH)4) condensing with the OH groups of the hydrated alumina 

surface (Hanzlicek and Steinerova-Vondrakova, 2002: Doucet et al., 2001) . This deposition 

of the reactive silica is said to increase the surface area as further deposition occurs on silica 

to form a film of silica as shown below in Figure 11(Iler, 1979; Hanzlicek and Steinerova-

Vondrakova (2002) ):   

 

 

 

 

 

Figure 11: Interaction of silica and alumina resulting in an increase in surface area for further 

deposition of silica  

Selim et al. (1996) observed a shift in silica spectra during silica removal by alumina. They 

accredited the shift to the formation of a surface complex.  Iler (1979) reviewed the 

formation of quartz in a suspension of iron and aluminum hydroxides at 20°C, at dilute 

concentrations of iron, aluminum and silica. However, there was no quartz precipitation 

observed from a saturated solution of amorphous silica containing high concentrations of 

monomeric silica (Iler, 1979). In review Iler (1979) also stated the reduction of silica 

equilibrium solubility to below 9.5ppm in the presence of trace amounts of alumina or iron 

at 20°C. Also at pH 7.0 to 9.0 when silica concentration exceeded 6mg/l, mineral quartz was 

reported to have precipitated out (Drever, 1988). 
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2.5.2 Precipitation with the insoluble metal hydroxides and solubilised Al ions 

When metal oxides undergo dissolution this brings about hydrolysis, formation of metal 

oxide precipitates and silica adsorption onto the precipitate (polymerisation) (Iler, 1979). 

Also, in the presence of dissolved aluminum and other species, silica has a tendency of 

forming aluminosilicates (Gabelich et al., 2005). The different aluminosilicates are not only 

made up of silica and aluminum but have other elements bound within the matrix (Gallup et 

al., 2003) due to the complexity of natural waters and waste-waters. The complexity of 

industrial waste-waters and natural waters has also led to the study of the effects of the 

presence of other species on the removal of silica. Amongst the studies was the effect of 

cations and competing anions on silica removal and boron removal (Manning and Goldberg, 

1996; Goldberg et al., 1996; Bouguerra et al., 2007; Bouguerra et al., 2008; Chen et al., 1982) 

Bouguerra et al., (2008) showed that the adsorption of boron onto alumina decreases in the 

presence of anions such as silica, nitrate and hydrogenocarbonate. However, the adsorption 

of silica onto alumina was not affected by the presence of foreign particles such as sulphate, 

fluoride, nitrate and hydrogenocarbonate ( Bouguerra et al., 2007). This shows the unique 

affinity of alumina for silica. 

Sheikholeslami and Tan (1999) in their study of silica removal from solutions reported the 

catalysis of silica polymerization by calcium and magnesium salts. According to Chida et al., 

(2007) polysilicic acid is stable in solution in the presence of calcium ions. Bremere et al., 

(2000) also found out that the addition of iron (III) in solution enhances silica monomer 

deposition from solution. Iler (1979) reviewed the optimum removal of soluble silica by 

aluminum ions at pH of 8 to 9. Under acidic conditions 1 part Al3+ was found to be needed 

to precipitate out 40 parts of colloidal silica. However, under alkaline conditions at least 4 

parts Al3+ are required to  remove 1 part soluble silica (Okamoto et al., 1957).  

According to Stumm and Morgan (1981), the mechanism by which aluminol groups (as a 

result of hydration) on alumina surfaces removes ions from solution is by either inner-sphere 

or outer sphere complexes. This is dependent on system pH, ion concentrations and 

suspension density of the adsorbent. At very low concentrations adsorption of metal ions 

can be considered as a bimolecular adsorption reaction (Goldberg et al., 1996). For divalent 
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Me2+ ions, Equations 33-35 illustrate the possible mechanisms by which the metal ions can 

react with the hydroxyl groups (Janusz et al., 2003; Huang and Stumm, 1973; Hohl and 

Stumm, 1976): 

++→+++ 2HAlOMeOHO2H2MeAlOH                                                                          (33)  

++−−→++ 2HOAlMeAlO2Me2AlOH                                                                            (34)  

+++→++ HAlOMe2MeAlOH                                                                                        (35)  

Huang and Stumm (1973) found that the extent of alkaline earth cations uptake by hydrous 

gamma alumina increases with an increase in pH and also as one goes down the group. The 

authors above also found out that finite adsorption occurs at the point of zero charge and 

pH values slightly below the point of zero charge. Houston et al. (2008) in their studies on 

aluminum removal by silica concluded that the removal mechanism involves Al sorption to 

silanol sites, surface enhanced precipitation of the hydroxide and bulk precipitation of an 

aluminosilicate. Houston et al., (2008) also concluded that cations such as Na+ acted as a 

charge compensating ions. Since both silica and alumina have an isostructure (Birchall, 

1994), one can conclude that they interchange reactions.  

2.5.3 Possible formation of aluminosilicates 

The existence of both dissolved aluminum and silica in solution can result in the formation 

of aluminosilicates. Drever (1988) found out that at aluminum concentrations of 10-7 M and 

silica concentrations of 10-4 M, the wastewater under investigation was supersaturated with 

respect to kaolinite and gibbsite. Jardine and co-workers (1985) reported the uptake of the 

monomeric and polymeric form of aluminum by aluminosilicates such as kaolinite and 

montmorillonite. The following equations show some of the reactions in a multivalent ionic 

system containing silica, calcium and aluminum (Matjie and Engelbrecht, 2007):  

++→+++ 6H4(OH)5O2Si2AlO2H4SiO42H32Al                                                             (36)                       

( ) ↔−+−++ 12OH4OHAl23Ca 6 O2.6H3O2Al.CaO3                                                   (37)                         
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2.6 Recovery of alumina loading capacity through dissolution of the aluminum 

silicate species  

The economic viability of using adsorption in waste-water treatment is to a large extent 

dependent on the capability of regenerating the adsorbent bed. A regeneration method with 

higher adsorption capacity recovery renders adsorption an attractive and effective waste 

water treatment technique. The regeneration technique used depends on the adsorbate 

chemical form and the intermolecular interaction between the adsorbate and the adsorbent 

(Lounici et al., 2001). As a result, saturated alumina bed can be regenerated either chemical 

or electrical. Also, at times both chemical and electrical regeneration can be implemented in 

conjunction depending on the form of the adsorbates. 

The regeneration of an alumina bed saturated by fluoride showed that using a combination 

of electro-regeneration and chemical regeneration gave the best results (Lounici et al., 2001). 

Sodium hydroxide and sulphuric acid are amongst the different reagents used (Lounici et al., 

2001). 

Regeneration of alumina saturated with aluminosilicates would involve the dissolution of the 

aluminosilicates to the bulk solution. Aluminosilicate dissolution involves the breaking of the 

Si-O and Al-O bonds (Oelkers and Schott, 1995).  Thus, water, acids, ligands and hydroxides 

can be used to facilitate aluminosilicates dissolution (Cama et al., 2002: Oelkers and Schott, 

1995). In ligand promoted dissolution, the dissolution rate is promoted if the ligand uptake 

forms monomolecular inner-sphere complexes and not binuclear and multinuclear surface 

complexes (Kasprzyk-Horden, 2004).  

Under alkaline conditions the binding of an additional OH group in the surface complex or 

the deprotonation of a surface OH facilitates dissolution (Sheikholeslami et al., 2001). 

Previous studies have shown that silicates dissolution under alkaline conditions depend on 

the surface concentration of silica (Stumm, 1997). The dissolution rates of kaolinite were 

found to increase with temperature and decrease with pH (Cama et al., 2002). Anorthite 

dissolution under acidic conditions can be expressed as follows (Oelkers and Schott, 1995):  

O24H(aq)22SiO32Al2Ca8H8O2Si2CaAl +++++↔++                                                (38) 
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From the above equilibrium equation, introduction of an alkali will shift the equilibrium to 

the left.  Also, the dissolution rates of oxides and silicates was found to increase with 

decreasing pH below their pH of point of zero charge and increase with increasing pH in the 

alkaline region due to surface ionisation (Stumm, 1997; Kasprzyk-Horden, 2004). Hellmann 

(1995) also noted the preferential dissolution of Al and Si to be a function of the element 

speciation at the given pH conditions. The Al dissolution is preferential under acidic to 

neutral pH conditions and greatest at extreme basic conditions. This is due to the dominance 

of the protonated hydroxylated alumina group with respect to the neutral silica at acidic to 

neutral pH and the co-existence of deprotonated hydroxylated silica and alumina groups. 

Oelkers and Schott, (1995) in their studies also concluded that the number of the different 

types of bonds to be broken as well as their relative strength and reactivity accounts for the 

difference in dissolution equilibrium. This was further confirmed by Pelmenschikov et al.  

(2001) studies on dissolution of silica surfaces.  Pelmenschikov et al., (2001) established that 

the calculated energy barrier for silica hydrolysis is higher than the activation energy of silica 

dissolution at neutral silica surfaces. In explanation to this discrepancy, they proposed that 

the Si-O-Si bond hydrolysis is followed by its dehydroxylation. Thus, the rate of dissolution 

is proportional to the concentration of surface bound OH, the extent of surface 

deprotonation/protonation, the concentration of adsorbate, compounds or elemental 

speciation, the number of the different types of bonds and their relative reactivity and the 

nature of alkali cations (Sheikholeslami et al., 2001; Hellman, 1995; Stumm, 1997). 

Theoretically, the formation of a surface precipitate on solid/water interface is expected to 

introduce a dissolution barrier to the release of species into solution. However, Hellman 

(1995) studies in aluminosilicates dissolution showed that the effect caused by surface 

precipitates was negligible. The interconnected porosity of precipitates and the leached layer 

depths were stated as the main reasons for the uncharacteristic behaviour. An increase in 

leaching depth increases the number of Al-O and Si-O bonds susceptible to hydrolysis 

(Hellmann, 1995). In general, dissolution can be either transport controlled or surface 

controlled (Stumm and Morgan, 1996). 
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3 MATERIALS AND METHODS 

3.1 Analytical techniques 

Chemical analysis of solutions 

The chemical analyses of the solutions were done using Atomic Absorption Spectroscopy 

(AAS) and the Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) for 

the determination of concentrations of aluminium, calcium and silicon species. Prior to 

analysis the samples were filtered through 0.2µm Millipore cellulose acetate filters in order to 

remove suspended solids or precipitates. For repeatability, samples were taken in duplicate. 

The pH values of solutions were measured with a Hanna pH 211 meter.  

Chemical analysis of solids 

The purity and morphology of the solid activated alumina were determined using the X-Ray 

Diffraction (XRD) and the Scanning Electron Microscope (SEM) respectively. The particle 

size evolution was carried out using the Malvern mastersizer and the micro electrophoretic 

zeta potential analyzer for the particle size distribution. The micro-electrophoretic zeta 

potential analyzer was also used to measure the alumina zeta potentials. 

3.2 Materials and chemicals 

The following analytical grade Merck chemicals were used during the experiments:  98% 

calcium sulphate dihydrate (CaSO4.2H2O), sodium metasilicate pentahydrate 

(Na2SiO3.5H2O), 99% aluminium sulphate (Al2SO4.18H2O), 98% sodium gluconate, 99% 

silicon dioxide, 99% sulphuric acid and 98% sodium hydroxide. The adsorbent material used 

was activated alumina.  

The pH for the different samples of the gas condensate was found to be between 8.3 and 

9.6. The synthetic solutions used to simulate the gas liquor were prepared from the hydrated 

salts: calcium sulphate hydrate (CaSO4.2H2O), sodium metasilicate pentahydrate 

(Na2SiO3.5H2O), aluminium sulphate hydrate (Al2SO4.18H2O). Hydrated salts were used 

because of their ease to dissolve compared to anhydrous salts. The synthetic solutions were 

prepared by dissolving these salts in deionised water and then adjusting the pH to between 
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8.3 and 9.0.  Magnetic stirrers were used for agitation during synthetic solutions preparation. 

The synthetic solution concentration with respect to each scaling species was modelled on 

that of the raw gas condensate as shown in Table 1.   

Table 1: The desired theoretical concentrations of the synthetic solutions with respect to each 

aluminum silicate species  

Element Solution concentration (ppm) 

Si 10.0 

Al 5.0 

Ca 5.0 

Fe 2.0 

 

3.3 Experimental Design 

Batch mode experiments 

Batch experiments for the activated alumina loading and unloading were conducted in 2 litre 

(l) beakers.  During these experiments, the gas condensate and the synthetic solutions pH 

were adjusted to the desired pH values of 8.3 to 9.0.  Activated alumina loading experiments 

by the gas condensate were carried out either at  room temperature or 40°C±1ºC and at a 

minimum alumina dosage of 25g/l. The desired pH was maintained by either using sulphuric 

acid or sodium hydroxide as titrants whilst the temperature was controlled by immersing the 

reaction vessels in a thermostatically controlled water bath.  

Continuous mode experiments 

The continuous loading experiments were conducted in a jacketed, packed bed column at 

the gas condensate pH (8.3 to 9.0), a temperature of 40°C±1ºC, a minimum residence time 

of 6 minutes and an activated alumina dosage of not less than 25g/l. The gas condensate 

feed was pumped into the column at a fixed flow rate until equilibrium was reached. The 

equilibrium point for these experiments was taken as the point when there was no detectable 

change in the level of contaminant removal as measured by ICP-AES. The gas condensate 

contaminant removal was measured as a function of time and/or cumulative volume by 
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analysing the effluent’s species concentrations using ICP-AES. On the other hand, the 

continuous regeneration/or unloading experiments were conducted in a jacketed column at 

room temperature and minimum residence time of 3 minutes. Sulphuric acid and sodium 

hydroxide cleaning reagents were pumped into the column at a fixed flow rate until 

equilibrium was attained. 

For both batch and continuous experiments the time required for reaching equilibrium was 

determined by removing samples at regular time intervals. The samples were filtered through 

a 0.2µm Millipore cellulose acetate filter and the filtrate analysed for the Al, Si and Ca species 

(aluminosilicate species) concentrations using ICP-AES and AAS. A schematic diagram of 

the experimental apparatus for the continuous experiments is as shown in Figure 12. The 

contaminant percentage removal for the individual metal ions was calculated as follows: 

100x
initialC

finalCinitialC
removalSpecies%






 −

=                                                     (39) 

Where Cinitial and Cfinal are the initial and the final concentrations (mg/l) of the individual 

element. 

Likewise, the percentage species unloaded from the spent alumina was calculated as follows: 

100x
adsorbedinitialMass

effluentinMass
unloadedSpecies% =                                          (40)  

The mass initially loaded onto alumina was determined from the loading curves and the 

overall mass balance for the loading experiment.   
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Figure 12: Schematic diagram of the experimental system used for the continuous mode 

experiments. 

3.4 Experimental program  

The experiments were carried out in three phases as follows:  

1. Investigation into the activated alumina chemistry in solution; 

2. Understanding the mechanisms of aluminum silicate species removal by activated 

alumina; 

3. Investigation into the unloading of the loaded bed of activated alumina by the 

aluminum silicate species. 

3.4.1 Investigation into alumina surface chemistry in solution 

 Under this phase, the following experiments were conducted: 

• Investigation into the dissolution and transformation behaviour of alumina when 

in suspension; 
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• Determination of activated alumina and silica zeta potential. 

Dissolution and transformation behaviour of alumina when in suspension   

The investigations into activated alumina transformation and dissolution when in suspension 

were conducted batch-wise. For these experiments, alumina to water/gas condensate ratio of 

1g/80ml and 1g/40ml was used. The activated alumina pellets were ground using a pestle 

and mortar. The fine particles used from sieving were in the size range of 25µm<d<75µm. 

One batch of experiments was carried out using activated alumina pellets and the other with 

the ground activated alumina. In order to compare and relate the fines experiment to the 

mechanism for the species removal, alumina pellets were washed to give the nanosized 

particles. The nanoparticles were also investigated for the dissolution properties and the 

particle size evolution. A pitch blade impeller was used to minimize particle breakage and 

settling of the particles. A pH range of 8.3 to 9.0 was maintained. 0.1M NaOH and 0.1M 

HCl were used to adjust the pH throughout the experiment. Liquid samples were collected 

at short intervals for a total aluminium analysis by an AAS and ICP-AES. The particle size 

distribution within the suspensions as a function of time was also investigated using a micro-

electrophoretic zeta potential analyzer and the Malvern mastersizer for the activated alumina 

fine particle experiments. The experiments were aged up to 6 days. The fines and pellets 

were oven dried at 60°C and analysed for their structural properties using XRD. 

Zeta potential measurements 

A micro electrophoretic zeta potential analyzer was used to measure the zeta potential of 

activated alumina and silica as a function of pH. The activated alumina and silica were 

ground into a fine powder and filtered through a 1µm filter as the analytical instrument 

required that the particle size be ≤6µm. Furthermore, in order to assist the filtration process, 

the sample container was placed in an ultrasonic bath. In order to establish the dependence 

of zeta potential on pH, the suspension was continuously stirred using a magnetic stirrer and 

the pH was varied using standard solutions of 0.1M HCl and 0.1M NaOH. The zeta 

potential was used to infer the most likely reactions which alumina and silica can undergo at 

the experimental conditions under investigation. 
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3.4.2 Understanding the mechanisms of aluminum silicate species removal by 

alumina 

The experiments to investigate the mechanism of species removal by activated alumina were 

carried out batch wise. Gas condensate and the synthetic solutions were used. 25g of both 

fines and pellets of activated alumina were suspended in 1000ml of both the gas condensate 

and the synthetic solutions. The experiments were carried out at room temperature and 

40°C±1ºC and a pH range of 8.3 to 9.0. Liquid samples were collected and filtered through a 

0.2µm filter for species analyses with AAS and ICP-AES at regular short intervals. The 

evolution of the aluminum silicate species and the activated alumina surface chemistry results 

were analysed to explain the possible mechanism of species removal. The mechanism of 

species removal was also inferred from the evolution of the aluminosilicate species in the gas 

condensate during continuous loading of activated alumina at a temperature of 40°C±1ºC 

and activated alumina dosage of at least 25g/l.  

3.4.3 Investigation into the unloading of the loaded bed of alumina 

The experiments to investigate the possibility of regenerating activated alumina were 

conducted batch-wise and continuously. Gas condensate was continuously fed through a 

jacketed, packed bed column with an alumina dosage of at least 25g/l, operated at a 

temperature of 40ºC±1ºC with a  residence time of  6 minutes in order to load the activated 

alumina with the aluminum silicate species. The contaminant removal was measured over 

time by analyzing for the aluminum silicate species concentrations in the effluent stream.  

Once loaded, the unloading of the activated alumina was carried out batch-wise and 

continuously at room temperature. NaOH (aq), H2SO4 (aq) and sodium gluconate solutions 

of varying concentrations were used. An alumina to wash reagent ratio of 1g to 40ml was 

used. The regeneration time was 2 hours. The aluminum silicate scaling species 

concentrations were determined at regular intervals and hence the percentage (%) unloading 

of the aluminum silicate species from alumina surface for each experiment by the different 

reagents was calculated using Equation 40.   

After regenerating/or unloading the alumina bed, the regenerated alumina bed was 

reactivated by adjusting its pH to that of the virgin activated alumina by either using 0.1M 
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H2SO4 or 0.25M NaOH solution. For the continuous unloading experiments, the kinetic 

curves to describe the unloading of activated alumina bed were obtained by following the 

evolution of the aluminum silicate species at regular intervals. The trapezium rule was used 

to calculate the cumulative amount of species desorbed with time. The samples were filtered 

through a 0.2µm filter and analysed for silicon species, aluminum and calcium 

concentrations using ICP-AES.  
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4 RESULTS AND DISCUSSION 

4.1 Investigation into alumina surface chemistry in solution 

4.1.1 Dissolution and transformation behaviour of alumina in suspension  

Figure 13 and Figure 14 show the results of the batch experiments carried out to determine 

the dissolution of activated alumina in deionised water and the gas condensate at room 

temperature and at a pH range of 8.3-9.0 as a function of time. The results show that the 

dissolution of activated alumina is higher for the finer particles compared to that of the 

activated alumina pellets for both the deionised water and the gas condensate. A maximum 

in Al concentration in solution was observed at the beginning of the fines dissolution 

compared to the alumina pellets dissolution. Although the experiments were conducted 

batch-wise, the Al concentration decreased after 30 minutes and 15 minutes for deionised 

water and gas condensate stream respectively. Furthermore, the aluminum dissolution was 

higher in gas condensate than in deionised water. A maximum Al concentration of about 

1.2mg/l in deionised at a pH of 8.3 to 9.0 was observed compared to 7mg/l in gas 

condensate. The higher dissolution of Al in the gas condensate might be due to the 

formation of aluminate (Al(OH)4
-) species from the hydrated activated alumina formed by 

some alumina particles  in the alkaline region when in solution.  

The maximum dissolution obtained initially for fines and nanoparticles experiments can be 

attributed to an increased particle surface area exposure to water as the particle size 

decreases. It has been shown that oxide (aluminum oxide) nanoparticles dissolution results in 

a maximum in Al concentration at the beginning which is followed by a decrease in Al 

concentration (Vogelsberger et al., (2008). The decrease in Al concentration observed can be 

assigned to the formation of a new phase as a result of dissolved Al precipitating out as 

suggested by Vogelsberger et al., (2007). However, the formation of a new phase was 

confirmed by Carrier et al., (2007).  According to Carrier et al., (2007), the new phases 

observed was as a result of alumina dissolution in suspension followed by precipitation and 

alumina hydration through hydrolysis of Al-O bonds on the alumina surface.  



Univ
ers

ity
 of

 C
ap

e T
ow

n

 
 

37

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

Time(mins)

A
l 
co

n
ce

n
tr

a
ti

o
n

(m
g

/
l)

.

Nanosized particle Pellets 

 

Figure 13: Dissolution kinetics of activated alumina in deionised water at room temperature and pH 

adjusted at 8.3 to 9.0. 
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Figure 14: Dissolution kinetics of activated alumina in the gas condensate stream at room 

temperature and pH of 8.3 to 9.0 (2mg/l initial Al concentration).  
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Also, the change in particle size diameter as dissolution of the nanoparticles and fines 

progresses was investigated and is shown in Figure 15 and Figure 16. Figure 15 shows that 

for the first 30 minutes the particle diameter was decreasing. Figure 16 shows a decrease in 

particle diameter and number density in the first 20 minutes followed by an increase at 45 

minutes calculated using Equation 4. The decrease in particle diameter and number density 

might be due to some alumina particles dissolution as suggested by the increase in Al 

concentration during the dissolution experiments for the first 30 minutes as shown in Figure 

13. The increase in particle size after the first minutes of the experiments could be due to 

precipitation of aluminate species leached out from the hydrated alumina onto the solid 

particles of activated alumina as explained by the decrease in Al concentration after 30 

minutes in Figure 13. The precipitated new phases might be amorphous aluminum 

hydroxide or bayerite which was found to be formed under alkaline conditions by Carrier et 

al., (2007). Since the point of zero charge of alumina lies in the pH range of 7 to 10 and this 

is the point of colloidal least stability (Goldberg et al., 1996; Yopps and Fuerstenau, 1964), 

the particle size increase is most likely due to the deposition of the colloids formed from the 

precipitating bayerite. However, the inconsistency in particle size diameter evolution noticed 

at 90 minutes and 60 minutes under the alkaline conditions could be due to 

hydrated/hydroxide phases re-dissolving back into solution.  
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Figure 15: Change in particle size diameter during alumina fines dissolution in water. 
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Figure 16: Particle size evolution during dissolution experiments 

The activated alumina particles suspended in water at varying times from the dissolution 

experiments were dried at 60°C and analysed using XRD to investigate the formation of a 

new phase when alumina is in aqueous solution. Figure 17 shows the XRD patterns of 

activated alumina before (virgin alumina) and after suspension in deionised water at different 

times. The narrow diffraction peaks at about 21.9°, 23.7°, 32.4° and 47.6° emerged within 48 

hours of immersing alumina in deionised water. The emerging new peaks were assigned to 

bayerite (PDF No. 00-020-0011, 01-074-1119, 01-077-0250 and 01-077-0114). The results 

are in agreement with studies by Carrier et al., (2007). Carrier and co-workers (2007) assigned 

the peaks to the formation of the hydroxide phases of aluminum through the hydrolysis of 

surface Al-O bonds and the dissolution followed by subsequent precipitation of the 

aluminum in the form of hydroxide.  
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Figure 17: XRD patterns of alumina suspended in deionised water for different times. 

