A fluid loop actuator for active spacecraft attitude control - A Parametric Sizing Model and the Design, Verification, Validation and Test with a Prototype on an Air Bearing

Master Thesis

2019

Permanent link to this Item
Authors
Supervisors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
License
Series
Abstract
Active spacecraft attitude control by using a pumped fluid as the inertial mass has potential advantages over reaction wheels, including high torque, lower power consumption, reduced jitter and prolonged lifetime. Previous work addressed conceptual and mission-specific control aspects, and one fluid loop has flown on a demonstration mission. In this dissertation, a parametric sizing model is developed that can optimize a fluid loop for any mission, based on pump capabilities and customer requirements. The model can be applied to circular, square and helical fluid loops, and includes the power consumption due to viscous friction. A configurable prototype was developed to verify the model, as well as a spherical air bearing to verify the rotational aspects of the various fluid loop configurations. The model was applied to various hypothetical missions. In conclusion, the fluid loop has the fundamental potential to replace reaction wheels in a wide variety of satellites above approximately 20 kg, if mass is carefully optimized and efforts are made to develop a suitable pump. This is considered worthwhile, as the actuator comes with many potential advantages.
Description

Reference:

Collections