Integration of wind energy systems into the grid: power quality and technical requirements

 

Show simple item record

dc.contributor.advisor Folly, Komla A en_ZA
dc.contributor.author Madangombe, Taruziwa en_ZA
dc.date.accessioned 2014-08-22T10:26:32Z
dc.date.available 2014-08-22T10:26:32Z
dc.date.issued 2010 en_ZA
dc.identifier.citation Madangombe, T. 2010. Integration of wind energy systems into the grid: power quality and technical requirements. University of Cape Town. en_ZA
dc.identifier.uri http://hdl.handle.net/11427/6661
dc.description.abstract The integration of wind energy into the utility network has increased significantly over the past years largely as a result of the increasing environmental concerns arising from the use of fossil fuels, coupled with the anticipated global increase in oil. In South Africa, the wind energy industry is still in its infancy, with the Klipheuwel (about 3.2 MW) and Darling (about 4.2 MW) wind farms being the only grid connected projects in the country. However, grid integration studies carried out in [1] have shown that there are over 7 000 MW potential ideas for wind power in the Western Cape alone and this is a clear indication that there is a growing interest in wind development locally. The Government has also set a 4% target for the development of the renewable energy in the country by 2013. In light of the above, this thesis discusses some of the technical requirements and power quality issues that need to be addressed in order to fully integrate wind power into the network without adversely affecting the operation of the grid. These have been researched through reviewing the various standards and grid codes for wind power that have been implemented in other leading countries, in order to identify some of the requirements that can be adapted to suit our local integration process. Some of the main technical issues that are discussed in this thesis include the strength of the grid (fault levels), permitted penetration levels, choice of wind turbine and the reactive power requirements of the network. All these issues contribute towards the resolution of the impact of wind turbines on the power quality of the network, especially at the point of common coupling or connection (PCC). Various power quality phenomena were discussed in the literature but the ones that were further investigated included the voltage level profile, harmonic distortions as well as reactive power requirements from the wind turbines. These were determined both during the steady operation of the network and during a network disturbance. en_ZA
dc.language.iso eng en_ZA
dc.subject.other Electrical Engineering en_ZA
dc.title Integration of wind energy systems into the grid: power quality and technical requirements en_ZA
dc.type Thesis / Dissertation en_ZA
uct.type.publication Research en_ZA
uct.type.resource Thesis en_ZA
dc.publisher.institution University of Cape Town
dc.publisher.faculty Faculty of Engineering & the Built Environment en_ZA
dc.publisher.department Department of Electrical Engineering en_ZA
dc.type.qualificationlevel Masters en_ZA
dc.type.qualificationname MSc en_ZA
uct.type.filetype Text
uct.type.filetype Image


Files in this item

This item appears in the following Collection(s)

Show simple item record