4.1.2 Determination of activated alumina and silica zeta potential 

Figure 18 and Figure 19 show the results of the batch experiments carried out to determine 

the point of zero charge of alumina and silica as a function of pH respectively. The results 

show the point of zero charge of activated alumina to be around a pH of 8.2. The activated 

alumina is positively charged below pH 8.2 and negatively charged for pH above 8.2 in both 

deionised water and 0.01M NaCl electrolyte. This substantiates the findings by other 

researchers who reported the point of zero charge of alumina to lie in the pH range of 7.0 - 

10 (Goldberg et al., 1996; Yopps and Fuerstenau, 1964). The surface charge might be due to 

the differential loss of ions and the adsorption of charged particles (Kasprzyk-Horden, 2004; 

Stumm and Morgan, 1981) from solution since activated alumina undergoes transformation 

and dissolution when in solution as shown by Figure 13 and Figure 14. However, no point 

of zero charge was observed for silica though it is negatively charged for almost the entire 

pH range as shown in Figure 19.  
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Figure 18: Zeta potential of alumina as a function of pH 
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Figure 19: Zeta potential of silica as a function of pH 

4.2 Understanding the mechanism(s) of aluminum silicate species removal by 

activated alumina 

Alumina surface chemistry and species evolution in solution was used to propose the most 

likely removal mechanism(s) of Si and Ca from solution by alumina. Figure 13 to Figure 18 

show the results obtained for the experiments carried out to investigate the alumina surface 



Univ
ers

ity
 of

 C
ap

e T
ow

n

 
 

43

chemistry in aqueous suspensions at a pH of 8.3 to 9.0. The results show that when the 

alumina was immersed in water, small amounts of alumina particles are hydrated and form 

aluminate (Al(OH)4
-)species by dissolution (Figure 13) followed by precipitation of Al in the 

form of amorphous aluminum hydroxide or bayerite (Figure 17). This is also the case when 

the alumina is negatively charged above pH of 8.2 (Figure 18). Figure 19 shows that silica 

remains negatively charged for practically the entire pH range.  Figure 9 and Figure 10 show 

the speciation of amorphous silica and amorphous aluminum hydroxide as a function of pH 

from the equilibrium equations extracted from Stumm and Morgan, 1996. Under alkaline 

conditions, silica exists as the reactive and colloidal form whilst aluminum exists as 

hydroxide complexes (ller, 1979). A schematic representation of the suggested removal 

mechanism(s) involved is summarised in Figure 20. 

Batch experimental results on the uptake of Ca and Si by activated alumina from the 

synthetic solution and the gas condensate as a function of time are as shown in Figure 21 

and Figure 22. Figure 23 shows the continuous experiment results to investigate the uptake 

of Si and Ca from the gas condensate by activated alumina in a packed bed column. Initially, 

a maximum removal of Si and Ca was observed which then levels off after treating 0.5 litres 

of gas condensate and remains relatively constant throughout the experiment. It was also 

observed that the aluminum concentration increases initially and then levels off throughout 

the experiment. The increase in Al concentration can be due to dissolution of Al due to 

small amounts of alumina particles which can start the reaction to form hydrated alumina 

and consequently aluminate species at higher pH values of greater than 8.0. The species 

removal trend suggests a change in the removal mechanism(s) during the course of the 

experiment. Activated alumina is used as an adsorbent in waste-water treatment (Kasprzyk-

Hordern, 2004). The species removal trend suggests that the process of Si removal from the 

gas condensate cannot be attributed exclusively to an adsorption process, which if was the 

case, would show a gradual decline in Si and Ca removal with increasing volumes of gas 

condensate treated due to the saturation of the adsorption sites. Alumina when in solution 

reacts to form hydrated alumina followed by the leaching out of aluminate species into 

solution (Figure 13 and Figure 14). The aluminate species precipitate out as the hydroxide 

phases in suspension to form a hydroxylated alumina surface (Figure 17). This led to the 

suggestion that the maximum Si and Ca removal attained initially was as a result of a 
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combination of adsorption and precipitation (surface precipitation and bulk precipitation). 

The hydroxylated alumina surface could be acting as a seed and at the same time as an 

adsorbent, facilitating the uptake of both calcium and silica species. The continuous removal 

of Si and Ca throughout the experiment without the attainment of a break through point of 

zero percent removal suggests Si deposition on the already adsorbed Si to form a film 

(surface precipitation) though the adsorption sites were already taken up (Li and Stanforth, 

2000, Iler, 1979).  

Furthermore, Al ions in solution could be reacting with Si and Ca to form aluminosilicates in 

bulk solution (Matjie and Engelbrecht, 2007; Stumm, 1992). Al concentration from small 

amounts of alumina particles dissolution in gas condensate was as high as 7mg/l. Fresh gas 

condensate had concentrations of Si as high as 12mg/l. The two concentrations of Si and Al 

are already more than those which were found to cause solutions to be saturated with 

respect to aluminosilicates by Drever, 1988. Also, silicon species and aluminum are more 

stable in the polymeric form (ller, 1979). Thus, bulk precipitation of aluminosilicates is 

additionally a likely mechanism of Si and Ca removal together with surface precipitation and 

adsorption. Doucet et al., (2001) reported the formation of hydroxyaluminosilicates (HAS) 

though the mechanism of formation is not fully understood. As noted by Jardine and co-

workers (1985) aluminosilicates such as kaolinite and montmorillonite preferentially adsorb 

either the polymeric or monomeric aluminum species. Hence, bulk precipitation 

(polymerisation) could be responsible for Al species equilibration in solution. As both 

alumina and silica are negatively charged at pH above 8.2, Ca removal could also be as a 

result of the electrostatic attraction.  

Theoretically, Al addition into solution is expected to stop to indicate the complete coverage 

of the alumina surface. However, Al release into solution was continuous. This confirms 

alumina porosity and hydration with consequent formation of aluminate species under 

alkaline conditions being unconfined to the surface (Carrier et al., 2007; Hellmann, 1995). 

On the other hand, Figure 21 shows that the concentrations of the scaling species in the 

synthetic stream were less than that of the gas condensate. Contrary to the gas condensate 

results, no alumina dissolution was observed in the experiments performed on synthetic 

solutions.  However, on leaving the solution standing at room temperature for 8 days, the 
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deposition of a white precipitate was observed. This could be due to a slow polymerisation 

of the monomeric silica and aluminum into amorphous silica and amorphous aluminum 

hydroxide (Krauskopf, 1956).  



