Finite energy chiral sum rules in QCD

dc.contributor.authorDominguez, C A
dc.contributor.authorSchilcher, K
dc.date.accessioned2018-01-09T10:40:21Z
dc.date.available2018-01-09T10:40:21Z
dc.date.issued2004
dc.date.updated2017-12-12T10:09:14Z
dc.description.abstractThe saturation of QCD chiral sum rules of the Weinberg-type is analyzed using ALEPH and OPAL experimental data on the difference between vector and axial-vector correlators (V–A). The sum rules exhibit poor saturation up to current energies below the tau-lepton mass. A remarkable improvement is achieved by introducing integral kernels that vanish at the upper limit of integration. The method is used to determine the value of the finite remainder of the V–A correlator, and its first derivative, at zero momentum: Π(¯ 0) = −4L¯ 10 = 0.0257 ± 0.0003, and Π¯ (0) = 0.065 ± 0.007 GeV−2. The dimension d = 6 and d = 8 vacuum condensates in the operator product expansion are also determined: O6=−(0.004 ± 0.001) GeV6, and O8=−(0.001 ± 0.006) GeV8.
dc.identifierhttp://dx.doi.org/10.1016/j.physletb.2003.11.009
dc.identifier.apacitationDominguez, C. A., & Schilcher, K. (2004). Finite energy chiral sum rules in QCD. <i>Physics Letters B</i>, http://hdl.handle.net/11427/26775en_ZA
dc.identifier.chicagocitationDominguez, C A, and K Schilcher "Finite energy chiral sum rules in QCD." <i>Physics Letters B</i> (2004) http://hdl.handle.net/11427/26775en_ZA
dc.identifier.citationDominguez, C. A., and K. Schilcher. "Finite energy chiral sum rules in QCD." Physics Letters B 581, no. 3 (2004): 193-198.
dc.identifier.ris TY - Journal Article AU - Dominguez, C A AU - Schilcher, K AB - The saturation of QCD chiral sum rules of the Weinberg-type is analyzed using ALEPH and OPAL experimental data on the difference between vector and axial-vector correlators (V–A). The sum rules exhibit poor saturation up to current energies below the tau-lepton mass. A remarkable improvement is achieved by introducing integral kernels that vanish at the upper limit of integration. The method is used to determine the value of the finite remainder of the V–A correlator, and its first derivative, at zero momentum: Π(¯ 0) = −4L¯ 10 = 0.0257 ± 0.0003, and Π¯ (0) = 0.065 ± 0.007 GeV−2. The dimension d = 6 and d = 8 vacuum condensates in the operator product expansion are also determined: O6=−(0.004 ± 0.001) GeV6, and O8=−(0.001 ± 0.006) GeV8. DA - 2004 DB - OpenUCT DP - University of Cape Town J1 - Physics Letters B LK - https://open.uct.ac.za PB - University of Cape Town PY - 2004 T1 - Finite energy chiral sum rules in QCD TI - Finite energy chiral sum rules in QCD UR - http://hdl.handle.net/11427/26775 ER - en_ZA
dc.identifier.urihttp://hdl.handle.net/11427/26775
dc.identifier.vancouvercitationDominguez CA, Schilcher K. Finite energy chiral sum rules in QCD. Physics Letters B. 2004; http://hdl.handle.net/11427/26775.en_ZA
dc.language.isoeng
dc.publisher.departmentDepartment of Physicsen_ZA
dc.publisher.facultyFaculty of Scienceen_ZA
dc.publisher.institutionUniversity of Cape Town
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.sourcePhysics Letters B
dc.source.urihttps://www.journals.elsevier.com/physics-letters-b/
dc.titleFinite energy chiral sum rules in QCD
dc.typeJournal Article
uct.type.filetypeText
uct.type.filetypeImage
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dominguez_Article_2004.pdf
Size:
318.74 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.72 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections