Patient-specific thoracic endovascular aoratic repair (TEVAR)

Master Thesis

2019

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher
License
Series
Abstract
Endovascular aortic repair (EVAR) is a minimally invasive procedure to treat aortic aneurysms. Current off-the-shelf devices may not fit the patient perfectly, potentially increasing the chance of post-operative complications. This project aims to provide proof of concept for rapidly creating inexpensive patient-specific EVAR stent-grafts, conforming to the unique anatomy of the patient. After investigating the range of electrospinning shape capabilities on idealised stent-graft geometries (straight, tapered, elliptical, and curved), CT scans was used to create blood and aortic models of an abdominal aortic aneurysm. The former was used to design a patientspecific stent-graft geometry, 3D print a conductive electrospinning mandrel, and electrospin (290 mm, +18 kV, -3 kV, 5 ml/hr, 5 mm/s, 750 rpm) Polyurethane (PU). Sinusoidal Nitinol reinforcement segments were subsequently incorporated into the graft. Various geometries were successfully spun. Electrospun PU scaffolds had a mean ultimate tensile strength of 7.3 MPa, mean Young’s Modulus of 1.9 MPa, and a mean maximum strain of 571%. Fibre morphology analysis showed a mean orientation index of 0.25 (750 rpm) and 0.35 (1000 rpm), mean fibre diameter of 2.3 µm, and a mean pore size of 7.5 µm; pore size indicates possibility of endothelialisation. Nitinol reinforced patient-specific graft was successfully made and stent-grafts of various stent patterns had radial forces between 1.3 to 5.8 N (comparable to 2.8 N from a commercial example). FEA simulation highlighted various advantages of customised stent-grafts that conform to the anatomy over standard cylindrical devices such as better seal and contact traction. Simulation results (25 mm Ø, cylindrical, electrospun stent-graft) showed close approximations to experimental results; its use for future stent-graft design optimisations is promising. Mock insertion of an electrospun patient-specific stent-graft was performed in a 3D-printed transparent-PLA hollow aortic model with good conformity, albeit subpar visibility without a backlight and inflexibility. Although further improvements can be made to the individual steps, proof of principle was achieved. This process is very promising for the manufacturing of patient-specific devices that could offer better long term outcomes.
Description

Reference:

Collections