Univ
ers

ity
 of

 C
ap

e T
ow

n

 
 

46

 

 

 

 

0

2

4

6

8

10

12

0 500 1000

Cumulative volume(ml)

C
o

n
ce

n
tr

at
io

n
(m

g
/

l)

Si

Ca

Al

 

Figure 20: Schematic summary of the most likely Si, Ca removal mechanism(s) by activated alumina 

with cumulative gas condensate volume 
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Figure 21: Concentrations of Si, Ca and Al in the synthetic solution contacted with activated alumina 

in a batch-wise mode as a function of time. 
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Figure 22: Concentrations of Si, Ca and Al in gas condensate contacted with activated alumina in a 

batch-wise operation mode as a function of time.   
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Figure 23: Concentrations of Si, Ca and Al in a continuously fed gas condensate through a packed 

bed of activated alumina (T=40°C, 6 minutes residence time) 

The loaded alumina was also analysed using Scanning Electron Microscope (SEM) and 

Energy Dispersive Spectroscopy (EDS) as shown in Figure 24 and Figure 25. Analysis of the 

results shown in Figure 24 did not detect the presence of either of the aluminosilicate species 

(calcium and silica). This might be due to the fact that the species concentrations are below 

the detection limits of the analytical instrument. The SEM pictures show less agglomerates 

of tiny particles in A and B compared to C. The larger agglomerates in picture C could be 

precipitates of the aluminosilicates deposited on alumina surface. The slightly bigger and 

smooth agglomerates in de-ionised water (picture B) could be an indication of the formation 

of a crystalline hydroxide phase.  However, the analysis of a solid obtained during the 

unloading of loaded alumina showed the presence of silica as shown in Figure 39.  
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Figure 24: Energy dispersive spectroscopy analysis of activated alumina pellets saturated with 

aluminum silicate species 

   

 

 

 

 

 

Figure 25: Scanning Electron Microscopy photographs for activated alumina. A- Virgin alumina; B- 

alumina suspended in de-ionised water: C- alumina suspended in gas condensate 
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4.3 Investigation into the unloading of the loaded bed of activated alumina by 

aluminum silicate species (regeneration) 

4.3.1 Determination of the alumina-reagent ratio to be used 

Firstly, gas condensate was continuously run through a packed bed of virgin activated 

alumina in order to load it with the aluminum silicate species in a jacketed column at 

1ºC±40ºC. The loaded activated alumina was then washed using varying volumes of 0.1M 

H2SO4. Figure 26 shows the percentage removal of the Si and Ca species on the primary axis 

as well as the Al species removal on the secondary y-axis for an unused alumina sample 

when treating a cumulative gas condensate volume of 8 litres at an alumina dosage of 25g/l 

and a residence time of 6 minutes.   

The results show that the Si removal levels off at ~70% after treating 2 litres of gas 

condensate and remains relatively constant until a volume of 8 litres were treated. This 

suggests that the process of the Si removal from the gas condensate cannot be attributed 

exclusively to an adsorption process which if was the case, would show a decline in the 

percentage Si removal with increasing volumes of gas condensate treated due to the 

saturation of the adsorption sites. This trend in Si removal could be due to the continuous 

removal of dissolved silica by a surface reaction with the OH groups of the hydrated phases 

of the alumina, as well as the OH groups of the Si on the alumina surface as suggested by 

Hanzlicek, Steinerova-Vondrakova (2002). Therefore, this shows that surface precipitation 

plays a significant role in the removal of the aluminum silicate species (Iler, 1979). Hence, 

the regeneration of the activated alumina adsorption sites may not be as critical as initially 

envisaged. Conversely, the aluminum showed a negative removal implying that aluminum 

was being leached into solution. This negative removal of aluminum is a result of small 

particles of alumina dissolution as found in the alumina chemistry experiments. 

Furthermore, a correlation in the removal trend of Ca and Si was observed suggesting a link 

between Si and Ca in solution.  

After treating a cumulative gas condensate volume of 8 litres, batch-wise regeneration of 

alumina was carried out using different volumes of 0.1M sulphuric acid to investigate the 

alumina to reagent ratio to be used. As shown in Figure 28 the percentage of Si desorbed 

from the used alumina after 120 minutes is approximately 30%, 50% and 58% using 1, 2 and 
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3 litres of 0.1M sulphuric acid respectively. In comparison to the 30% Si desorption attained 

for 1l acid, this meant a 20% and 28% increase in Si desorption for 2l and 3l of 0.1M 

sulphuric acid used respectively. From the results the reaction time required for desorption 

equilibrium was about 60 minutes when 1l and 2l acid was used. However, for 3l, desorption 

equilibrium was not attained even after 120 minutes of the experiment. The failure to attain 

equilibrium could be as a result of the slow Si release into solution caused by the reduced 

silica concentration on the alumina surface as dissolution proceeds. The increase in the 

amount of Si desorbed with an increase in volume of 0.1M sulphuric could be due to Si 

reaching its solubility equilibrium since a larger volume of liquor means more Si desorption 

to reach the solubility equilibrium.  As shown by Figure 27, at around 60 minutes reaction 

time the concentration of Si was about 9.1mg/l. This was in agreement with the review by 

Iler, (1979) on the reduction of silica solubility to below 9.5ppm in the presence of trace 

amounts of alumina or iron at 20°C. Hence, an alumina to cleaning reagent ratio of not more 

than 1g alumina/40ml reagent was used during the regeneration experiments.      
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Figure 26: Percentage of Si, Ca, and Al removed from the gas condensate by virgin activated 

alumina (25g/L alumina dosage, 6 mins residence time) 
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Figure 27: Concentrations of Si in washing solution attained during batch-wise unloading of 

saturated activated alumina using 1 litre of 0.1M H2SO4 as a function of time (50g alumina) 
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Figure 28: Percentage of Si desorbed from a saturated bed of activated alumina during regeneration 

using different volumes of washing solution (0.1M H2SO4) as a function of time (50g alumina). 
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4.3.2 Investigations into the use of the various cleaning reagents to regenerate 

alumina 

Table 2 gives the various concentrations for the different reagents used to regenerate 

alumina. The reagent solutions used were sodium hydroxide solution (NaOH), sulphuric acid 

solution (H2SO4) and sodium gluconate solution (C6H11NaO7) of varying concentrations as 

shown in Table 2. The % Si unloading and the % aluminum dissolution after a reaction time 

of 120 minutes using the different washing reagents of varying concentrations are shown in 

Figure 31 and Figure 32 respectively. For the three reagents, it was observed that both % Si 

unloading and % Al dissolution increases with an increase in reagent concentration. 

Considering the highest reagents concentrations used, 0.65M of NaOH and 0.1M H2SO4 

showed a percent Si unloading of approximately 50% whereas 0.25M sodium gluconate gave 

approximately 5% Si unloading. However, for these high concentrations of reagents used 

during the experiments, NaOH showed the highest Al dissolution of about 2.5 % compared 

to that of H2SO4 and sodium gluconate which were about 0.5% and 0.3% respectively. This 

suggests that more particles of alumina are hydrated and hence more aluminate species 

leached into solution under alkaline conditions or rather 0.65M NaOH is highly 

concentrated for regenerating alumina. The higher Al dissolution at high pH values could 

have been promoted by the high concentration of OH groups which were binding on the 

surface complex and the co-existence of deprotonated hydroxylated silica and alumina 

groups (Stumm, 1997; Hellmann, 1995). The point of zero charge of alumina was found to 

be around the pH of 8.2 whereas silica was negatively charged for almost the entire pH range 

during alumina zeta potentials measurements. Hence, the observed small amounts of 

alumina particles dissolution in both alkaline and acidic conditions is in agreement with the 

earlier studies that found that, the dissolution rates of oxides and silicates below their pH of 

point of zero charge increase with decreasing pH and increases with increasing pH in the 

alkaline region (Stumm, 1997).  

Sodium gluconate is a weak acid; hence the lower unloading of silica  due to very low H+ 

concentrations to hydrolyze the silanol bonds. The dissolution of small amounts of alumina 

particles was not desired in this study and hence, the 0.65M NaOH was not suitable to 
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regenerate the alumina. As the used concentrations of sodium gluconate did not desorb 

much of silicon species, it was not used for the continuous regeneration experiments.  
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Table 2: Various concentrations of the different reagents used to regenerate saturated activated 

alumina  

Reagent Concentration used 

NaOH(aq) 0.025M, 0.25M and 0.65M 

H2SO4(aq) 0.01M, 0.025M and0.1M 

C6H11NaO7(aq) 0.005M, 0.05M and 0.25M 

  

0

3

6

9

12

15

0 2000 4000 6000

Cumulative volume(ml)

C
o

n
ce

n
tr

a
ti

o
n

(m
g

/
l)

Si Ca Al

 

Figure 29: Concentrations of Si, Ca and Al in a continuously fed gas condensate through a packed 

bed of activated alumina (25g/l alumina dosage, 6 minutes residence time).  
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Figure 30: Percentage of Si, Ca, and Al removed from the gas condensate by virgin activated 

alumina (25g/L alumina dosage, 6 mins residence time). 
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Figure 31: Percentage of Si unloaded from loaded alumina at the end of the experiments for the 

various cleaning reagents for the different concentrations used (120 minutes reaction time).  
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Figure 32: Percentage of Al dissolved from the loaded alumina in the different cleaning reagents of 

varying concentrations at the end of the experiments (120 minutes reaction time) 

4.3.3 Regeneration of alumina in a continuous mode operation 

For the continuous regeneration experiments, the activated alumina was firstly loaded with 

the aluminum silicate species at an activated alumina dosage of 25g/l and 6 minutes 

residence time as shown in Figure 33 and Figure 34. The loaded alumina was then 

continuously regenerated using 0.1M H2SO4 and 0.25M NaOH solutions at a residence time 

of 3 minutes. These experiments were carried out to investigate whether the silica solubility 

equilibrium was the limiting factor for silica desorption. The evolution of the aluminum 

silicate species as a function of time for the two reagents used is as shown in Figure 35 and 

Figure 36. Figure 37 compares the effect of the 0.1M H2SO4(aq) and the 0.25M NaOH (aq) 

on desorbing silicon species. The results show that most of the desorbable aluminosilicate 

species were desorbed within the first 15 minutes. Furthermore a higher silica unloading was 

achieved for the 0.1M H2SO4(aq) compared to the 0.25M NaOH (aq). This higher 

desorption within the first 15 minutes was due to the higher concentrations of the adsorbate 

on the surface at the beginning of the experiments (Stumm, 1997). The decline in Si 

desorption after 15 minutes was due to the decrease in silica concentration on the alumina 
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surface. However, lower Si unloading for 0.25M NaOH might be attributed to the fact that 

the solution was not highly alkaline to provide enough OH groups to promote dissolution 

since the binding of OH on the surface complex is the one which facilitates dissolution. 

Also, the lower rate of Si desorption reported in the alkaline medium compared to that with 

H2SO4 could be as a result of the Si-O-Si bond hydrolysis being followed by its 

dehydroxylation as suggested by Pelmenschikov et al.  (2001). 
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Figure 33: Concentrations of Si, Ca and Al in a continuously fed gas condensate through a packed 

bed of activated alumina (25g/L alumina dosage, 6 minutes residence time) 
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Figure 34: Percentage of Si, Ca, and Al removed from the gas condensate by virgin activated 

alumina (25g/L alumina dosage, 6 mins residence time). 
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Figure 35: Concentrations of Si, Ca and Al in washing solution attained when using 0.1M H2SO4 to 

regenerate the loaded activated alumina as a function of time (3 minutes residence time) 
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Figure 36: Concentrations of Si, Ca and Al in washing solution attained when using 0.25M NaOH to 

regenerate the loaded activated alumina as a function of time (3 minutes residence time) 
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Figure 37: Concentrations of Si removed from loaded alumina in washing solution attained when 

using 0.1M H2SO4 and 0.25M NaOH to regenerate the loaded activated alumina as a function of 

time (3 minutes residence time) 
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Figure 38 shows that the overall % Si removed from loaded alumina when using 0.1M 

H2SO4 and 0.25M NaOH was approximately 70% and 40% respectively. During batch 

regeneration the overall Si desorption of 50% and 24% were obtained for 0.1M H2SO4 and 

0.25M NaOH respectively. The dissolution curves (Figure 28 and Figure 37) suggest that Si 

desorption is surface controlled (Stumm and Morgan, 1996).  
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Figure 38: Cumulative percentage Si unloaded from loaded alumina when regenerating loaded 

alumina using 0.1M H2SO4 and 0.25M NaOH (3 minutes residence time, and 50g loaded alumina). 

During the washing experiments, fines were also formed and these were analysed using the 

SEM and the EDS in order to find their composition and morphology. The results are 

shown in Figure 39 and Table 3. Si was detected as one of the constituent elements, contrary 

to the mechanism(s) experiments. 
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Figure 39: Energy Dispersive Spectroscopy (EDS) analysis of fines formed during washing loaded 

alumina by 0.1M H2SO4 

Table 3: The Energy Dispersive Spectroscopy (EDS) percentage element analysis of fines formed 

during washing of loaded alumina 

Element  Weight 
% 

Atomic % 

O 22.70 33.41 
Al 68.96 60.18 
Si 2.84 2.38 
S 5.49 4.03 
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Figure 40: Scanning Electron Microscope photograph of the fines produced during washing of 

loaded alumina using 0.1M H2SO4 

4.3.4 Alumina loading capacity recovery 

Figure 41 to Figure 44 show the results for the second loading of washed alumina carried out 

to determine the recovery of alumina loading capacity as a result of both acid and caustic 

regeneration. The second loading of the washed alumina by 0.1M H2SO4 and 0.25M NaOH 

gave a maximum Si removal of 86% and 75% respectively (Figure 42 and Figure 44). It was 

also observed that the removal was also followed by a levelling off in the Si removal as a 

function of the cumulative gas condensate volume treated as in the loading of virgin 

alumina. The first loading of virgin alumina levelled off at about 84% and hence it can be 

concluded that washing the loaded alumina by either acid or base does not reclaim the 

loading capacity of alumina. The amount of the Si and Ca removed continued from were it 

ended after the first loading. This could be attributed to the removal of the scaling species 

being predominantly a surface precipitation process after the initial adsorption process. This 

is evident in the continued removal of Si and Ca without reaching a breakthrough point 

during the second loading too. As such, the washing serves only to remove the successive 

layers of the aluminosilicate films which were precipitated on alumina surface and not to 

recover the adsorption sites on the alumina surface. Hence, there is no significant benefit of 

regenerating the alumina in terms of improving the performance of the removal of scaling 

species by the regenerated alumina. The unloading of the scaling species off the alumina 

surface would however benefit the process in terms of reducing the increase in pressure 

drop in the bed that could result from a reduction in the interstitial spaces between the 
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alumina pellets with the cumulative increase in the amount of silicates precipitating on the 

surface over time. 
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Figure 41: Concentrations of Si, Ca and Al in a continuously fed gas condensate through a packed 

bed of activated alumina previously washed using 0.1M H2SO4 (6 minutes residence time)   
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Figure 42: Percentage of Si, Ca and Al removed from gas condensate by loaded alumina which was 

previously washed using 0.1M H2SO4 (6 minutes residence time) 
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Figure 43: Concentrations of Si, Ca and Al in a continuously fed gas condensate through a packed 

bed of activated alumina previously washed using 0.25M NaOH (6 minutes residence time) 
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Figure 44: Percentage of Si, Ca and Al removed from gas condensate by loaded alumina which was 

previously washed using 0.25M NaOH (6 minutes residence time) 
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5 CONCLUSIONS 

i. Small amounts of alumina particles react to form the hydrated alumina and subsequently 

the dissolution/or leaching out of the aluminate species into solution. However, the 

degree of dissolution is a function of particle size. The aluminate species consequently 

precipitate out as the hydroxide phases as a result of the solution being supersaturated. 

ii. Activated alumina is porous and its hydration is not limited to the surface hence the 

continued release of Al into solution throughout the experiments. 

iii. The pH of point of zero charge for alumina is 8.2, implying that under a pH range of 8.3 

- 9.0, alumina is negatively charged. Also, silica is negatively charged for pH greater than 

2. As a result the reactions between silica and alumina are not due to electrostatic 

attraction. The most likely interaction is as a result of surface complexation. 

iv. It can also be concluded that the removal of silicon species from the gas condensate 

stream and natural waters is most likely due to a combination of adsorption and 

precipitation (bulk and surface enhanced precipitation). Surface precipitation being the 

predominant mechanism of silica removal in the systems.  

v. The degree of regeneration can be measured by the extent to which the adsorbed species 

are desorbed from the adsorbent surface. Both sulphuric acid and sodium hydroxide 

solutions can be used to unload silica from the loaded alumina. However, the extent of 

desorption is a function of the acid and base concentration and adsorbate concentration.  

vi. However, the benefit of regenerating the activated alumina is quantified by the 

improvement in the removal of the scaling species from gas condensate using the 

regenerated alumina during the second loading. From the results, there is no significant 

benefit of regenerating the alumina in terms of improving the performance of the 

aluminosilicate species removal by the regenerated alumina. The unloading of the scaling 

species off the alumina surface would however benefit the process in terms of reducing 

the increase in pressure drop in the bed that would result from a reduction in the 

interstitial spaces between the alumina pellets with the cumulative increase in the amount 

of silicates precipitated on the alumina surface over time. 
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vii. The unloading of the aluminum silicate species from the surface by either acid or base is 

highly dependent on the surface concentration of the silicates. Hence, the dissolution is 

surface controlled.  
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6 RECOMMENDATIONS 

i. Experimental studies must be conducted to investigate the extent of scaling as a result of 

the aluminum dissolved into solution during alumina regeneration in the downstream 

processes. 

ii. In order to reduce the likelihood of scaling by the  aluminum silicate species remaining 

in the  stream after running the stream through alumina, the downstream processes must 

be carried out at pH higher than 9.0.    

iii. More experiments need to be conducted at varying volumetric flow rates in order to 

establish the effect of residence time on silicates unloading/dissolution in the packed 

bed column.    
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8 APPENDICES 

8.1 Appendix A: Raw data for aluminum dissolution in gas condensate 

Table 4: Al concentrations in gas condensate during Al dissolution experiment collected as a 
function of time   

 
Sample ID 

 
Al(ppm) 

D    0A 1.73 
1A 8.83 
2A 8.82 
3A 8.40 
4A 7.83 
5A 7.83 
6A 8.76 
7A 7.70 

  
0B 1.73 
1B 9.04 
2B 9.10 
3B 8.54 
4B 8.34 
5B 8.22 
6B 8.56 
7B 8.14 

 

8.2 Appendix B: Particle size distribution 

The particle size distribution was done using a Malvern mastersizer. The Malvern mastersizer 

gives the information as a volume based histogram together with the particle concentration. 

The conversion of the volume distribution to the number distribution (N) is as shown 

below: 

Delta L = (0.011298-0.01)/2 = 0.00065 

Lbar = 0.01 + (Delta L)/2= 0.01065 

N = (Volume %/100) * Particle concentration/ (PI()/6*Lbar^3) 
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Table 5: Excel spreadsheet for the conversion of volume distribution data to number distribution 
data obtained during dissolution experiments 

Size 
(um) Delta L/2 LBar 

Volume of 
particle  Number of Particles 

     

0.01  0.01065 6.32303E-07 0 

0.011298 0.00065 0.01203 9.11923E-07 0 

0.012765 0.00073 0.01359 1.3152E-06 0 

0.014422 0.00083 0.01536 1.8969E-06 0 

0.016295 0.00094 0.01735 2.7358E-06 0 

0.01841 0.00106 0.01961 3.94547E-06 0 

0.0208 0.00120 0.02215 5.6901E-06 0 

0.0235 0.00135 0.02503 8.20629E-06 0 

0.026551 0.00153 0.02827 1.18354E-05 0 

0.029998 0.00172 0.03195 1.7069E-05 0 

0.033892 0.00195 0.03609 2.46168E-05 0 

0.038292 0.00220 0.04078 3.55039E-05 0 

0.043264 0.00249 0.04607 5.12047E-05 0 

0.04888 0.00281 0.05205 7.38475E-05 0 

0.055226 0.00317 0.05881 0.000106506 0 

0.062396 0.00359 0.06645 0.000153605 0 

0.070496 0.00405 0.07507 0.00022153 0 

0.079648 0.00458 0.08482 0.000319494 0 

0.089988 0.00517 0.09583 0.000460783 0 

0.101671 0.00584 0.10827 0.000664552 0 

0.11487 0.00660 0.12233 0.00095843 0 

0.129783 0.00746 0.13821 0.001382257 0 

0.146631 0.00842 0.15615 0.0019935 0 

0.165667 0.00952 0.17642 0.002875077 0 

0.187175 0.01075 0.19932 0.00414649 0 

0.211474 0.01215 0.22520 0.005980115 0 

0.238928 0.01373 0.25444 0.00862466 0 

0.269947 0.01551 0.28747 0.01243867 0 

0.304992 0.01752 0.32479 0.017939262 0 

0.344587 0.01980 0.36695 0.025872314 0 

0.389322 0.02237 0.41459 0.037313509 0 

0.439865 0.02527 0.46842 0.05381416 0 

0.496969 0.02855 0.52923 0.077611676 0 

0.561487 0.03226 0.59793 0.111933058 0 

0.634381 0.03645 0.67556 0.16143193 0 

0.716738 0.04118 0.76326 0.232820061 0 

0.809787 0.04652 0.86235 0.3357775 0 
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0.914916 0.05256 0.97430 0.484264627 18768829038 

1.033693 0.05939 1.10079 0.698414477 91494538194 

1.167889 0.06710 1.24370 1.007265488 1.75338E+11 

1.319508 0.07581 1.40516 1.452696969 2.00373E+11 

1.49081 0.08565 1.58758 2.095105466 1.84264E+11 

1.684351 0.09677 1.79368 3.021598721 1.59282E+11 

1.903018 0.10933 2.02655 4.357804061 1.29174E+11 

2.150073 0.12353 2.28964 6.28490223 1.01174E+11 

2.429201 0.13956 2.58688 9.064200142 77182038022 

2.744567 0.15768 2.92272 13.07255505 57661700938 

3.100874 0.17815 3.30216 18.85347377 42393553016 

3.503438 0.20128 3.73085 27.19081107 30832751840 

3.958263 0.22741 4.21520 39.2150727 22294042057 

4.472136 0.25694 4.76243 56.55669567 16088246832 

5.052721 0.29029 5.38070 81.56708809 11616887672 

5.708679 0.32798 6.07924 117.6375163 8402423063 

6.449795 0.37056 6.86846 169.6589373 6087705347 

7.287125 0.41867 7.76014 244.6851582 4418896299 

8.233159 0.47302 8.76758 352.8893103 3214130202 

9.30201 0.53443 9.90582 508.9432895 2345383159 

10.50962 0.60381 11.19182 734.0071776 1721424216 

11.87401 0.68219 12.64477 1058.598365 1276325540 

13.41553 0.77076 14.28635 1526.729561 960094890.3 

15.15717 0.87082 16.14104 2201.876732 736424631 

17.12491 0.98387 18.23651 3175.586018 577535894 

19.34811 1.11160 20.60402 4579.887342 462527420.8 

21.85994 1.25591 23.27890 6605.19596 376289060.2 

24.69785 1.41896 26.30102 9526.131999 308848535.8 

27.9042 1.60317 29.71549 13738.75838 252791967.3 

31.52679 1.81130 33.57324 19814.28418 204698886.6 

35.61969 2.04645 37.93181 28576.51654 162721083 

40.24393 2.31212 42.85622 41213.56475 126205884.2 

45.46851 2.61229 48.41993 59438.94339 95034991.84 

51.37135 2.95142 54.70594 85723.91194 69186981.27 

58.04052 3.33458 61.80801 123632.5664 48470725.68 

65.5755 3.76749 69.83209 178305.11 32567920.69 

74.08869 4.25659 78.89788 257154.8323 20898058.97 

83.70708 4.80920 89.14062 370873.3167 12735349.24 

94.57416 5.43354 100.71310 534880.159 7314527.739 

106.852 6.13894 113.78795 771413.7663 3910641.645 

120.7239 6.93591 128.56020 1112546.793 1911290.971 

136.3966 7.83635 145.25024 1604534.979 826624.3909 

154.1039 8.85369 164.10702 2314089.161 283254.7039 
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174.1101 10.00309 185.41184 3337420.933 49083.63173 

196.7136 11.30172 209.48250 4813288.414 0 

222.2514 12.76894 236.67809 6941811.03 0 

251.1047 14.42664 267.40428 10011604.5 0 

283.7038 16.29955 302.11943 14438915.79 0 

320.535 18.41560 341.34139 20824063.73 0 

362.1478 20.80636 385.65526 30032838.76 0 

409.1628 23.50750 435.72207 43313899.54 0 

462.2814 26.55931 492.28869 62468083.94 0 

522.296 30.00731 556.19894 90092592.57 0 

590.1019 33.90294 628.40619 129933155.1 0 

666.7105 38.30431 709.98758 187391930.1 0 

753.2647 43.27708 802.16010 270260007.2 0 

851.0555 48.89543 906.29869 389773836.7 0 

961.5419 55.24317 1023.95685 562138828.4 0 

1086.372 62.41498 1156.88970 810726713.9 0 

1227.408 70.51787 1307.08025 1169244628 0 

1386.753 79.67269 1476.76895 1686305604 0 

1566.785 90.01601 1668.48710 2432020228 0 

1770.189 101.70214 1885.09462 3507503256 0 

2000 114.90538 2000.00000 4188790205 0 

    1.34987E+12 

      

8.3 Appendix C: Raw data for silica zeta potential in 0.01M NaCl 

Table 6: Silica zeta potentials obtained when  using 0.01M NaCl 

    
Zeta 
potential(mV)     

pH 
Reading 
1 Reading 2 

Reading 
3 Average 

1.87 -24.00 -26.50 -28.80 -26.43 
2.14 -28.20 -27.60 -27.90 -27.90 
2.68 -33.30 -32.30 -33.80 -33.13 
3.05 -36.50 -37.60 -37.90 -37.33 
3.86 -39.70 -42.90 -39.60 -40.73 
4.15 -40.80 -42.40 -43.60 -42.27 
5.55 -40.50 -37.50 -41.30 -39.77 
8.35 -52.30 -52.60 -54.20 -53.03 
8.70 -53.30 -55.00 -58.30 -55.53 
8.89 -55.50 -58.90 -60.80 -58.40 
9.13 -56.50 -56.70 -60.60 -57.93 
9.70 -53.70 -57.30 -58.80 -56.60 
10.04 -54.60 -57.70 -58.40 -56.90 
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8.4 Appendix D: Results for alumina loading with aluminosilicate species  

For the alumina loading experiments, two samples were collected at a given time during the 

experiments. The graphs were plotted using the average concentration of the two samples. 

Thus, the results presented in this thesis for alumina loading are an average of the two 

samples collected at regular intervals. However, a similar trend in the removal of the 

aluminosilicate species was observed during the experiments. The species removal was 

calculated using the following equation:  

100x
initialC

finalCinitialC
removalSpecies%






 −

=  

For example % Si removal after treating 180ml of gas condensate will be calculated as 

follows: 

Cinitial = (8.90+9.53)/2 = 9.22 

Cfinal  = (2.05+2.09)/2 = 2.07 

%Si removal = ((9.22-2.07)/9.22) x 100% 

                      = 77.55% 
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Table 7: Concentrations of Si, Ca and Al in gas condensate continuously fed through a packed bed 

of activated alumina  
 

Sample ID Cumulative Volume 
of gas condensate 

treated 

 
Al(ppm) 

 
Ca(ppm) 

 
Si(ppm) 

CN12    0A 0 2.13 1.87 8.90 

1A 180 4.42 0.55 2.05 

2A 360 5.48 0.32 1.39 

3A 540 7.20 0.35 1.35 

4A 1080 8.75 0.40 1.74 

5A 2160 9.78 0.48 1.93 

6A 3240 10.32 0.60 2.08 
7A 4320 10.49 0.60 2.29 

8A 6480 11.38 0.72 2.66 

9A 8100 11.45 0.81 2.78 

10A Overall 10.62 0.66 2.34 

     

0B 0 1.94 1.87 9.53 

1B 180 4.18 0.58 2.09 

2B 360 5.58 0.33 1.38 

3B 540 6.75 0.33 1.40 

4B 1080 8.78 0.39 1.70 

5B 2160 9.33 0.68 1.89 

6B 3240 10.21 0.58 2.19 

7B 4320 10.66 0.60 2.26 

8B 6480 11.34 0.75 0.91 

9B 8100 10.74 0.81 1.48 

10B Overall 10.37 0.67 1.77 
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8.5 Appendix E: Regeneration data for selected experiments to show calculations 
and reproducibility of the experimental results  

The amount of species removed from the stream by alumina was calculated using the overall 

concentration. 

Sample calculation: 

For the data given on the following table, the amount of Si loaded/adsorbed will be 

calculated as follows: 

Amount of Si adsorbed  = (Initial – Overall) Average Concentration x Total volume/1000 

                                      = (7.95 – 1.10) x 8640/1000 

                                      = 59.18mg 

Percentage Si desorbed will be then calculated using the following equation: 

100x
adsorbedinitialMass

effluentinMass
unloadedSpecies% =

 

Where mass in effluent = Concentration x Volume of reagent used 
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Table 8: Concentrations of Si, Ca and Al in gas condensate continuously fed through a packed bed 

of activated alumina 
 

  
Sample ID 

Cumulative Volume 
of gas condensate 

treated 

 
Al(ppm) 

 
Ca(ppm) 

 
Si(ppm) 

CN21    0A 0 1.45 1.41 7.95 
1A 180 3.62 0.21 0.54 
2A 360 4.58 0.21 0.59 
3A 720 5.82 0.22 0.62 
4A 2160 7.32 0.34 1.00 
5A 4320 7.85 0.42 0.99 
6A 6480 7.75 0.49 0.68 
7A 8640 7.33 0.62 1.09 
8A Overall 7.45 0.45 1.09 

     

0B 0 1.42 1.39 7.95 
1B 180 3.80 0.22 0.55 
2B 360 4.54 0.21 0.59 
3B 720 6.09 0.23 0.65 
4B 2160 7.65 0.34 1.03 
5B 4320 8.00 0.40 1.02 
6B 6480 7.54 0.47 0.94 
7B 8640 7.43 0.60 1.16 
8B Overall 7.86 0.48 1.10 
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The unloading experiments were repeated 2 times after a first run was done to investigate 

the general trend in species evolution for the two regenerants (NaOH and sulphuric acid). 

The graph below show the results obtained and that the results were reproducible. Thus, the 

results presented in this thesis are an average of the results obtained when loaded alumina 

was divided into equal portions after loading and then regenerated under the same 

experimental conditions. It is apparent that the desorbable Si was complete after 15 minutes.  

The difference in the concentrations could be as a result of analysis errors and the 

complexity of silica reactions in the presence of other species especially aluminum. 

Table 9: Concentrations of Si, Ca and Al in liquid samples during continuous regeneration of loaded 

alumina with 0.1M H2SO4  

 Run 1 Run 2  

Time 

(minutes) 

Average 

Si(ppm) 

Average 

Si(ppm) 

Average 

(ppm) 

0 0.00 0.00 0.00 

5 6.88 6.97 6.93 

10 15.72 13.99 14.85 

15 13.70 11.48 12.59 

20 9.87 11.02 10.44 

30 6.73 7.57 7.15 

45 4.93 5.29 5.11 

60 3.77 4.17 3.97 

90 2.76 3.20 2.98 

120 1.96 2.26 2.11 
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Figure 45: Concentrations of Si removed from loaded alumina in washing solution attained when 

using 0.1M H2SO4 for two different runs (3 minutes residence time) 

 

 




